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Abstract— Controllers for planar systems with one stable
and one unstable pole under saturated input are considered.
The requirements are: (i) global stability, i.e. the region of
attraction is the null controllable region, (ii) possibility of
enforcing any desired performance around the origin, and (iii)
no chattering of the control signal in the presence of noise. A
simple continuous nonlinear state feedback controller is pro-
posed that satisfies all these requirements. The performance
of the proposed controller is compared in simulation with that
of classical controllers such as linear state feedback and time
optimal controllers.

Keywords: Region of Attraction, Saturated Input, Con-
tinuous Nonlinear Control, Unstable Planar Systems.

I. INTRODUCTION

Linear systems with bounded inputs have been widely
studied in the literature [9], [6], [4]. This type of studies is
important since, in most practical situations, the range of
inputs is in fact limited.

In this paper, the control of single-input linear planar
systems (systems with 2 states) with saturated linear and
nonlinear feedback will be considered. Especially, the em-
phasis will be on systems with one stable and one unstable
pole. The three main requirements addressed here are as
follows:

1) Global stability: Two important concepts pertaining
to these systems have to be distinguished. First is the
null controllable region C, i.e. the region in state space
where there exists an open-loop input that can steer
the system to the origin [1], [4], [5], [8]. The second
is the region of attraction A with a given controller ,
i.e. the region in state space from which the closed-
loop system asymptotically reaches the origin [1], [4].
A controller is globally stabilising when A = C.
For semi-stable planar systems (both poles have non-
positive real parts), C = R

2 and A = C = R
2 for any

linear state feedback which makes the origin globally
asymptotically stable in the absence of saturation
[9]. However, for systems with one stable and one
unstable pole, C ⊂ R

2 and A = C can be either
achieved with an optimal or near optimal variable
structure control (VSC) [7], [8] or using a linear state
feedback controller where only the unstable state is
fed back [1], [8]. For anti-stable systems (both poles
have positive real parts), C ⊂ R

2 and the only way
to obtain A = C is through optimal or near optimal
switching [4], [5].

2) Local performance – Enforcing the desired perfor-
mance locally around the origin: For systems with one
stable and one unstable pole, a simple way of obtain-
ing global stability is to feed back only the unstable
state. However, such a controller will have poor local
performance due to absence of feedback on the stable
mode. The proposed controller should guarantee, at
least locally, the desired temporal performance.

3) Absence of chattering in the control signal in the
presence of noise: From the point of view of the
above two requirements, the optimal or near optimal
switching strategies are the methods of choice. The
controllers have the maximum region of attraction and
provide excellent time performance, not only locally,
but even globally. However, the main problem is that
the control signal is chattering in the presence of
noise. Absence of chattering is a requirement for the
sought controller.

In what follows various standard controllers proposed in
the literature are analysed from the perspective of control
of linear planar systems with one stable and one unstable
pole.

i) Standard linear state feedback controller where both
states are fed back [3]: Requirement 1 is not satisfied.

ii) Linear state feedback controllers where only the un-
stable state is fed back [1], [8]: Requirement 2 is not
satisfied since the stable state is left to follow its own
dynamics.

iii) Optimal or near-time optimal VSC controller [7], [8]:
Requirement 3 is not verified in presence of noise and
disturbances.

iv) Controller switching from controller (ii) to controller
(i) [4], [5]: When the state reaches an invariant non-
saturated region, the controller switches from type (ii)
to (i). The problem is that the invariant region could
be very small.

The properties of these controllers are summarised in Ta-
ble I. The controllers available in the literature cannot
satisfy one or more of the requirements stated above. Thus,
a controller is proposed that meets all the aforementioned
requirements. The idea is to have a controller of type (iv)
with a continuous switching from controller type (ii) to
controller type (i). This way, the problem of chattering
is avoided and the region of attraction is the whole null
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controllable region A = C.

Global Local No
stability performance chattering

Standard linear −
√ √

Feedback unstable state
√

−
√

Optimal controller
√ √

−
Switching controller

√
−

√

TABLE I

PROPERTIES OF THE STATE OF THE ART CONTROLLERS.

The paper is organised as follows. In Section II, defini-
tions and terms used in this paper are introduced. Section III
provides the main idea behind the structure of the proposed
continuous nonlinear controller. In Section IV, the global
stabilisation in the null controllable region is discussed.
Section V compares the proposed controller against the
standard approaches. Conclusions are drawn in Section VI.

II. PRELIMINARIES

A. Linear planar system with input saturation

Consider a single-input second-order linear system with
a stable and an unstable pole. Upon state transformation,
the system can be written as:

ẋ = Ax + bu =

[

λ1 0
0 λ2

]

x +

[

λ1

λ2

]

u (1)

where, x ∈ R
2 is the state vector, u the input, A and

b appropriate matrices, and λ1, λ2 the eigenvalues of the
open-loop system. Assume that λ1 > 0 and λ2 < 0. The
symmetric saturation function with unity saturation level
will be used:

sat(s) =











−1 if s < −1

s if − 1 ≤ s ≤ 1

1 if s > 1

(2)

With saturated state feedback, the closed-loop system is

ẋ = Ax + b sat(ũ(x)), (3)

where ũ(x) : R
2 → R is the linear or nonlinear control law

in function of the states.

B. Equilibrium points and region of attraction

Assume that the feedback ũ(x) is a global stabiliser
for (1). Then, system (3) has three equilibrium points.
This conclusion, which regards an open-loop system with
one stable and one unstable pole, does not apply to all
other open-loop pole configurations (both poles stable or
unstable) where the origin is the unique equilibrium point
[1].

Theorem 1 [1] Let the feedback ũ be a global stabiliser for
(1) at the origin. Then, the closed-loop system (3) has three
equilibrium points: xe+ = A−1b =

[

1 1
]T

, xe− =

−A−1b =
[

−1 −1
]T

, and xe0 = 0. Of these, xe0 is
stable, while the other two are saddle points.

Definition 1 Let Φ(t, x0) denote the state of (3) at time t,
starting with the initial condition x0 at t = 0. The region of
attraction of the stable equilibrium point xe0 = 0 is defined
as:

A =
{

x : lim
t→∞

Φ(t, x) = 0
}

. (4)

The boundary of A is denoted by ∂A.

C. Manifolds

Define the following hyperplanes and manifolds (refer to
Figure 1 for illustration):
• ∂L0 = {x : ũ = 0}
• ∂L+ = {x : ũ = 1}, ∂L− = {x : ũ = −1}
• ∂C+ = {x : x1 = 1}, ∂C− = {x : x1 = −1}
• ∂S+ = {x : limt→∞ Φ(t, x) = xe+}
• ∂S− = {x : limt→∞ Φ(t, x) = xe−}

The hyperplanes ∂L+ and ∂L− are the boundaries of the
region L where the control is not saturated and ∂L0 is the
hyperplane of zero control. The hyperplanes ∂C+ and ∂C−
are the boundaries of null controllable region C [1], [8].
∂S denote the stable manifolds of the saddle points. All
manifolds have two branches, one on either side of the
saddle points.

III. CONTINUOUS NONLINEAR STATE FEEDBACK

CONTROLLER

Consider the controller

ũ(x) = f1x1 + k(x)f2x2 u = sat(ũ), (5)

where f =
[

f1 f2

]

∈ R
2 and k(x) : R

2 → R. Assume
that f has been chosen to get the desired performance
(Requirement 2) of the closed-loop system near the origin.
If we set k(x) = 1, then (5) is a linear state feedback
controller. If k(x) = 0, then the stable state is not fed
back leading to A = C [1]. Here, a continuous switching is
introduced by choosing:

k(x) = 1− |x1|, (6)

where 0 < k(x) ≤ 1 since within the null controllable
region |x1| < 1.

The idea behind this nonlinear controller is as follows. If
x1 ≈ 0, then k(x) ≈ 1 which implies that the controller is
approximately the linear state feedback ũ ≈ f1x1+f2x2. In
this case, the controller concentrates on local performance
(Requirement 2). On the contrary, if the unstable state
approaches the boundary of the null controllable region C,
x1 ≈ ±1 and k(x) ≈ 0. This implies that the controller is
approximately the linear state feedback ũ ≈ f1x1, where it
focuses on the stabilisation of the unstable state and global
stability (Requirement 1). Since the controller (5)-(6) is a
continuous one, chattering is avoided and Requirement 3 is
also fulfilled.

Since f stabilises the system locally, it satisfies the
Hurwitz stability conditions:

1) λ1(1 + f1) + λ2(1 + f2) < 0
2) λ1λ2(1 + f1 + f2) > 0, (1 + f1 + f2) < 0



Also the condition that the system is stable at k(x) = 0
implies (1 + f1) < 0.

To picture the regions where the control is saturated and
where it is not, consider the function gũ : (−1, 1) → R that
describes x2 as a function of x1 for a given ũ ∈ [−1, 1]:

x2 = gũ(x1) =
ũ− f1x1

f2(1− |x1|)
. (7)

With this function, it is possible to express ∂L0, ∂L+ and
∂L− by setting ũ = 0, ũ = 1 and ũ = −1, respectively:

∂L0 =

{

x ∈ (−1, 1)× R : x2 =
−f1x1

f2(1− |x1|)

}

∂L+ =

{

x ∈ (−1, 1)× R : x2 =
1− f1x1

f2(1− |x1|)

}

∂L− =

{

x ∈ (−1, 1)× R : x2 =
−1− f1x1

f2(1− |x1|)

}

Figure 1 illustrates ∂L0, ∂L+, ∂L−, the boundary of the
null controllable region ∂C+and ∂C−, and the equilibrium
saddle nodes xe+ and xe−.
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and the equilibrium saddle nodes xe+ and xe−.

IV. ANALYSIS OF THE PROPOSED CONTROLLER

Consider the closed-loop system with (3), (5) and (6) :

ẋ = Ax + b sat(f1x1 + f2x2(1− |x1|)) (8)

It was shown in [3] that the stable manifolds are the
boundaries of the region of attraction A. In what follows, it
will be shown that, with controller (5) the stable manifolds
are in fact the boundaries of the null controllable region C.

Proposition 1 Consider system (8). If (1 + f1) < 0, then

∂S+ = ∂C+ and ∂S− = ∂C−.

Proof: Consider the input (5) along the manifold ∂C+:
u = sat(f1) = −1, since f1 < −1. Then, (8) along ∂C+

reads:

ẋ1 = λ1(x1 − 1) = 0 (9)

ẋ2 = λ2(x2 − 1) (10)

Thus, x1 stays at 1, and since λ2 < 0, x2 converges to 1 as
well. Thus, ∂C+ forms the set of all points that converge
to the equilibrium point xe+. So, ∂S+ = ∂C+. A similar
proof can be written for ∂S− = ∂C−.

Lemma 1 Let X = (−1, 1)× [−1, 1] and D = [−1+ε, 1−
ε]× [−1, 1], with ε > 0 chosen such that |u(x)| = 1 for all
x ∈ (X \D). Then, all trajectories starting in C will enter
the compact invariant set D.

Proof: Consider the subset X+ = (−1, 1) × (1,∞].
Within this set,

ẋ2 = λ2(x2 + u) < 0

since λ2 < 0, x2 > 1, and |u| ≤ 1 due to saturation.
So, all trajectories starting in X+ will leave X+. A similar
argument can be provided for X+ = (−1, 1) × [−∞,−1).
So, since C is invariant, all trajectories starting in C will
reach X = C \ (X+ ∪X−) = (−1, 1)× [−1, 1].

Consider the subset Y− = (−1,−1 + ε) × [−1, 1], with
ε > 0 chosen such that u(x) = 1 for all x ∈ Y−. So, within
this set

ẋ1 = λ1(x1 + u) > 0

since λ1 > 0, x1 > −1, and u = 1. Thus, eliminating
Y− and its counterpart Y+ = (1, 1 − ε) × [−1, 1] gives
the compact invariant set D = X \ (Y+ ∪ Y−). So, every
trajectory starting in X reaches D.

The proof is complete since every trajectory starting in
C reaches X and every trajectory starting in X reaches D.
Thus, D is invariant.

Lemma 2 If λ1 + λ2 > 0 or (f2 − f1) ≤ 0, then the non-
saturated region L is an invariant set for (8).

Proof: The lemma is proved by showing that the
vector field of (8) points into the non-saturated region L
for every point along the manifolds ∂L+ and ∂L−. Since
∂L+ and ∂L− are symmetric it suffices to prove it only for
one manifold (∂L+, ũ = 1).

The slope of the tangent of ∂L+, s1, is given by:

s1 =
dx2

dx1

=
dgũ(x1)

dx1

=
−f1 + sgn(x1)

f2(1− |x1|)2
, (11)

Note that s1 < 0 for f2 < 0 and s1 > 0 for f2 > 0.
Noting that x2 = gũ(x1) along ∂L+, the slope of the

vector field s2 is given by:

s2 =
ẋ2

ẋ1

=
λ2(x2 + 1)

λ1(x1 + 1)
=

λ2

λ1

1− f1x1 + f2(1− |x1|)

f2(1− |x1|)(1 + x1)
(12)



The vector field points into non-saturated region L if s2 >

s1 for s1 < 0 (f2 < 0) and s2 < s1 for s1 > 0 (f2 > 0).
Since both s1 and s2 have f2 in the denominator, the two
cases with f2 > 0 and f2 < 0 can be unified to give the
following condition:

λ2

λ1

1− f1x1 + f2(1− |x1|)

(1− |x1|)(1 + x1)
<
−f1 + sgn(x1)

(1− |x1|)2
.

Since (1 + x1) ≥ (1 − |x1|) > 0 and (−f1 + sgn(x1)) >

(−f1 − 1), the condition can be rearranged to give:

λ1(1 + f1) + λ2(1 + f2(1− |x1|))− λ2f1x1 < 0 (13)

So, the lemma is proved if it can be shown that (13) is
verified.
Case 1: x1 ≥ 0
From the Hurwitz stability condition, λ1(1 + f1) + λ2(1 +
f2(1 − |x1|)) < 0. Since λ2 < 0 and f1 < 0 the last term
of (13), −λ2f1x1 ≤ 0. So, the inequality (13) holds.
Case 2: x1 < 0
Substituting |x1| = −x1 in (13) reads:

φ(x1) = λ1(1 + f1) + λ2(1 + f2) + λ2x1(f2 − f1) < 0 (14)

Due to linearity, the maximum of φ(x1) ∀ − 1 ≤ x1 ≤ 0
occurs either at x1 = −1 or x1 = 0 depending on the sign
of (f2 − f1). If (f2 − f1) ≤ 0, the maximum is at x1 = 0.
Thus, it is required to prove λ1(1 + f1) + λ2(1 + f2) < 0,
which is verified since it is the Hurwitz stability condition.
If (f2 − f1) > 0, the maximum is at x1 = −1, and the
inequality (14) becomes:

(λ1 + λ2)(1 + f1) < 0.

Due to the Hurwitz stability condition, (1+f1) < 0, and due
to the hypothesis, (λ1 + λ2) > 0, this condition is verified.

The next theorem is the main result where the global
asymptotic stability in C is guaranteed under the condition

λ1(2 + f1) + λ2(1 + f2) < 0. (15)

Since λ1 > 0, this is a slightly more restrictive condition
than the Hurwitz condition λ1(1 + f1) + λ2(1 + f2) < 0.

Theorem 2 If f satisfies the conditions

(1 + f1 + f2) < 0, λ1(2 + f1) + λ2(1 + f2) < 0, (16)

then, the closed loop system

ẋ = h(x) = Ax + b sat(f1x1 + f2x2(1− |x1|)) (17)

is asymptotically stable for all initial conditions in C.

Proof: First it is shown, using an extension of the
Bendixson’s theorem [2], that no limit cycle exists. The
extension of the Bendixson’s theorem claims that if on a
compact invariant set F , the divergence ∇h defined by:

∇h(x) =
∂ẋ1

∂x1

+
∂ẋ2

∂x2

(18)

exists and has the same sign almost everywhere in F , then
F contains no closed trajectories.

For the non-saturated region without the boundaries (L\
(∂L+∪∂L−)), using the condition (16), it can be seen that

∇h(x) = λ1(1 + f1) + λ2(1 + f2(1− |x1|))

−λ1f2x2sgn(x1) < 0 (19)

For the compact saturated region (D \ L)

∇h(x) = λ1 + λ2 (20)

Case 1: λ1 + λ2 > 0
In this case, the non-saturated region L is invariant (Lemma
2). Since ∇h < 0 in the invariant region and there are no
limit cycles.
Case 2: λ1 + λ2 ≤ 0
In this case, ∇h is non-positive in both the saturated and
non-saturated regions, and so there are no limit cycles either.

The proof of the theorem is now based on the application
of the Poincare-Bendixson’s theorem within the compact
invariant set D. So, every trajectory of (17) starting at x0 ∈
C will either i) go to the equilibrium point at the origin, ii)
tend to a limit cycle or iii) be a limit cycle itself. In the first
part of the proof, it has been shown that there are no limit
cycles. So, all trajectories in C converge asymptotically to
the origin. Thus, the region of attraction is in fact A = C.

V. COMPARISON OF CONTROLLERS VIA SIMULATIONS

System (1) is considered with the parameters λ1 = 1 and
λ2 = −0.5, i.e.

ẋ1 = x1 + u

ẋ2 = −0.5 (x2 + u)

The following 4 controllers are compared:

1) C1: Linear saturated controller:
u = sat(f1x1 + f2x2), f1 = −6 and f2 = −3

2) C2: Linear saturated controller with only x1 fed
back: u = sat(f1x1), f1 = −3

3) C3: Time optimal controller [7]:
Switching between u = −1 and u = 1

4) C4: Continuous nonlinear controller:
u = sat(f1x1 + f2x2(1− |x1|)), f1 = −6
and f2 = −3

The controllers C1 and C4 are tuned such that both closed-
loop poles of the linear system are place at −2. As far as C2
is concerned, only the pole corresponding to the unstable
mode can be influenced by the controller and this pole is
placed at −2. The switching control law for C3 is given by



the following set of equations:

us = sgn
([

−1 1
]

x
)

x̃0 = x + usxe+ =

[

x̃01

x̃02

]

x̃ =







(

x̃01

x̃02

)

λ1

λ2−λ1

0

0
(

x̃01

x̃02

)

λ2

λ2−λ1






x̃0

δ = sgn(‖xe+‖ − ‖x̃‖)

u =

{

us if δ = 0

us δ if δ 6= 0
(21)

The three properties mentioned in the introduction, i.e. (i)
global stability, (ii) local performance, and (iii) chattering
behavior are analysed for these four controllers.

A. Global stability

In Figure 2, the evolution of the closed-loop trajectories
for the initial condition x0 =

[

−0.8 2.8
]T

is illustrated.
This initial condition is not in the region of attraction A of
C1 and therefore the corresponding trajectory leaves the
null controllable region C and escapes to infinity. However,
all the other controllers are globally stable with A = C and
thus the corresponding trajectories converge to the origin.
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Fig. 2. Phase diagram. The lines L+ and L
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are the borders of the
non-saturated region of controller C4.

B. Local performance

In Figure 3, the evolution of the trajectories of all
controllers for the initial condition x0 =

[

0.7 2.8
]T

∈ C
is shown. It is seen that the trajectory of controller C2 first
goes towards the x2 axis since only the unstable state x1

is fed back. Then, convergence to the origin is ensured via
the open-loop dynamics of the stable state.

The time evolution of the two states is shown in Figure
4. For controller C2, the unstable state is damped quickly.

However, the damping of the stable state takes a long
time. The best time performance for both states is given
by the time-optimal controller C3. The controller C4 needs
more time to damp the states but does better than C1.
For initial conditions that are located nearer the origin, the
performance of C4 and C1 is similar.
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C. Chattering in the control signal

For this example, pseudo-random white noise perturba-
tion is added to the measurements of the state variables.
Figure 5 shows the control signal u for all controllers.
It is seen that the control signals of C1, C2 and C4
show no chattering behavior since they are generated by
continuous controllers. However, the control signal of C3
shows chattering when the state is near the origin (after
t = 3.9[s]). Chattering is also present during the switching
from u = −1 to u = 1 at t = 1.826 . . . 1.833 [s] (Figure
6).
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VI. CONCLUSION

In this paper, a simple continuous nonlinear controller for
the stabilisation of linear planar systems with one unstable
and saturated input was proposed. It was shown that this
controller is globally stabilising, i.e. its region of attraction
is the null controllable region. Furthermore, it satisfies
the desired performance locally around the origin. A third
property of this controller is the absence of chattering in
the control signal, which is a direct consequence of its
continuity.

Though this paper dealt only with planar systems with
one stable and one unstable pole, it is hoped that it can
be extended to systems with two unstable poles. Also, the
case with one unstable pole and multiple stable poles is of
interest.
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