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Abstract: Optimization of the fed-batch fermentation of Saccharomyces cerevisiae

is analyzed. Due to the limited oxygen uptake capacity of the cells, the overow

metabolite ethanol is formed when the substrate concentration is above some

critical value. This value decreases during the course of an experiment due to

the reduction in dissolved oxygen concentration resulting from biomass formation.

Optimal operation corresponds to regulating the substrate concentration along this

time-varying critical value. This paper proposes a novel strategy to implement

this optimal solution, whereby ethanol is fed along with the substrate and its

concentration in the reactor regulated around the inlet concentration value. Sub-

optimal strategies of practical interest are also discussed and simulation results

are presented.

Keywords: Fed-batch fermentation, Overow metabolite, Bottleneck principle,

Optimization, Ethanol regulation.

1. INTRODUCTION

Biotechnology has risen to becoming one of the

active research areas in the control community. In

this work, the optimization of a key biotechno-

logical process, the production of baker's yeast, is

studied. Though presented for baker's yeast, the

results are generally applicable to fermentation

processes with microorganisms that present an

overow metabolism.

Numerous models have been proposed to describe

the behavior of Saccharomyces cerevisiae under

di�erent growth conditions (Nielsen and Villad-

sen, 1994). The model used in this work was pro-

posed by (Sonnleitner and K�appeli, 1986). It as-
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sumes that the oxidative capacity of S. cerevisiae

is limited and constitutes a bottleneck in the ox-

idative metabolism. The size of this bottleneck

may change from experiment to experiment and

even during a given experiment due to changes in

the cell metabolism, nutrient limitation, or other

factors (van Hoek et al., 1998). When the sub-

strate uptake rate exceeds the oxidative capacity,

the overow metabolite ethanol is formed.

Maximization of biomass production is obtained

when the glucose ux exactly matches the ox-

idative capacity of the cells. However, industrial

bioreactors are often operated at substrate con-

centrations well under this critical value in order

to avoid either yield losses when substrate is trans-

formed into ethanol or accumulation of the over-

ow metabolite that might be toxic. This work
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proposes a methodology for ensuring optimality

by operating the reactor at or near this unknown,

time-varying critical value.

Regulating the concentration of the overow

metabolite has been used for the purpose of opti-

mization in several works (Axelsson, 1989; Chen et

al., 1995; Valentinotti et al., 2003). However, true

optimality would require regulating the ethanol

concentration at zero, which is not possible due

to the non-zero resolution of the ethanol sensor.

Thus, those approaches are at best sub-optimal.

In this work, the non-intuitive idea of adding the

overow metabolite in the feed stream is used. By

choosing the ethanol regulation set point equal to

its concentration in the feed, optimal operation

can be achieved. The main advantage is that

the sensor resolution is no longer a critical issue.

Furthermore, if desired, sub-optimal operation

can be obtained by adjusting the ethanol set point

relative to its concentration in the feed.

The paper is organized as follows. In Section 2, a

macroscopic process model is presented. Section

3 formulates the optimization problem and its

nominal solution, while Section 4 discusses three

on-line operating strategies. The adaptive control

strategy is presented in Section 5 and simulation

results are shown in Section 6.

2. PROCESS MODELING

A macroscopic description of the metabolism of

S. cerevisiae fermentation includes the following

reactions:

S + a1O2
r1

!
b1X + c1CO2 (1)

S r2

!
b2X + c2CO2 + d2P (2)

P + a3O2
r3

!
b3X + c3CO2 (3)

where S is the substrate, P the reaction product

ethanol that can also be oxidized by the cells,

X the biomass, and CO2 and O2 carbon dioxide

and oxygen, respectively. a
i
; b
i
; c
i
; d

i
and r

i
are the

yield coeÆcients and the reaction rate of the ith

reaction, respectively.

In this work, the overow metabolism (bot-

tleneck) model proposed by (Sonnleitner and

K�appeli, 1986) is used. It assumes a limited res-

piratory capacity of the cells. The uptake of the

glucose fed to the reactor is assumed to occur at

the following rate:

r
s
= k

s

S

S +K
s

�
g of S

g of X h

�
(4)

The rate at which the cells can oxidize the sub-

strate is given by :

r
o
= k

o

O2

O2 +K
o

�
g of O2

g of X h

�
(5)

The rate r
o
is seen as the bottleneck since it

limits the amount of glucose that can be oxidized.

Thus, Reaction (1) takes place as long as suÆcient

glucose and oxygen are available in the reactor.

Its rate is determined by the smallest of the rates

at which glucose and oxygen are taken up by the

cells, r
s
and r

o
=a1, respectively:

r1 = min

�
r
s
;
r
o

a1

�
(6)

The glucose concentration at which the oxidative

capacity saturates is de�ned as S
crit

, for which

r
s
= r

o
=a1. It follows that Scrit = r

o
K
S
=(a1ks �

r
o
) is a function of the dissolved oxygen concen-

tration O2. When the glucose ux is too large to

�t through the bottleneck, i.e. r
s
> r

o
=a1 cor-

responding to S > S
crit

, the excess will overow

into the reductive metabolism resulting in ethanol

production according to Reaction (2). This is in

fact what gives this metabolism its name. The rate

at which this reaction takes place is given by:

r2 = max

�
0; r

s
�

r
o

a1

�
(7)

If the glucose ux does not use up the whole

oxidative capacity of the cells, the ethanol present

in the reactor is oxidized simultaneously via Reac-

tion (3). The excess oxidative capacity is given by

r
o
�a1rs, and the rate at which ethanol is oxidized

is therefore:

r3 = max

�
0;min

�
r
p
;
r
o
� a1rs

a3

��
(8)

r
p
= k

p

P

P +K
p

�
g of P

g of X h

�
(9)

Based on the reaction model (1)-(3), the following

macroscopic mass balances can be derived:

d(V X)

dt
= (b1r1 + b2r2 + b3r3)V X (10)

d(V S)

dt
=�(r1 + r2)V X + FS

in
(11)

d(V P )

dt
= (d2r2 � r3)V X + FP

in
(12)

d(V O2)

dt
= k

L
aV (O�2 �O2)� (a1r1 + a3r3)V X

(13)

dV

dt
= F (14)

where F is the substrate feed rate, V the volume,

and S
in

and P
in

the inlet concentrations of S and

P , respectively. The dissolved oxygen concentra-

tion in the bioreactor is given by (13), where k
L
a

is the overall mass transfer coeÆcient, and O�2 the
dissolved oxygen equilibrium concentration. For

simplicity, it is assumed that k
L
a and O�2 remain

constant throughout the experiment.



The model parameters are given in Tables 1 and

2, while the operating and initial conditions used

in the simulation are provided in Table 3.

Parameter Value Unit

a1 0:396 g of O2/g of S

b1 0:490 g of X/g of S

c1 0:590 g of CO2/g of S

b2 0:050 g of X/g of S

c2 0:462 g of CO2/g of S

d2 0:480 g of P/g of S

a3 1:104 g of O2/g of P

b3 0:720 g of X/g of P

c3 0:625 g of CO2/g of P

Table 1. Yield coeÆcients for the pro-

posed reaction mechanism.

Parameter Value Unit

ks 3.500 g of S/g of X h

ko 0.256 g of O2/g of X h

kp 0.170 g of P/g of X h

Ks 0.100 g of S/l

Ko 0.001 g of O2/l

Kp 0.100 g of P/l

Table 2. Kinetic parameters for the

rates r
s
, r

o
, and r

p
.

Variable Value Unit

Sin 300 g/l

Pin 10 g/l

O
�

2
0.039 g/l

kLa 250 h
�1

Vmax 8 l

Fmax 3 l/h

Xo 1.5 g/l

So 0.023 g/l

Po 10 g/l

O2o 0.039 g/l

Vo 4 l

Table 3. Operating and initial condi-

tions

3. OPTIMIZATION PROBLEM AND

NOMINAL SOLUTION

From a practitioner's perspective, the goal is to

maximize the amount of biomass with minimum

batch time, which in fact are two objectives in one.

Thus, from an optimization perspective, these two

objectives need to be combined. In this paper, the

batch time is considered as the cost function to

be minimized, and the biomass productivity as a

constraint to be met. As a result, the optimization

problem is formulated as follows: given opera-

tional constraints, determine the feeding strategy

that minimizes the batch time while ensuring that

the amount of biomass at �nal time is at least the

prescribed quantity (V X)
des

:

min
tf ;F (t)

J = t
f

(15)

subject to (10)� (14)

0 � F (t) � F
max

V (t) � V
max

; V (t
f
)X(t

f
) � (V X)

des

where t
f
is the �nal time, V

max
the maximal

volume, F
max

the maximum feed rate at which

the substrate can be fed, and (V X)
des

the desired

minimal amount of biomass computed as:

(V X)
des

= V
o
X
o
+ b1Sin(Vmax

� V
o
) (16)

which corresponds to the amount of biomass that

can be attained from the substrate. Note that, due

to the presence of ethanol in the feed, it is possible

to produce slightly more biomass than (V X)
des

.

The optimal solution of (15) obtained numerically

is shown in Figure 1.
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Fig. 1. Optimal feed rate pro�le and evolutions of

oxygen and substrate concentrations.

It has been argued in Sonnleitner and K�appeli

(1986) that exactly �lling the bottleneck is opti-

mal in some sense. Here, it will be shown that,

for the optimization problem (15), the optimal

solution in fact corresponds to exactly �lling the

bottleneck, i.e. regulating S at S
crit

. To arrive

at this conclusion, the two cases with S � S
crit

and S � S
crit

are considered, and it follows that

S = S
crit

is indeed optimal.

� For S � S
crit

, biomass is produced from

the substrate by Reactions 1 and 2, and

eventually the overown ethanol is converted

to biomass through Reaction 3. Thus, for

the consumption of one unit of substrate,

the quantity of biomass produced is (b1� +

(b2 + d2b3)(1 � �)), where � = r1=rs, 0 �

� � 1. Since b1 > (b2 + d2b3), the maximum

corresponds to � = 1, i.e. r1 = r
s
where the

bottleneck is exactly �lled. So, for S > S
crit

,

the desired productivity cannot be achieved

with the substrate alone, and some of the

ethanol in the feed stream must be consumed

in order to produce the di�erence in the

desired biomass production.



� For S � S
crit

, there is space in the bottleneck

for some of the ethanol in the inlet to be

converted to biomass, i.e. r3 = (r
o
�a1r1)=a3.

So, the rate of production of biomass is:

( b1
a1

� + b3

a3

(1� �))r
o
XV , where � = a1r1=ro,

0 � � � 1. Since, b1

a1

> b3

a3

, the maximum

value is for � = 1, i.e. r1 = r
o
=a1. In other

words, the bottleneck should be entirely �lled

with substrate in order to minimize time,

though the desired productivity could be

achieved even by partially �lling it.

For the initial condition S(0) = S
crit

(O2(0)), the

optimal input F � that enforces S = S
crit

can be

obtained by di�erentiating r
s
= r

o
=a1 once with

respect to time:

F � = V
N

D

����
S=Scrit

(17)

where

N = a1Ko
k
s
S2(k

L
a(O�2 �O2)� r

o
X) +K

s
k
o
O2
2rsX

D= a1Ko
k
s
S2O2 +K

s
k
o
O2
2(Sin � S)

The �rst part of the feed rate pro�le is nearly

exponential when oxygen is not limiting, while

the second part is almost linear when oxygen

limitation occurs after about 10 h. The optimal

solution is t�
f

= 16:12 h. Figure 1 also indicates

that S
crit

reduces with time.

4. ON-LINE OPERATING STRATEGIES

Since the model parameters might not be accu-

rately known and can vary during the batch, the

feed rate expression (17) cannot be used to imple-

ment the optimal strategy. Instead, it is possible

to use the ethanol concentration measurement P
to adjust the substrate feed rate F .

As seen in the previous section, optimality re-

quires r2 = r3 = 0, i.e. neither production

nor consumption of ethanol. One possibility is

to track the amount of ethanol V (t)P (t) =

(V P )
ref

(Valentinotti et al., 2003). Another pos-

sibility, which involves tracking the concentration

of ethanol with P
in
6= 0, is discussed next.

Application of the chain rule of di�erentiation to

(12) gives:

dP

dt
= (d2r2 � r3)X +

F

V
(P

in
� P ) (18)

Assume that P
in

is constant and the ethanol

concentration is regulated around the value P
ref

.

If P (t) = P
ref

= P
in
, then dP=dt = 0 implies

(d2r2� r3) = 0. However, since r2 and r3 are non-
negative and cannot be positive simultaneously,

r2 = r3 = 0.

In addition, depending on the relative values of

P
ref

and P
in
, sub-optimal solutions are possible:

� P
ref

< P
in

(for r2 = 0 and r3 > 0): Ethanol

is constantly consumed and S < S
crit

.

� P
ref

> P
in

(for r2 > 0 and r3 = 0): Ethanol

is constantly produced and S > S
crit

.

The larger the di�erence jP
ref

� P
in
j, the more

sub-optimal the operation will be.

Though it is preferable to keep the operation opti-

mal, there might be biological reasons for choosing

sub-optimal operation. Consider the optimal case

where the ethanol concentration is regulated at

P
in
. Then, for any corrective action needed, for

example, to reject a perturbation, the system has

to switch from oxidative to reductive metabolism

and vice-versa. In other words, if excess ethanol is

produced, some space needs to be created in the

bottleneck for it to be consumed. In contrast, this

change of metabolism need not take place in sub-

optimal strategies. Among the two sub-optimal

strategies, P
ref

< P
in
leads to S < S

crit
, implying

that maximal yield is still achieved, but the batch

time is longer. On the other hand, P
ref

> P
in

leads to shorter batch times at the cost of a

reduction in yield.

The particular case P
in

= 0 was considered in

(Valentinotti, 2001). There, P
ref

had to be as low

as possible in order to be nearly optimal. Thus,

P
ref

was chosen based on the resolution of the

ethanol sensor, which is no longer the case when a

non-zero P
in

is used. Furthermore, with P
in

= 0,

it is only possible to control the system in the

overow situation since negative concentrations

cannot be measured. In contrast, with a non-zero

P
in
, the reference is shifted up to P

in
and the

system becomes observable and controllable for

all three cases - overow, critical, and underow.

5. CONTROLLER DESIGN

In this section, a linear adaptive controller will

be used to maintain the ethanol concentration P
constant. Thus, the computation of a linear model

will be discussed �rst, followed by the design of the

adaptive controller.

5.1 Linear model

The bioreactor is a fed-batch process with no

steady-state operating point. However, for opti-

mal operation, P (t) = P
in

and S(t) = S
crit

.

Hence, linearization will be performed around

these optimal values for P and S while using

averaged values for the others, e.g. �V and �F .



In order to derive a linear model, it is assumed

that (V S) is at quasi-steady state:

d(V S)

dt
= �(r1 + r2)XV + FS

in
= 0 (19)

The linearized dynamics will be di�erent depend-

ing on whether the second or the third reaction

takes place in addition to r1. Thus, two cases need
to be considered:

� Case A: r2 6= 0, r3 = 0. Here, r1 = r
o
=a1

and, from (19), r2X = (F=V )S
in
�(r

o
=a1)X .

Using this expression in (18) leads to:

dP

dt
=
F

V
(d2Sin + P

in
� P )�

d2roX

a1
(20)

or, in linearized form:

dP

dt
=��P + �

a
F � ��

a
V � 

a
X (21)

with � = �F= �V , �
a
= (d2Sin+P

in
�P

ref
)= �V

and 
a
= d2�ro=a1.

Since V depends on F according to (14),

(21) leads to the following transfer function

model:

P (s) =
�
a
(s� �)

s(s+ �)
[F (s)�W

a
(s)] (22)

where W
a
(s) = as

�a(s��)
X(s) represents the

equivalent owrate that is needed for biomass

growth and, as such, can be seen as an input

perturbation to the transfer between F and

P . The corresponding discrete-time model

reads:

P (kh) =
B
a
(q�1)

A(q�1)
[F (kh)� w

a
(kh)] (23)

where, with the ZOH approximation,A(q�1) =
(1 � q�1)(1 � e��hq�1), B

a
(q�1) = (Æ

a
�

�
a
h)q�1 � (Æ

a
� �

a
he��h)q�2 and w

a
(kh) =

e�hw
a
(kh�h)+(

a
=�

a
)[X(kh)�X(kh�h)],

with Æ
a
= 2�

a
(1 � e��h)=� � �

a
h, h the

sampling period, kh the sampling instant,

and q�1 the backward-shift operator.
� Case B: r2 = 0, r3 6= 0. Here, r1 = r

s
and,

from (19), r1X = (F=V )S
in
. Furthermore,

assuming that the excess oxidative capacity

is small, i.e. r
p
> (r

o
� a1rs)=a3, one ob-

tains r3 = (r
o
� a1r1)=a3, and thus r3X =

r0X=a3 � (a1=a3)(F=V )Sin. Using this last

expression in (18) gives:

dP

dt
=

F

V
(
a1

a3
S
in
+ P

in
� P )�

r
o
X

a3
(24)

Similarly, linearization and discretization

lead to the following discrete-time model:

P (kh) =
B
b
(q�1)

A(q�1)
[F (kh)� w

b
(kh)] (25)

where B
b
(q�1) = (Æ

b
� �

b
h)q�1 � (Æ

b
�

�
b
he��h)q�2, and w

b
(kh) = e�hw

b
(kh �

h) + (
b
=�

b
)[X(kh)�X(kh� h)], with �

b
=

((a1=a3)Sin + P
in
� P

ref
)= �V , 

b
= �r

o
=a3,

Æ
b
= 2�

b
(1� e��h)=�� �

b
h.

The following averaged linearized discrete-time

model will be used:

P (kh) =
B(q�1)

A(q�1)
(F (kh)� w(kh)) (26)

where B = (B
a
+B

b
)=2 and w = (w

a
+ w

b
)=2.

Though the expressions for w
a
and w

b
are di�er-

ent, it is interesting to note that, when P
ref

= P
in
,

w
a
= w

b
. Since the biomass grows exponentially

in the �rst phase and linearly in the second, the

disturbance w is unstable. This is a situation for

which standard PID-type controllers are inappro-

priate (Axelsson, 1989). Thus, an adaptive con-

troller based on the internal model principle for

disturbance rejection is used here (Valentinotti et

al., 2003).

5.2 Adaptive controller design

The RST polynomial control law with Q-parame-

terization is given by (Tsypkin, 1991):

R
o
F = �S

o
P + TP

ref
+Q(BF �AP ) (27)

where R
o
, S

o
, and Q are polynomials in the

backward-shift operator q�1. The closed-loop

characteristic polynomial is independent of the

choice of Q and is given by A
c
= AR

o
+B S

o
.

The resulting closed-loop system using the control

law (27) is shown in Figure 2. The closed-loop

output is given by:

P =
BT

A
c

P
ref

�

(Ro�QB)

A
c

w
B

(28)

with w
B

= Bw a �ltered version of the distur-

bance w.

F
w

PPref
1/Ro B/A

Q

So

T

B A

+

-

-
-

+

wB

Fig. 2. Block diagram of the controlled system.

The goal of adaptation is to minimize the second

term in (28), i.e. the e�ect of the perturbation w,
by adjusting Q:

min
Q

k�1 � �2Qk
2 (29)

where the signals �1 and �2 are de�ned as �1 =
Ro

Ac

w
B
and �2 =

B

Ac

w
B
. Note that w

B
can be esti-

mated from the input and output using ŵ
B
(kh) =



B(q�1)F (kh)�A(q�1)P (kh). Equation (29) cor-

responds to a linear regression problem for the

elements of Q, for which on-line adaptation can

be done using standard algorithms (Ljung, 1987).

6. SIMULATION RESULTS

The optimal and the two sub-optimal strategies

proposed in Section 4 are implemented in simula-

tion on the model presented in Section 2 using the

controller described in Section 5. The substrate

concentration and the feed rate for the various

strategies are shown in Figures 3 and 4, and the

numerical results are given in Table 4.
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Strategy Pin Pref X(tf ) V (tf ) tf

1 10 8 74.71 7.95 16.26

2 10 10 74.25 8.00 16.12

3 10 12 74.25 8.00 16.14

Table 4. Optimization results with the

various strategies for (V X)
des

= 594 g.

For the optimal Strategy 2, the substrate is always

at its critical value S
crit

(O2). Strategies 1 and 3

implement S < S
crit

and S > S
crit

, respectively

(see Figure 3).

For the case P
ref

< P
in
, since the bottleneck is

not �lled with substrate alone, part of the ethanol

in the feed is converted to biomass. This way, a

slightly higher X(t
f
) is obtained. Though the feed

stops before the reactor is full, the �nal time is

larger. On the other hand, when P
ref

> P
in
, there

is overow and the reactor is �lled slightly faster.

However, once the reactor is full, the productivity

is less than the desired one. Thus, there is a small

batch phase with F = 0 (see Figure 4) so as to

produce the required biomass from ethanol.

As seen in Table 4, the minimal time is obtained

with Strategy 2. Implementation is by regulating

P (t) around P
in
. Note that no information regard-

ing the model parameters is used in the controller,

and the optimal solution is enforced solely from

the ethanol measurement through feedback.

7. CONCLUSIONS

A non-intuitive but very practical approach for

the optimal operation of fed-batch fermentations

has been presented. This consists of adding a small

amount of product in the feed and maintaining the

product concentration in the fermenter constant

at its inlet value.

The proposed operating strategy allows main-

taining the desired metabolism (either overow,

critical or underow) even when changes in the

value of S
crit

occur due to oxygen limitation. In

fact, when the oxygen concentration is limiting,

regulating P forces the substrate concentration

S to decrease in order to match the oxidative

capacity of the cells.

Although the analysis and the simulation study

were done for S. cerevisiae, it is possible to use

the proposed approached with other microorgan-

isms presenting an overow metabolism such as

E. coli, a bacteria used for recombinant protein

production.
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