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Abstract 

This paper describes the development of efficient 
computer vision techniques for human-computer 
interaction. Our approach combines range and color 
information to achieve efficient, robust tracking using 
consumer-level computer hardware and cameras. In 
this paper, we present the design of the Human Oriented 
Tracking (HOT) library, present our initial results, and 
describe our current efforts to improve HOT's 
performance through model-based tracking. 

1. Introduction 

The past decade has seen an exponential improvement 
in processing capability and performance. Computers 
are increasingly becoming ubiquitous, indispensible 
tools in our lives. Our future will likely be populated 
with a range of devices, both personal and public, that 
perform tasks and services, both on demand and 
automatically. 

To gain the maximum benefit from these tools, we need 
to develop richer, more capable interface techniques 
than currently exist. We need to develop methods that 
enable humans and computers to communicate naturally. 
We need to move beyond cumbersome input hardware 
(keyboards, mice, etc.) and screen-based displays. In 
short, we need to develop effective, natural, and above 
all, transparent methods for human-computer interaction 
(HCI). 

To address this need, many researchers are now 
developing computer vision-based interfaces. A key 
advantage of these systems over traditional interfaces is 
that the "interaction" can be entirely passive. That is, 
vision enables computers to perceive the user, to 
classify his movements and activities, and to react 
accordingly. 

This paper describes the Human Oriented Tracking 
(HOT) library. We developed HOT as a tool for 
building vision-based interfaces. The design centers on 
a sensor-fusion based tracker that can efficiently detect, 
segment, and follow human features (head, hands, etc). 
Moreover, HOT is designed to provide good 
performance using consumer-level computer hardware 
and cameras. 

We have used HOT to build a variety of applications, 
including a mobile robot teleoperation interface and a 
virtual whiteboard. Currently, we are working to 
improve the HOT architecture by exploiting spatial 
constraints derived from hierarchical, shape-based 
models. Our preliminary results indicate that this sensor 
fusion and model-based tracking approach will enable 
HOT to deal with a wide range of complex objects and 
scenes.  

2. Related Research 

2.1 Vision-based interfaces 

A great deal of work has been performed in the field of 
human tracking, particularly for video-based 
surveillance applications [3][6][11]. 

In [4], a combination of range data, color data and face 
pattern recognition is used to track humans. This system 
can track multiple users and locates their heads. The 
sensor fusion scheme is reported to work well, even in 
crowded environments, and with remarkable accuracy. 
However, the system requires three computers and 
dedicated hardware, training of the neural network, and 
only tracks head position. The main difference with our 
work is that our system runs on standard PC hardware 
and provides more detailed information about the 
human posture and gestures. 

In [1], a system is presented that builds and tracks a 
blob-based model of the human body. The model is then 
used to interact with virtual characters. This system is 
based on adaptive background subtraction and is thus 
limited: 

•  it only tolerates one person in the image 
•  it does not differentiate people from objects 
•  a static background is required and only a fixed 

camera can be used 

2.2 Model tracking 

Some researchers have applied complex statistical 
models to a disparity map in order to register a model 
on live video. In [2], a disparity map is used to extract 
blobs, which are then statistically mapped onto a 
predefined, articulated structure. Range data allows the 
system to deal with occlusions better than 2-D based 



trackers. However, because of its sensitivity to 
initialization and the fact that it only uses intensity 
image combined with range data, this tracker can 
currently only run under limited conditions. Another 
approach is to model each target segment of a rigid 
model as a planar patch bounded by the convex hull of 
two circles, and to use both edge and region information 
to match the model to the target [7]. The difference 
between our work and these other systems is that we 
combine color and stereo vision to achieve better and 
faster tracking. 

3. HOT 

3.1 Overview 

The Human Oriented Tracking (HOT) library is a 
layered architecture for active interfaces that provides a 
robust feature tracker, geometric and dynamic feature 
modeling, and parametric activity monitoring. The HOT 
architecture is presented in Figure 1. 
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Figure 1: HOT architecture 

HOT’s feature tracker combines normalized color 
filtering with stereo vision. Normalized color provides 
fast 2D object localization, while stereo provides shape, 
size and range measurements. HOT’s modeling layer 
processes the tracker output using a Kalman filter to 
build a geometric model and to segment feature motion. 

The human model extracted by HOT is then processed 
to obtain interaction parameters for use by HCI 
applications. 

3.2 Design 

HOT contains three distinct parts, namely a feature 
tracker, a model matcher and a model interpreter. These 
parts are designed to operate largely independent of one 
another (Figure 2). 

The feature tracker is where range and normalized 
color modalities are combined to perform robust, fast 
feature tracking. We compute disparity maps with the 
SRI Small Vision System [5]. Table I describes the 
properties that each modality brings to the tracker. 

While neither stereo nor color by itself is sufficient to 
perform reliable detection and tracking, even a 
simplistic combination of the two can produce good 
results (Figure 3). 

LAYER II
model matcher

GEOMETRIC
model

LAYER I
feature tracker

DYNAMIC
model

LAYER III
model interpreter

ACTIVITY
model

SENSOR FUSION

OUTPUT
type & priority

STEREO VISION
sensor

range
size estimate
shape analysis
segmentation

COLOR VISION
sensor

normalized color
skin color
blob detection
segmentation

 

Figure 2: HOT integration layers 

Table I: modalities and their respective properties 

feature stereo color 

depth estimation + - 
skin detection - + 
sensitivity to texture - + 
sensitivity to light condition + - 
real-world size estimate + - 
shape analysis + + 
identification - + 

 

  
a. b. 
c. d. 

  

Figure 3: Color and range image filtering  
(a. original image, b. disparity map, 

c. normalized skin-color filter, d. combined filter) 

In HOT, range and color information are used both for 
feature detection and for tracking. In the detection phase, 
we look for a blob that displays a given color and is of a 



known real-world size. After filtering the image for the 
feature color and computing the disparity map, a 
histogram of color-filtered pixels is built with respect to 
disparity. The filtered disparity map is then decomposed 
into layers containing possible candidates for the target 
feature based on the real-world area contained in the 
layer. Each feature is then evaluated and the most likely 
match is retained.  

In the tracking phase, we use a simple Kalman filter to 
predict the feature position in the image. At each frame, 
the search area is filtered in disparity and in color using 
the depth and color values from the previous frame. A 
simple binary correlation is then performed to find the 
best match. The overlapping area between the feature at 
the previous frame and the newly found feature gives a 
measure of the tracking performance (Figure 4). 
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Figure 4: feature tracking using sensor fusion 

We can use this detection and tracking strategy to find  
the head and hands of a human being. In this case, a 
priori information consists of a normalized skin-color 
locus and the respective size (in cm) of each feature. 

The most significant benefits of fusing range and color 
modalities are robustness and performance: 

•  combining a depth filter with a color filter 
leads to better segmentation, while allowing 
each filter to be more tolerant. This removes 
the need for adaptive filters. 

•  the normalized color signature of an object 
combined with its real-world size are strong 
cues that prevent false position detection.  

The model matcher matches the features detected 
during the first stage into a simplistic human model 
(Figure 5). The model computes spatial parameters from 
the human’s head and hands position, as well as motion 
vectors extracted from the human gestures. Simple 
geometric consistency checks are then performed to 
ensure that the model is valid. 

  

Figure 5: Human model used to perform activity 
monitoring 

The model interpreter computes parameters that HCI 
applications can use in conjunction with the model data 
to interpret the human actions. These a priori 
parameters include a history of hands, arms and body 
“activity” measures that can be used to classify 
activities (“the person is walking away”, “the person is 
moving something on that table”, etc.) 

3.3. Results 

Using a Pentium III 500 MHz processor and two 
inexpensive analog cameras and digitizers, our system 
detects humans and performs head tracking at 25 Hz. 
Head localization is sufficiently accurate to determine 
where people are in the room and if they are standing or 
sitting. 

  
 

  

Figure 6: Examples of human features extraction and 
human gesture extraction 



When hand and gesture tracking is enabled, the 
performance decreases to about 19 Hz. Hand tracking is 
less reliable than head tracking, mostly due to fast and 
frequent occlusions and shape changes of a human hand. 
Figure 6 shows some examples of HOT detection and 
tracking capabilities (the red/green markers respectively 
indicate the right/left hand, vectors indicate segmented 
gestures). 

 

Figure 7: Visual gesturing for vehicle teleoperation 

As a case study, we used HOT as an input modality for 
mobile robot control [10]. The GestureDriver system 
translated hand positions and/or gestures into robot 
motion commands. When we initially tested the system, 
we found that users had difficulty controlling the robot. 
Analysis revealed that this was due to the localization 
accuracy of the HOT tracker. Specifically, the stereo 
method provides fairly coarse range maps and is 
somewhat noisy (even under constant illumination). 
However, once users were familiarized with the 
tracker’s limitations, they quickly learned to accurately 
position the robot. Figure 7 shows a user driving a robot 
using virtual joystick gestures.  

4. Integrating model and tracker 

While the HOT feature tracker proved to be robust and 
fast, the system as a whole has limitations, notably: 

•  it is quite sensitive to significant changes in 
lighting conditions 

•  it does not treat the human model as a whole, 
but rather makes up a model from independent 
features that are “likely” to be head and hands 

Thus, we are now developing a solution to this problem. 
Instead of deriving a human model from independent 
features, the new tracker algorithm in HOT will include 
constraints from a pre-defined, geometric model to 
better deal with environment changes and occlusion. 

4.1 Overview 

The new tracker architecture can be applied to the 
tracking of any rigid deformable structure. The system 

benefits from the robustness of the sensor fusion scheme 
developed in HOT, but takes additional information 
from a primitive-based model to dynamically redefine 
each feature’s geometry and color boundaries during 
tracking. 

This architecture has two components: a model 
definition interface, which lets the user define an 
arbitrary model on any object using ellipse primitives, 
and a dynamic algorithm that combines feature 
detection (using model constraints) and feature tracking 
(using color and range information). 

4.2 Design 

The new tracking architecture, called MBOT (for 
Model-Based Object Tracking) uses ellipse primitives 
(Figure 8).   

 

Figure 8: Primitive used for model definition. 

Model definition is performed via a graphical user 
interface. The user defines a hierarchical model for any 
articulated object using a set of ellipses connected to 
one another. The relative movement between ellipses is 
constrained (Figure 9). 
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Figure 9: Link between primitive ellipses 

Figure 10 shows an example of such a primitive-based 
model for a human being. 

 

 Figure 10: primitive-based model of a human being 



While ellipses and models based on simple primitives 
have often been used in the past, our approach is 
different in that it defines the ellipses as real-world 
elements having real-world dimensions. Specifically, 
the model is composed of tridimensional planar ellipses 
that can match rigid elements of any size and shape. 

An initial match is performed once the object has been 
defined. To locate each object component, we apply a 
loose disparity and normalized color filter to the image 
pair. A list of feature candidates are then segmented 
using a recursive, connected-compound labeling 
algorithm. Each candidate is then matched to a 3D 
planar ellipse. We use the projected real-world area of 
each feature candidate as a discriminant to identify the 
best match (Figure 11).  
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Figure 11: Real-world projected area as a discriminant 

Tracking is performed once at least one feature from 
the model has been identified. The algorithm looks for 
the missing parents and children ellipses of the known 
features using information from the model constraints 
(relative position, relative disparity, real-world feature 
size, likely normalized color). Once a feature is 
identified, a local value for its dominant normalized 
color and its average depth is extracted. These local 
values are used in the same sensor fusion tracking 
scheme that was used in HOT, until the feature is lost 
(due to occlusion, light condition changes or dramatic 
shape changes). The model is constantly checked for 
consistency, and any feature that does not fit is 
considered lost. All lost features are extrapolated until 
they are found again. 

4.3 Preliminary results 

Our current tracker demonstrates the robustness of the 
method. Figure 12 shows the initialization phase of a 
simple articulated object used for testing purposes. 

As can shown in figure 13, the tracker successfully 
tracks all the features. If one of the two features is lost, 
the constraints from the model strongly limit the search 
area based on the last observed feature position. The 
tracker then redefines a color, shape and disparity value 
for the lost feature and returns to the fast tracking 
algorithm.  

a.  
b. c. 

  

Figure 12: Model building and initialization  
(a. original image and feature definition, 

b. and c.  automatic stereo and color segmentation) 

  

Figure 13: Tracking of an object made of two primitives 

5. Future work 

Our tracking strategy works well for simple articulated 
objects, but it is not yet clear what the performance will 
be for complex, self-occluding objects with rapid 
motions (e. g. humans). Thus, the next step of the 
research will consist of carefully evaluating the 
limitations of the strategy, and identifying their cause. 

We also plan to use this strategy on a multi-resolution 
and multi-scale approach, specifically for HCI 
applications. For example, not every body part requires 
the same level of modeling. For many applications, the 
face and hands require more accurate modeling than the 
torso and legs. Moreover, a single model that 
incorporates all possible features (fingers, facial 
expressions, etc.) is not realistic. We would rather use a 
layered model, based on the same architecture as 
MBOT, in which each part can be further decomposed 
into several primitives (see figure 14, taken from [12]). 
Each level of modeling would require a different 
resolution, but only in a limited portion of the image. 
Moreover, the HCI application would dictate the level 
of modeling necessary for each feature depending on its 
requirements. Such an adaptive strategy would increase 
the accuracy of the model and the richness of the 
interaction without unduly reducing performance. 



 

Figure 14: multi-scale model for multi-resolution 
processing 

6. Conclusion 

We have developed a simple sensor fusion scheme that 
combines range information with normalized color 
filtering can be used for fast, reliable feature tracking. 
We have used this feature tracker to successfully detect 
a human’s head and hands in order to perform a variety 
of HCI tasks. 

We are currently combining this feature tracking 
strategy with constraints from an primitive-based model 
in order to achieve fast, reliable and accurate tracking of 
complex rigid deformable structures. The initial results 
are promising and demonstrate the validity of the 
approach. We are now evaluating the limitations of the 
strategy in terms of model complexity. Our goal is to 
user this technique to develop a multi-scale, multi-
resolution system for real-time human body tracking.  
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