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Abstract – 1 This paper presents an adaptive filter for
tracking targets in clutter. The filter employs a scale fac-
tor, which accounts for the target unpredictability at any
time as estimated from the available data. The adaptive
approach, in which the gain is adapted according to chang-
ing target dynamics, is used in conjunction with a widely
accepted data association routine called probabilistic data
association (PDA) to form the adaptive probabilistic data
association filter (APDAF ). Performance comparison be-
tween the PDA andAPDA filters is demonstrated through
simulations.
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1 Introduction
The performance of a tracking algorithm is mainly gov-

erned by the performance of the state estimator used. The
Kalman filter is the traditional and the most widely used
state estimator in target tracking applications. The filter
is the general solution to the recursive linear minimum
mean square estimation problem. It will minimize the mean
square error between the estimates and the actual target dy-
namics as long as the target dynamics are accurately mod-
eled.

However, if the tracking is attempted in clutter, i.e.,
where false returns are present, the standard Kalman filter,
on its own will not be sufficient to produce reliable estima-
tions. There are several approaches to be used in collabora-
tion with the Kalman filter to address the false return prob-
lem. ThePDA approach [1] is one of the widely accepted
approaches to be used with the Kalman filter in tracking
targets in clutter.

1Part of this work was carried out at Laboratoire d’Automatique of
Swiss Federal Institute of Technology, Switzerland.

This paper is organized as follows. The next section ex-
plains the motivation behind using an adaptive Kalman fil-
ter in place of a standard one where section 2 outlines the
PDA approach and how to combine the adaptive filter with
it. In section 3 some comparative simulation results are pre-
sented to highlight the performance improvement obtained
by using an adaptive filter. The paper ends with some con-
cluding remarks.

2 An Adaptive Filter, Why?
The process of state estimation in the Kalman filter com-

prises two parallel cycles, namely,i) estimation of the state
andii) estimation of the state covariance, Fig 1. The final
estimation of the state is found from the predicted state, in-
novation and Kalman gain. The Kalman gain is the ‘ratio’
of the state covariance to the innovation covariance and can
be considered as a correction factor on the final estimate.
From a frequency domain viewpoint the magnitude of the
Kalman gain determines the bandwidth and response speed
of the filter. A small gain value produces a substantial noise
reduction when the target is not manoeuvring and a large
gain value gives a fast response to changes in the target’s
dynamics, providing the filter with a larger bandwidth to
cover maneuvers. Basically, it can be said that the perfor-
mance of the Kalman filter is determined by the size of the
Kalman gain.

While the Kalman gain plays an important role in esti-
mating the target’s state, it is independent of the measure-
ments taken. As can be seen from Fig 1 the right hand
side frame is not affected by the observations, in fact, given
the process and measurement noise covariances as a func-
tion of time, the Kalman gain can be computed off line.
During the recursive estimation of the state the Kalman gain
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Figure 1: State estimation in the standard Kalman filter

reaches a steady-state value determined by the pre-selected
and assumed constant process and measurement noise co-
variances,Q andR respectively. The use of constant values
of the covariances imposes a major restriction on the fil-
ter’s performance, because if the pre-selected process noise
covariance level is not appropriate the correction, by the
Kalman gain, on the state prediction will not be suitable and
large estimation errors will develop. An intuitive solution
to this problem is to adaptively adjust the process noise co-
variance and thus the Kalman gain, according to estimated
changing target dynamics. The simplest method to achieve
this is to establish a maneuver detection scheme then mod-
ify the process noise covariance following the maneuver de-
tection [2]. The main disadvantage of this approach is the
time delay in maneuver detection and changing of the fil-
ter. In [3] an adaptive Kalman filtering technique was sug-
gested where the process noise covariance was estimated
by means of the difference between the expected prediction
error variance and the measurement noise variance. Alter-
natively, multiple model algorithms can be used, to provide
good coverage by using different levels of process noise co-
variance in each model, at the cost of an increased compu-
tational burden and complexity, but even a large number of
models does not guarantee a better coverage [4].

The adaptive Kalman filter [5], that will be used in con-
junction with thePDA approach, adjusts the gain level of
a second order Kalman filter for tracking maneuvering tar-
gets. The method introduces a scale factor which repre-
sents the current magnitude of process noise covariance, in
other words target unpredictability, at timen as estimated
from the available data. The aim of the adaptive Kalman
filter is to take observations into account while estimating
the state covariance (the right hand frame in Fig 1), so that
the Kalman gain level is adaptively adjusted in accordance

with the changing target dynamics. With this feature, the
filter yields an online gain adjustment without a delay while
keeping the computational burden and the complexity at a
minimum.

3 Adaptive Rescaling of Process
Noise

For the adaptive Kalman filter design, suppose that the
target dynamic equation is given by,

X(n+ 1) = �X(n) + �(n)�W (n) (1)

whereX(n) is the target state vector,� is the known tran-
sition matrix,�(n) is the scale factor that represents the
current magnitude of the process noise,� is the known dis-
turbance transition matrix andW (t) is the unknown zero-
mean Gaussian process noise� N(0; Q) independent of
previous events. The measurements are in the form of lin-
ear combinations of the system state variables, corrupted by
uncorrelated noise. Thus, the measurement vector is mod-
elled as

Z(n) = HX(n) + V (n) (2)

whereH is the measurement matrix andV (n) is white
Gaussian measurement noise� N(0; R), also independent
of previous data. Note that it is assumed thatW (n) and
V (n) are mutually uncorrelated. At timen, assume that the
prior distribution ofX(n) for the next transition, using Eqs
1 and 2, is

X(n) � N(X̂(n); P (n)) (3)

This is based on the previous data and depends on the
scale factors�(0);�(1); :::;�(n� 1). For the next stage,
�(n) > 0 is chosen to specify the model forX(n +
1); Z(n+ 1) as viewed through the sensor.

Note that the normality of Eq 3 and any positive specifi-
cation of�(n) will ensure normality of the posterior dis-
tribution X(n + 1) � N(X̂(n + 1); P (n + 1)) by the
standard properties of multivariate normal distributions for
a linear/Gaussian model. The calculations lead to the fol-
lowing results.

At n+ 1, before observingZ(n+ 1) we have

X(n+ 1) � N( ~X(n+ 1);M(n+ 1))

where

~X(n+ 1) = �X̂(n) (4)

M(n+ 1) = �P (n)�T +�2(n)�Q�T (5)

Thus, the predictive distribution for the new measurement
given by Eq 2 is normal with mean vector

~Z(n+ 1) = H ~X(n+ 1) = H�X̂(n)

covariance matrix

S(n+ 1) = HM(n+ 1)HT +R (6)



and the innovation is

�(n+ 1) = Z(n+ 1)�H ~X(n+ 1) (7)

Note that, a-priori, the expectation of the sum of squares
j�(n+1)j2 = �(n+1)T �(n+1) is the sum of the diagonal
elements ofS(n + 1). By Eqs 5 and 6 this expectation
contains a term/ �2(n). Later, the observed difference
j�(n+ 1)j2 �

P
i[S(n+ 1)]ii will be used to construct the

new scale factor�2(n+ 1).
Given the observationZ(n + 1), the posterior distribu-

tion ofX(n+ 1) is constructed by standard methods. It is
normal with mean vector

X̂(n+ 1) = ~X(n+ 1) +K(n+ 1)�(n+ 1) (8)

where

K(n+ 1) =M(n+ 1)HTS�1(n+ 1) (9)

The new covariance matrix is

P (n+ 1) = fI �K(n+ 1)HgM(n+ 1) (10)

This completes the transition from one state of information
(X̂(n); P (n)) to the next (̂X(n+ 1); P (n+ 1)).

3.1 Construction of �(n+ 1)

By using Eqs 5 and 6,we have

S(n+ 1) = H�P (n)�THT +R+�2(n) H�Q�THT

(11)
Assume that 2, �2 and Æ2 are the sums of the diag-
onal elements ofS(n + 1), [H�P (n)�THT + R] and
[H�Q�THT ] respectively, then we have;

 2(n+ 1) = �2(n+ 1) + �2(n)Æ2(n+ 1) (12)

Roughly speaking, if the observed sum of squaresj�(n +
1)j2 is close to 2(n+ 1), then the filter is reasonably well
focused on the target, so�(n) is already set at an appropri-
ate level. If we leta; b; c be fixed constants, wherea � 0,
b � 0, c � 0 anda+ b+ c = 1, then the following sequen-
tial relationship offers a possible scheme for constructing
�(n+ 1),

�2(n+ 1) = maxfa�2(0) + b�2(n) +

c (
j�(n+ 1)j2 � �2(n+ 1)

Æ2(n+ 1)
); 0g(13)

If j�(n+ 1)j2 =  2(n+ 1) then

�2(n+ 1) = maxfa�2(0) + (b+ c) �2(n); 0g (14)

The right hand side of Eq 13 is constrained to remain non-
negative. The constantc can be regarded as a sensitivity
parameter which can be used to adjust the adaptive behavior

of the filter. The initial value of the scale factor was chosen
as�(0) = 1 so thata gives some weight to the original
scale factor. In the simulations a small value ofc namely
0.05 was used along with the valuesa = 0:8 andb = 0:15.

The idea of dynamically changing the process noise co-
variance goes back a few decades and various ways of han-
dling the change have been proposed. For instance in [6]
a fudgefactor was suggested for a similar purpose, how-
ever, it has to be noted that Eq 13 is quite different in prin-
ciple.

4 The Probabilistic Data Association
Filter (PDAF)

The (PDAF ) is simply a Kalman filter which is used in
conjunction with thePDA approach in order to take the
measurement origin uncertainty into account. The filter as-
sumes that the target is detected (perceived) and its track
has been initialized. At each sampling interval a validation
gate is set up. The measurement originating from the tar-
get of interest can be among the possible several validated
measurements, hence, the track update is done by taking
the weighted sum of all observations within the gated re-
gion in a probabilistic manner as will be explained later in
this section. Measurements outside the validation region
are assumed to have originated from false alarms or clut-
ter. ThePDAF uses only the latest measurements and the
past is summarized approximately by making the following
assumption:

p[X(n)jZn�1] = N [X(n); X̂(n); P (n)] (15)

which states that the state is assumed to be normally
distributed (Gaussian) according to the latest estimate and
covariance matrix. Starting from this point, one cycle of
the state estimation is described as follows.

Let Z(k) contain measurements from the elliptical
validation region for the track at timen

Z(k) = fzm(n); m = 1; 2; : : : ;mkg (16)

wheremk is the number of validated measurements in that
region. Also, the cumulative set of validated measurements
up to scann is denoted byZ k. Using the nonparametric
version of thePDAF [1] the validated tracks are associated
to the track. The combined target state estimate is obtained
as

x̂(n) =

mkX

m=0

�m(n)x̂m(n) (17)

where�m(n) is the probability that themth validated mea-
surement is correct and̂x(n) is the updated state condi-



tioned on that event. The conditionally updated states are
given by

x̂(n) = x̂(n� 1) +Km(n)�m(n) (18)

whereKm(n) is the filter gain and�m(n) is the innova-
tion associated with themth validated measurement. The
association event probabilities�m(n) are given by

�m =
em

b+
Pmk

j=1 ej
; m = 1; : : : ;mk (19)

�0 =
b

b+
Pmk

j=1 ej
; m=0 (20)

where

em = expf
1

2
�0i(n+ 1)S�1(n)�i(n+ 1)g (21)

b = mk

1� PDPG

PDV (n)
(22)

andPD is the probability of detection of a target originated
measurement,V is the volume of the validation gate. Then
the updated state is

X̂(n+ 1) = ~X(n+ 1) +K(n+ 1)�(n+ 1) (23)

where

�com(n+ 1) =

mkX

i=1

�i(n+ 1)�i(n+ 1) (24)

is the combined innovation. One can quite rightly argue
thatS given in Eq 11 is not the covariance of the combined
innovation. In fact covariance of the combined innovation
is smaller thanS by a certain factor, that is

Cov(�com(n+ 1)) =
X

�2i S(n+ 1)

However, this is not critical and the difference can be ig-
nored.

The error covariance associated with the updated state
estimate is

P (n+ 1) = �0(n+ 1)M(n+ 1) + [1� �0(n+ 1)]�

P c(n+ 1) + ~P (n+ 1) (25)

where

~P (n) = K(n+ 1)[

mkX

i=1

�i(n+ 1)�i(n+ 1)�0i(n+ 1)�

�(n+ 1)�0(n+ 1)]K 0(n+ 1) (26)

and

P c(n+ 1) = [I �K(n+ 1)H(n+ 1)]M(n+ 1) (27)

is the covariance of the updated state. Prediction of the
state, its covariance, measurement to timen + 1 and the
innovation covariance are calculated as in the standard
Kalman filter.

Although, unlike the standard Kalman filter, being a
nonlinear filter thePDAF takes the measurements into
account in order to address the measurement origin un-
certainty issue while estimating the current state covari-
ance, it is still somehow oblivious to the changes in the
target dynamics. In other words the target unpredictabil-
ity/maneuverabilty is still unaccounted for. This is exactly
why the standard Kalman filter in thePDAF is replaced
with an adaptive one to establish an adaptivePDAF .

4.1 Making The PDAF Adaptive
As explained in section 2, the scale factor in the adap-

tive Kalman filter, which accounts for the target maneuver-
abilty, is introduced in the predicted state covariance. Also,
as mentioned above the covariance of the predicted state
is calculated in the same way as it is done in the standard
Kalman filter i.e., it is independent of the association event
probability calculation procedure (ignoring the fact that the
covariance of the combined innovation is smaller thanS by
a small factor ). Thus, since the adaptiveness of the filter is
achieved without breaking the general structure of the stan-
dard Kalman filter, the replacement of the Kalman filter, in
thePDAF , by the adaptive Kalman filter will also keep the
general structure of thePDAF intact. In other words in the
adaptivePDAF the standardPDAF structure, in general,
is preserved. Moreover, the assumptions, that are valid for
thePDAF , are still valid for theAPDAF . On the other
hand by the inclusion of the scale factor, the changed target
dynamics are taken into account for the next scan resulting
in an algorithm for maneuvering target tracking in clutter.
In the adaptivePDAF the equations given in section 3 are
still valid except for the predicted state covariance which
should be replaced by Eq 5. Also, the combined innovation
given by Eq 24 should be used to calculate�2(n+1) in Eq
13.

5 Simulation Results
The first simulated target motion is generated to perform

a straight line motion in two dimensions (i.e. x-y plane)
with a sampling interval of 1.0 second and is assumed to last
20 seconds. Measurements are assumed known at the origin
of the Cartesian coordinates for the x-y positions of the tar-
get with a Gaussian measurement error standard deviation
of 100m used for both axes. The process noise standard
deviation is taken as 5m=s for each axis, whereas 0.9 and
0.002 values are used for the probability of detection and
probability of false alarm respectively. The initial values
of the state vector are as follows;[x(0); y(0); _x(0); _y(0)] =
[1km; 1km; 0:2km=s; 0:2km=s].



The simulated target trajectory is given in Fig 2. In the
figure crosses indicate the true target positions at each sam-
pling time, the letterd denotes a detection (naturally a de-
tection cannot be obtained from the target of interest at all
the sampling instants) and each dot represents a false return.
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Figure 2: Simulated target trajectory (straight line motion)
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Figure 3: Estimated position errors

Both thePDAF andAPDAF algorithms are config-
ured to used the same process noise covariance as was
used whilst creating the simulated target trajectory, i.e.,
matched filters. Fig 3 depicts the position errors produced
by PDAF andAPDAF algorithms for the given trajec-
tory. As it can be seen from the figure a clear performance
degradation is observed for both algorithms when there is
lack of information about the target motion (i.e., no return)
between the9th and the15th seconds. However, the in-
troduction of the scale factor helps theAPDAF keep the
position error at a lower level. Moreover, by rescaling the

process noise covariance level, the increase in the position
error is confined to a short space of time after which the er-
ror is pulled back to a reasonable level. This is achieved by
introducing a scale factor whose change in value is given in
Fig 4. Note that as depicted in Fig 4 the value of the scale
factor increases as soon as there is an ambiguity about the
target motion.
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Figure 4: Change in the scale factor

Target manoeuver can also be accounted for by the scale
factor. To illustrate this a second target trajectory, where the
target performs coordinated turns, i.e., maneuver, has been
generated to test the proposed algorithm and also compare
its performance with thePDAF . Probability of detection
and probability of false alarm values as well as the mea-
surement standard errors are kept the same as in the first
scenario and As depicted in Fig 5, the target is assumed to
start its motion on a straight line and perform a turn at the
9th second. It then moves on a straight line a while longer
before it finishes it completes its motion with a mild turn.

For this scenario a higher value of the process noise co-
variance has been used in the algorithms to account for the
manoeuvers. The value of the process noise covariance has
been chosen to be some500 times the value that was used
for the target trajectory. Estimated position errors of the
algorithms are shown in Fig 6. As expected, the introduc-
tion of the scale factor helps theAPDAF track the target
during manoeuvers better than thePDAF .

6 Conclusions
In this paper an adaptive data association filter for

tracking targets in clutter is presented. The filter uses an
adaptive Kalman filter, in which the level of process noise
covariance is adaptively rescaled, in place of standard
Kalman filter in thePDA filter. The performance of
the proposed algorithm has been demonstrated through
simulations and compared with the standardPDAF



0 20 40 60 80 100

−10

0

10

20

30

40

50

60

70

80

90

100
Generated Sensor Detections

x (km)

y
 (

k
m

)

d

d

d

d

d

d

d

d

d

d d d d d d
d

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.
.

.

.

. .

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

Figure 5: Simulated target trajectory (maneouvering)
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Figure 6: Estimated position errors for a manoeuvering tar-
get

algorithm. As the adaptivePDAF accounts for the target
unpredictability/maneuverability as well as the measure-
ment origin uncertainty it outperformed thePDAF in the
simulated scenarios.
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