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Abstract: A controller tuning method based on the correlation approach is consid-
ered. A new, generalized, decorrelation criterion is proposed that allows tuning the
controller parameters such that the reference signal be as little correlated as possible
with both the input and output closed-loop errors. A frequency-domain analysis of the
proposed criterion shows that the discrepancy between the true closed-loop system
and the designed one is minimized in terms of the output and input sensitivity
functions. Furthermore, it is shown that the noise has asymptotically no effect on the
controller parameters. The theoretical results are illustrated via a simulation example.
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1. INTRODUCTION

Reliable mathematical descriptions of industrial
plants are often difficult or impossible to ob-
tain mainly due to the high complexity of the
plants and/or the excessive cost of modelling. In
these situations, the design of controllers using
process information in the form of the experi-
mental data collected under closed-loop operation
seems to be a promising alternative to model-
based design. Direct adaptive control (Åström
and Wittenmark, 1989), iterative feedback tun-
ing (Hjalmarsson, 2002), controller unfalsification
(Safonov and Tsao, 1997) and control design
based on simultaneous perturbation stochastic ap-
proximation (Spall and Cristion, 1998) are but a
few examples of such data-driven methods.

In this line of research, a so-called iterative
correlation-based tuning method has recently
been proposed to address the model-following
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problem (Karimi et al., 2002a; Karimi et al.,
2002c). The idea behind this approach is to tune
the controller parameters to the extent that some
external excitation signal be uncorrelated with the
closed-loop output error between the true plant
and the designed one. This way, the closed-loop
output error is not affected by the model mis-
match, and the output of the controlled plant
tends towards the designed closed-loop output
independently of the disturbance characteristics.

The correlation-based tuning approach has been
applied to a magnetic suspension system in
(Karimi et al., 2002b), where the controller param-
eters are calculated as the solution of a correlation
equation involving instrumental variables. Con-
vergence and consistency of the controller param-
eters in the presence of disturbances and modeling
errors has been analyzed in (Karimi et al., 2002a).
In (Karimi et al., 2002c), the design objective
is reformulated as the minimization of the 2-
norm of the cross-correlation function between
the closed-loop output error and the reference
signal. Analysis of the proposed criterion in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147895436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


frequency-domain shows that the algorithm, for
a special case of instrumental variables, tries to
minimize the integral of the difference between the
achieved and designed output sensitivity functions
weighted by the square of the spectrum of the
reference signal. An adaptation of this approach
to the regulation problem and its application to
a benchmark problem posed for a special issue of
European Journal of Control on the design and
optimization of restricted-complexity controllers
is treated in (Mǐsković et al., 2002).

The tuning objective proposed in (Karimi et

al., 2002c) allows the achieved closed-loop system
to approach the designed one in terms of the out-
put sensitivity function. However, one could also
make demand on the input sensitivity function.
In order to handle mixed sensitivity specifications,
this paper extends the criterion for controller tun-
ing by adding the 2-norm of the cross-correlation
function between the closed-loop input error and
the reference signal. This way, the desired closed-
loop output can be attained while taking into
account some penalty on the control action, i.e. it
is possible to make a trade-off between the spec-
ifications given in terms of the output sensitivity
and those given in terms of the input sensitivity
function. Analysis of the proposed generalized cri-
terion in the frequency domain reveals the benefit
of incorporating the new term.

The paper is organized as follows. Preliminary
material and notations are given in Section 2.
Section 3 briefly presents the correlation-based
tuning approach. A generalization of the tuning
criterion is developed in Section 4. In Section 5,
controller tuning using the proposed criterion is
illustrated via a numerical example. Finally, some
concluding remarks are given in the last section.

2. PRELIMINARIES

Let the output of some unknown true plant be
described by the discrete-time model:

y(t) = G(q−1)u(t) + v(t) (1)

where q−1 is the backward-shift operator, G(q−1)
is a linear time-invariant SISO discrete-time trans-
fer operator, u(t) the input signal to the plant and
v(t) a disturbance signal. It is assumed that v(t)
is a zero-mean weakly stationary random process.

Consider the closed-loop system depicted in Fig.1,
where K(q−1, ρ) is a linear time-invariant transfer
function parametrized by the vector ρ ∈ Rnρ ,
and r(t) is an external excitation signal. It is
assumed that measurements of r(t) and y(t) are
available. The excitation signal r(t) is assumed to
be uncorrelated with the disturbance signal v(t).
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Fig. 2. Closed-loop output error resulting from
a comparison of the achieved and designed
closed-loop systems

As far as the notations are concerned, the signals
collected under closed-loop operation using the
controller K(q−1, ρ) will carry the argument ρ.
Furthermore, to ease the notation, the backward-
shift operator q−1 will be omitted in the sequel.

Let us define the following sensitivity functions:

• Output sensitivity function:

S(K, G) = (1 + KG)−1 (2)

• Input sensitivity function:

U(K, G) = K(1 + KG)−1 (3)

• Complementary sensitivity function:

T (K, G) = KG(1 + KG)−1 (4)

3. CORRELATION-BASED TUNING

A block diagram of the model-following problem
is represented in Fig. 2. The upper part shows the
achieved closed-loop system with the true plant,
while the lower part is a realization of the designed
closed-loop system that includes the plant model
(G0) and the initial controller (K0). It is assumed
that the initial controller is capable of meeting the
specifications of the designed closed-loop system.

The closed-loop output error is defined as:

εoe(ρ, t) = y(ρ, t) − yd(t) (5)



where y(ρ, t) is the output of the achieved closed-
loop system, and yd(t) the output of the designed
closed-loop system.

Let the initial controller K0 be applied to the
true plant excited by the reference signal r(t).
Then, the closed-loop output error contains a
contribution due to the difference between G and
G0 (modeling errors) and another contribution
stemming from the disturbance v(t). The effect
of modeling errors is correlated with the reference
signal, whereas that of disturbance is not. Thus,
a reasonable way to tune the controller is to make
the closed-loop output error εoe(ρ, t) uncorrelated
with the excitation signal r(t). This way, the im-
proved controller compensates the effect of model-
ing errors to the extent that the closed-loop out-
put error contains only the filtered disturbance.
However, since in practice perfect decorrelation
between these two signals cannot be achieved, it is
natural to define the tuning objective as the min-
imization of some norm of the cross-correlation
function between εoe(ρ, t) and r(t).

Let define the correlation function foe(ρ):

foe(ρ) = E{ζ(t)εoe(ρ, t)} (6)

where E{·} is the mathematical expectation and
ζ(t) a vector of instrumental variables that are
correlated with the reference signal r(t) and inde-
pendent of the disturbance v(t). Then, the tuning
objective can be defined as the minimization of
the following criterion:

Joe(ρ) = ||foe(ρ)||22 = fT
oe(ρ)foe(ρ) (7)

where || · ||2 represents the 2-norm. The control
parameter vector ρ∗ is given by:

ρ∗ = argmin
ρ

Joe(ρ) (8)

Since this problem cannot be solved analytically,
a numerical method is considered. The vector ρ∗

is solution of the following gradient equation:

J ′

oe(ρ) = fT
oe(ρ)

∂foe(ρ)

∂ρ
= 0 (9)

This problem can be solved by the Robbins-Monro
procedure using the following iterative formula
(Robbins and Monro, 1951):

ρi+1 = ρi − γi [Q(ρi)]
−1 [J ′

oe(ρi)]
T (10)

where γi is a scalar step size and Q(ρi) a positive
definite matrix. Under the assumption of bound-
edness of the signals in the loop, and with a step
size tending to zero appropriately fast, this scheme
converges to a local minimum of the criterion as
the number of iterations tends to infinity (Karimi
et al., 2002c).

The gradient of the criterion involves the expec-
tation of signals that are unknown and should
be replaced by their estimates from closed-loop
data. Let the correlation function be estimated
by f̂oe(ρ):

f̂oe(ρ) =
1

N

N
∑

t=1

ζ(t)εoe(ρ, t) (11)

where N is the number of data points. Then, the
derivative of the criterion is determined as follows:

J ′

oe(ρi) = f̂T
oe(ρi)

1

N

N
∑

t=1

ζ(t)
∂εoe(ρ, t)

∂ρ

∣

∣

∣

∣

ρi

(12)

An accurate value of this gradient cannot be
computed because the derivative of εoe(ρ, t) with
respect to ρ is unknown. However, an unbiased
model-free estimation can be obtained using two
extra closed-loop experiments as is done in the
IFT approach (Hjalmarsson, 2002). Note that the
gradient could also be obtained from a plant
model that is identified, for example, using closed-
loop data (Karimi et al., 2002b).

In order to improve the convergence speed, Q(ρi)
can be chosen as an approximation of the Hessian
of the criterion (Gauss-Newton direction):

Q(ρi) =
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∣
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+ λI (13)

where the parameter λ should be chosen so as to
ensure positive definiteness of the matrix Q(ρi).

4. GENERALIZING THE CRITERION

In (Karimi et al., 2002c), the frequency character-
istics of the achieved closed-loop system have been
compared with those of the designed closed-loop
system for the following choice of instrumental
variables:

ζT (t) = [r(t + nz), . . . , r(t), . . . , r(t − nz)] (14)

where nz is a sufficiently large integer number
w.r.t. the order of the closed-loop system. On
the other hand, the value of nz should be much
smaller than the number of data N in order
to have an accurate estimation of the cross-
correlation function. Analysis of the criterion of
Eq. 7 has shown that the algorithm minimizes the
integral of the difference between the achieved and
the designed complementarity sensitivity func-
tions weighted by the square of the reference sig-
nal spectrum Φr(ω):

lim
nz→∞

Joe(ρ) =
1

2π

π
∫

−π

|Hoe(e
−jω , ρ)|2Φ2

r(ω) (15)



where Hoe(ρ) = T (K(ρ), G) − T0 with T0 =
T (K0, G0) being the designed complementary sen-
sitivity function. If r(t) is white noise with vari-
ance 1, and nz tends to infinity, one has:

ρ∗ = arg min
ρ

π
∫

−π

|T (e−jω, ρ) − T0(e
−jω)|2dω

= arg min
ρ

π
∫

−π

|S(e−jω, ρ) − S0(e
−jω)|2dω (16)

where S0 = S(K0, G0) is the designed output sen-
sitivity function. These relations show that both
the achieved complementary sensitivity function
T (e−jω, ρ) and the achieved output sensitivity
function S(e−jω , ρ) tend to their respective de-
signed functions. Thus, the tuned controller en-
sures the designed performance for the true plant
with respect to tracking and output disturbance
rejection.

However, when minimizing the criterion of Eq. 7,
the achieved input sensitivity function U(e−jω , ρ)
does not necessarily approach U0. At some fre-
quencies, U(e−jω , ρ) obtained by controller tuning
may grow large, thus affecting robust stability. In
addition, the controlled input u(t) may exert a
substantial effort on the actuators. To overcome
this difficulty, the criterion can be generalized so
as to incorporate the new term containing the 2-
norm of the cross-correlation function between the
closed-loop input error and the reference signal.
This way, not only the output but also the input of
the achieved closed-loop system will follow respec-
tively the output and the input of the designed
closed-loop system independently of the distur-
bance dynamics. Thus, let us modify the criterion
of Eq. 7 as follows:

J(ρ) = koe||foe(ρ)||22 + kie||fie(ρ)||22 (17)

where koe and kie are positive scalar weighting
factors, and fie(ρ) is the correlation function:

fie(ρ) = E{ζ(t)εie(ρ, t)} (18)

The closed-loop input error εie(ρ, t) is given by:

εie(ρ, t) = u(ρ, t) − ud(t) (19)

where ud(t) is the control input of the designed
closed-loop system (see Fig. 3).

From Figs. 2 and 3, εoe(ρ, t) and εie(ρ, t) can be
written as:

εoe(ρ, t) = (T (ρ) − T0) r(t) + S(ρ)v(t)

= Hoe(ρ)r(t) + S(ρ)v(t) (20)

and

εie(ρ, t) = Hie(ρ)r(t) − U(ρ)v(t) (21)
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Fig. 3. Closed-loop input error resulting from
a comparison of the achieved and designed
closed-loop systems

where Hie(ρ) = U(ρ) − U0 with U0 = U(K0, G0)
being the designed input sensitivity function.

Considering the vector of instrumental variables
given in Eq. 14, and letting nz tend to infinity,
gives asymptotically (after straightforward calcu-
lations similar to those in (Karimi et al., 2002c)):

J(ρ) =
1

2π

π
∫

−π

{

koe|Hoe(e
−jω , ρ)|2 +

kie|Hie(e
−jω , ρ)|2

}

Φ2
r(ω)dω (22)

If r(t) is white noise with variance 1, one has:

ρ∗ = arg min
ρ

π
∫

−π

{

koe|T (e−jω, ρ) − T0(e
−jω)|2

+ kie|U(e−jω , ρ) − U0(e
−jω)|2

}

dω

= arg min
ρ

π
∫

−π

{

koe|S(e−jω, ρ) − S0(e
−jω)|2

+ kie|U(e−jω , ρ) − U0(e
−jω)|2

}

dω (23)

This relation shows that there is a trade-off be-
tween the minimization of ||S(ρ)−S0||2 and that
of ||U(ρ)−U0||2. By minimizing this criterion, the
mixed sensitivity specifications are satisfied, and
the achieved closed-loop system tries to preserve
the robustness properties of the designed one. Fur-
thermore, it is easy to see that the criterion of Eq.
17 is not influenced by the disturbance signal v(t).
With regard to this criterion, two extreme cases
can be considered: (i) When (koe, kie) = (1, 0), Eq.
23 reduces to Eq. 16 and S(ρ) is forced towards
S0; (ii) when (koe, kie) = (0, 1), U(ρ) is pushed
towards its designed function U0.

5. SIMULATION EXAMPLE

In this section, the properties of the proposed
tuning method are illustrated via an example.
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Fig. 4. Output sensitivity functions S0(e
jω)

(solid), Sinit(e
jω) (dash) and S(ejω) (dash-

dot) for (koe, kie) = (1, 0)

Consider the following 4th-order true plant:

G =
0.385q−2 + 0.525q−3

1 − 1.353q−1 + 1.55q−2 − 1.282q−3 + 0.915q−4

The system has two very lightly damped reso-
nant modes and one unstable zero. The following
second-order model G0 has been identified:

G0 =
0.6043q−2 − 0.1562q−3 − 0.0306q−4

1 − 1.5822q−1 + 0.9629q−2

Let the initial 3rd-order controller K0 be:

K0 =
−0.1530q−1 − 0.038q−2

1 − 0.8093q−1 + 0.2141q−2 − 0.012q−3

When K0 is applied to the true plant G, there is
significant deterioration of the performance due
to model mismatch (see dashed line in Figs. 4
and 5). To improve the behaviour of the closed-
loop system, a 4th-order controller K is to be
tuned on the true plant for three different choices
of the weighting factors koe and kie. The tuning
procedure is carried out in 8 iterations, with
each iteration being performed using a different
realization of the disturbance signal v(t) with a
noise-to-signal ratio of 7% in terms of variance.
The vector of instrumental variables is chosen as
in Eq. 14 with nz = 72, and the reference signal
r(t) is a PRBS generated by a 7-bit shift register
with data length N = 2048. In all iterations, the
initial step size γi = 0.5 is used. If the algorithm
provides a controller that destabilizes the closed-
loop system, the step-size is then divided by 2.

The first choice of weighting factors (koe, kie) =
(1, 0) corresponds to the minimization of ||Hoe||2.
Fig. 4 shows the output sensitivity functions S0,
Sinit = S(K0, G) and S for the designed, initial
and final closed-loop systems, respectively. It can
be seen that S0 and S are almost superposed, i.e.
the tuning algorithm has succeeded in minimiz-
ing Hoe to a large extent. However, comparing
the corresponding input sensitivity functions U0,
Uinit = K0Sinit and U shown in Fig. 5, it is easy
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Fig. 5. Input sensitivity functions U0(e
jω) (solid),

Uinit(e
jω) (dash) and U(ejω) (dash-dot) for

(koe, kie) = (1, 0)
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Fig. 6. Output sensitivity functions S0(e
jω)

(solid), Sinit(e
jω) (dash) and S(ejω) (dash-

dot) for (koe, kie) = (0, 1)
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Fig. 7. Input sensitivity functions U0(e
jω) (solid),

Uinit(e
jω) (dash) and U(ejω) (dash-dot) for

(koe, kie) = (0, 1)

to see that U gets large at high frequencies which
can significantly deteriorate the robustness of the
closed-loop system.
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Fig. 8. Output sensitivity functions S0(e
jω)

(solid), Sinit(e
jω) (dash) and S(ejω) (dash-

dot) for (koe, kie) = (0.5, 0.5)
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Fig. 9. Input sensitivity functions U0(e
jω) (solid),

Uinit(e
jω) (dash) and U(ejω) (dash-dot) for

(koe, kie) = (0.5, 0.5)

For (koe, kie) = (0, 1), ||Hie||2 is minimized. Figs.
6 and 7 depict the corresponding output sensitiv-
ities S0, Sinit and S, and input sensitivities U0,
Uinit and U . A comparison of the curves shows
that, though the resulting controller K has not
succeeded in reducing the peak of the output
sensitivity function S, the final input sensitivity
function U is very similar to U0.

Finally, for the case (koe, kie) = (0.5, 0.5), there
is a trade-off in minimizing ||Hoe||2 and ||Hie||2.
Figs. 8 and 9 shows that the resulting controller
K has reduced the peak of the output sensitivity
function S and, at the same time, the discrepancy
between U0 and U remains small.

Table 1 gives the performance of the tuning pro-
cedure in function of the weighting factors koe

and kie. These numerical results confirm the qual-
itative shapes seen in Figs. 4-9. The minima of
||Hoe||2 and ||Hie||2 are achieved for (koe, kie) =
(1, 0) and (koe, kie) = (0, 1), respectively. How-
ever, when minimizing only ||Hoe||2 or ||Hie||2, the
deviation of the other sensitivity does increase. In

Table 1. Results of tuning

Iteration ||Hoe||2 ||Hie||2
1st 0.3002 0.0388

koe = 1, kie = 0 8th 0.0284 0.4209

koe = 0, kie = 1 8th 0.1493 0.0091

koe = kie = 0.5 8th 0.1018 0.0284

contrast, the controller obtained with (koe, kie) =
(0.5, 0.5) reduces both ||Hoe||2 and ||Hie||2.

6. CONCLUSIONS

An extension of the controller-tuning criterion
based on the correlation approach has been
proposed. The new criterion is defined as the
weighted sum of the 2-norms of the cross-
correlation functions between a reference signal
and the output and input closed-loop errors. If
the assumption of independence between the ref-
erence signal and the disturbance holds, the cri-
terion remains asymptotically unaffected by the
disturbance characteristics. A frequency-domain
analysis of the proposed criterion has shown that,
depending on the values of the weighting factors
koe and kie, there is a trade-off in meeting the de-
signed output and input sensitivities. Simulation
results illustrate the features and the applicability
of the new tuning approach.
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