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Abstract — ' This paper presents an adaptive filter for This paper is organized as follows. The next section ex-
tracking targets in clutter. The filter employs a scale fac-  plains the motivation behind using an adaptive Kalman fil-
tor, which accounts for the target unpredictability at any ter in place of a standard one where section 2 outlines the
time as estimated from the available data. The adaptive P D A approach and how to combine the adaptive filter with
approach, in which the gain is adapted according to chang-  it. In section 3 some comparative simulation results are pre-
ing target dynamics, is used in conjunction with a widely  sented to highlight the performance improvement obtained
accepted data association routine called probabilistic data by using an adaptive filter. The paper ends with some con-
association (P D A) to form the adaptive probabilistic data  cluding remarks.

association filter (AP D AF'). Performance comparison be-

tweenthe PD A and AP D A filtersisdemonstrated through . .
simulations. 2 An Adaptive Filter, Why?

The process of state estimation in the Kalman filter com-

prises two parallel cycles, nameiyestimation of the state
: andii) estimation of the state covariance, Fig 1. The final

1 Introduction estimation of the state is found from the predicted state, in-

The performance of a tracking algorithm is mainly govnovation and Kalman gain. The Kalman gain is the ‘ratio’
erned by the performance of the state estimator used. Té¥ehe state covariance to the innovation covariance and can
Kalman filter is the traditional and the most widely use@le considered as a correction factor on the final estimate.
state estimator in target tracking applications. The filtgfrom a frequency domain viewpoint the magnitude of the
is the general solution to the recursive linear minimurkalman gain determines the bandwidth and response speed
mean square estimation problem. It will minimize the meag¥ the filter. A small gain value produces a substantial noise
square error between the estimates and the actual target@guction when the target is not manoeuvring and a large
namics as long as the target dynamics are accurately megin value gives a fast response to changes in the target's
eled. dynamics, providing the filter with a larger bandwidth to

However, if the tracking is attempted in clutter, i.e.cover maneuvers. Basically, it can be said that the perfor-
where false returns are present, the standard Kalman filtigfance of the Kalman filter is determined by the size of the
on its own will not be sufficient to produce reliable estimakalman gain.
tions. There are several approaches to be used in collaboraghile the Kalman gain plays an important role in esti-
tion with the Kalman filter to address the false return probnating the target's state, it is independent of the measure-
lem. ThePD A approach [1] is one of the widely acceptednents taken. As can be seen from Fig 1 the right hand
approaches to be used with the Kalman filter in trackingde frame is not affected by the observations, in fact, given
targets in clutter. the process and measurement noise covariances as a func-

Lpart of this work was carried out at Laboratoire d’Automatique 0N Of time, the Kalman gain can be computed off line.
Swiss Federal Institute of Technology, Switzerland. During the recursive estimation of the state the Kalman gain
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Estimation of the state Estimation of the state covariance

e S e ‘ with the changing target dynamics. With this feature, the
;S e;‘(‘"/:‘e Thhono g Seem eimEs filter yields an online gain adjustment without a delay while

l Lo | } keeping the computational burden and the complexity at a
Lo : minimum.

State prediction . | State prediction covariance
- —_ .
X(n+1) = & Q(n/n) ' + P(n+1n) =oP(nn)d + T Q(n) I

| | ] 3 Adaptive Rescaling of Process
Measur enent predi ction I nnovati on covari ance NOI%

Z(n+1n) = H3<(n+1/n) ' ' B(n+1) =HP(n+Un)H+R . . . .
! j ; For the adaptive Kalman filter design, suppose that the
N | . target dynamic equation is given by,
asurement at +1+ : : 11ter gan
Z{n+1) " K(n+1) = P(n+1in) H B(n+1)

3 j X(n+1)=®X(n)+ O(n)I'W(n) (1)

I'nnovati on |
T8 (n+ln)=Z(n+1) - H X(neLin)

piate state coriance | whereX (n) is the target state vectab, is the known tran-
‘ eIl sition matrix, ©(n) is the scale factor that represents the

o ]—3 3 N ' current magnitude of the process noiBés the known dis-
e e e turbance tran_sition matrix ar_id’ (t) is the_unknown zero-
mean Gaussian process noiseN (0, )) independent of

previous events. The measurements are in the form of lin-

ear combinations of the system state variables, corrupted by

uncorrelated noise. Thus, the measurement vector is mod-

Figure 1: State estimation in the standard Kalman filter

reaches a steady-state value determined by the pre-selegtllaeod as
and assumed constant process and measurement noise co- Z(n) =HX(n)+V(n) (2)
variances() andR respectively. The use of constant valuewhere H is the measurement matrix arid(n) is white

of the covariances imposes a major restriction on the fiGaussian measurement noiseV (0, R), also independent
ter's performance, because if the pre-selected process nagiggrevious data. Note that it is assumed thafn) and
covariance level is not appropriate the correction, by thié(n) are mutually uncorrelated. At time assume that the
Kalman gain, on the state prediction will not be suitable arfatior distribution ofX (n) for the next transition, using Eqgs
large estimation errors will develop. An intuitive solutionl and 2, is X

to this problem is to adaptively adjust the process noise co- X(n) ~ N(X(n),P(n)) (3)
variance and thus the Kalman gain, according to estimateflis is pased on the previous data and depends on the

changing target dynamics. The simplest method to achieyg, e factor®(0), (1), .., 0(n — 1). For the next stage,
this is to establish a maneuver detection scheme then m n) > 0 is chosen to specify the model fo¥ (n +

ify the process noise covariance following the maneuverd Z(n + 1) as viewed through the sensor.

tection [2]. The main disadvantage of this approach is the,Note that the normality of Eq 3 and any positive specifi-
time delay in maneuver detection and changing of the fikation of@ (1) will ensure normality of the posterior dis-
ter. In [3] an adaptive Kalman filtering technique was sugyipution X(n+1) ~ N(X(n +1),P(n + 1)) by the
gested where the process noise covariance was estimalgghqard properties of multivariate normal distributions for

by means of the difference between the expected predictigiinear/Gaussian model. The calculations lead to the fol-
error variance and the measurement noise variance. Altﬁj’wmg results.

natively, multiple model algorithms can be used, to provide x; ,, +1, before observing (n + 1)
good coverage by using different levels of process noise co-

variance in each model, at the cost of an increased compu- X (n+1) ~ N(X(n + 1), M(n + 1))
tational burden and complexity, but even a large number of

we have

models does not guarantee a better coverage [4]. where
_ Thg adqptive Kalman filter [5], tha}t will be usgd in con- X(n +1) = cpf((n) (4)
junction with theP D A approach, adjusts the gain level of M@m+1) = &Pn)dT +0*n)rQrt (5)

a second order Kalman filter for tracking maneuvering tar-

gets. The method introduces a scale factor which reprehus, the predictive distribution for the new measurement
sents the current magnitude of process noise covarianceginen by Eq 2 is normal with mean vector

other words target unpredictability, at timeas estimated . - N

from the available data. The aim of the adaptive Kalman Zn+1)=HX(n+1) = H®X(n)

filter is to take observations into account while estimating,ariance matrix

the state covariance (the right hand frame in Fig 1), so that

the Kalman gain level is adaptively adjusted in accordance Sm+1)=HMMnm+1)H' +R (6)



and the innovation is of the filter. The initial value of the scale factor was chosen
. as0(0) = 1 so thata gives some weight to the original
vin+1)=Z(n+1)-HX(n+1) (7) scale factor. In the simulations a small valuecafamely
o ) 0.05 was used along with the values= 0.8 andb = 0.15.

Note that, a-priori, thjg expecta_tlon of the sum o_f squares The idea of dynamically changing the process noise co-
v(n+1)[* = v(n+1)"v(n+1)is the sum of the diagonal 4 iance goes back a few decades and various ways of han-
elements ofS(n + 13' By Eqs 5 and 6 this expectationyjing the change have been proposed. For instance in [6]
contains a termx ©*(n). Later, the observed difference, Fudge factor was suggested for a similar purpose, how-

2 .
[v(n+ 1) =32,[S(n + 1)];; will be used to construct the gy er it has to be noted that Eq 13 is quite different in prin-
new scale facto®2(n + 1). ciple.

Given the observatioZ (n + 1), the posterior distribu-

tion of X (n + 1) is constructed by standard methods. It iﬂ The Probabilistic Data Association

normal with mean vector .
Filter (PDAF)

The (PDAF) is simply a Kalman filter which is used in
where conjunction with thePD A approach in order to take the
measurement origin uncertainty into account. The filter as-
Kn+1)=Mn+1)HTS ' (n+1) (9) sumes that the target is detected (perceived) and its track
has been initialized. At each sampling interval a validation
The new covariance matrix is gate is set up. The measurement originating from the tar-
get of interest can be among the possible several validated
Pin+1)={I-K(n+1)H}M(n+1) (10) measurements, hence, the track update is done by taking
. . . . the weighted sum of all observations within the gated re-
This completes the transition from one state of mformatlo&On in a probabilistic manner as will be explained later in
(X(n), P(n)) to the next & (n + 1), P(n + 1)). this section. Measurements outside the validation region
3.1 Construction of ©(n + 1) are assumed to have originated from false alarms or clut-
ter. ThePDAF uses only the latest measurements and the
past is summarized approximately by making the following
S(n+1) = HoP(n)®"H” + R + ©*(n) HTQTTHT ~ assumption:
(11) n—1 %
Assume thaty?, 2 and 42 are the sums of the diag- p[X(n)[Z2"7] = N[X(n); X(n), P(n)]  (15)
onal elements ofS(n + 1), [H®P(n)®THT + R] and
[HTQTT HT) respectively, then we have;

X(n+1)=X(n+1)+Kn+1)rn+1) (8)

By using Egs 5 and 6,we have

which states that the state is assumed to be normally

distributed (Gaussian) according to the latest estimate and
2 1) = 2 1 2 2 1 1) covariance r_natrl_x. _Startmg_from this point, one cycle of

Y+ 1) = (nt 1)+ 0% (n)o%(n +1) (12) the state estimation is described as follows.

Roughly speaking, if the observed sum of squawés + , o

1)|? is close ta?(n + 1), then the filter is reasonably well L€t Z(k) contain measurements from the elliptical

focused on the target, €(n) is already set at an appropri-validation region for the track at time

ate level. If we leta, b, ¢ be fixed constants, where> 0,

b>0,c > 0anda+ b+ c = 1, then the following sequen- Z(k) = {zm(n), m=1,2,...,m} (16)
tial relationship offers a possible scheme for constructing
O(n + 1),

wherem;, is the number of validated measurements in that

region. Also, the cumulative set of validated measurements

up to scam is denoted byZ*. Using the nonparametric
),0}(13) VersionofthePDAF [1] the validated tracks are associated

0%*(n+1) = mazx{a®?(0) +bO*(n) +
v+ DP — i+ )

6?(n+1) to the track. The combined target state estimate is obtained
a
If [v(n + 1)|2 = ¥2(n + 1) then S
0%(n + 1) = maz{a®*(0) + (b + ¢) ©%(n),0} (14) 2(n) = Z B (n)Zm (1) (17)
m=0

The right hand side of Eq 13 is constrained to remain non-
negative. The constartcan be regarded as a sensitivitywhereg,,, (n) is the probability that the»*” validated mea-
parameter which can be used to adjust the adaptive behavdarement is correct an#él(n) is the updated state condi-



tioned on that event. The conditionally updated states agethe covariance of the updated state. Prediction of the

given by state, its covariance, measurement to time 1 and the
innovation covariance are calculated as in the standard
&(n) =&(n —1) + Knp(n)vm(n) (18) Kalman filter.

where K, (n) is the filter gain and,(n) is the innova- Although, unlike the standard Kalman filter, being a
tion associated with the:t" validated measurement Thenonlinear filter thePDAF takes the measurements into

association event probabilitigs, (1) are given by accognt in order tp addr_ess_the measurement origin un-
certainty issue while estimating the current state covari-
ance, it is still somehow oblivious to the changes in the

B = eimm’ m=1,...,my (19) target dynamics. In other words the target unpredictabil-
b+ 2 e ity/maneuverabilty is still unaccounted for. This is exactly
. b -0 20 why the standard Kalman filter in thBD AF' is replaced
Bo = b+ E;”:kl ej’ m= (20) with an adaptive one to establish an adapfie AF'.
where 4.1 Making The PDAF Adaptive

em = exp{l,,z{(n + 1S Y n)(n+1)} (21) As explained in section 2, the scale factor in the adap-
2 tive Kalman filter, which accounts for the target maneuver-
b — 1 - Pplg (22) abilty, is introduced in the predicted state covariance. Also,

Me——5 . : .
PpV(n) as mentioned above the covariance of the predicted state

is calculated in the same way as it is done in the standard

andPp is the probability of detection ofatargetoriginatemi(l filter i.e. it is ind dent of th it i
measuremeni/ is the volume of the validation gate. Then aiman fiter 1.€., 1 1S independent of the association even

probability calculation procedure (ignoring the fact that the
covariance of the combined innovation is smaller thay
a small factor ). Thus, since the adaptiveness of the filter is
Xn+1)=Xn+1)+Kmn+v(n+1) (23) achieved without breaking the general structure of the stan-
dard Kalman filter, the replacement of the Kalman filter, in
where the PD AF, by the adaptive Kalman filter will also keep the
" general structure of thB D AF intact. In other words in the
Veom(n +1) = Z Bi(n + v(n + 1) (24) adaptiveP D AF the standard®D AF structure, in general,
i1 is preserved. Moreover, the assumptions, that are valid for

the updated state is

. . . . o the PDAF, are still valid for theAPDAF. On the other

is the combined innovation. One can quite rightly arguganq by the inclusion of the scale factor, the changed target

j[hatS givenin Eqllis nt_)t the covariance qf the_comblneﬂynamics are taken into account for the next scan resulting

!nnovat|on. In fact covariance of the co_mbmed innovatiof, 4 algorithm for maneuvering target tracking in clutter.

is smaller tharb by a certain factor, thatis In the adaptive® D AF the equations given in section 3 are
still valid except for the predicted state covariance which

Cov(veom(n+1)) = > B7S(n +1) should be replaced by Eq 5. Also, the combined innovation

However, this is not critical and the difference can be idig’en by Eq 24 should be used to calculéXé(n +1) in Eq

nored.
The error covariance associated with the updated state
estimate is 5 Simulation Results
Pn+1) = Bo(n+1)M(n+1)+[1 - Bo(n+1)] x The first simulated target motion is generated to perform

c ~ a straight line motion in two dimensions (i.e. x-y plane)
P H+P 1 25 . o .
(n+1)+Pln+1) (25) with a sampling interval of 1.0 second and is assumed to last
where 20 seconds. Measurements are assumed known at the origin
of the Cartesian coordinates for the x-y positions of the tar-

mp . . L
p - K 1 ) 1)v; Ny 1) — 9etwith a Gaussian measurement error standard deviation
) (n+ )[;ﬂ (n+ Dri(n + Lri(n +1) of 100 m used for both axes. The process noise standard
vin + 1) (n+ DK (n+ 1) (26) deviation is taken as & /s for each axis, whereas 0.9 and

0.002 values are used for the probability of detection and
and probability of false alarm respectively. The initial values
of the state vector are as follows;0), y(0), £(0),y(0)] =
Pn+1)=[I-Kn+1)Hn+1)|Mn+1) (27) [lkm,lkm,0.2km/s,0.2km/s].



The simulated target trajectory is given in Fig 2. In th@rocess noise covariance level, the increase in the position
figure crosses indicate the true target positions at each samror is confined to a short space of time after which the er-
pling time, the letterl denotes a detection (naturally a deror is pulled back to a reasonable level. This is achieved by
tection cannot be obtained from the target of interest at dtitroducing a scale factor whose change in value is given in
the sampling instants) and each dot represents a false retéiig.4. Note that as depicted in Fig 4 the value of the scale

factor increases as soon as there is an ambiguity about the
6 G‘eneraled Ser:sor Delectio‘ns target mOtIOI’].
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Figure 2: Simulated target trajectory (straight line motion) R i
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Figure 4: Change in the scale factor
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Target manoeuver can also be accounted for by the scale
factor. To illustrate this a second target trajectory, where the
target performs coordinated turns, i.e., maneuver, has been
generated to test the proposed algorithm and also compare
its performance with thé& D AF. Probability of detection
and probability of false alarm values as well as the mea-
surement standard errors are kept the same as in the first
scenario and As depicted in Fig 5, the target is assumed to
start its motion on a straight line and perform a turn at the
9th second. It then moves on a straight line a while longer
before it finishes it completes its motion with a mild turn.

For this scenario a higher value of the process noise co-

variance has been used in the algorithms to account for the
%2 & & 5can£?me<s) v 1 1 B manoeuvers. The value of the process noise covariance has
been chosen to be someé0 times the value that was used
Figure 3: Estimated position errors for th_e target trajector_y. Estimated position errors of the
algorithms are shown in Fig 6. As expected, the introduc-

Both the PDAF and APD AF algorithms are config- tioq of the scale factor helps théPD AF track the target
ured to used the same process noise covariance as W4HNg manoeuvers better than thé) AF".
used whilst creating the simulated target trajectory, i. .
matched filters. Fig 3 depicts the position errors producﬁg Conclusions
by PDAF and APDAF algorithms for the given trajec- In this paper an adaptive data association filter for
tory. As it can be seen from the figure a clear performantecking targets in clutter is presented. The filter uses an
degradation is observed for both algorithms when there aslaptive Kalman filter, in which the level of process noise
lack of information about the target motion (i.e., no returndovariance is adaptively rescaled, in place of standard
between thed’” and thel5t* seconds. However, the in-Kalman filter in the PD A filter. The performance of
troduction of the scale factor helps tle? D AF keep the the proposed algorithm has been demonstrated through
position error at a lower level. Moreover, by rescaling theimulations and compared with the standaRDAF
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Figure 5: Simulated target trajectory (maneouvering)
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Figure 6: Estimated position errors for a manoeuvering tar-
get

algorithm. As the adaptiv&® D AF' accounts for the target
unpredictability/maneuverability as well as the measure-
ment origin uncertainty it outperformed tli&D AF in the
simulated scenarios.
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