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Abstract: In the face of growing competition, the optimization of batch processes is a
natural choice for reducing production costs, improving product quality, and meeting
safety and environmental regulations. To guarantee optimality despite uncertainty,
a measurement-based scheme for tracking the active constraints can be used if the
optimal solution is determined by the constraints of the optimization problem. If the
system under consideration is feedback linearizable, then the optimal solution will
necessarily be on constraints. This paper shows that majority of two-reaction systems
taking place in isothermal semi-batch reactors belongs to this category. The results
are illustrated on several two-reaction systems.
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1. INTRODUCTION

Batch and semi-batch processes are of consider-
able importance in the batch chemical industry. A
wide variety of specialty chemicals, pharmaceuti-
cal products, and polymers are manufactured in
batch operations (Macchietto, 1998).

The operation of batch processes typically in-
volves following recipes that have been developed
in the laboratory. However, owing to differences
in both equipment and scale, industrial produc-
tion almost invariably necessitates modifications
of these recipes in order to ensure productivity,
safety, quality, and satisfaction of operational con-
straints (Wiederkehr, 1988) for which an opti-
mization approach can be used. The operational
decisions such as temperature or feed rate pro-
files are then determined from the solution to an
optimization problem, where the objective is of
economic nature and the various technical and
operational constraints are considered explicitly.

However, standard model-based optimization tech-
niques are ineffective since the models available
in the industry carry a large amount of un-
certainty (model errors and disturbances). So,
measurement-based optimization methods are of
considerable interest (Bonvin et al., 2001). For
these methods to be efficient, the optimal solution
should be determined by the constraints of the
problem (input bounds, state and terminal con-
straints). In such a case, optimality corresponds to
tracking the active path constraints using on-line
measurements (Visser et al., 2000), and making
the terminal constraints active in a batch-to-batch
scheme using off-line measurements (Srinivasan et
al., 2000).

This paper addresses the problem of whether
or not the solution is determined by constraints
so that measurement-based optimization schemes
can be applied. Towards this end, the compro-
mises in a terminal-cost optimization problem are
classified into two categories: (a) compromises in-
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trinsic to the dynamic system, and (b) compro-
mises resulting from the formulation of the opti-
mization problem. The first category corresponds
to the input having multiple conflicting influences
on the states of the system. Since these influences
act against each other, a compromise value of the
input (singular arc) needs to be used for the sake
of optimality. However, if there are no intrinsic
compromises in the system, the optimal input is
determined by the path constraints (input bounds
and state constraints). The compromises formu-
lated in the optimization problem are achieved by
a proper sequencing of the various intervals and,
more specifically, by the choice of the switching
instants between them.

In this paper, conditions that guarantee the ab-
sence of singular arcs in isothermal semi-batch
reactors with the feed rate used as manipulated
input are presented. These conditions are based
on the dynamic model only and not on the for-
mulation of the optimization problem (terminal
cost and constraints). If the dynamic system is
feedback linearizable, the optimal solution will
necessarily be on active constraints. It will be
shown that the vast majority of isothermal semi-
batch reaction systems with two reactions are
indeed feedback linearizable.

The paper is organized as follows. Section 2 briefly
reviews the formulation of the optimization prob-
lem, the reduction in dimensionality of chemical
reaction systems, and the concept of feedback
linearizability. Several isothermal semi-batch reac-
tion systems with two reactions are presented and
analyzed with respect to feedback linearizability
in Section 3. Three examples are provided in Sec-
tion 4 to illustrate the theoretical developments,
and conclusions are drawn in Section 5.

2. PRELIMINARIES

2.1 Optimization problem

In most batch chemical processes, the manip-
ulated inputs are flowrates that enter the sys-
tem equations linearly. Such systems are called
control-affine systems. Furthermore, the optimiza-
tion objective involves meeting certain specifica-
tions only at the end of the batch. Single input
systems will be considered for simplicity. The
terminal-cost optimization of a control-affine sin-
gle input system can be written as:

min
u(t)

J = φ(x(tf )) (1)

s.t. ẋ = f(x) + g(x) u, x(0) = x0 (2)

S(x, u) ≤ 0, T (x(tf ) ≤ 0 (3)

where J is the scalar performance index to be
minimized, x the states with initial conditions x0,
u the scalar input, S the path constraints (which
include state constraints and input bounds), T
the terminal constraints, f and g smooth vector
fields, φ a smooth scalar function representing the
terminal cost, and tf the final time which can be
either fixed or free.

2.2 Normal form of chemical reaction systems

Consider a homogeneous, constant-density, isother-
mal, semi-batch chemical reaction system com-
prising S species and R independent reactions (in-
dependent reactions being those which have both
independent stoichiometries and independent ki-
netics (Srinivasan et al., 1998)). The material bal-
ance equations and the continuity equation are
described by:

ṅ = V K rn(n, V ) + cin u n(0) = n0

V̇ = u V (0) = V0
(4)

where n is the S-dimensional vector of the num-
ber of moles, u the inlet volumetric flowrate, V
the reactor volume, K the S × R stoichiometric
matrix, rn the R-dimensional reaction rate vector,
cin the molar concentration of the inlet stream, n0

the initial number of moles, and V0 the initial vol-
ume. The terms V Krn(n, V ) and cin u represent
the effect of the reactions and the inlet stream
on the number of moles, respectively. The molar
concentrations are given by c = n/V .

Let the rows of the matrix N ∈ RS×(S−R−1) form
the null space of [K cin]T . Using singular value
decomposition (SVD), N can be computed as the
matrix of the right singular vectors corresponding
to the zero singular values of [K cin]T . Let l ∈
RS be the null vector of [KN ]T . The following
transformation,


 ξ
ξ̄

ξ̃


 =



K+

(
I − cinl

T

cT
inl

)
n

lT

cT
inl

n− V

NTn


 (5)

where the superscript + denotes the Moore-
Penrose pseudo inverse, takes the system (4) to
the normal form (Srinivasan et al., 1998):

ξ̇ = V r, ˙̄ξ = 0, ˙̃
ξ = 0, and V̇ = u. (6)

ξ corresponds to the reaction variants, while ξ̄
and ξ̃ are the reaction and flow invariants. The
invariants can be removed and the reduced system[

ξ̇

V̇

]
=

[
V r
0

]
+

[
0
1

]
u = f(ξ, V ) + g u (7)

of dimension (R + 1) is considered for analysis.
This model reduction, which uses no information



on the kinetics except for the independence of
reactions, eliminates the redundancy in n using
information present in the stoichiometric matrix.
It is possible that the kinetics are such that the
dimension of the space that is controllable from
the input is less than (R + 1), thereby making a
further model reduction possible.

2.3 Feedback linearizability

The concept of feedback linearization will be used
for characterizing the optimal solution of (1)-
(3). A few definitions related to Lie algebra are
presented first.

Definition 1. (Nijmeijer and van der Schaft, 1990)
Let a(x) and b(x) be vector fields. The Lie bracket
[a, b] is defined as:

[a, b] =
∂b

∂x
a− ∂a

∂x
b (8)

The following notation will be used: [a, b] = ab,
[a, [a, b]] = a2b, and [a, [ai−1, b]] = aib.

Definition 2. The distribution D = span{a1(x),
..., ad(x)} is involutive if it is closed under Lie
bracketing, i.e., ai, aj ∈ D ⇒ [ai, aj ] ∈ D, ∀i, j.

Definition 3. (Nijmeijer and van der Schaft, 1990)
A control-affine system is feedback linearizable
around x0 if, in the neighborhood of x0, there exist
a transformation z = T (x) and a feedback law
u = p(x) + q(x)v, q(x) �= 0, such that the new
states z and the new input v satisfy the linear
differential equation ż = Az + Bv .

The necessary and sufficient conditions for feed-
back linearizability are stated next.

Theorem 4. (Nijmeijer and van der Schaft, 1990)
System (2) is feedback linearizable iff (a) the set
of vector fields {g, fg, ... fd−2g} is involutive, and
(b) the vector fields {g, fg, ..., fd−1g}) are linearly
independent, where d is the dimension of f and g.

Theorem 5. (Benthack, 1997) If System (2) is
feedback linearizable, the optimal solution of (1)-
(3) is on the boundary of the admissible region.

The reader is referred to (Benthack, 1997; Palanki
et al., 1993) for the proof. Intuitively, if the system
is feedback linearizable, the system can be trans-
formed into a chain of integrators, implying that
the input cannot have multiple conflicting effects
on the states of the system. So, the solution is
determined by the constraints of the problem for
any terminal-cost optimization problem, whatever
the cost function and the constraints might be. On
the other hand, if the system is not feedback lin-
earizable, depending on the cost function and the

constraints, the solution may have intervals where
the input is not determined by the constraints
(singular intervals). However, it is interesting to
note that the condition of feedback linearizability
is sufficient, but not necessary, for the optimal
solution to be determined by problem constraints,
i.e., the system may not be feedback linearizable
and yet the optimal solution is on the constraints.

For a system with two reactions (R = 2, d = 3),
involutivity of {g, fg} implies that the vectors g,
fg, and gfg are linearly dependent. With fT =[
V r1 V r2 0

]
and gT =

[
0 0 1

]
, the involutivity

condition requires:

∆inv ≡ det([g, fg, gfg]) (9)

=
∂(V r1)
∂V

∂2(V r2)
∂V 2

− ∂(V r2)
∂V

∂2(V r1)
∂V 2

= 0

The linear independence condition is given by:

∆ind ≡ det([g, fg, f2g]) �= 0 (10)

Though the linear independence condition is im-
portant for systems with more than two reactions,
it plays a minor role when there are only two
reactions. Suppose ∆ind = 0 everywhere. Then,
the dimension of the space controllable from the
input is not R + 1 = 3 but 2. In other words,
the input sees only one reaction and, thus, no
compromise is possible. The kinetics are such that
a further model reduction is possible and the
reduced system (which has one reaction and two
states) is trivially feedback linearizable.

3. A CATALOG OF SYSTEMS WITH TWO
REACTIONS

In this section, several isothermal semi-batch re-
action systems with two reactions are considered
and checked whether or not the system is feedback
linearizable. If the two reactions compete from the
point of view of the manipulated input, then the
system is not feedback linearizable. The compe-
tition results in a compromise and, thus, the op-
timal feeding policy is not necessarily determined
by the constraints. The following notations will be
used:

• A is the reactant in the reactor at time t = 0.
• B is the reactant to be fed.
• C and D are products.
• IA and IB are impurities present with A and

B, respectively.

Table 1 summarizes the results found for some
basic chemical reaction schemes. Most of them
gives rise to a feedback linearizable system, for
which the optimal feeding policy will necessarily



# Kinetic model Description ∆ind ∆inv Feedback linearizable

1 Single reaction A + B
k→ C ∆ind �= 0 - yes

2 Reversible reaction A + B
k1
⇀↽
k2

C ∆ind �= 0 - yes

3 Production of Isomers
A + B

k1→ C

A + B
k2→ D

∆ind �= 0 - yes

4 Consecutive series reactions
A + B

k1→ C

C
k2→ D

∆ind �= 0 ∆inv = 0 yes

5 Consecutive parallel reactions
A + B

k1→ C

A + C
k2→ D

∆ind �= 0 ∆inv = 0 yes

6 Consecutive parallel reactions
A + B

k1→ C

C + B
k2→ D

∆ind = 0 ∆inv = 0 yes

7 Reactions with impurity
A + B

k1→ C

A + IB
k2→ D

∆ind �= 0 ∆inv = 0 yes

8 Reactions with impurity
A + B

k1→ C

IA + B
k2→ D

∆ind = 0 ∆inv = 0 yes

9 Reactions with impurity
A + B

k1→ C

C + IA
k2→ D

∆ind �= 0 ∆inv = 0 yes

10 Reactions with impurity
A + B

k1→ C

C + IB
k2→ D

∆ind �= 0 ∆inv = 0 yes

11 Reactions with decomposition
A + B

k1→ C

A
k2→ D

∆ind �= 0 ∆inv = 0 yes

12 Reactions with decomposition
A + B

k1→ C

B
k2→ D

∆ind �= 0 ∆inv �= 0 no

13 Parallel reactions (a �= 1)
A + B

k1→ C

aA + B
k2→ D

∆ind �= 0 ∆inv �= 0 no

14 Parallel reactions (b �= 1)
A + B

k1→ C

A + bB
k2→ D

∆ind �= 0 ∆inv �= 0 no

Table 1. Feedback linearizability of isothermal reaction systems
(Feed rate of B is manipulated)

be determined by the constraints. In Cases 1-3,
there is only one independent reaction and hence
there is no intrinsic compromise. If B does not
intervene in the second reaction (Cases 4, 5, 7,
9, 10, 11), the absence of compromise is obvious.
Interestingly, if B reacts with a product (Case
6) or with an impurity present in the reactor
(Case 8), the two reactions are dependent and
there is no compromise possible between them.
However, compromise solutions are possible if B
decomposes (Case 12) or reacts with A in more
than one way (Cases 13-14) since, in such a case,
the problem of selectivity arises.

4. EXAMPLES

Instead of providing a detailed description of all
cases, three examples are considered correspond-
ing to: (1) ∆ind �= 0, ∆inv = 0, (2) ∆ind = 0,
∆inv = 0, and (3) ∆ind �= 0, ∆inv �= 0.

4.1 Consecutive series reactions: Case 4

Reaction system: A + B
k1→ C

k2→ D

Kinetics:

rn1 =
k1nAnB

V 2
, rn2 =

k2nC

V

Transformations:

n → ξ : ξ1 = nA0 − nA, ξ2 = nD

ξ → n :




nA = nA0 − ξ1,
nB = nB0 − ξ1 + cBin

(V − V0)
nC = ξ1 − ξ2, nD = ξ2

Evaluation of ∆ind and ∆inv using (9)-(10):

∆ind =
k2
1k2 cBin

V 4
n2

A (nB − cBinV )

∆ind = 0 ⇔ nA = 0 or nB = cBinV . However,
nA = 0 occurs only at the end of the reaction.
Likewise, nB = cBinV implies cB = cBin which
is not possible when nA �= 0. So, ∆ind �= 0
throughout the chemical reaction.
Here ∆inv = 0. So, the system is feedback lin-
earizable and, for any optimization problem, the
solution is determined by the constraints.

Objective: Maximize production of C.
Constraints: Input bounds, constraint on the vol-
ume in the reactor.



max
u(t),tf

J = nC(tf )

s.t. System dynamics

umin ≤ u ≤ umax, V (tf ) ≤ Vmax

Optimal Solution:

• As seen in Figure 1, the input is initially
at the upper bound, u = umax, in order to
increase nB as quickly as possible and thus
maximize the rate of reaction.

• Once the volume reaches Vmax, the input is
set to zero.

• The number of moles of C decreases after
a certain time due to the second reaction.
So, to maximize nc, the terminal time tf is
determined such that dnc

dt

∣∣
tf

= 0.

For the numerical values given in Table 2, the
optimal cost is J = 0.40 mol. Note that there is
compromise related to the choice of the terminal
time but no compromise value for u(t) which is
always on either one of the input bounds.

k1 0.5 l/(mol h)
k2 0.02 1/h
cB,in 5 g/l

umin 0 l/h
umax 0.01 l/h
Vmax 1 l

nAo 1 g/l
nBo 0 g/l
Vo 0.9 l

Table 2. System parameters, operating
constraints and initial conditions
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Fig. 1. Optimal feedrate for Example 1

4.2 Consecutive parallel reactions: Case 6

Reaction system: A + B
k1→ C, B + C

k2→ D.
Kinetics:

rn1 =
k1nAnB

V 2
, rn1 =

k2nBnC

V 2

Transformations:

n → ξ : ξ1 = nA0 − nA, ξ2 = nD

ξ → n :




nA = nA0 − ξ1
nB = nB0 − ξ1 − ξ2 + cBin

(V − V0)
nC = ξ1 − ξ2, nD = ξ2

Evaluation of ∆ind:
Here ∆ind = 0. It can be checked that n

−(k2/k1)
A

((k2 − k1)nC − k1nA) remains constant through-
out the reaction. Thus, ξ2 can be eliminated from
the state space and computed algebraically using:

ξ2 = ξ1 +
k1

k2 − k1

(
n

((k1−k2)/k1)
A,0 n

(k2/k1)
A − nA

)

So, there is only one independent reaction and the
system is feedback linearizable.

Objective: Maximize production of C.
Constraints: Input bounds, constraint on the vol-
ume in the reactor, constraint on the maximum
number of moles of D.

max
u(t),tf

J = nC(tf )

s.t. System dynamics

umin ≤ u ≤ umax, V (tf ) ≤ Vmax

nD(tf ) ≤ nD,max = 0.05 mol

Optimal solution:

• As seen in Figure 2, the input is initially at
the upper bound, u = umax.

• For the numerical values considered (Ta-
ble 2), the constraint nD(tf ) ≤ nD,max is
more restrictive than V (tf ) ≤ Vmax. So, the
input switches to zero so as to be able to
satisfy nD(tf ) = nD,max.

• The number of moles of C decreases after
a certain time due to the second reaction.
So, to maximize nc, the terminal time tf is
determined such that dnc

dt

∣∣
tf

= 0.

The optimal cost is J = 0.33 mol. Here, the com-
promises that constitute the optimization problem
are reflected in the choice of the switching and
final times. Despite the fact that B appears in
both reactions, there is no compromise value for
u(t), and the solution is on the input bounds.
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Fig. 2. Optimal feedrate for Example 2

4.3 Reactions with decomposition: Case 12

Reaction system: A + B
k1→ C, B k2→ D.

Kinetics:

rn1 =
k1nAnB

V 2
, rn1 =

k2nB

V



Transformations:

n → ξ : ξ1 = nA0 − nA, ξ2 = nD

ξ → n :




nA = nA0 − ξ1
nB = nB0 − ξ1 − ξ2 + cBin(V − V0)
nC = ξ1, nD = ξ2

Evaluation of ∆inv:

∆inv =
2 k1k2nAcBin(cBinV − nB)

V 5

The system is not feedback linearizable since
∆inv �= 0. The optimal solution can take values
which are not on the constraints (singular) and
can be computed as follows:

using =−∆ind

∆inv

=
nB(2k1nAcBinV + 2k2cBinV

2 − k1nAnB)
2 cBinV (cBinV − nB)

Objective: Maximize production of C.
Constraints: Input bounds, constraint on the vol-
ume in the reactor, constraint on the maximum
number of moles of D, constraint on the final time.

max
u(t),tf

J = nC(tf ) (11)

s.t. System dynamics

umin ≤ u ≤ umax, V (tf ) ≤ Vmax

nD(tf ) ≤ nD,max = 0.02 mol

tf ≤ tf,max = 20 h

Optimal solution:

• As seen in Figure 3, the input is initially at
the upper bound, u = umax.

• The compromise between the production of
C and D is reached through using.

• Since C is not consumed by another reaction,
the optimal value of tf is tf,max.

For the numerical values given in Table 2, the
optimal cost is J = 0.41 mol.
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Fig. 3. Optimal feedrate for Example 3

Remark: Even if there is a possibility of a singular
arc, its presence or absence in the optimal solution
depends on the optimization problem. For exam-
ple, if the constraint on nD(tf ) had not been there

in (11), the solution will not have any singular arc,
i.e., u = umax till ts = 10 h and u = umin for the
rest of the batch with tf = 20 h.

5. CONCLUSIONS

This paper investigates feedback linearizability of
isothermal semi-batch reaction systems, which in
turn guarantees that the optimal feed rate policy
will be on the constraints of the optimization
problem. Reaction systems with a single indepen-
dent reaction are trivially feedback linearizable. A
majority of reaction schemes involving two reac-
tions also belong to this category.

Since for most isothermal two-reaction systems,
the optimal feed rate policy is indeed determined
by the constraints of the optimization problem,
a measurement-based scheme for tracking the
active constraints is an interesting alternative to
numerical model-based optimization, especially in
the presence of uncertainty.
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