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S U M M A R Y
In this study, two methodologies are investigated for geoid determination from ground and
airborne gravity data. These two methodologies depend on the downward continuation method
used. The first is the inverse Poisson integral; the second is the normal free-air gradient. Each
of the two methods requires different treatment of the terrain effects and in turn different
approaches to determine the geoid. The two geoid solutions, from ground data, are compared
with existing GPS/levelling benchmarks and it is found that the second method gives a better
fit due to the bias introduced from the inverse Poisson integral. The same process was applied
to the airborne data, but with additional processing, that is the filtering of the terrain effects
to preserve the consistency of the data due to the filtering of the airborne data. A study on the
effect of filtering was also carried out in this paper and it concluded that filtering the terrain
effects has no impact on the geoid. In addition, the airborne data, filtered to three different
cut-off frequencies, were used to compute the geoid to investigate the possibility of using the
denser data, of lower accuracy, to determine a high-resolution geoid. Even though the data
filtered to small cut-off frequency have poorer agreement with the ground data, the geoids
computed from the different filtered data is the nearly the same.

Key words: airborne gravimetry, downward continuation, geoid, GPS/Levelling, terrain
correction.

1 I N T RO D U C T I O N

The methodology of geoid determination from airborne data depends, among other things, on the procedure of downward continuing the
gravity data. Downward continuation can be accomplished by either inverse Poisson integral (Heiskanen & Moritz 1967), free-air gradient
(Heiskanen & Moritz 1967), collocation (Moritz 1980), or analytical downward continuation (Moritz 1980). Each of these methods necessitates
different methodology in computing the gravity data at the reference sphere, and in turn the geoid determination. In this study, we analyse
two methodologies that take into account the downward continuation done by, first, the inverse Poisson integral that will be named the first
methodology and, second, by the use of the normal free-air gradient that will be named the second methodology. As for the terrain reduction
procedure, the second Helmert condensation technique is followed in spherical approximation. In the second Helmert condensation technique,
all masses above the geoid are condensed to an infinitely thin layer on the geoid.

The main difference between these two methods is in the processing of the terrain effects, where the first methodology demands that
the effects of the removed topographical masses and the condensed ones be evaluated at the measuring location. The second methodology
requires that the effects of the removed topographical masses be evaluated at the measuring location and the condensed ones be evaluated
at the reference sphere, i.e. at height zero. Two data types are used here, both located in the Canadian Rocky Mountains; the first is ground
gravity anomalies, the second is airborne gravity disturbances.

In addition to testing these two methodologies, certain practical aspects of geoid determination from airborne gravity data are also studied
here. Although airborne gravimetry has been used for geoid determination for a decade, some of these aspects have not yet been considered.
The airborne gravity data are filtered to remove the high frequency errors coming from the dynamics of the aeroplane. Due to the low-pass
filtering of the airborne data in the frequency domain, the part of the topographic gravity signal that exists beyond the filtering frequency is also
filtered out. This leads to the idea that to have consistent data sets when reducing the filtered gravity signal, the contribution of the topography
has to be filtered first and then be used for reduction purposes. It is the authors’ opinion that although this is theoretically correct, investigation
should be done to study the effect on the geoid of not filtering the terrain effects. In addition to this, the effect of Digital Terrain Model (DTM)

914 C© 2003 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147896188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


November 19, 2003 16:44 Geophysical Journal International gji2083

Geoid from Ground and Airborne Gravity Data 915

resolution on terrain effects computed at the flight level will be discussed. The resolutions to be studied are 15, 30, and 60 arcsec, averaged
from a 3 arcsec DTM. For a comprehensive discussion, the reader can refer to Bayoud (2001).

In the following section, the respective mathematical models will be described. After that, the two methodologies will be outlined. In the
last section, the conclusions are stated after comparing the geoid computed from the ground gravity anomalies with GPS/levelling benchmarks
(BM) and the geoid determined from airborne gravity data with the geoid computed from the ground data (due to the lack of GPS/levelling
BM in the area of the airborne data).

2 S T O K E S ’ A N D H O T I N E ’ S B O U N DA RY VA L U E P RO B L E M S
A N D T H E I R S O L U T I O N S

Geoid determination is based on the Second Boundary Value Problem (Neumann’s problem) or Third Boundary Value Problem (Robin’s
problem) that determines the disturbing potential on a surface, on which values functionally related to this disturbing potential exist. Stokes
(1849) formulated this Neumann’s problem and developed the well-known Stokes’ integral for determining the disturbing potential using
gravity anomalies, �g, at the geoid. Using the Bruns formula, one can obtain geoid undulations from the computed disturbing potential.
Hotine (1969), on the other hand, formulated Robin’s problem by using gravity disturbances, δg, to compute the disturbing potential, and in
turn geoid undulations, thus leading to Hotine’s integral.

2.1 Stokes’ integral

As mentioned previously, the geoid can be determined by either one of two integrals: Stokes’ integral if gravity anomalies are available; or
Hotine’s integral if gravity disturbances are available. Since the derivation of both equations is similar and can be found in physical geodesy
textbooks (e.g. Heiskanen & Moritz 1967; Hotine 1969; Dragomir et al. 1982), the equations will only be shown with a short discussion.

The most general form of Stokes’ integral formula in spherical approximation is (Heiskanen & Moritz 1967)

N = kδM

RG
− δW

G
+ R

4πG

∫ ∫
σ

�gS(ψ) dσ (1)

where k is the gravitational constant, δM is the difference in mass between the real earth and the normal earth, δW is the difference between
the gravity potential of the real earth on the geoid and the normal potential of the model earth on the surface of this model, R = 6371 km is the
radius of the reference sphere that approximates the geoid, G = 9.80 m s−2 is the mean value of gravity, �g are gravity anomalies downward
continued to the reference sphere as stated above, dσ is the integration unit, and S(ψ) is Stokes’ function expressed as

S(ψ) = 1 + 1

sin(ψ/2)
− 6 sin

ψ

2
− 5 cos ψ − 3 cos ψ log

(
sin

ψ

2
+ sin2 ψ

2

)
(2)

where ψ is the spherical distance. Assuming that the mass of the real earth is equal to the mass of the normal earth and that the potentials
generated from the two masses are equal, the first two terms of eq. (1) become zero.

The practical evaluation of eq. (1) can be implemented either as planar or spherical, depending on the approximation used. It can be
executed in 1-D Fast Fourier Transform (FFT) or 2-D FFT (e.g. Hagmaans et al. 1993; Sideris & She 1992). The 1-D FFT using rigorous
kernels has been applied in this paper.

Since the contribution of a Geopotential Model (GM) is subtracted from �g, this contribution is added back in terms of geoid undulation
after computing the residual geoid from eq. (1); the same is true for the topographical effects. Thus, the final geoidal height is obtained as
follows:

N (ϕ, λ) = N S(ϕ, λ) + N GM(ϕ, λ) + N GIE(ϕ, λ) (3)

where the super-subscripts ‘S’, and ‘GM’ stand for the geoid components computed from Stokes’ integral and the GM, respectively. NGIE, on
the other hand, is the topographic indirect effect and it is computed in Section 4.

2.2 Hotine’s integral

Instead of using gravity anomalies, here the gravity disturbances are used. All the derivations, implementations, and modifications are similar
to Stokes’ integral (Hotine 1969; Novak et al. 2001).

Hotine’s integral is written as follows:

N (ϕ, λ) = R

4πG

∫ ∫
σ

δg(ϕ, λ)H (ψ) dσ (4)

where H (ψ) is Hotine function or kernel and is described as

H (ψ) = 1

sin(ψ/2)
− log

(
1 + 1

sin(ψ/2)

)
. (5)

The contributions of the GM and the topography are treated in the same way as in eq. (3).
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3 T O P O G R A P H I C E F F E C T S

The potential of the topographical masses is given, in spherical approximation, by the equation (Martinec 1998)

V t (r, ϕ, λ) = k

∫
λ′

∫
ϕ′

∫ R+H (ϕ′,λ′)

R

ρ(r ′, ϕ′, λ′)
L(r, ψ, r ′)

r ′2dr ′ cos ϕ′ dϕ′ dλ′ (6)

where k = 6.672 × 10−11 m3 kg−1 s−2 is the gravitational constant, ρ is the density of the topography, r , ϕ, λ are the spherical coordinates
of the computation point, r ′, ϕ′, λ′ are the spherical coordinates of the running integration point, L(r, ψ, r ′) = √

r 2 + r ′2 − 2rr ′ cos ψ is the
distance between the computation and running points, cos ψ = sin ϕ sin ϕ′ + cos λ cos λ′ cos (λ′ − λ) is the angular distance between the
computation and running points, and R = 6371 km is the mean radius of the earth.

The above eq. (6) is handled by splitting the topography into the Bouguer shell and the irregular topography. For a thorough analysis of
the above equation, the reader can refer to Martinec (1998). The final equation used for the terrain correction (TC) to gravity in the second
Helmert condensation method takes the form, considering constant terrain density:

TC(r, ϕ, λ) = kρ

∫ ∫ [
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−1
(r, ψ, r ′)
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∂r
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r ′=R+H (ϕ,λ)

r ′=R

]
cos ϕ′ dϕ′ dλ′ (7)

The condensed TC (CTC), on the other hand, is

CTC(r, ϕ, λ) = k R2

∫ ∫
[σ (ϕ′, λ′) − σ (ϕ, λ)]

∂L̃
−1
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∂r
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r=R+H (ϕ,λ)

cos ϕ′ dϕ′ dλ′ (8)

where σ (ϕ, λ) is the surface density of the condensation masses

σ = ρH

(
1 + H

R
+ H 2

3R2

)
in the first methodology, considering that the potential of the Bouguer shell is equal to the potential of the condensed Bouguer shell, both
evaluated at the measuring location (Martinec 1998).

σ (ϕ, λ) is given by

σ = ρH

(
1 + H 2

3R(H + R)

)
in the second methodology, derived in the same way as the above equation was derived in Martinec (1998), but considering that the potential
of the Bouguer shell evaluated at the measuring location is equal to the potential of the condensed Bouguer shell evaluated at the geoid.

In the computation of TC
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is the radial derivative of the kernel
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2
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where C is a constant.
In the computation of CTC

∂L̃
−1

(r, ψ, r ′)
∂r

= − r − r ′ cos ψ

(r 2 + r ′2 − 2rr ′ cos ψ)3/2

is the radial derivative of the Newton kernel 1/L̃(r, ψ, r ′).
The Direct Topographic Effect (DTE) is the difference between the TC (eq. 7) and CTC (eq. 8).
Finally, the topographic indirect effect of both the actual and condensed topography is expressed as follows (Martinec 1998):

N GIE(ϕ, λ) = k
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(9)

with γ (ϕ, λ) being the normal gravity computed from Somigliana’s formula.

4 D O W N WA R D C O N T I N UAT I O N

4.1 Inverse poisson integral

Poisson’s integral is usually used to compute gravity field functionals at a height above the earth from their values at the reference sphere.
The problem in geoid determination is the opposite. Gravity anomalies or disturbances are located at some altitude and need to be known

at the reference sphere. These can be evaluated by the inverse Poisson integral.
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The Poisson integral, to upward continue the gravity disturbances, is written as

rδg(r, ϕ, λ) = R

4π

∫ ∫
σ

δg(R, ϕ, λ)K (r, ψ, R) dσ (10)

where δg (r , ϕ, λ) are the upward continued gravity disturbances, δg(R, ϕ, λ) are the gravity disturbances at a sphere of radius R, and

K (r, ψ, R) =
∞∑

n=1

(2n + 1)

(
R

r

)n+1

Pn(cos ψ) = R

[
r 2 − R2

(R2 + r 2 − 2r R cos ψ)3/2
− 1

r
− 3R

r 2
cos ψ

]

with ψ being the spherical distance and Pn(cos ψ) Legendre function of degree n.
The solution of the inverse problem is unstable. Sun & Vanicek (1998) showed that the downward continuation of gravity disturbances

(or anomalies) is well-posed when using a 5′ × 5′ grid and an iterative scheme. This procedure is used in this study; for details see Sun &
Vanicek (1998) or Martinec (1998).

4.2 Normal free-air gradient

The gravity gradient is computed from (Heiskanen & Moritz 1967)

∂g

∂ H
= −2g J + 4πkρ − 2ω2 (11)

where ∂g
∂ H is the gravity gradient sought, g is the gravity value, J is the mean curvature of a level surface and is equal to − Wxx +Wyy

2g , with W ii

being the partial derivative of the gravity potential along the i − axis, ρ is the density of the at the location where ∂g
∂ H is evaluated, and ω is

the rotation rate of the earth.
This equation cannot be easily computed and, instead, the normal gravity gradient is used as an approximation.
The normal gravity γ at altitude h can be expanded into a series of terms of h (Heiskanen & Moritz 1967)

γh = γ + ∂γ

∂h
h + 1

2

∂2γ

∂h2
h2 + · · · (12)

In this series only terms up to second order are significant. The first term of the order is approximately equal to 0.3086 mGal m−1. The second
can reach approximately 1.4 mGal for heights of 4325 m and is evaluated as

∂2γ

∂h2
= 6γ

a2
(13)

where a is the semi-major axis of the ellipsoid and γ is the normal gravity.

5 M E T H O D O L O G I E S U S E D F O R G E O I D D E T E R M I N AT I O N F RO M G R AV I T Y DATA

Depending on the method used for downward continuing the gravity disturbances (or anomalies) to the reference sphere, two methodologies
are pursued to determine the geoid:

5.0.1 First methodology (Figs 1 and 3)

When the inverse Poisson integral is used, the procedure of geoid computation on the reference sphere is as follows:

(1) Compute the normal gravity at the same locations as the measured gravity values when δg is sought (or at the Telluroid; the surface
whose normal potential at point q is equal to the actual potential at point p, corresponding points p and q being situated on the same ellipsoidal
normal–when �g is sought) and form δg (or �g) values.

(2) Compute the DTE, as discussed in Section 4, at the computation point (filter them in case of airborne data), and add them to the values
of step 1.

(3) Subtract the Geopotential Model contribution from the values of step 2.
(4) Downward continue the values of step 3 to the reference sphere using the inverse Poisson integral (eq. 10).
(5) Determine the co-geoid by Stokes’/Hotine’s formulation (eq. 1 or 4).

Figure 1. First methodology when computing gravity disturbances (‘H’ is Hotine integral).
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Figure 2. Second methodology when computing gravity disturbances (‘H’ is Hotine integral).
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Figure 3. First methodology when computing gravity anomalies (‘S’ is Stokes integral).

( ) GIEGMgSN

HH

g

HH

g

GMCTCTCH
H

g

2

1
H

H

g
gg

o

ooo

p

2

2

2

2

ppq
2

2

2

pp

++∆=

∂
γ∂≈

∂
∂

∂
γ∂≈

∂
∂

−−+γ−
∂
∂−

∂
∂−=∆

 

p 

po 

Free air 
Gradient 

Flight line 

Geoid 

Reference Sphere qo 

Figure 4. Second methodology when computing gravity anomalies (‘S’ is Stokes’ integral).

(6) Compute the geoid by adding the Geoid Indirect Effect (GIE) and the GM contribution (eq. 3). The interested reader can refer to
Vanicek & Martinec (1994), Martinec & Vanicek (1994a,b) for thorough analysis of this methodology.

5.0.2 Second methodology (Figs 2 and 4)

When the normal free-air gradient is used, the geoid computation on the reference sphere takes the following scheme:

(1) Compute the normal gravity at the geoid when δg is sought (or at the reference sphere when �g is sought) and subtract it from the
measured gravity values,

(2) Compute the TC (eq. 7) at the computation point (filter them in case of airborne data), and add them to the values from step 1.
(3) Compute the CTC (eq. 8) at the reference sphere (filter them in case of airborne data), and subtract them from the values from step 2.
(4) Subtract the Geopotential Model contribution from the values of step 3.
(5) Use the normal free-air gradient (eq. 12) up to the second order to downward continue the measured gravity values to the reference

sphere.
(6) Determine the co-geoid by Stokes’/Hotine’s formulation (eq. 1 or 4).
(7) Compute the geoid by adding the Geoid Indirect Effect (GIE) and add the GM contribution (eq. 3). The interested reader can refer to

Sideris (1990) for thorough analysis of this methodology. Although the planar approximation was used in Sideris (1990), the main methodology
is the same.

These two methodologies are applied when either ground or airborne gravity data is used. The only difference is in the computation of
the topographic effects, where the computation point in the case of airborne data is not at the topography, but rather at the flight height. Also,
when airborne gravity data is used, the topographic effects—whether they are the DTE, TC, or CTC—have to be filtered first before used in
the gravity anomaly computations.

6 N U M E R I C A L T E S T O N G RO U N D G R AV I M E T RY

For comparing these two methodologies, we used 2110 ground gravity values located between 49.3◦ ≤ ϕ ≤ 52.4◦ and 241.5◦ ≤ λ ≤ 246.5◦.
The refined Bouguer anomalies were used to form a 5′ × 5′ grid between the boundaries: 49.4333◦ ≤ ϕ ≤ 52.35◦ and 241.875◦ ≤ λ ≤
246.45833◦ generating 2016 values. This grid was chosen because of the availability of airborne data (for comparison) at its nodes between

C© 2003 RAS, GJI, 155, 914–922
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Table 1. Statistics of the differences between the two gravimetric geoids and the GM after and
before the fit (m).

Max Min Mean rms

first method—BM (before fit) 0.057 −1.731 −0.925 0.961
second method—BM (before fit) 0.704 −0.715 −0.314 0.467
first method—BM (after fit) 0.464 −0.728 0.000 0.170
second method—BM (after fit) 0.173 −0.401 0.000 0.096

Table 2. Statistics of TC and DTE computed from 15, 30 and 60 arcsec
DTMs at the flight level of 4325 m (mGal).

Max Min Mean Std

TC 15 131.3 −73.2 1.0 30.0
30 132.8 −73.3 1.0 30.1
60 133.2 −73.6 1.0 30.3

DTE 15 13.2 −25.5 −0.4 6.6
30 13.2 −25.2 −0.4 6.5
60 12.9 −24.5 −0.4 6.4

the boundaries: 50.4333◦ ≤ ϕ ≤ 51.35◦ and 243.5167◦ ≤ λ ≤ 245.0417◦. For the terrain effects reduction, a 15 arcsec DTM was used; this
DTM was obtained from a 3 arcsec DTM by averaging.

For an independent comparison between the two geoid solutions from the ground gravity data, GPS/Levelling BMs were used. Thirty-six
Helmert orthometric heights, computed in 1995 by the Geodetic Survey Division in Canada, were used for this task. The two gravimetric
geoids were interpolated, independently, at the locations of the BMs. The statistics of the differences are listed in Table 1.

As can be seen, the first methodology gives poorer agreement with the BMs (rms = 96 cm), and this is likely to be due to the magnification
of the measuring error in the data due to the inverse problem, as well as to the effect of downward continuing the rough field produced by
Helmert second condensation (Heck 2001). The second methodology gives an agreement of 47 cm rms.

However, after the four parameter model fit, the agreement of both methodologies improved significantly, with rms values down to 17
cm and 9 cm for the first and second methodology, respectively. The model used was:

D = d1 cos ϕ cos λ + d2 cos ϕ sin λ + d3 sin ϕ + d4,

where D is the difference between the two data sets, ϕ and λ are the spherical coordinates, and the di’s are the parameters of the surface
computed by the least-squares adjustment.

7 N U M E R I C A L T E S T O N A I R B O R N E G R AV I M E T RY

The airborne gravity data used here were obtained in September 1996 and are located between the boundaries 50.4333◦ ≤ ϕ ≤ 51.35◦

and 243.5167◦ ≤ λ ≤ 245.0417◦. The data are described in Bruton (2000). Terrain effect computations were done along the flight lines
(34 560 values) at an altitude of 4325 m; the statistics are reported in Table 2.

7.1 Effect of DTM resolution on airborne gravimetry

Table 3 lists the statistics of the differences in TC and DTE, respectively, between 15 and 30, and 15 and 60 arcsec DTM. CTCs computed at
the reference sphere are too small in magnitude and thus they are not affected by either the DTM resolution change or the filtering.

As it can be seen from Table 3, the airborne terrain effects are not very sensitive to the DTM resolution. A 30 arcsec DTM can be used
safely without losing information at the accuracy level expected from the measuring system (σ = 0.1 mGal, max = 2 mGal). In some cases,
even the 60 arcsec can be used (σ = 0.4 mGal, max = 7 mGal). From here on, we will use only data reduced to the 15 arcsec DTM.

Table 3. Statistics of the differences in TC and DTE computed from 15,
30, and 60 arcsec DTM at the flight level (mGal).

Max Min Std rms

TC 15–30 1.3 −2.1 0.1 0.1
15–60 6.9 −3.7 0.4 0.4

DTE 15–30 1.2 −1.9 0.0 0.1
15–60 6.1 −3.6 0.3 0.3
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Table 4. Statistics of the differences between the computed and
filtered TCs (mGal).

Max Min Std rms

1/30 Hz 44.5 −37.3 7.2 7.2
1/60 Hz 59.2 −50.0 12.7 12.7
1/90 Hz 92.6 −66.6 17.2 17.2

Table 5. Statistics of the differences between the computed and
filtered DTEs (mGal).

Max Min Std rms

1/30 Hz 1.0 −0.7 0.1 0.1
1/60 Hz 1.6 −1.5 0.2 0.2
1/90 Hz 4.4 −4.4 0.9 0.9

7.2 Effect of filtering of terrain effects on airborne gravimetry

The TC and DTE computed from the 15 arcsec DTM were filtered to 1/30, 1/60, and 1/90 Hz cut-off frequency. The statistics of these
differences are reported in Tables 4 and 5.

Regarding TC, Table 4 shows that these values are of considerable magnitude with a rms value around 13 mGal in the case of 1/60 Hz
filtering. These are significant differences when computing gravity but it remains to be seen whether they have a significant effect on the geoid
or not.

Table 5 illustrates the small effect of filtering the DTE; the maximum value reaches the level of 4 mGal and the rms is less than 1 mGal.
These differences are smaller than the accuracy expected from the measuring system.

7.3 Geoid computed from airborne data

Now, eight data sets are formed (gridded to 5′ × 5′), four for each methodology, as follows:

(1) Data set filtered to 1/30 Hz, reduced for filtered topographic effects to the same frequency (data 30).
(2) Data set filtered to 1/60 Hz, reduced for filtered topographic effects to the same frequency (data 60).
(3) Data set filtered to 1/90 Hz, reduced for filtered topographic effects to the same frequency (data 90).
(4) Data set filtered to 1/60 Hz, gridded, and then reduced for the topographic effects without filtering (data tc, data dte).

The first three data sets are used to investigate whether we can use the 1/30 and 1/60 Hz filtered data to achieve a high-resolution geoid.
The fourth data set was formed to study the outcome of terrain effect filtering on the whole procedure. It is clear that if we do not have to filter
the terrain effects, the processing becomes very easy and straightforward.

For the first methodology, these data sets were first downward continued to the reference sphere and then used to compute the geoid. In
the second methodology, they were used for geoid determination right after the gridding. Note that the systematic differences with ground
data were modelled and removed. Details on these systematic differences are described in Bruton (2000) and Bayoud (2001).

The eight data sets listed above were the inputs to Stokes’ integral. These eight geoid solutions were compared to the geoid computed
in section 6 using the second methodology as it fits the GPS/Levelling BMs better. Tables 6 and 7 show the statistics of the differences of the
geoids computed from the two methodologies, respectively, and the reference geoid. Figures 5 and 6 show the representative differences of
the data 60 geoid, from each methodology, with the reference geoid.

From the results given in these tables, we can conclude that all three frequencies, regardless of the methodology used, yield similar
geoids. This means that data sets filtered to 1/30 Hz provide a geoid of similar accuracy as data sets filtered to 1/60 or 1/90 Hz, although
these have better agreement with the reference gravity field. In the case under study, having a flying speed of 100 m s−1, a high-resolution
geoid using airborne data gridded to 3 km × 3 km can be achievable with a 5 cm rms accuracy.

Table 6. Statistics of the differences between terrestrial and
airborne geoid using the first methodology (m).

Max Min Std rms

data 30 0.570 −0.332 0.165 0.218
data 60 0.616 −0.330 0.163 0.224
data 90 0.642 −0.382 0.171 0.235
data dte 0.632 −0.331 0.164 0.227
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Table 7. Statistics of the differences between terrestrial and air-
borne geoid using the second methodology (m).

Max Min Std rms

data 30 0.186 −0.222 0.064 0.064
data 60 0.216 −0.192 0.052 0.052
data 90 0.272 −0.220 0.061 0.061
data dte 0.212 −0.201 0.055 0.055
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Figure 5. Differences between geoid 60 from the first methodology and the geoid from ground data (m).
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Figure 6. Differences between geoid 60 from the second methodology and the geoid from ground data (m).

As for the fourth data set for each methodology, we conclude that filtering of the terrain effect is not needed from the practical point of
view. It is enough to reduce for the terrain effect after gridding the measured gravity anomalies; a procedure that saves lots of processing time
and effort.

Regarding the methodologies used, it is clear that the second methodology presents better agreement with the reference geoid, where the
rms is around 5 cm; whereas that of the first methodology goes up to roughly 21 cm. This is due mainly to the nature of the inverse Poisson
integral as described in Section 6.

8 C O N C L U S I O N S

We can state the following points:

(1) The inverse Poisson integral is less practical for computation due to the magnification of the errors in the data, and due to the rough
field it generates when second Helmert condensation is used; moreover, the regularization of the inverse problem introduces a bias to the data.
All these, in turn, have a consequence on the geoid. The normal free-air gradient, although an approximation, gave a geoid that is closer to
the GPS/levelling BMs than the geoid determined using the inverse Poisson integral for the downward continuation.

(2) Unlike in terrestrial gravimetry, a DTM resolution of 30 arcsec in airborne gravimetry provides gravity information of the topography
at the flight height with accuracy better than what the measuring system can offer. Differences in terrain effects computed from a 15 and
30 arcsec DTM are negligible. This indicates an insensitivity of the airborne gravity data to the high-frequency changes in the topography due
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to the large distance of these sources from the measuring instrument. A 60 arcsec DTM can safely be used in areas with moderate topography
and where high-accuracy geoid is not required. In terrestrial gravimetry the denser the DTM is, the better the geoid is determined.

(3) Although filtering of topographic effects is essential from the theoretical point of view, its effect is considerable for gravity but negligible
in terms of the geoidal undulations, where this effect has an rms of less than 1 cm for filtering frequencies of 1/30, 1/60, and 1/90 Hz on a
5′ × 5′ grid.

(4) Airborne data filtered to 1/30 Hz can provide a geoid as accurate as the 1/90 and 1/60 Hz. This would lead to a high-resolution geoid
of resolution of 3 km and accuracy of 5 cm (rms). In cases when the flying speed is 50 m s−1, a data set filtered to 1/30 Hz can provide an
accurate geoid of resolution 1.5 km. It should be noted here that when gravity data are given on a grid denser than 5′ × 5′, the possibility of
an unstable inverse Poisson solution exists.

(5) In airborne gravimetry the geoid determined from the second methodology gave also a better fit to the geoid computed from the ground
gravity data. It is believed that this is primarily due to the use of the inverse Poisson integral in the first methodology, in addition to the
roughness of the field that is created when the second Helmert condensation method is used in the inverse Poisson integral.

(6) An off-the-shelf inertial navigation system integrated with the GPS can deliver a high-resolution—5′ × 5′—and accurate geoid, within
5 cm (rms) from a geoid computed from ground data. The same accuracy could be achieved for a resolution of 3 × 3 km grid when airborne
gravity data filtered to 1/30 Hz is used.
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