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Abstract

A major difficulty arises in predictive control when the
prediction of the system evolution becomes unreliable due
to the presence of uncertainty. This problem is particularly
important for fast nonlinear systems since significant di-
vergence can occur during the time required for optimiza-
tion. As a solution to this problem, the addition of a linear
state feedback controller regulating the prediction error is
proposed. Using the neighbouring extremal theory, it is
shown that this combination is a first-order approximation
to an infinitely-fast receding horizon controller. The effec-
tiveness of this methodology is illustratedvia simulation
on an inverted pendulum.

1 Introduction

Predictive control is a very effective approach for tackling
problems with constraints and nonlinear dynamics, espe-
cially when analytical computation of the control law is
difficult [5]. Standard predictive control involves recalcu-
lating at every sampling instant the input that minimises
a criterion defined over a horizon window in the future,
taking into account the current state of the system. Only
the first part of the computed optimal input is applied to
the system.

Such a methodology is widely used in the process industry
where system dynamics are sufficiently “slow” to permit
its implementation [7]. In contrast, applications of predic-
tive control to fast dynamic systems are rather limited [8].
This is mainly due to the two following reasons: (i) the
computational burden of the nonlinear optimization limits
the frequency of reoptimization, and (ii) when the reopti-
mization interval is large relative to the system dynamics,
the predictions are quite sensitive to modeling errors and
disturbances.

Nevertheless, for small deviations from the optimal solu-
tion, a linear approximation of the system and a quadratic
approximation of the cost are quite reasonable. In such a
case, the theory of neighbouring extremals [2] provides a
closed-form solution to the optimisation problem. Thus,
the optimal input can be obtained using state feedback
without explicit numerical optimisation. In this paper, a
combination of predictive control and linear state feed-
back based on neighbouring extremals is proposed for the
control of fast nonlinear systems.

Though the idea of using the theory of neighbouring ex-
tremals along with predictive control is novel, various
studies have been reported in the literature that combine
linear feedback and predictive control:

• Dual mode predictive control [6]: Predictive con-
trol is used when the state of the system is far away
from the reference, while a linear feedback is used in
its neighbourhood. Linear feedback guarantees the
existence of a stabilizing input for times larger than
the prediction horizon and thus helps in the stability
analysis.

• Feedback predictive control [5]: In the presence of
uncertainty, it is important for the purpose of robust
optimization to be able to predict the dispersion of
the states in the future caused by the uncertainty.
This dispersion can be fairly large if the system is
unstable. So, an additional feedback has been pro-
posed to reduce this dispersion.

In dual mode predictive control, there is a switching be-
tween the predictive controller and the linear feedback
controller, while both of them function together in feed-
back predictive control. With either approach, two cases
can be distinguished depending on whether (i) this addi-
tional feedback is actually implemented [3], or (ii) a ficti-
tious feedback, which is only used for the computation of
the dispersion of states in the future, is considered [1].

In most methods available in the literature, the feedback
controller is driven by the deviaton of the system response
from a reference signal. In contrast, the proposed method
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uses the deviation from a predicted state to drive the feed-
back controller. Since, due to model uncertainties, the
model prediction does not quite correspond to the true
evolution of the system, the system is forced to stay close
to the predicted state. It is interesting to note the twist in
the concept – the model is not adapted to provide a good
prediction of the system, but instead, the input is adjusted
so that the system follows the model prediction.

The paper is organized as follows. Background material
regarding predictive control is presented in Section 2. The
predictive controller enhanced with an additional feed-
back law is described in Section 3. Section 4 discusses
some properties of this scheme, while Section 5 illustrates
the advantages of the proposed predictive control scheme
on a simulated inverted pendulum. Some concluding re-
marks are given in Section 6.

2 Preliminaries - Predictive Control

Consider the nonlinear system represented by:

ẋ = F (x, u), x(0) = x0 (1)

where the state x and the input u are vectors of dimension
n and m, respectively. x0 represents the initial conditions
and the function F describes the dynamics.

In predictive control, the following optimisation problem
is solved repeatedly at discrete time tk:

min
u([tk,tk+Tf ])

J(tk) =
1
2
x(tk + Tf )TP x(tk + Tf ) (2)

+
1
2

∫ tk+Tf

tk

(
x(τ)TQx(τ) + u(τ)TRu(τ)

)
dτ

ẋ = F (x, u), x(tk) = xk

where P , Q, and R are positive-definite weighting matri-
ces of appropriate dimensions, Tf is the prediction hori-
zon, and xk the states measured at time instant tk. The
optimal input obtained by solving (2) is represented by
u�([tk, tk + Tf ]).

Let δ be the optimisation time interval which, in gen-
eral, is fixed in advance. The first part of the optimal
input, u�([tk, tk + δ]), is applied open-loop until the re-
sult from the next optimisation becomes available. Such
an approach is referred to as intermittent predictive con-
trol [8]. For implementation purposes, the infinite dimen-
sional input u([tk, tk + Tf ]) needs to be parameterized
using a finite number of decision variables. Furthermore,
the optimiser can be constructed so as to account for the
time delay δ in the computation of u�([tk, tk + Tf ]).

Using Pontryagin’s Minimum Principle (PMP), the prob-
lem of optimizing the scalar cost functional J in (2) can

be reformulated as the optimization of the Hamiltonian
function H(t) as follows [2]:

min
u(t)

H =
1
2
(xTQx + uTRu) + λTF (x, u) (3)

s.t. ẋ = F (x, u), x(0) = x0 (4)

λ̇T = −Hx, λ(tf ) = P x(tf ) (5)

where λ(t) �= 0 is the n-vector of adjoint states (La-
grange multipliers for the system equations). The notation
ab = ∂a

∂b is used. The necessary condition for optimality
is given by:

Hu = uT R + λTFu = 0 (6)

3 Predictive Control with Addi-
tional Feedback

When modeling errors and disturbances do not allow
open-loop operation over the optimization interval δ, the
input needs to be updated by means other than optimiza-
tion. The measurements taken while the optimisation is in
progress can be processed by a state feedback controller
that is added to the predictive control scheme as shown in
Figure 1. This results in control action generated by two
feedback paths running at different speeds [9, 10].

• In the slower loop (encapsulated within the dotted
box), the state of the system is used by the “Opti-
miser” every δ time units so as to compute the op-
timal input u�([tk, tk + Tf ]), from which the nom-
inal optimal input u�(t) and the corresponding state
evolution x�(t) are generated using the “Trajectory
generator” .

• The faster loop consists of a linear state feedback
controller that regulates x(t) around x�(t).

x(t)−∆ u(t)∆ x(t)

xk

δ

δ
Trajectory
generator

u(t)*

u(t)+
System

+

-
+

Optimiserx (t)*

Feedback

Intermittent Predictive Control

*u ([t , t + T ])k     k       f

Figure 1: Predictive control with additional feedback



The control u(t) applied to the system is the sum of u∗(t)
obtained from the optimizer and ∆u(t) computed through
the linear feedback as follows:

∆u(t) = −K(t)∆x(t). (7)

where ∆x(t) = x(t)− x�(t) and ∆u(t) = u(t)− u�(t).

If there is no uncertainty (modeling errors and distur-
bances), then ∆x(t) = 0, and the linear feedback con-
troller has no effect, ∆u(t) = 0. The role of the feed-
back controller is therefore to steer the system towards
the predicted state, thereby rejecting the effect of model
uncertainty and disturbances. Thus, the input is adjusted
so that the system follows whatever is predicted by the
model, rather than the model being adapted to provide a
good prediction for the system.

4 Analysis of the Proposed Scheme

This section examines the properties of predictive control
enhanced with linear state feedback. Though, in general,
there is no restriction on the type of feedback controller
that could be used to regulate the prediction error (−∆x),
this study concentrates on linear state feedback controllers
obtained from system linearisation.

4.1 Equivalence property

It will be shown using the theory of neighbouring ex-
tremals that the additional feedback performs optimisa-
tion implicitly, thereby acting as a standby whenever the
numerical optimizer is unable to compute the optimal in-
put sufficiently fast. The result is stated in the following
theorem.

Theorem 1 (Neighbouring extremal solution):
For system (1) and the predictive controller (2), let ū�(t)
be the solution that would be obtained by repeating op-
timisation (2) continuously, while u�(t) and x�(t) are
obtained by solving (2) once every δ time units. Let
∆x(t) = x(t) − x�(t) and ∆u(t) = u(t) − u�(t) be
deviations from the computed optimal trajectory. If,

• Tf is arbitrarily large,

• x(t) is in the neighbourhood x�(t), and

• the gain matrix K(t) is solution to the matrix Ricatti
equation

Ṡ = −Hxx + HxuH
−1
uuHux + SFuH

−1
uu FuS −

S
(
Fx − FuH

−1
uuHux

)
−

(
Fx − FuH

−1
uuHux

)T
S

S(tk + Tf ) = P (8)

K = H−1
uu

(
Hux + FTu S

)
(9)

then, to a first-order approximation,

ū�(t) = u�(t)−K(t)∆x(t) (10)

Proof

Consider the time instant, t̃, in between two explicit opti-
mizations, i.e., t̃ ∈ [tk, tk+1]. First, it will be shown that
the optimal input obtained from explicit optimization per-
formed at t̃ can be approximated by the neighbouring ex-
tremal solution (10). Then, the argument will be extended
to the case where t̃ takes all values in [tk, tk+1].

The following optimization problem is solved at time in-
stant t̃ to compute ū�(t̃):

min
u([t̃,t̃+Tf ])

J(t̃) =
1
2
x(t̃ + Tf )TP x(t̃ + Tf ) (11)

+
1
2

∫ t̃+Tf

t̃

(
x(τ)TQ x(τ) + u(τ)TR u(τ)

)
dτ

ẋ(t) = F (x, u) x(t̃) = xt̃

where xt̃ is to the measured state at time instant t̃. The cri-
terion augmented with the constraints (system equations)
reads:

J̄(x, u) =
1
2
x(t̃ + Tf )TP x(t̃ + Tf ) + (12)

λ(t̃)Tx(t̃)− λT (t̃ + Tf )x(t̃ + Tf )

+
∫ t̃+Tf

t̃

(
H(x, λ, u) + λ̇Tx

)
dτ

where the Hamiltonian function H is defined as in (3).

Note that in the derivation of (12),
∫ t̃+Tf
t̃

λ̇Tx+λT ẋ dτ =
λT (t̃ + Tf )x(t̃ + Tf )− λT (t̃)x(t̃) is used.

Introducing the deviation variables ∆x(t̃) and ∆u(t̃)
around x�(t̃) and u�(t̃), and under the assumption that
the deviations are “small” , the perturbation of the cost and
the states from their optimal values can be captured using
Taylor series expansions. Following the development in
[2], the second-order expansion for the cost gives:

J̄(x + ∆x, u + ∆u) = J̄(x, u) (13)

+ (Px(t̃ + Tf )− λ(t̃ + Tf ))T∆x(t̃ + Tf ) +

λ(t̃)T∆x(t̃) +
∫ t̃+Tf

t̃

(
(Hx + λ̇T )∆x + Hu∆u

)
dτ

+
1
2
∆x(t̃ + Tf )TP ∆x(t̃ + Tf ) +

1
2

∫ t̃+Tf

t̃

[
∆xT ∆uT

] [
Hxx Hxu

Hux Huu

] [
∆x
∆u

]
dτ



Note that the first-order variations are zero, since Hu = 0,
λ̇T = −Hx, and λ(t̃ + Tf ) = Px(t̃ + Tf ). In addi-
tion, the first-order expansion for the constraints of the
optimisation problem (system equations) are considered.
Also, the term λ(t̃)T∆x(t̃) is not affected by the input
u([t̃, t̃ + Tf ]) and so is not considered for optimization.
Then, the optimization problem (11) can be approximated
in the deviation variables as:

min
∆u([t̃,t̃+Tf ])

1
2
∆x(t̃ + Tf )TP ∆x(t̃ + Tf ) + (14)

1
2

∫ t̃+Tf

t̃

[
∆xT ∆uT

] [
Hxx Hxu

Hux Huu

] [
∆x
∆u

]
dτ

∆ẋ =Fx∆x + Fu∆u

Problem (14) is the standard LQR problem whose optimal
solution is given by ∆uopt(t) = −K(t)∆x(t), for t ∈
[t̃, t̃+Tf ], where the gain of the feedback controller K(t)
is obtained from the solution of the Ricatti equation (8)-(9)
but with S(t̃+ Tf ) = P [2]. However, by the assumption
that Tf is arbitrarily large, S has reached its steady state
value and is constant over the interval [tk, tk + δ]. So, it is
sufficient to solve the Ricatti equation at tk as in (8) and
use it until the next explicit optimization is performed.

Thus, to a first-order approximation, the optimal solution
to (11) ū�(t̃) = u�(t̃) + ∆uopt(t̃) = u�(t̃)−K(t̃)∆x(t̃).
The proof follows by extending the argument for all values
of t̃ ∈ [tk, tk+1].

Though, in this methodology, a simple linear feedback
supplements predictive control, periodical recomputation
of u�(t) is indispensable. This realigns the computed op-
timal solution so that the actual state of the system is in its
neighbourhood.

4.2 Stability

The stability of this cascade scheme is an important issue
that needs attention. Theorem 1 states that the proposed
scheme is, to a first-order approximation, equivalent to a
single predictive control loop that operates infinitely fast
(or at the sampling frequency of the fast loop). So, if the
matrices P , Q, and R and the prediction horizon Tf are
chosen so that this equivalent predictive controller stabi-
lizes the system, then the proposed scheme will also stabi-
lize the system. Alternatively, if it can be guaranteed that
the cost decreases with every optimization, its cost func-
tion J can itself be used as a Lyapunov function to prove
stability [5].

Though the aforementioned argument can be accepted
from an intuitive point of view, no rigourous result can be

stated for the moment due the approximations involved.
The effect of these approximations on closed-loop stabil-
ity forms one of the directions of future research.

4.3 Robustness

Though the methodology is motivated by the implementa-
tion of predictive control for fast systems, there is consid-
erable interest to apply it to all systems, especially when
the problem of robust stabilization is considered.

For robust stabilization, a terminal constraint of the form
x(tk + Tf ) ∈ X is imposed to the optimization problem
(2), and the input is computed in such a manner that the
final state is in X despite uncertainty. The standard ap-
proach is to compute the dispersion of the states caused
by the uncertainty using a model linearized around the
nominal trjectory of the system and searching over open-
loop input sequences that ensure that the family of trajec-
tories end withinX . This is clearly overconservative since
open-loop prediction is performed, while the true system
evolution will take advantage of the closed-loop nature of
predictive control [4]. When this linearized system is un-
stable, or has modes that do not vanish quickly, the sys-
tem evolution and the dispersion of states grow with time.
Then, for a large Tf , it becomes impossible to fit the set of
all possible final states within X . Also, it is not possible
to choose a small Tf since a short prediction horizon can
lead to closed-loop instability.

As mentioned in the introduction, two approaches are
found in the literature to alleviate this problem: (i) explicit
feedback (in addition to that inherently provided by pre-
dictive control) is used to reduce the dispersion of states
[3], or (ii) fictitious feedback is used to estimate the dis-
persion of states to be expected with the predictive con-
troller [1].

The neighbouring extremal approach presented in this pa-
per fits both approaches. On the one hand, the linear
state feedback computed using the neighbouring extremal
theory helps reduce the dispersion of the future states.
Thus, it can be used as the explicit feedback mentioned
above. On the other hand, Theorem 1 indicates that per-
forming optimization infinitely often is equivalent to us-
ing the neighbouring extremal control. Thus, since this
linear feedback represents the inherent feedback provided
by predictive control, it can be considered as the fictitious
feedback that is used for computing a fair dispersion of the
states. Note that the actual implementation is via repeated
optimization only.

This new insight shows promise in the field of predictive
control under uncertainty and constraints and needs fur-
ther investigation.



5 Example: Control of an Inverted
Pendulum

This section illustrates the properties of the predictive con-
troller with additional feedback via the simulated control
of an inverted pendulum.

5.1 System model

An inverted pendulum without the cart dynamics is con-
sidered in this section. The model equations are:

ẋ1 = x2 (15)

ẋ2 =
ml

J
[sin(x1) g − cos(x1)u] (16)

where x1 is the pendulum angle, x2 its rotational velocity
and u the control torque. The control objective consists
of regulating the pendulum around the upright position
starting from the downward position x0 = [π 0]. The
following numerical values are used: m = 1, g = 9.81,
l = 1 and J = 1. In addition, the control is constrained,
−50 < u < 50. The sampling interval is 0.01s and the
time taken for the numerical optimization is δ = 0.2 s.

5.2 Control parameterization

This study follows [8] in that the input u(t) is
parametrised using

u(t) = θ(tk) e−
(t−tk)
p , (17)

where the time constant p = 0.2 s is chosen. The cost
function considered has no integral cost, i.e., Q = 0 and
R = 0. The prediction horizon is Tf = 1. A symbolic
Gauss-Newton optimisation technique is used to minimise
J(tk). Details of this approach can be found in [8].

5.3 Case of no uncertainty

In the absence of model errors and disturbances, control is
straightforward, and the cost function quickly reduces to 0
with time (see Figure 2). Clearly, the additional feedback
is inactive due to the absence of uncertainty, ∆x = 0.

5.4 Case of uncertainty and no additional
feedback

Uncertainty is introduced through both model mismatch
and multiplicative measurement noise with standard de-
viation 0.05. Model mismatch is obtained by choosing
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Figure 2: System responses, prediction error, control in-
put, and cost in the case of no uncertainty

ml
g = 0.7 for the simulated reality. This makes the “sys-

tem” much faster than the model.

The results using predictive control without additional
feedback are depicted in Figure 3. The system does not
settle down, and the cost function oscillates with time
showing potential instability. This shows how a predic-
tive controller can be destabilizing in the presence of un-
certainty when the disturbances cannot be compensated
sufficiently fast.

0 1 2 3
10

5

0

5

10

15
System

time

x

x
1

x
2

0 1 2 3
50

40

30

20

10

0

10
Control

time

u

0 1 2 3
3

2

1

0

1

2

3
Prediction error

time

∆ 
x

∆ x
1

∆ x
2

0 1 2 3
0

5

10

15

20

25
Cost

time

J

Figure 3: System response, prediction error, control in-
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5.5 Case of uncertainty and additional feed-
back

Linear time-varying feedback, which keeps the system in
the neighbourhood of the predicted output, is added to the
predictice controller as suggested in Section 4. The results
are illustrated in Figure 4. Though the control is rather
aggressive, the system settles down quickly. The system
response is comparable to the one obtained in the absence
of uncertainty (see Figure 2). This is the goal of the ad-
ditional feedback, i.e., the actual system response is close
to that predictied using the model, though the model is
far from the reality. The cost quickly reduces to zero, im-
plying stabilisation of the process. The prediction errors
are much smaller than those obtained without additional
feedback (see Figure 3). The additional feedback clearly
increases the robustness of the predictive controller.
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Figure 4: System response, prediction error, control input,
and cost in the case of uncertainty and additional feedback

6 Conclusion

A method that helps reduce the effect of uncertainty in
predictive control schemes dealing with fast nonlinear
systems has been presented. During the time required
for the computation of a new sequence of optimal in-
puts, a time-varying linear feedback controller regulates
the prediction error using available measurements. Using
the neighbouring extremal theory, it was shown that this
combination is indeed a first-order approximation to an
infinitely-fast receding horizon controller.

Predictive control with the addition of a fast feedback loop
was found particularly effective to control the swing up of

an inverted pendulum. The performance obtained with the
proposed scheme in the presence of uncertainty is compa-
rable to that obtained with standard predictive control in
the absence of uncertainty.

Though the methodology needs further investigation, the
results obtained so far are encouraging. Real time appli-
cation of the proposed control startegy is envisaged.
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