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Abstract—The recently-proposed method for iterative
correlation-based controller tuning that uses instrumental
variables is considered. A confidence interval based on the
covariance of the criterion function is introduced. An explicit
expression for the variance of the controller parameter
estimates around the optimal solution is developed and used
to construct the optimal instruments. This expression in turn
allows constructing a region around the obtained controller
that contains the optimal controller with a certain probability
level. The accuracy of the corresponding controller transfer
function is also investigated. It is shown that the variance of
the controller transfer function is proportional to the noise
spectrum at the controller output and inversely proportional
to the control error spectrum, the factor of proportionality
being the ratio of the controller order to the number of data
points. This result, which is asymptotic in both the controller
order and the data length, is independent of the instrumental
variables used.

Index Terms—Controller tuning, correlation-based tuning,
asymptotic variance analysis, instrumental variables.

I. INTRODUCTION

Acquisition of process knowledge and its efficient use
for control design are essential tasks of a control engineer.
The intrinsic nonlinearities of industrial processes and the
various complex behaviors they exhibit can turn the plant
modeling/identification into a very challenging task. An
alternative to model-based control design is to use the
information collected on the plant directly for controller
update. After numerous investigations in the framework
of direct adaptive control [1], the so-called data-driven
methods started to gain in popularity in the late 1990s when
several methods appeared such as controller unfalsification
[12], simultaneous perturbation stochastic approximation
control [14], iterative feedback tuning [5] and virtual refer-
ence feedback tuning [2]. One of the main questions that
arise in this research area is how to cope with the noise
that necessarily corrupts the measurements and therefore
also affects the closed-loop performance.
In the recently-proposed correlation-based approach to

model following, the problem of measurement noise is ad-
dressed differently [7]. The underlying idea is inspired from
the correlation approach that uses instrumental variables and
is well known in the system identification community [13].
The controller parameters are tuned to make the closed-loop

output error between the designed closed-loop system and
the achieved one uncorrelated with the external reference
signal. This way, the closed-loop output error ideally only
contains the contribution of the noise, while the achieved
closed-loop system captures the dynamics of the designed
one. Moreover, the calculated controller parameters are not
asymptotically affected by the noise. In [6], the tuning
objective is reformulated as the minimization of the 2-norm
of the correlation function between the closed-loop output
error and the reference signal. A generalized correlation
criterion that allows dealing with mixed sensitivity speci-
fications is proposed in [11]. In [10], an adaptation of this
approach to the disturbance rejection problem is considered.
In practice, the iterative solution of correlation equations

may necessitate a large number of experiments for con-
vergence. Furthermore, the limited amount of data points
in each experiment affects the stochastic properties of the
controller parameter estimates. In addition, process distur-
bances and measurement noise introduce errors in the solu-
tion. Therefore, for all iterative data-driven methods, it is of
particular interest to study how fast the computed controllers
approach the optimal one, as this is done in [4], [3]. Other
important questions that arise with iterative methods is when
to stop the iterations and how close the obtained controller is
to the optimal one. In this paper, a confidence interval based
on the covariance of the criterion function is introduced.
This confidence interval helps determine to what extent the
current controller decorrelates the closed-loop output error
from the reference signal. An asymptotic expression for the
accuracy of the controller parameters around the optimal
solution is derived. This allows constructing a region around
the obtained controller that contains the optimal controller
with a certain probability level. An asymptotic expression
for the accuracy of the controller transfer function estimate
that characterizes this region is derived as well. Another
reason for studying these properties is that the covariance
matrix of the controller parameter estimates helps choose
optimal instruments in the sense that they provide maximal
accuracy.
The remainder of the paper is organized as follows.

Some notations and preliminary facts about the correlation-
based tuning approach are given in Section II. The accuracy
aspects of this approach are discussed in Section III. Finally,
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some concluding remarks are given in Section IV.

II. PRELIMINARIES

Let the output of some unknown true plant be described
by the discrete-time model:

y(t) = G(q−1)u(t) (1)

where q−1 is the backward-shift operator, u(t) the input
signal to the plant, and G(q−1) a discrete-time transfer
operator defined as:

G(q−1) =
B(q−1)
A(q−1)

(2)

The plant is controlled by the following one-degree-of-
freedom controller:

K(q−1, ρ) =
S(q−1, ρ)
R(q−1, ρ)

(3)

where

R(q−1, ρ) = 1 + r1q
−1 + · · · + rnq−n (4)

S(q−1, ρ) = s0 + s1q
−1 + · · · + sn−1q

−n+1 (5)

The controller parameter vector ρ is written as follows:

ρT = [ρ(1)T
, ρ(2)T

, . . . , ρ(n)T
] (6)

where ρ(l)T
= [rl, sl−1], l = 1, . . . n; dim(ρ) = nρ = 2n.

Denote

ϕT (ρ, t − 1) = [−u(ρ, t− 1), e(ρ, t)] (7)

with e(ρ, t) = r(t) − y(ρ, t), where y(ρ, t) is the output
of the achieved closed-loop system (Fig. 1), and r(t) is
the reference signal with spectrum Φr(ω). Form the 2n-
dimensional vector

φT (ρ, t) = [ϕT (ρ, t − 1), · · · , ϕT (ρ, t − n)]. (8)

To facilitate the calculations and the discussion in the
sequel, it is assumed, without any loss of generality, that
a zero-mean weakly stationary random process v(t) acts at
the plant input (see upper part of Fig.1):

u(ρ, t) = K(q−1, ρ)e(ρ, t) + v(t) (9)

It is assumed that the measurements of r(t) and y(ρ, t) are
available. The excitation signal r(t) is assumed to be un-
correlated with the disturbance signal v(t). It is furthermore
assumed that v(t) can be described as:

v(t) = H(q−1)η(t) (10)

where H(q−1) is a linear, asymptotically stable and in-
versely stable noise model, and η(t) zero-mean white noise
with variance σ2.
As far as the notations are concerned, the signals col-

lected under closed-loop operation using the controller
K(q−1, ρ) will carry the argument ρ. The argument q−1

will be omitted when appropriate.
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Fig. 1. Closed-loop output error resulting from a comparison of the
achieved and designed closed-loop systems

Consider the model-following problem represented by
the block diagram in Fig. 1. The upper part shows the
achieved closed-loop system with the true plantG, while the
lower part represents the designed closed-loop system that
includes the plant model G0 and the initial controller K0. It
is assumed that the initial controller is capable of meeting
the specifications of the designed closed-loop system.
The closed-loop output error is defined as:

εcl(ρ, t) = y(ρ, t) − yd(t) (11)

where yd(t) is the output of the designed closed-loop
system.
When applying the initial controller K0 to the true plant

excited by the reference signal r(t), the closed-loop output
error contains a contribution due to the difference between
G and G0 (modeling errors) and another contribution orig-
inating from the disturbance v(t). The effect of modeling
errors is correlated with the reference signal, whereas that
of the disturbance is not. Therefore, adjusting the controller
parameters to make the closed-loop output error ε cl(ρ, t)
uncorrelated with the excitation signal r(t) seems to be a
reasonable tuning criterion. Ideally, the updated controller
compensates the effect of modeling errors to the extent
that the closed-loop output error contains only the filtered
disturbance. For this purpose, let introduce the following
nρ correlation equations:

fN(ρ) =
1
N

N∑
t=1

ζ(ρ, t)εcl(ρ, t) = 0 (12)

whereN is the number of data points and ζ(ρ, t) a vector of
instrumental variables that are correlated with the reference
signal r(t) and independent of the disturbance v(t).
Since fN(ρ) depends in a complicated way on ρ, these

equations have in general no explicit solution. However,
they can be solved numerically using the Newton-Raphson
iterative scheme:

ρi+1 = ρi − γi [QN (ρi)]−1 fN (ρi) (13)



where γi is a scalar step size and QN(ρi) is a square matrix
of dimension nρ defined as follows:

QN (ρi) =
∂fN

∂ρ

∣∣∣∣
ρ=ρi

=
1
N

N∑
t=1

{
∂ζ(ρ, t)

∂ρ

∣∣∣∣
ρ=ρi

εcl(ρi, t)

+ ζ(ρi, t)
∂εcl(ρ, t)

∂ρ

∣∣∣∣
ρ=ρi

}
(14)

An accurate value of the Jacobian matrix QN(ρi) cannot be
computed because the derivative of εcl(ρ, t) with respect to
ρ is unknown. This derivative can be formally expressed as
[1]:

ψT (ρi, t) =
∂εcl(ρ, t)

∂ρ

∣∣∣∣
ρ=ρi

=
B(q−1)

P (q−1, ρi)
φT (ρi, t) (15)

where P (q−1, ρ) = A(q−1)R(q−1, ρ) + B(q−1)S(q−1, ρ)
is the closed-loop characteristic polynomial. Although the
polynomials B and P are typically unknown, they can
be identified and replaced by their estimates B̂ and P̂ .
Note that an estimate of the gradient can also be obtained
by using one additional closed-loop experiment with one-
degree-of-freedom controller operating in the loop [5].
In practice, precise knowledge of the Jacobian matrix is

not important because a good estimate of this matrix is
only required in the neighborhood of the solution [9]. The
first term in (14) is close to zero because the derivatives of
the instrumental variables are uncorrelated with the closed-
loop output error near the solution. Neglecting this term and
replacing ψ(ρi, t) by its estimate ψ̂(ρi, t) leads to:

Q̂N (ρi) =
1
N

N∑
t=1

ζ(ρi, t)ψ̂T (ρi, t) (16)

When the number of data points N tends to infinity, the
iterative procedure (13) converges to the unique optimal
solution ρo of the correlation equation (12) provided that it
exists. However, for a finite N , a different solution of (12)
results for each realization of v(t), i.e. instead of a unique
solution one has a set of solutions. This set is centered
around ρo and its “size” depends strongly on the stochastic
properties of the disturbance v(t). The size of this set is
characterized by the covariance of the correlation equation.
In the next section, expressions that are asymptotic in N
are derived for this covariance.

III. ASYMPTOTIC ACCURACY

Let the value of fN (ρi), when N → ∞, be defined as:
f(ρi) = lim

N→∞
fN(ρi) = E {fN(ρi)} (17)

There is no use of continuing the iterations if each element
of the vector f(ρi) is within a confidence interval defined
by the corresponding element on the main diagonal of the
covariance matrix of fN (ρi) at the optimal solution. Let
assume that, based on this idea, after m iterations one has
stopped iterating and the controller ρm is obtained. Then,

from the expression for the covariance of fN(ρo), it is pos-
sible to calculate the asymptotic variance of the controller
parameter estimates, as will be shown below. This variance,
in turn, allows constructing the confidence ellipsoid around
the optimal controller ρo that contains the controller ρm

with the probability Pm. Now, using the explicit expression
for the variance of the controller parameter estimates at
the optimal solution, it is possible to construct around
ρm a region containing the optimal controller ρo with the
same probability Pm. This region could be interpreted as a
controller uncertainty set. Expressions for this region that
are asymptotic in N are derived in the sequel for both the
controller parameters and the controller transfer function.
Let introduce the following assumptions:

A1) The linear time-invariant SISO plant is strictly causal
and of finite order.

A2) The disturbance v(t) defined in (10) is uncorrelated
with the reference signal r(τ), ∀t, τ .

A3) The solution ρo of (12) exists and is unique (the
corresponding controller will be called “optimal con-
troller”).

A4) The controller computed at each iteration stabilizes the
closed-loop plant.

A5) The step size γi is constant and equal to 1 throughout
the iterations.

Assumption A3 implies that the optimal controller belongs
to the class of available controllers. Assumption A4 is
somewhat restrictive but is necessary for being able to
implement the controller calculated at each iteration.

A. Confidence interval

From expression (12) and the Central Limit Theorem [9],√
NfN (ρo) tends in distribution to a normal distribution

with zero mean and covariance Pf defined as:

Pf = σ2E
{
ζf (ρo, t)ζT

f (ρo, t)
}

(18)

where ζf (ρo, t) = F (ρo)ζ(ρo, t) with

F (ρo) =
BR(ρo)
P (ρo)

H =
∞∑

i=0

fiq
−i (19)

Hence, one can test whether the k-th element of the corre-
lation equation f(k, ρi) falls inside the confidence interval
one has:

|f(k, ρi)| ≤
√

P̂f (k, k)
N

Nα ∀k = 1, . . . , nρ (20)

where

P̂f =
σ2

N

N∑
t=1

ζf (ρi, t)ζT
f (ρi, t) (21)

and Nα is the α-level of the normal distribution N (0, 1).
In practice, this test shows whether the selected controller
order is appropriate. If f(k, ρi), ∀k = 1, . . . , nρ does
not enter the confidence interval after a large number of
iterations, the controller order should be increased.



B. Asymptotic variance of controller parameter estimates

The variance of controller parameter estimates in the
neighborhood of the optimal controller is calculated as
follows. Assume that the optimal controller is used and
one step of the iterative procedure is taken to produce the
neighboring estimate ρnb:

ρnb = ρo − QN(ρo)−1fN(ρo) (22)

The random variable ρnb − ρo provides information re-
garding the accuracy of the method around the solution, and
its asymptotic covariance matrix characterizes the region
containing ρm. The following result can be obtained.
Theorem 3.1: Consider the iterative correlation-based

controller tuning method (22). Suppose that the assumptions
A1-A5 hold. Then, as the data length N tends to infinity,
the distribution of the random variable

√
N(ρnb − ρo) is

asymptotically Gaussian:
√

N(ρnb − ρo) dist−→ N (0, PCbT ) (23)

with the covariance matrix PCbT given as follows:

PCbT = Q(ρo)−1PfQ(ρo)−T (24)

where

Q(ρo) = lim
N→∞

QN (ρo) = E
{
ζ(ρo, t)ψT (ρo, t)

}
(25)

Proof: The proof goes along the ideas of Theorem
5.1 and its corollary in [13], p. 75, where the asymptotic
distribution of parameter estimates for the extended IV
open-loop estimator is investigated. Here, since the data are
collected in closed loop, the transfer function between the
white-noise input η(t) and the output y(t) is F (ρo) defined
in (19). Considering that the number of parameters is equal
to the number of instrumental variables, the proof of the
theorem follows easily.
In practice, (24) can be evaluated by replacing the optimal

controller parameter vector ρo by the current value ρi. In
the same way, since the exact value of Q(ρo) is unknown
its estimate Q̂N (ρi) is calculated using expression (16).
Equations (18), (19) and (24) show that the covariance

matrix PCbT depends on the choice of the instrumental
variable ζ in a rather complex way. In addition, PCbT

depends on the noise model H(q−1) and the true plant.
Since both are unknown, this makes accuracy optimization
quite involved. Fortunately, a solution to this problem has
already been proposed in the field of system identification
[13], and it will be detailed in the sequel.

C. Optimal choice of instrumental variables

In this section, a lower bound for PCbT is established,
and then the choice of instrumental variables that makes
this bound achievable is presented.
Let denote by φ̃(ρo, t) the noise-free part of the regressor

vector φ(ρo, t):

φ̃(ρo, t) = [ϕ̃T (ρo, t − 1), · · · , ϕ̃T (ρo, t − n)]T (26)

with

ϕ̃(ρo, t − 1) =
(
−AS(ρo)

P (ρo)
r(t − 1),

AR(ρo)
P (ρo)

r(t)
)T

(27)

Theorem 3.2: PCbT given in (24) is bounded from below
by:

Plo = σ2E

{
1

R(ρo)H
φ̃(ρo, t)

1
R(ρo)H

φ̃T (ρo, t)
}−1

(28)
Moreover, PCbT = Plo when the following relationship
holds: ∞∑

i=0

ζ(ρo, t + i)fi =
1

R(ρo)H
φ̃(ρo, t) (29)

Proof: see Appendix I.
From (29), it is obvious that the choice of instruments

ζopt(ρo, t) =
1

R(ρo)HF (ρo)
φ̃(ρo, t) (30)

provides optimal accuracy. However, in order to implement
ζopt throughout the iterations, one has to estimate the
models of the noise H and the plant G, which imposes
additional computational effort to the algorithm. In addition,
in the filter in expression (30), the optimal parameters ρo

need to be replaced by the current values ρ i. This seems to
be a reasonable approximation considering the assumption
that the current controller is in the neighborhood of the
optimal controller.
Note that the data collected in closed loop can be filtered

by some linear filter. This way, additional design variables
are available to improve accuracy. However, this issue will
not be addressed in this paper.

D. Asymptotic variance of transfer function estimate

This section derives the variance expression for the
transfer function estimate. This expression is asymptotic in
both the number of data points and the model order.
Since ρnb is in vicinity of ρo, it follows from (24) and

Gauss approximation formula [9] that
√

N(K(ρnb) − K(ρo)) dist−→ N (0,Pn(ω)) (31)

with
Pn(ω) = T (ω, ρo)PCbT T T (−ω, ρo) (32)

where T (ω, ρo) is a 2n-dimensional row vector representing
the derivatives of K(ρo) with respect to ρ.
The expression (32) is asymptotic in N , but exact in n. A

simpler expression can be obtained for n → ∞. The result
is given in the following proposition.
Proposition 3.1: As n and N tend to infinity, the vari-

ance of the controller transfer function becomes:

Var K(ρo) ≈ n

N

Φv(ω)
Φe(ω)

(33)

Proof: see Appendix II.
The result (33) is interesting and not at all surprising. In

fact, the variance is proportional to the ratio of the noise



spectrum to the control error spectrum (Φv/Φe), with the
factor of proportionality being the ratio of the number of
parameters to the number of data points (n/N ). This result
is exactly dual to that in system identification [8], [9], where
the covariance of the plant model is proportional to the
spectral ratio of the plant output noise and the plant input
signal, with the same factor of proportionality. Note also
that the estimate K(ρo) is asymptotically based on only
input-output properties at the frequency ω, i.e. independent
of the choice of the instrumental variables.

IV. CONCLUSIONS

The accuracy aspects of the iterative correlation-based
controller tuning approach have been studied. The confi-
dence interval for the correlation equation has been derived
and an asymptotic expression for the covariance around the
optimal controller has been given. This expression is used
to construct the optimal instruments. In practice, one will
stop iterating when the correlation equation remains within
the confidence interval for several consecutive iterations.
Then, the region around the resulting controller contains
the optimal controller with a certain probability level. This
region can be reduced by increasing the number of data
points. In addition, expression (33) shows that this region
can be reduced around a particular frequency by applying
appropriate excitation signal.
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APPENDIX I
PROOF OF THEOREM 3.2

This is similar to the proof of Theorem 6.1 in [13], p. 96.
Taking into account that ζ(ρo, t) is uncorrelated with v(t),
it follows from (25) with (15) and (19):

Q(ρo) = E

{
ζ(ρo, t)

B

P (ρo)
φ̃T (ρo, t)

}

= E

{
ζ(ρo, t)

∞∑
i=0

fiq
−i B

P (ρo)F (ρo)
φ̃T (ρo, t)

}

= E

{ ∞∑
i=0

ζ(ρo, t)fi
1

R(ρo)H
φ̃T (ρo, t − i)

}

= E

{[ ∞∑
i=0

ζ(ρo, t + i)fi

]
1

R(ρo)H
φ̃T (ρo, t)

}
(34)

Furthermore, the assumption of stationarity gives:

Pf

σ2
= E

{ ∞∑
i=0

ζ(ρo, t + i)fi ×
∞∑

l=0

ζ(ρo, t + l)T fl

}
(35)

The matrix inequality

E

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
R(ρo)H

φ̃(ρo, t)
∞∑

i=0

ζ(ρo, t + i)fi

⎤
⎥⎥⎦

×
[

1
R(ρo)H

φ̃T (ρo, t)
∞∑

i=0

ζT (ρo, t + i)fi

]}
≥ 0 (36)

can equivalently be expressed as:

E

{
1

R(ρo)H
φ̃(ρo, t)

1
R(ρo)H

φ̃T (ρo, t)
}

− E

{
1

R(ρo)H
φ̃(ρo, t)

∞∑
i=0

ζT (ρo, t + i)fi

}

× E

{ ∞∑
i=0

ζ(ρo, t + i)fi

∞∑
i=0

ζT (ρo, t + i)fi

}−1

× E

{ ∞∑
i=0

ζ(ρo, t + i)fi
1

R(ρo)H
φ̃T (ρo, t)

}
≥ 0 (37)



Now, from (24), (28), (34), (35), and (37), it follows that
P−1

CbT ≤ P−1
lo . Finally, it is easy to verify that PCbT = Plo

when (29) holds.

APPENDIX II
PROOF OF PROPOSITION 3.1

The following lemma from [15] will be used.
Lemma 2.1: Let R(l)

n be a 2n×2n block-Toeplitz matrix
where the (i − j) 2 × 2 block is rl(i − j). Let

Φl(ω) =
∞∑

τ=−∞
rl(τ)e−jωτ l = 1, 2

Then

lim
n→∞

1
n

Wn(ω)[R(1)
n ]−1R(2)

n WT
n (−ω) = [Φ1(ω)]−1Φ2(ω)

Proof: see the proof of Lemma 4.3 in [15].
Let introduce the vector of instrumental variables

ζT (t) =
[
zT (t − 1), zT (t − 2), · · · , zT (t − n)

]
(38)

where

zT (t) =
[
Z1(q−1)r(t), Z2(q−1)r(t)

]
= Z(q−1)r(t). (39)

The derivative of K(ρo) w.r.t. ρ can be expressed as:

T (ω, ρo) = D(ω, ρo)Wn(ω) (40)

where

D(q−1, ρo) =
[
− S(q−1, ρo)

R2(q−1, ρo)
,

q

R(q−1, ρo)

]

=
1

R(q−1, ρo)
ΓT (ρo) (41)

with ΓT (ρo) =
[−K(q−1, ρo) q

]
, and

Wn(ω) =
[
e−jωI e−2jωI · · · e−njωI

]
(42)

I being the 2×2 identity matrix. Assume that a regularizing
term λI is added to the right-hand side of (14) and the
resulting Q(ρo) is used to calculate PCbT in (24).
The elements ϕ(ρo, t) of the regression vector φ(ρo, t)

can be expressed as:

ϕ(ρo, t) =
AR(ρo)
P (ρo)

Γ(ρo)r(t) = SypΓ(ρo)r(t) (43)

with Syp being the output sensitivity function. For the sake
of simplicity of notations, the argument ρo is omitted in the
sequel whenever appropriate.
The cross-spectrum between ζ(t) and ψ(t) reads:

Φζψ(ω) = Z(e−iω)Syp(eiω)
B(eiω)
P (eiω)

ΓT (eiω)Φr(ω) (44)

Similarly, the Fourier transform of the Toeplitz matrix Pf

in (18) reads:

Φζf
(ω) = σ2

∣∣F (e−iω)
∣∣2 Z(e−iω)ZT (eiω)Φr(ω) (45)

Finally, applying lemma 2.1 twice to the inner product of
(32) and (40) gives:

Mλ(ω) = lim
n→∞

1
n

Wn(ω)PCbT WT
n (−ω)

=
(

ZS∗
yp

B∗

P ∗ Γ∗T Φr + λI

)−1

× Φζf

×
(

Syp
B

P
ΓZ∗T Φr + λI

)−1

(46)

where the arguments are omitted for the sake of simplicity
and asterisk is used to denote the complex conjugate. After
straightforward but tedious calculations, the expression from
(46) can be reformulated as

Mλ(ω) =
σ2|F |2

|Syp|2|BP |2Φr

ZZ∗T

|ΓZ∗T + λI/(Syp
B
P Φr)|2

(47)

Now, from (19), (32), (40), (41) and (47), one has

P(ω) = lim
λ→0

lim
n→∞

1
n
Pn(ω, λ)

= lim
λ→0

D(w, ρo)Mλ(ω)DT (−w, ρo)

= lim
λ→0

ΓT

R

σ2|RH |2
|Syp|2Φr

× ZZ∗T

|ΓZ∗T + λI/(Syp
B
P Φr)|2

Γ∗

R∗

=
σ2|H |2
|Syp|2Φr

(48)

Combining this expression with (10), one finally obtains:

P(ω) =
Φv(ω)
Φe(ω)

(49)

where Φv denotes the spectrum of the random process v(t)
and Φe the spectrum of the control error:

Φe(ω) = |Syp(ω)|2Φr(ω)

The expression for the asymptotic variance of K(ρo) fol-
lows readily from (49).
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