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Abstract

Bifurcation of the region of attraction for planar sys-
tems with one stable and one unstable pole under sat-
urated linear state feedback is considered. The bound-
ary of the region of attraction can either possess an
unbounded hyperbolic shape or be a bounded limit cy-
cle. The main contribution of this paper is to provide
an analytical condition under which bifurcation occurs.
This condition is based on characteristics and position
of the stable and unstable manifolds. Furthermore, the
exact shape of the region of attraction is provided.

1 Introduction

Linear systems with bounded inputs have been widely
studied [6, 4, 2]. This type of study is important since,
in most practical situations, the range of inputs is in
fact limited.

Two important concepts pertaining to these systems
have to be distinguished. First is the null controllable
region, i.e. the region in state space where there ex-
ists an open-loop input that can steer the system to
the origin [1, 2, 3, 5]. The second is the region of at-
traction with a given controller, i.e. the region in state
space from which the closed-loop system asymptoti-
cally reaches the origin [1, 2]. In this paper, only the
issues pertaining to the latter, i.e. the region of attrac-
tion, will be studied. Also, designing controllers for
which the region of attraction is arbitrarily close to the
null controllable region [4] will not be studied here.

Single input linear planar systems (systems with 2
states) with saturated linear feedback will be consid-
ered. It will be assumed that the feedback makes the
origin globally asymptotically stable in the absence of
saturation.

The shape of the region of attraction depends on the
location of the open-loop poles. With respect to the
region of attraction, the poles on the imaginary axis
have the same characteristics as the stables ones. If
both poles are stable, then the system is globally sta-
bilisable [1, 6]. If both poles are unstable, then the

boundary of the region of attraction is a closed trajec-
tory [1]. A method for finding this closed trajectory
(limit cycle) is provided in [2, 3]. For systems with one
stable and one unstable pole, it has been shown in [1]
that topological bifurcation of the region of attraction
occurs, i.e. the region of attraction changes between
being a hyperbolic type region and a region bounded
by a limit cycle. The characteristics of the region of
attraction are summarised in Table 1.

Pole configuration Region of attraction
Both stable R2

One stable, one unstable bifurcation
Both unstable closed by a limit cycle

Table 1: Characteristics of the region of attraction

Since this paper deals with bifurcation, only the case
with one stable and one unstable pole will be consid-
ered. Although this problem was studied in [1], the
bifurcation result presented therein is only existential.
Also, no condition for bifurcation is provided. The
main contribution of this paper is to derive an ana-
lytical condition under which bifurcation occurs. Fur-
thermore, the exact shape of the region of attraction is
calculated.

The paper is organised as follows. In Section 2, def-
initions and terms used in this paper are introduced.
Section 3 provides the condition under which the bifur-
cation of the region of attraction appears. In Section
4, the region of attraction is calculated. Section 5 pro-
vides numerical examples, and conclusions are drawn
in Section 6.

2 Preliminaries

2.1 System
Consider a single input second-order linear system with
a stable and an unstable pole. Upon state transforma-
tion, the system can be written as:

ẋ = Ax + bu =

[

λ1 0
0 λ2

]

x +

[

λ1

λ2

]

u (1)

where, x ∈ R2 is the state vector, u the input, A and b
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open-loop system. Assume that λ1 > 0 and λ2 < 0.
The symmetric saturation function with unity satura-
tion level will be used:

sat(s) =











−1 if s < −1

s if − 1 ≤ s ≤ 1

1 if s > 1

(2)

With saturated linear state feedback, the closed-loop
system is

ẋ = Ax + b sat(fx), (3)

where f is the feedback gain vector. The matrix (A +
bf) is assumed to be Hurwitz, i.e. the system is stable
without saturation. Let λ̃1 and λ̃2 be the eigenvalues
of (A + bf). The two conditions that correspond to
(A+bf) being Hurwitz are: (i) λ1(1+f1)+λ2(1+f2) <

0, and (ii) λ1λ2(1 + f1 + f2) > 0. Since λ1λ2 < 0, the
second condition gives (1 + f1 + f2) < 0. Also, it can
be verified that f1 < 0, though f2 can take either sign.

2.2 Equilibrium points and region of attraction
System (3) with one stable and one unstable open-loop
pole has three equilibrium points, as opposed to all
other open-loop pole configurations (both poles stable
or unstable) where the origin is the unique equilibrium
point [1].

Theorem 1 [1] The closed-loop system (3) has three

equilibrium points: xe+ = A−1b =
[

1 1
]T

, xe− =

−A−1b =
[

−1 −1
]T

, and xe0 = 0. Of these, xe0 is
stable, while the other two are saddle points.

Definition 1 Let Φ(t, x0) denote the state of (3) at
time t, starting with the initial condition x0 at t = 0.
The region of attraction of the stable equilibrium point
is defined by:

A =
{

x : lim
t→∞

Φ(t, x) = 0
}

. (4)

The boundary of A is denoted by ∂A.

2.3 Manifolds
Define the following hyperplanes and manifolds (refer
to Figures 1-4 for illustration):

• ∂L0 = {x : fx = 0}

• ∂L+ = {x : fx = 1}, ∂L− = {x : fx = −1}

• ∂C+ = {x : x1 = 1}, ∂C− = {x : x1 = −1}

• ∂R+ = {x : x2 = 1}, ∂R− = {x : x2 = −1}

• ∂S+ = {x : limt→∞ Φ(t, x) = xe+}

• ∂S− = {x : limt→∞ Φ(t, x) = xe−}

• ∂U+ = {x : limt→∞ Φ(−t, x) = xe+}

• ∂U− = {x : limt→∞ Φ(−t, x) = xe−}

The hyperplanes ∂L+ and ∂L− are the boundaries of
the region L where the control is linear and ∂L0 is
the hyperplane of zero control. The hyperplanes ∂C+

and ∂C− are the boundaries of null controllable region
C, while similarly R is the null reachable region, i.e.
the region in state space to which the system can be
reached from the origin using a saturated input. ∂S
and ∂U denote the stable and unstable manifolds, re-
spectively. For the unstable manifolds, evolution in
reverse time is considered. All manifolds have two
branches, on either side of the saddle points. From
the saddle points, the branches of the manifolds ∂S
and ∂U extend along ∂R and ∂C, respectively, until
they hit the linear region. The two points where the
manifolds ∂S and ∂U intersect the boundaries of the
linear region are given by:

c = ∂C− ∩ ∂L+ =
[

−1 (1+f1)
f2

]T

(5)

r = ∂R+ ∩ ∂L− =
[

− (1+f2)
f1

1
]T

(6)

2.4 Existence of bifurcation
For a system with one stable and one unstable open-
loop pole, an existential result on bifurcation of the
region of attraction was given in [1]:

1. If ∂U+ ∩ A 6= ∅ and ∂U− ∩ A 6= ∅, then ∂A =
∂S+ ∪ ∂S−.

2. If ∂U+ ∩ A 6= ∅ and xe− 6= ∂A then ∂A = ∂S+

3. If ∂U− ∩ A 6= ∅ and xe+ 6= ∂A then ∂A = ∂S−.

4. If ∂U+ ∩ A = ∅ and ∂U− ∩ A = ∅, then ∂A
is either a closed orbit or a graph of homo-
clinic/heteroclinic connections.

This result calls for some remarks. Firstly, the result
depends on the shape of A and ∂A that are unknown.
In this paper, an analytical condition for bifurcation
will be provided that does not assume a priori the
shape of A. Secondly, it will be shown that Statements
2 and 3 cannot occur. Also, in Statement 4, homoclinic
connections, i.e. manifolds starting from and ending
at the same saddle point, do not exist for the system
considered. In addition, it is possible to distinguish
between the cases when heteroclinic connections occur
(manifolds starting from one saddle point and ending
at another) and when the boundary is a closed orbit.

3 Condition for bifurcation

For the class of systems considered, the boundary of
the region of attraction can be either i) unbounded hy-
perbolically shaped or ii) a bounded limit cycle, de-
pending on the parameters of the system and the con-
troller. The limiting case between the two types of the
region of attraction corresponds to a set bounded by



two heteroclinic connections. In this section, a condi-
tion depending on the system and controller parame-
ters will be defined, with which it will be possible to
distinguish between the two categories and detect the
limiting case. However, the link between this condition
and the bifurcation is deferred to the next section.

3.1 Intersection of system trajectory with ∂L0

The condition for bifurcation is based on how the tra-
jectories from points c and r intersect ∂L0. The first
intersection of the trajectory from an arbitrary initial
condition is considered. Let T+ denote the first posi-
tive time for which the trajectory intersects ∂L0, and
T− the first negative time. The analytical expressions
for T+ and T− depend on the nature of the closed-loop
poles λ̃1 and λ̃2. Three cases have to be distinguished:
(i) distinct and real poles, (ii) double poles, and (iii)
complex conjugate poles.

3.1.1 Distinct real poles:

Proposition 1 Let the eigenvalues of (A + bf) be dis-

tinct and real. Given xo =
[

x1 x2

]T
in L \ 0, the

intersection times T+ and T− are given by:

T+ =

{

γ if γ > 0 and α > 0

∞ if γ ≤ 0 or α ≤ 0
(7)

T− =

{

γ if γ < 0 and α > 0

undefined if γ ≥ 0 or α ≤ 0
(8)

where

γ =
ln(α)

λ̃2 − λ̃1

, α =
f1x1(λ̃1 − λ2) + f2x2(λ̃1 − λ1)

f1x1(λ̃2 − λ2) + f2x2(λ̃2 − λ1)
(9)

Proof: The following transformation is used to di-
agonalise the system (3) without saturation:

Ṽ =
1

λ̃2 − λ̃1

[

f1(λ2 − λ̃1) f2(λ1 − λ̃1)

f1(λ̃2 − λ2) f2(λ̃2 − λ1)

]

Then, the evolution of the states is given by

x(t) = e(A+bf)txo = Ṽ −1

[

eλ̃1t 0

0 eλ̃2t

]

Ṽ xo (10)

The intersection time T satisfying fe(A+bf)T xo = 0 is
sought. Since λ̃1 6= λ̃2, the previous expression reads:

eλ̃1T (f1x1(λ2 − λ̃1) + f2x2(λ1 − λ̃1))

+eλ̃2T (f1x1(λ̃2 − λ2) + f2x2(λ̃2 − λ1)) = 0 (11)

which always admits the solution T = ∞. The other

solution is T = γ = ln(α)

λ̃2−λ̃1

, where

α = e(λ̃2−λ̃1)T =
f1x1(λ̃1 − λ2) + f2x2(λ̃1 − λ1)

f1x1(λ̃2 − λ2) + f2x2(λ̃2 − λ1)
(12)

α is well defined as long as both the numerator and the
denominator do not vanish simultaneously. This will
not happen due the invertibility of Ṽ . However, α can
be negative, in which case the solution of (12) is imag-
inary, and so T = ∞ is the only solution. Depending
upon the sign of γ, the solution is either in forward
time or in reverse time.

Note that, when the closed-loop poles are real, in ad-
dition to reaching the origin asymptotically, there is
at most one intersection of ∂L0. This intersection can
either be in forward (positive) time or in reverse (neg-
ative) time. The positive intersection time is always
defined since, in the worst case, the system reaches the
origin asymptotically. However, there might be no in-
tersection in negative time and T− may be undefined.

Corollary 1 T− is defined from the point c.

Proof: Assume, without loss of generality, that (λ̃1−
λ̃2) > 0. Then from (8) and (9), T− = γ < 0 exists
only if α > 1. Substituting xo = c,

α = 1 +
(λ̃1 − λ̃2)

f1(λ2 − λ1) + (λ̃2 − λ1)
. (13)

Since (λ̃1 − λ̃2) > 0, α > 1 when the denominator of
(13) is positive. Using the fact that λ̃1 + λ̃2 = (1 +
f1)λ1 + (1 + f2)λ2, the denominator becomes:

f1(λ2 − λ1) + (λ̃2 − λ1) = λ2(1 + f1 + f2)− λ̃1 (14)

From λ2, λ̃1 < 0 and the second Hurwitz condition (1+
f1 + f2) < 0, the denominator is positive, so α > 1,
γ < 0, and thus T− exists.

3.1.2 Double poles: When λ̃1 = λ̃2 = λ̃, α =
1 and γ is indeterminate. However, the limiting value
can be easily found:

T+ =

{

γ if γ > 0

∞ if γ ≤ 0
(15)

T− =

{

γ if γ < 0

undefined if γ ≥ 0
(16)

where

γ =
f1x1 + f2x2

f1x1(λ2 − λ̃) + f2x2(λ1 − λ̃)
(17)



3.1.3 Complex conjugate poles: The ex-
pression (9) can also be used when the poles are com-
plex. Note that the numerator and denominator of α

are complex conjugates. So, |α| = 1, the real part of
ln(α) is zero and so is Re(λ̃2−λ̃1). However, the impor-
tant difference is that ln(α) admits multiple solutions,
and there are infinitely many intersections both in pos-
itive and negative times. Among the solutions of ln(α),
the first positive solution and the first negative solution
are used for the computation of T+ and T−. So,

T+ = first positive solution of

(

ln(α)

λ̃2 − λ̃1

)

(18)

T− = first negative solution of

(

ln(α)

λ̃2 − λ̃1

)

(19)

with α given by (9).

3.2 Definition of the Condition on C

Definition 2 Let r∗ = Φ(T+, r) = e(A+bf)T+ r be
the first intersection of the trajectory starting from r

and ∂L0 and, similarly, c∗ = Φ(T−, c) = e(A+bf)T
− c.

Then, C is defined as

C = ‖c∗‖− ‖r∗‖ = ‖e(A+bf)T
− c‖− ‖e(A+bf)T+ r‖. (20)

It will be shown in the next section that the shape of the
region of attraction depends on whether C > 0, C < 0,
or C = 0. The condition on C can be interpreted as
follows: In backward time, R forms the region to which
a trajectory cannot return, once it has left. The sign of
C indicates whether or not the trajectory from c leaves
R in backward time. If C < 0, the trajectory Φ(t, c)
does not leave R while when C > 0, it leaves R. A
similar argument can be made with C and r.
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Figure 1: Illustration for the condition on C (C > 0).

Figure 1 illustrates (20). If c∗ is further from the origin
than r∗ along the line ∂L0 then C > 0 and vice versa.

When c∗ = r∗, C = 0, and it will be shown in the next
section that the bifurcation occurs exactly there.

3.3 Simple checks for the Condition on C

Though C has to be computed using (20), there are
easier sufficient conditions to check whether C > 0 or
C < 0. From the interpretation of the condition on C,
C > 0 if c 6∈ R. Similarly, C < 0 if r 6∈ C. This leads
to the following proposition.

Proposition 2 (1 − f1 + f2) < 0 ⇒ C < 0 and (1 +
f1 − f2) < 0 ⇒ C > 0.

Proof: If (1−f1+f2) < 0, (1+f2) < f1. Since f1 < 0,
1+f2

f1
> 1. So, the first component of r is smaller than

−1, and r 6∈ C leads to (1− f1 + f2) < 0 ⇒ C < 0.

If (1 + f1 − f2) < 0, then (1 + f1) < f2. Since f2 is not
sign definite, two cases need to be considered. If f2 < 0,
1+f1

f2
> 1. So, the second component of c is larger

than 1, and c 6∈ R. If f2 > 0, the Hurwitz condition
(1 + f1 + f2) < 0 itself indicates that 1+f1

f2
< −1. So,

in either case, c 6∈ R, and (1 + f1 − f2) < 0 ⇒ C > 0.

Although the conditions are easy to verify, there exists
a gap between the two conditions. In this gap, it is
necessary to compute C using (20).

Proposition 3 (λ1 + λ2) ≤ 0 ⇒ C > 0.

The proof of this proposition is quite detailed and thus
is not provided here. It uses Bendixson’s theorem and
the result that will be presented in the next section.
This proposition implies that, if the unstable open-loop
pole is slower than the stable one, then no bifurcation
can occur. Also, this shows why that not all systems
with one stable and one unstable open-loop pole exhibit
bifurcation as a function of the controller parameters.

4 Region of attraction and bifurcation

In this section, the link between the condition on C

and the shape of the region of attraction will be estab-
lished. It will be shown that the bifurcation between
a hyperbolic type region of attraction and a region of
attraction bounded by a limit cycle occurs at C = 0.
Due to space limitations, only a sketch of the proof of
the main result is provided.

Theorem 1
1. If C > 0, (region bordered by hyperbolae)

• ∂S+ and ∂S− are disjoint and unbounded.

• For both ∂U+ and ∂U−, one of the branches
of converges to the origin.

• The boundary of the region of attraction is
∂A = ∂S+ ∪ ∂S−.



2. If C < 0, (region bounded by a limit cycle)

• ∂U+ and ∂U− are disjoint and unbounded.

• For both ∂S+ and ∂S−, one of the branches
of converges to a limit cycle.

• The boundary of the region of attraction is
the unique time-reversed stable limit cycle

∂A = lim
t→∞

Φ(−t, x0) ∀x0 ∈ U

where the boundary of U is ∂U = ∂U+∪∂U−.

3. If C = 0, (region bounded by two heteroclinic
connections)

• One of the branches of ∂U+ is bounded and
coincides with that of ∂S−.

• One of the branches of ∂U− is bounded and
coincides with that of ∂S+.

• The boundary of the region of attraction
is a double heteroclinic connection, ∂A =
(∂U+ ∩ ∂S−) ∪ (∂U− ∩ ∂S+).

The shapes of the regions in the three scenarios are
illustrated in Figures 2, 3 and 4.

Sketch of the proof: The condition on C indicates
on which side of C and R the trajectories lie. If the
manifold lies partially outside the respective regions,
it goes unbounded. Otherwise, one of its branches is
bounded. With this, the characteristics of the stable
and unstable manifolds can be deduced.

The unbounded and disjoint boundaries (∂S+ and ∂S−
when C > 0 and ∂U+ and ∂U− when C < 0) delimit
sets inside which the trajectories are trapped both in
forward and reverse times. So, they either converge
to the origin, converge to the limit cycle, or escape
to infinity. The Poincaré and Bendixson theorems are
used to detect the existence or non-existence of limit
cycles in this region.

It is interesting to note that, in the case of C < 0, the
theorem not only provides the region of attraction, but
also the domain of all initial conditions that converge
in reverse time to the limit cycle. The boundaries of
this domain are in fact the unstable manifolds.

When C = 0, the boundary of the region of attraction
is in between a hyperbolic shape and a bounded limit
cycle. It consists of two heteroclinic connections, one
starting from the saddle point xe+ and ending in xe−,
and another starting from xe− and ending in xe+.

5 Numerical examples

The three different scenarios for the condition on C

will be illustrated on a numerical example in this sec-

tion. Consider the system (1) with the numerical val-
ues: λ1 = 1 and λ2 = −0.5. Three illustrations with
three different linear state feedback controllers (3) are
presented:

1. f1 = −2.7 and f2 = −1.5: The computed value of
C is 0.35092 > 0. Thus, the region of attraction
is the unbounded set with ∂A = ∂S+ ∪ ∂S−. In
Figure 2, the evolution of two trajectories with
the following initial conditions is shown:

xs = [0.5 1.5]T ∈ A, xu = [0.5 2.5]T ∈ R2 \ A.
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Figure 2: Example of the region of attraction for the con-
dition C > 0 (◦ = xs, ♦ = xu) (solid line -
forward time, dotted line - reverse time).

It is seen that the trajectory from the initial con-
dition inside the region of attraction converges to
the origin, while that outside escapes to infinity.
For both ∂U+ and ∂U− (not shown in the figure),
one of the branches converges to the origin.

2. f1 = −1.4 and f2 = −1.5: The computed value of
C is −0.32136 < 0. Thus, the region of attraction
is bounded by a limit cycle ∂A. In Figure 3, the
evolution of three trajectories with the following
initial conditions is shown:

xs = [0.5 0.4]T ∈ A, xu = [0.5 0.8]T ∈ U \ A,

xs = [0.5 1.5]T ∈ R2 \ U

In this case, a similar conclusion can be made
for the region of attraction. However, what is in-
teresting is that, in reverse time, the trajectories
starting from xs and xsu converge to the limit
cycle, while that from xu goes to infinity. For
both ∂S+ and ∂S− (not shown in the figure), one
of the branches converges, in reverse time, to the
limit cycle.
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Figure 3: Example of the region of attraction for the con-
dition C < 0 (◦ = xs, ♦ = xsu, � = xu) (solid
line - forward time, dotted line - reverse time).

3. f1 = −1.7473 and f2 = −1.5: The computed
value of C is 1.49× 10−5 ≈ 0. Thus, the region
of attraction is bounded by two heteroclinic con-
nections ∂S+∩∂U− and ∂S−∩∂U+. In Figure 4,
the evolution of two trajectories with the follow-
ing initial conditions is shown:

xs = [0.5 0.8]T ∈ A, xu = [0.5 2]T ∈ R2 \ A.
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Figure 4: Example of the region of attraction for the con-
dition C = 0 (◦ = xs, ♦ = xu) (solid line -
forward time, dotted line - reverse time).

Note that, in reverse time, trajectories with ini-
tial conditions within A converge arbitrary close
to the boundary defined by the heteroclinic con-
nections, while those outside A go to infinity.

In this example, the bifurcation was created by only
varying the parameter f1. Note that the unstable open-

loop pole is faster than the stable one and thus the suf-
ficient condition of Proposition 3 cannot be used. The
sufficient condition (1 + f1 − f2) < 0 of Proposition 2
can be used for the first case. However, in the other
two cases, the sufficient conditions of Proposition 2 are
indecisive.

6 Conclusion

In this paper, the bifurcations of the region of attrac-
tion are analysed. It is shown that a planar system with
one stable and one unstable pole only exhibits a bifur-
cation when the unstable pole is faster than the stable
one. An analytical condition is provided for which the
region of attraction changes from an unbounded hyper-
bolic region to a bounded limit cycle.

Though this paper dealt only with planar systems with
one stable and one unstable pole, it is hoped that the
analytical condition presented here can be extended
to arbitrary planar systems. Also, the Poincaré and
Bendixson theorems provide valuable information re-
garding the limit cycles, which needs to be explored in
the present context.
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