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ABSTRACT

In this paper, we describe how passive vision can be used to improve “far-field navigation” of planetary rovers, especially for
detecting negative obstacles such as cliff edges, ditches, and escarpments. Far-field navigation fills the gap between close-up
sensing for obstacle avoidance and satellite imagery. In particular, we can identify dangerous and/or interesting areas in distant
terrain by processing color camera images.

INTRODUCTION

The NASA “Life in the Atacama” project is developing a planetary rover to conduct scientific transects of the Atacama Desert
(Fig. 1), in order to locate microorganisms and chlorophyll-based life forms. To ensure that this robotic astrobiologist is relevant
to the demands of planetary exploration, we do not rely upon artificial satellites, such as GPS. Instead, we are investigating
other means for estimating position, orientation, and velocity.

Our approach is based on evaluating terrain at several resolutions and depth (downrange distance). We evaluate terrain based on
slope, roughness, discontinuity in terms of the time, power and, in some cases, risk of traverse. We plan long routes using
satellite imagery (30m resolution), identify paths that skirt steep slopes and drop-offs by examining the far-field (10-100m), and
avoid obstacles in the near-field (0-10m).

In this paper, we describe our approach to far-field terrain navigation. First, using the horizon as a reference, we generate a
coarse depth map of the scene. This allows us to depth segment the image and to identify the far-field (Fig. 2).

Next, we apply several foposemantic techniques to each image region. We use the term toposemantic to refer to the detection of
topological relationships between objects (terrain patches, obstacles, etc.) based on semantic properties (e.g., color). Using
statistical analysis, morphological operators, and 2D filters, we compute terrain metrics including obstacle density, roughness,
and occlusion. By combining these metrics we produce a ferrain traversability map. This map allows us to directly estimate the
difficulty of traverse and location of danger zones.
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Fig. 1. Hyperion rover in the Atacama Desert (Chile). Fig. 2. Terrain zones, classified by down-range distance.
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GEOMETRIC VISION
Depth Processing

To estimate distances in the scene, we have developed a stereovision system that meets the following two requirements: (1)
weak calibration procedure that uses natural terrain images only; and (2) minimal restriction on camera separation (stereo
baseline). These requirements follow from the difficulty of achieving and maintaining precise calibration in a planetary
exploration system [1, 2].

The stereo method that we use is based on SIFT [3]. SIFT is a very effective algorithm for locating scene features in the
presence of rotation, translation, image distortions, scaling, and partial illumination changes. In our work, we assume that the
stereo cameras have similar characteristics.

Image Rectification

We perform image rectification using the most distant points contained in the image. For this task, we apply a sky detection
algorithm (described in a following section), which allows us to identify the skyline.

Given the skyline, we locate matching SIFT keypoints and then compute distance between the points to obtain a translation
vector. To correct for rotation, we compute the slope between two points on the same picture and calculate the difference. We
then use the translation and rotation transform to rectify the image pair (Fig. 3).

Depth Calculation

We compute depth by matching SIFT keypoints between image pairs and using simple stereo camera geometry [4] and camera
model [5]. Because we only match keypoints, the resulting depth map is sparse. However, based on tests with images acquired
in the Atacama, we have concluded the detected features are sufficiently dense for our needs. In addition, we have found that
the SIFT keypoints are localized to higher accuracy than would be obtained using conventional pixel-based correlation.

Original Left Camera Original Right Camera

Left Camera Right Camera

Fig. 3. Stereo images: before calibration (top), after calibration (bottom).



Table 1. Downrange distance (depth) in [m].

From [m] To [m] Area’s name
1 10 Near field
10 20
20 30
30 50
50 100 Far field 3
100 300
300 500
500 1000
1000 +oo

Fig. 4. Matched keypoints (colors show distances in Table 1).

Image Segmentation

We compute the real 2D coordinates of points from their image projection in the following manner. First, a unique reference
point, which is common to both images is chosen, and the center (on X and Y) of the calibrated image is defined. All distances

are then computed relative to this point.

Using the SIFT keypoints we compute a set of fifth-order interpolated curves. Fig. 5 shows a several equidistant image curves

Fig. 6 shows a distance map created by segmenting at the depths in Table 1.

Fig. 5. Equidistant image curves.

Fig. 6. Distance map. The circle indicates a potentially dangerous terrain region.




Distance Rules

Once we have obtained a distance map we apply heuristic evaluations, which we call “distance rules”, to estimate qualitative
terrain properties [6]. What do we mean by distance rules? Consider a simple example: if we scan the image and find that the
furthest distance we can see is limited (e.g., tens of meters), we can conclude that an obstacle in front of the robot obstructs
distant views. Similarly, if we can see continuously to the distant horizon, then we can conclude that the terrain is open.

Thus, using a lookup table with zone transition probabilities, we can approximate which transitions are dangerous or safe for the
rover. For example if we look at the center right of the Fig. 6, we observe transition from blue to orange spans from a few tens
to hundreds of meters and is likely to be dangerous (i.e., the occlusion may hide a sharp drop-off).

TOPOSEMANTIC VISION

Images contain a vast amount of non-geometric information (color, texture, etc.), which we can use to evaluate terrain
characteristics. Consider, for example, the appearance of Fig. 7:
= The red circles show the areas that differ (in terms of texture, color or shape) from the rest of the image. A texture
recognition algorithm, therefore, could enable identification of different ground coverage (sand, rocks, vegetation, etc.)
= The blue lines indicate areas where there is an abrupt change in image texture (frequency, direction, etc). Such changes in
texture are most often caused by obstruction and changes in surface continuity. Applying frequency-based analysis would
allow us to detect potential drop-offs and obstacles.
= The dotted red line marks the horizon line. Since we are only concerned with evaluating terrain, we can discard all image
regions that contain the sky. This will speed processing as well as assist estimation of distant obstacles and slopes.
To extract and make use of this non-geometric information, we apply a variety of methods (including statistical analysis,
morphological operators, and 2D filters).

Sky Detector

Knowing which portion of an image contains the sky is extremely useful. For example, we can employ the horizon line to
estimate if the rover is going up or down, leaning left or right, etc. The sky, however, can have a varied appearance: clear or
cloudy, different colors (notably at sunrise and sunset), and difficult to distinguish from the ground (e.g., when there is fog).

In the desert, the sky is generally homogeneous (i.e., clear or evenly distributed clouds). Our sky detection approach, therefore,
is to find large (contiguous) image regions, which are uniformly colored. One way to do this is simply to reduce the number of
image colors and then identify the largest blob.

Fig. 7. Toposemantic terrain analysis.

Fig. 8. Sky detector results. Left, clear sky (day). Right, cloudy sky (dusk).



Currently, we are using a fast RGB-based method to do this [6]. In our tests, we have found that the algorithm is resistant to
color variation (it is not dependent on pre-defined colors) and works well when the sky is clear, cloudy, or gradient colored. The
algorithm also remains relatively stable in the presence of objects (e.g., boulders, occluding ridges, etc.) that cut the horizon line.
Fig. 8 shows the detected horizon line for two common sky conditions in the Atacama.

Occlusion Detector

Image occlusions often indicate the presence of obstacles or geographic discontinuities. In order to detect occlusions, we need to
identify image regions that are locally similar and then look for abrupt changes.

Our approach makes use of perspective foreshortening, the inverse square loss of resolution with distance. Specifically, because
wide-area desert images generally contain uniformly textured surfaces (sand, smooth boulders, etc.), nearby objects appear with
more image detail than distant objects. Thus, high-pass image filtering is an effective method for detecting occluding objects.

Fig. 9 shows a portion of Fig. 3, cropped to show a region from 0 to 100m downrange. Note the change in texture running
diagonally from center-top to middle-right. This corresponds to an occluded drop-off. Fig. 10 shows the occluded regions
detected by high-pass filtering.

Texture Classification
In our current system, we detect and classify texture using a Fast Fourier Transform (FFT). The basic approach is: (1) tessellate

an image into uniform regions (a patch); (2) extract a frequency vector for each patch via FFT. At present, we divide an image
into concentric circles and we create a vector for each circle (Fig. 11).

-

Fig. 9. Cropped image (taken from Fig. 3) showing 0 to 100m down-range.

Fig. 10. Detected occlusion areas (high-pass filtering).




Additional Detectors
In addition to the detectors described in this paper, we have implemented several other toposemantic detectors:

= Color detector
» Ground roughness map
= Rock detector
» Texture classification map
= Unique color detection
The design and implementation of these detectors is described in detail in [6].

TRAVERSABILITY MAP

By combining geometric and toposemantic information, we can produce a traversability map. This map allows us to directly
estimate the difficulty of traversing the terrain and the location of danger zones.

As shown by Fig. 12, we build the traversability map by fusing information in two steps. First, we combine information from
the rock detector map and the texture classification map in order to obtain an estimate of ground “roughness”. We use the
distance map to weigh the results based on down-range distance: closer regions are given more importance than distant areas.

The FFT of Fig. 3 (bottom left) is shown in Fig. 13. We use this FFT to produce the texture classification map (Fig. 14). This
map shows both smooth regions (marked in green and light blue) and stony region (marked in purple).

By applying the distance rules to the distance map, we obtain the distances rules map. Fig. 15 shows the result of processing
Fig. 6. Red areas indicate100% danger and black areas indicate 75% danger.

Sub-sampling and thresholding the detected occlusion areas shown in Fig. 10, yields the occlusion detector map (Fig. 16).

We then sum the distances rules map and the occlusion detector map. This produces a map with a coefficient of danger for
each ground segment.

Finally, we produce the traversability map by combining the traversability measures from each map. Fig. 17 shows a
traversability map overlaid on the source image: unsafe regions are shown with colored lines. The most dangerous areas are
shown in dark blue.
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Fig. 12. Traversability map construction



Fig. 13. FFT of Fig. 3 (bottom left) Fig. 14. Texture classification map
--_%-__- |

Fig. 15. Distance rules map Fig. 16. Occlusion detector map

Fig. 17. Traversability map overlaid on source image.
The four dark blue regions indicate areas of significant danger.

FUTURE WORK

Although it is sufficient for our needs, our sky detector is simplistic. Replacing the current color reduction algorithm with
principal component analysis would improve its robustness. Similarly, adding a learning method would improve performance,
particularly under (rapidly) changing sky conditions.

The current traversability map only provides an indication of safe and dangerous regions. Although such information is
important for navigation, the goal of planetary exploration is not simply autonomous driving, but rather autonomous
exploration. Thus, it would be useful to generate a complementary “science target map”, which would indicate regions of
scientific interest. To generate this map, we would combine the traversability detectors with science detectors.
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