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Abstract— An iterative controller auto-tuning method based
on a frequency criterion is proposed. The frequency criterion
is defined as the weighted sum of squared errors between the
desired and measured gain margin, phase margin and crossover
frequency. A relay feedback test is used to automatically
obtain a non-parametric model of the open-loop system in a
very important region for control design. The gain and phase
margins as well as the crossover frequency are estimated with
the non-parametric model using interpolations. The gradient
and Hessian of the frequency criterion can be expressed in
terms of the derivatives of the open-loop system with respect
to the frequency. These derivatives can also be estimated with
a good accuracy thanks to the non-parametric model. Since no
assumptions are made on the plant, the method is valid for a
very wide class of linear systems. Simulation examples illustrate
the effectiveness and simplicity of the proposed method.

I. INTRODUCTION

Simple controllers such as the conventional PID controllers
are still widely used in practical applications. In spite of
their very simple structure, they often perform well and meet
the specifications, provided that their parameters are properly
chosen. Therefore, several different automatic tuning proce-
dures with varying objectives and complexity are desirable.
Many methods are already available, but they are derived for
particular processes and situations, and consequently they
apply well only to their own area. It is hence desirable to
propose simple and fast controller tuning methods that are
not restricted to a controller structure and that achieve high
performances for a very wide class of linear processes.

The available methods are normally based on a first [1]
or a second-order [9] model with dead time obtained from
the measurement of one or more points on the frequency
response of the process. The problem with the first-order
plus dead time models is that they are absolutely not repre-
sentative of the majority of real plants. Peaks in the frequency
response cannot, among others, be generated by such models.
One can expect that the methods based on first-order models
applied to real plants will not provide the desired results.
Second-order plus dead time models approximate real sys-
tems much better [9]. However the identification procedure,
which consists of solving iteratively non-linear trigonometric
equations, may fail. Additionally, the measured points are
usually obtained with the describing function method applied
to a relay feedback test [2]. This method is approximative
and poor results may be obtained for some systems, like
processes with a long time-delay and those having a low

relative degree.

In recent years, considerable attention has been given to
data-driven controller tuning without or with little use of
models. These tuning procedures use directly the experi-
mental closed-loop data and do not suffer from unmodeled
dynamics. An iterative controller tuning procedure based on
the minimization of a frequency criterion has been proposed
in [5], [4]. This method shows promising results but is
restricted to stable minimum phase systems.

The main contribution of this paper is to extend the validity
of the iterative tuning procedure in [5] to a very large class
of linear systems, including oscillatory, non-minimum phase
and unstable processes. The frequency criterion is defined
as the weighted sum of squared errors between the desired
and measured gain margin, phase margin and crossover
frequency. The gradient and Hessian of the criterion can be
expressed with the derivatives of the amplitude and phase of
the system with respect to the frequency at the crossover
frequency (the frequency at which the amplitude is one)
and at the ultimate frequency (the frequency at which the
phase is −π). It is shown that, with the only knowledge of
multiple estimated points of the process open-loop frequency
response, obtained at each iteration with only one experi-
ment, not only the phase margin, the gain margin and the
crossover frequency can be approximated with high precision
but also the gradient and Hessian of the frequency criterion.
The advantage of the proposed method is that no assumption
is made on the process and the controller structure. The only
requirement is that a stabilizing controller exists prior to the
tuning procedure, and the purpose of the proposed method is
to improve the performance, stability and robustness of the
closed-loop system. Simulation results show the efficiency
and the fast convergence of the proposed method.

The paper is organized as follows: A method, based on
a closed-loop relay experiment, that automatically estimates
multiple points of the open-loop frequency response, is
presented in Section II. Section III shows how the robustness
margins, the crossover frequency as well as the derivatives
of the open-loop frequency response with respect to the
frequency can be approximated with such a non-parametric
model. The iterative tuning method is then presented in
Section IV and simulation examples are provided in Section
V. Finally some concluding remarks are offered in Section
VI.
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II. MULTIPLE POINTS MEASUREMENT USING A
CLOSED-LOOP RELAY EXPERIMENT

The proposed measurement method is derived from the
closed-loop relay feedback test proposed in [10] to generate
a limit cycle at the crossover frequency of the open-loop
transfer function and in [7] to measure the phase margin
using the describing function approach. The accuracy of the
method proposed in [7] is however poor: Experiments have
shown relative errors between the measurements and the real
values of the crossover frequencies of about 40% [7]. Errors
come from the fact that the transfer function seen by the relay
has a relative degree of 1, and thus the describing function
assumption is not guaranteed.

The method proposed in this section will benefit from
the properties of the closed-loop relay experiment to obtain
a non-parametric model with a good precision using the
Fourier analysis. On the one hand the experiment auto-
matically provides excitations to the system in the desired
frequency region. On the other hand the low relative degree
of the transfer function seen by the relay makes it possible
to measure other points of the open loop frequency response
at frequencies corresponding to higher odd harmonics. How-
ever, in order to additionally provide excitation to the process
at different others frequencies, two simple modifications are
made to the scheme.

The modified closed-loop relay experiment is shown in
Fig. 1. The first modification consists in replacing the sym-
metric relay by a biased relay. A biased relay is simply
obtained by adding a constant value µ at the output of a
symmetric relay. µ should be chosen smaller than d, where
d is the output amplitude of the standard (symmetric) relay
(see Fig. 1). This change adds the even harmonics with the
frequencies 0, 2ω0, . . . at the relay output, where ω0 is the
fundamental frequency of the signal. Thus, further excitation
frequencies are supplied at the closed-loop system.

The second change is to superimpose a parasitic relay to
the standard test. The parasitic relay has been introduced in
[8] and is defined as:






ur2 (0)=αd

ur2 (k)=−αd sign(ur2 (k−1)), if ur1 (k−1)>0 and ur1 (k)<0;

ur2 (k)=ur2 (k−1), otherwise;

where ur1(k) and ur2(k) are the sampled output of the
signals ur1(t) and ur2(t) respectively (see Fig. 1) and α
is a constant coefficient which is recommended to choose
between 0.1 and 0.3 [8]. The period of the output of the
parasitic relay is twice as large as the period of the output
of the standard relay. Thus, the excitations at 0.5ω0, 1.5ω0,
2.5ω0, ... are now available, and the fundamental frequency
ω0 is closed to the crossover frequency ωc. A non-parametric
model of the process frequency response can now be obtained
from signals resulting from the proposed experiment as
follows.

Fig. 1. Modified Relay experiment for multiple points measurements

Let ur(t) be the input of the closed-loop system and yr(t)
be its output (see Fig. 1). Define:

F (s) =
Yr(s)

Ur(s)
=

K(s)G(s) − 1

K(s)G(s) + 1
(1)

The signals which are used for the identification are ur(t)
and yr(t), because ur(t) is not affected by noise and on
the other hand the transfer function F (s) does not damp the
higher harmonics, thanks to its relative degree 0. Consider
Ns sampled values ur(kTs) and yr(kTs), 1 < k < Ns with
the sampling period Ts, of the signals ur(t) and yr(t). The
periodogram of these sequences are defined respectively as
[6]:

Ur(ω) =
1√
Ns

Ns
∑

k=1

ur(kTs)e
−jωkTs (2)

Yr(ω) =
1√
Ns

Ns
∑

k=1

yr(kTs)e
−jωkTs (3)

If NsTs = pT , where p is any positive integer and T the
period of the signals ur(t) and yr(t), then the estimated
discrete transfer function:

F (ejω) =
Yr(ω)

Ur(ω)
(4)

satisfies:
• F (ejω) is defined only for a fixed number of frequencies

(those where Ur(ω) 6= 0)
• At these frequencies the estimates are unbiased and its

variance due to disturbances decays with 1
p

These results are demonstrated in [6] and can be used
to estimate the continuous transfer function frequency re-
sponse F (jω) at the frequencies ωi that are contained in
the excitation signals, provided that the sampling period is
properly chosen. The open-loop frequency response can then
be estimated at ωi (i = 1, . . .) as:

K(jωi)G(jωi) =
F (jωi) + 1

1 − F (jωi)
(5)

III. ROBUSTNESS MARGINS AND DERIVATIVES
ESTIMATIONS

A. Computation of the Estimates
Consider a non-parametric model of the open-loop transfer

function which consists of a finite set of points Li of its fre-
quency response in the ascending order of the corresponding



frequency:

Li = K(jωi)G(jωi), i = 1, . . . , N, ωi−1 < ωi (6)

Suppose also that the crossover frequency ωc and the ultimate
frequency ωu are located between ω1 and ωN . Such a non-
parametric model can be obtained by the method proposed in
Section II. Based on this model, the objective is to estimate
the crossover and the ultimate frequency, the gain and phase
margins, as well as the derivatives of the amplitude and phase
of the open-loop frequency response with respect to ω at ωc

and ωu:

sac
=

d log |K(jω)G(jω)|
d log ω

∣

∣

∣

∣

ωc

spc
= d∠(K(jω)G(jω))

d log ω

∣

∣

∣

ωc

sau
=

d log |K(jω)G(jω)|
d log ω

∣

∣

∣

∣

ωu

spu
= d∠(K(jω)G(jω))

d log ω

∣

∣

∣

ωu

These derivatives will then be used in the controller
tuning procedure to compute the gradient and Hessian of
a frequency criterion that will be minimized iteratively.

The crossover and ultimate frequencies, as well as the
phase and gain margins, are obtained by linear interpolations.
The linear interpolation function is defined as follows. Let
y = f(x) be a continuous function between x = x1 and
x = x2, x1 < x2. The interpolation function, which is
used to find the value yI of the function f at xI , where
x1 < xI < x2, is defined as :

yI = Interp(x1, x2, y1, y2, xI) = y1 + (xI − x1)
y2 − y1

x2 − x1

where y1 = f(x1) and y2 = f(x2).
Since the amplitude and phase of a system on the Bode

diagram are almost piecewise linear, the linear interpolations
are made on logarithmic scales for frequency and amplitude.

The results of the interpolation gives the approximated
crossover frequency :

log ωc = Interp(log |Ln|, log |Ln+1|, log ωn, log ωn+1, 0)

where Ln and Ln+1 are the two points of the non-parametric
model such that |Ln| > 1 > |Ln+1|, ωn and ωn+1 are the
corresponding frequencies, respectively. The phase margin is
approximated as:

Φm = π + Interp(log ωn, log ωn+1, ∠Ln, ∠Ln+1, log ωc)

In a similar way, the ultimate frequency is given by:

log ωu = Interp(∠Lm, ∠Lm+1, log ωm, log ωm+1,−π)

where Lm and Lm+1 are the two points of the non-parametric
model, such that ∠Lm > −π > ∠Lm+1, ωm and ωm+1

are the corresponding frequencies, respectively. The absolute
value of the ultimate point Ku, which is the inverse of the
gain margin is computed as:

Ku = 10Interp(log ωm,log ωm+1,log |Lm|,log |Lm+1|,log ωu)

 
 

Fig. 2. Estimation of the slopes of amplitude

Now it only remains to approximate the slope of amplitude
and phase of the open-loop frequency response with respect
to ω at ωc and ωu. For this purpose we define for every
frequency interval [ωi, ωi+1] an averaged slope of amplitude
and phase:

sai
=

log |Li+1| − log |Li|
log ωi+1 − log ωi

, spi
=

∠Li+1 − ∠Li

log ωi+1 − log ωi

Extensive simulations on different systems have shown that
the slopes sai

and spi
constitute good approximations for the

frequency which is at the middle of the interval [ωi, ωi+1]
on a logarithmic scale:

Ωi = 10
log ωi+log ωi+1

2 = 10
log(ωiωi+1)

2 (7)

Thus we define the slopes sai
and spi

as being the slopes
at the frequency Ωi (see Fig. 2). Again, the slopes at the
crossover and ultimate frequencies are obtained by linear
interpolation:

sac
=

d log |K(jω)G(jω)|
d log ω

∣

∣

∣

∣

ωc

≈ Interp(log Ωn, log Ωn+1, san
, san+1 , log ωc)

spc
=

d∠(K(jω)G(jω))

d log(ω)

∣

∣

∣

∣

ωc

≈ Interp(log Ωn, log Ωn+1, spn
, spn+1 , log ωc)

sau
=

d log |K(jω)G(jω)|
d log(ω)

∣

∣

∣

∣

ωu

≈ Interp(log Ωm, log Ωm+1, sam
, sam+1 , log ωu)

spu
=

d∠(K(jω)G(jω))

d log(ω)

∣

∣

∣

∣

ωu

≈ Interp(log Ωm, log Ωm+1, spm
, spm+1 , log ωu)

where n is the index for which Ωn < ωc < Ωn+1, and m
the index for which Ωm < ωu < Ωm+1.



B. Precision of the Estimates
Precision of the estimates of the phase margin, gain

margin, crossover frequency as well as the loop derivatives
of amplitude and phase depends on the system dynamics and
the accuracy of the non-parametric identification.

If the model is accurate, the estimates are practically
exact. Simulations have shown that the relative errors are
smaller than 1% for typical models of industrial plants.
The estimations of the robustness margins are much more
accurate than those obtained by standard relay methods using
the describing function analysis. Moreover, all the estimates
are obtained with only one experiment.

In a realistic environment there are however identifica-
tion errors, that come from the disturbances and noise. It
should be noted that methods based on Fourier transform
are unaffected by step-like load disturbance, which is a
common case in practice. If the experiment of Section II is
used for the points estimation in the presence of significant
measurement noise, the use of an hysteresis in the relay is
a simple way to reduce its influence. Moreover, the use of
several periods for the identification reduces the effect of
the noise on the estimates (see Section II). In a very noisy
environment, conventional non-parametric frequency-domain
methods should be preferred to the proposed one, because the
amplitude of each harmonic can be chosen independently.
Larger amplitudes for the excitation at the higher harmonics
can thus be chosen.

IV. ITERATIVE PROCEDURE FOR CONTROLLER TUNING

First of all, a performance criterion in the frequency
domain is defined as follows:

J(ρ) =
1

2

(

λ1(ωc − ωd)
2 + λ2(Φm − Φd)

2

+λ3(Ku − Kd)
2
)

(8)

where ρ is the vector of the controller parameters of dimen-
sion nρ, λ1, λ2 and λ3 are weighting factors, ωc and ωd are
respectively the measured and desired crossover frequencies,
Φm and Φd are the measured and desired phase margins
and Ku = |L(jωu)| and Kd are respectively the measured
and desired inverse of the gain margins. Such a performance
criterion in the frequency domain has been introduced in [5].
Then the controller parameters minimizing the criterion can
be obtained iteratively by the Gauss-Newton method:

ρi+1 = ρi − γiR
−1J ′(ρi) (9)

where i is the iteration number, γi is the step size, R is a
positive definite matrix of dimension nρ × nρ that can be
chosen equal to the Hessian H for a fast convergence and
J ′(ρ) is the gradient of the criterion with respect to ρ.

The gradient of the criterion is given by:

J ′(ρ) = λ1(ωc − ωd)
∂ωc

∂ρ
+ λ2(Φm − Φd)Φ

′
m

+ λ3(Ku − Kd)K
′
u (10)

where Φ′
m is the derivative of the phase margin with respect

to ρ and K ′
u is the derivative of the ultimate loop gain with

respect to ρ.
Φ′

m is computed through the chain rule as follows:

Φ′
m =

∂Φm

∂ρ
+

∂Φm

∂ω

∣

∣

∣

∣

ωc

∂ωc

∂ρ
(11)

Now replacing Φm in the above equation by ∠L(jωc) + π
gives:

Φ′
m =

∂∠L(jωc)

∂ρ
+

∂∠L(jω)

∂ω

∣

∣

∣

∣

ωc

∂ωc

∂ρ
(12)

The first term in the above equation is equal to
∂∠K(jωc)/∂ρ which is completely known at each iteration.
Furthermore one has:

∂∠L(jω)

∂ω

∣

∣

∣

∣

ωc

=
1

ωc ln(10)

∂∠L(jω)

∂ log ω

∣

∣

∣

∣

ωc

≈ spc

ωc ln(10)

To compute ∂ωc

∂ρ
, we use the fact that the loop gain at ωc is by

definition always equal to 1. Its derivative (or the derivative
of its logarithm) with respect to ρ is therefore zero:

∂ ln |L(jωc)|
∂ρ

+
∂ ln |L(jω)|

∂ω

∣

∣

∣

∣

ωc

∂ωc

∂ρ
= 0 (13)

The first term in the above equation is equal to
∂ ln |K(jωc)|/∂ρ which can be easily computed at each
iteration. The second term can be approximated as follows:

∂ ln |L(jω)|
∂ω

∣

∣

∣

∣

ωc

=
1

ωc

∂ ln |L(jω)|
∂ ln ω

∣

∣

∣

∣

ωc

=
1

ωc

∂ log |L(jω)|
∂ log ω

∣

∣

∣

∣

ωc

≈ sac

ωc

(14)

Thus ∂ωc/∂ρ can be approximated as follows:

∂ωc

∂ρ
≈ −∂ ln |K(jωc)|

∂ρ

ωc

sac

(15)

Now it only remains to determine K ′
u. This one can be

computed through the chain rule as:

K ′
u =

∂|L(jωu)|
∂ρ

+
∂|L(jω)|

∂ω

∣

∣

∣

∣

ωu

∂ωu

∂ρ
(16)

The first term is equal to

|G(jωu)|∂|K(jωu)|
∂ρ

= Ku

∂ ln |K(jωu)|
∂ρ

(17)

which is known at each iteration. The second term can be
approximated as follows:

∂|L(jω)|
∂ω

∣

∣

∣

∣

ωu

=
|L(jωu)|

ωu

∂ ln |L(jω)|
∂ ln ω

∣

∣

∣

∣

ωu

=
|L(jωu)|

ωu

∂ log |L(jω)|
∂ log ω

∣

∣

∣

∣

ωu

=
|L(jωu)|

ωu

sau
(18)



Then ∂ωu/∂ρ is computed using the fact that by definition
∠L(jωu) = −π and consequently its derivative with respect
to ρ is equal to zero, which gives:

∂∠L(jωu)

∂ρ
+

∂∠L(jω)

∂ω

∣

∣

∣

∣

ωu

∂ωu

∂ρ
= 0 (19)

The first term in the above equation is equal to
∂∠K(jωu)/∂ρ which again can be computed analytically.
The second term can be approximated as follows:

∂∠L(jω)

∂ω

∣

∣

∣

∣

ωu

≈ spu

ωu ln(10)
(20)

Thus ∂ωu/∂ρ can be approximated as follows:

∂ωu

∂ρ
≈ −ωu ln(10)

spu

∂∠K(jωu)

∂ρ
(21)

In the same way, the Hessian of the criterion can be
approximated as follows:

H = λ1
∂ωc

∂ρ
(
∂ωc

∂ρ
)T + λ2Φ

′
m(Φ′

m)T

+ λ3K
′
u(K ′

u)T + λ1(ωc − ωd)
∂2ωc

∂ρ2

+ λ2(Φm − Φd)Φ
′′
m + λ3(Ku − Kd)K

′′
u (22)

The last three terms can be neglected because they are small
especially in the neighborhood of the final solution. In ad-
dition, this simplification makes the Hessian always positive
which fixes the numerical problems normally encountered in
the iterative Newton algorithm. The use of the Hessian matrix
in the iterative formula of Eq. (9), instead of R, significantly
improves the convergence speed.

R = H ≈ λ1
∂ωc

∂ρ
(
∂ωc

∂ρ
)T + λ2Φ

′
m(Φ′

m)T

+ λ3K
′
u(K ′

u)T (23)

Remark: If the dimension nρ of the controller parameters
is equal to the number of specifications, the iterative solution
of Eq. (9) becomes easier to implement. This is the case
for example with a PID controller and the criterion of Eq.
(8) or with a PI controller and specifications on only phase
margin and crossover frequency. Consider without loss of
generality the case where nρ = 3 with the same number of
specifications (on phase margin, gain margin and crossover
frequency). The criterion can be written as:

J =
1

2
QT (ρ)ΛQ(ρ) (24)

where Q(ρ) is the vector of dimension nρ that contains the
differences between measured and desired properties and Λ
a matrix of dimension nρ ×nρ with the λi, i = 1, . . . , nρ on
its diagonal:

Q(ρ) =





ωc − ωd

Φm − Φd

Ku − Kd



 Λ =





λ1 0 0
0 λ2 0
0 0 λ3





The gradient of the criterion J ′ can then be computed as
follows:

J ′ =
1

2

(

∂QT (ρ)

∂ρ
ΛQ(ρ) +

(

QT (ρ)Λ
∂Q(ρ)

∂ρ

)T
)

=
∂QT (ρ)

∂ρ
ΛQ(ρ) (25)

and the approximated Hessian of Eq. (23) can be rewritten
as follows:

H ≈ ∂QT (ρ)

∂ρ
Λ

∂Q(ρ)

∂ρ
(26)

By replacing Eq. (25) and (26) in (9) the iterative solution
becomes:

ρi+1 = ρi − γiH
−1J ′(ρi)

= ρi − γi

(

∂QT (ρ)

∂ρ
Λ

∂Q(ρ)

∂ρ

)−1
∂QT (ρ)

∂ρ
ΛQ(ρ)

= ρi − γi

(

∂Q(ρ)

∂ρ

)−1

Q(ρ) (27)

Eq. (27) is known as being the iterative solution of the
Newton-Raphson’s method for solving the equations system
Q(ρ) = 0. Thus if the dimension nρ of the controller
parameters vector ρ is equal to the number of specifications,
the iterative algorithm of Eq. (9) is equal to that of Eq. (27)
where Q(ρ) is a vector and its elements are the differences
between measured and desired properties in the criterion.
In particular the values of the weighting factors λi do not
have any influence on the results. Moreover, the algorithm is
easier to implement and the derivatives of Q(ρ) with respect
to ρ can be computed without any additional information as
follows:

∂Q(ρ)

∂ρ
=







∂ωc

∂ρ

T

Φ′T
m

K ′T
u






(28)

V. SIMULATION EXAMPLES

Now two different plant models are considered to show
the effectiveness of the proposed method:

Gp1(s) =
e−0.3s

(s2 + 2s + 3)3(s + 3)

Gp2(s) =
1 − 1.7s

(s + 1)2
e−0.1s

For each plant model an initial PID controller C0 is
designed using the Kappa-Tau tuning method proposed in
[3]. The proposed iterative method is then used to adjust the
robustness margins and crossover frequency to the desired
values and thus to impove the performance and/or the ro-
bustness and stability of the closed-loop system. Since it is
typical to include a noise filter for the derivative term in the



TABLE I
SIMULATION RESULTS

C0 : [Kp, Ti, Td] Cf : [Kp, Ti, Td]
G(s)

P0 : [Φm, ωc, Ku] Pf : [Φm, ωc,Ku]

[4.5, 0.41, 0.033] [7.59, 0.407, 0.892]
Gp1

[72.3, 0.136, 0.233] [60, 0.23, 0.331]

[0.127, 0.647, 0.10] [0.315, 1.44, 0.277]
Gp2

[54.3, 0.20, 0.357] [59.8, 0.231, 0.329]

PID controller, the following controller structure is used in
this section:

C(s) = Kp(1 +
1

Tis
+

Tds

Td/20s + 1
) (29)

The results are given in the form of tables and graphs. For
each model G(s), the parameters of the initial controller
C0 = [Kp, Ti, Td] and the related performances P0 =
[Φm, ωc, Ku] are given in Table I. The specifications are set
to 60◦ for the phase margin, 3 for the gain margin ( 1

3 for Ku)
and 0.23 rad/s for the crossover frequency. The parameters of
the controller obtained by the iterative method are given by
Cf and the obtained performances with the new controller
by Pf . It can be seen that the proposed method performs
well: In only two iterations the controller that minimizes
effectively the frequency criterion is obtained for each model
and thus the closed-loop system has exactly the specified
robustness, stability and performances. For each iteration
only one identification procedure is needed. Moreover if
desired, the obtained performances can be measured at the
end of the controller tuning procedure with another non-
parametric identification. Step responses of each simulation
model with the initial and the proposed controller are shown
in Fig. 3. The proposed controllers improve considerably
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Fig. 3. Step responses (dashed line: Kappa-Tau, solid line: proposed)

the performance of the systems (the settling time is much
smaller) while the robustness and stability remain as good as
desired.

VI. CONCLUSION

An iterative method for tuning the controller parame-
ters with specifications on gain margin, phase margin and

crossover frequency was proposed. The approach does not
require a parametric model or any a priori knowledges about
the plant. The only requirement is that a stabilizing controller
exits prior to the tuning procedure. A non-parametric model
of the open-loop system is then obtained at each iteration
with a relay feedback test. The gain margin, phase margin,
and crossover frequency as well as the gradient and Hessian
of the frequency criterion are estimated directly with good
accuracy using the non-parametric model. Since no assump-
tion is made on the plant, the proposed method is neither
restricted to a particular class of processes nor to a given
controller structure. Simulation results show that the tuning
method converges effectively to the minimum of the criterion
in few iterations and can thus be used for auto-tuning of
industrial plants.
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