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Abstract: Run-to-run optimization methodologies exploit the repetitive nature
of batch processes to determine the optimal operating policy in the presence of
uncertainty. In this paper, a parsimonious parameterization of the inputs is used and
the decision variables of the parameterization are updated on a run-to-run basis using
a feedback control scheme which tracks signals that are invariant under uncertainty. In
this run-to-run framework, terminal constraints of the optimization problem and cost
sensitivities constitute the invariant signals. The methodology is adapted to improve
the cost function from batch to batch without constraint violation.
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1. INTRODUCTION

Batch and semi-batch processes are of great im-
portance to the fine chemicals industry. Three
characteristics that differentiate batch processes
from continuous processes are: (i) unsteady-state
operation, (ii) limited operation time, and (iii) the
repetitive nature. Dynamic optimization of batch
processes has received increased attention since, in
the face of competition, it is a natural choice for
reducing production costs. In addition, industry
can see the potential of process optimization for
improving product quality and meeting safety and
environmental regulations (Bonvin, 1998).

Classically, optimal control theory has been uti-
lized in the literature to calculate the input pro-
file for specific batch processes (Ray, 1981). In
most cases, the proposed implementation has been
open-loop. However, open-loop implementation of
the optimal input trajectory may not lead to
optimal performance due to uncertainty in initial

conditions and model parameters, and to process
disturbances.

Traditionally, batch processes have been operated
with very little instrumentation. However, in the
last two decades, sensor technology has improved
considerably for the purpose of monitoring the
production on-line (Nichols, 1988). For instance,
the measurement of melt index and monomer con-
centration by IR spectroscopy is fairly standard
in the polymer industry. Therefore, these mea-
surements can be used effectively to cope with
uncertainty. In this way, the focus of optimization
is shifting from a model-based framework to a
measurement-based framework.

Since batch processes are intended to be run re-
peatedly, it is logical to exploit this for process
optimization. The goal of batch-to-batch opti-
mization is to find iteratively the optimal oper-
ating conditions in the presence of uncertainty,
while performing the smallest number of sub-
optimal runs and preferably no unacceptable runs.
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There have been several proposals reported in
the literature that take advantage of batch-to-
batch similarities for input profile optimization
of batch processes (Filippi-Bossy et al., 1989;
Zafiriou and Zhu, 1990; Fotopoulos et al., 1994).
Run-to-run optimization is also of interest in the
semiconductor and related industries (Scheid et
al., 1994; Zafiriou et al., 1995; Adivikolanu and
Zafiriou, 1998; Lee et al., 2000). On the one hand,
model-free approaches such as evolutionary oper-
ation (Box, 1957; Box and Draper, 1987; Clarke-
Pringle and MacGregor, 1998) or MultiSimplex
(MultiSimplex, 1999) use many batch runs to con-
verge to an optimal solution. On the other hand,
model-based approaches could converge faster but
they suffer from the lack of accuracy of the model,
especially when the model needs to be identified
in the presence of noise (Martinez, 2000). As a
compromise, a scheme that only necessitates the
availability of a simplified model will be proposed
in this paper.

Constraints play an important role in optimiza-
tion. In continuous processes, the optimal oper-
ating policy is often determined by constraints
(Maarleveld and Rijnsdorp, 1970). The same is
true for batch processes, but the dependence of
the input profile on the constraints is consid-
erably more involved (especially terminal con-
straints, i.e., constraints which depend only on
the final condition of the batch). Typical terminal
constraints arise from selectivity considerations,
where the concentration of particular species (e.g.
side products) must be less than specified values
to facilitate down-stream processing or simply to
avoid additional separation steps.

The run-to-run optimization methodology pro-
posed here is based on the concept of invariants
(Visser et al., 2000; Bonvin et al., 2001). The
idea is to identify those characteristics of the
optimal solution that are invariant with respect
to uncertainty and provide them as references
to a feedback control scheme. It will be shown
in this paper that, in the run-to-run framework,
the invariants correspond to the active terminal
constraints and cost sensitivities with respect to
input parameters. Thus, a key issue in achieving
optimality is to keep the terminal constraints ac-
tive despite uncertainty.

Section 2 introduces the problem of measurement-
based optimization while Section 3 reviews the
available run-to-run optimization schemes. The
invariant-based optimization is introduced in Sec-
tion 4, and the optimization via regulation of
invariants is discussed in Section 5. The results
are illustrated on a simulated chemical reaction
system with selectivity constraints in Section 6,
and Section 7 concludes the paper.

2. MEASUREMENT-BASED OPTIMIZATION
OF BATCH PROCESSES

The study will be restricted to a typical problem
structure frequently encountered in batch process
optimization. In most batch chemical processes,
the manipulated inputs are flow rates that enter
the system equations in an affine manner. Exam-
ples of typical manipulated inputs include flow
rates of hot and cold fluids, and flow rates of reac-
tants in the semi-batch scenario. The correspond-
ing systems are called affine-in-input or control-
affine systems. Furthermore, the batch objective
involves meeting certain specifications only at the
end of the batch. Typical cost functions are the
maximization of yield or selectivity at final time.
Thus, the objective function depends only on the
final state. Without loss of generality, the final
time, tf , will be assumed to be fixed, since the
case of free final time can be transformed into one
where the final time is fixed.

2.1 Problem Formulation

Let us assume that the parameters of the model,
θ, are unknown but do not vary from batch to
batch. This assumption is made since typically
only this type of uncertainty can be handled in
a run-to-run framework. The methodology could
also be applied to the case where θ varies ‘slowly’
from batch to batch. However, fast batch-to-batch
variations and random variations within the batch
cannot be handled with the run-to-run schemes
presented in this paper.

To cope with this uncertainty, the run-to-run op-
timization utilizes measurements taken from one
batch operation to improve the operating policy
in subsequent batches. The fact that batch oper-
ation is repetitive is exploited to converge to the
optimal operating policy over several batch runs.
The run-to-run terminal-cost optimization prob-
lem of control-affine systems in the presence of
uncertainty and measurements can be formulated
mathematically as follows:

min
uk(t)

Jk = φ(xk(tf )) (1)

s.t. ẋk = f(xk, θ) + g(xk, θ) uk + dk (2)

xk(0) = x0

yk = h(xk, θ) + vk

S(xk, uk) ≤ 0

T (xk(tf )) ≤ 0

given yj(i), ∀ i, ∀j < k

where Jk is the cost function, xk(t) ∈ �n are the
states, uk(t) ∈ �m are the inputs, and dk(t) is the



process noise of the kth batch. Let y(t) ∈ �p be
the combination of states that can be measured,
yk(i) the ith measurement in time taken during
the kth batch, and vk(t) the measurement noise.
f : �n → �n and g : �n → �n×m describe
the system dynamics, S a σ-dimensional vector
of path constraints (input bounds and state con-
straints), T a τ -dimensional vector of terminal
constraints, and φ the cost function. The objective
is to utilize the measurements from the previous
(k−1) batches to handle the uncertainty in θ and
find the optimal input policy for the kth batch.

2.2 Piecewise Analytic Characterization of the
Optimal Solution

The solution of terminal-cost optimization of
control-affine systems has the following properties
(Bryson, 1999):

• The inputs are in general discontinuous.
• The inputs are analytic in the intervals in be-

tween discontinuities. The time at which an
input switches from one interval to another
is called a switching time.

• Two types of arcs (nonsingular and singular)
are possible between switching instants. In a
nonsingular arc, the corresponding input is
determined by a path constraint, whilst the
input lies in the interior of the feasible region
in a singular arc (Palanki et al., 1993).

The pieces described above are sequenced in an
appropriate manner to obtain the optimal solu-
tion. Though analytical expressions are available
for either type of arcs, the inputs (especially in
singular arcs) can be considered to be piecewise
constant or linear for ease of implementation.
Thus, the type and sequence of arcs, the switching
times, and possibly a few variables corresponding
to the singular intervals, completely parameterize
the inputs. Determining the type and sequence of
the arcs is, in general, a combinatorial problem,
which annihilates the advantage of having an an-
alytical solution in each arc.

So, what is proposed here is to use the standard
numerical optimization on a simplified model of
the system and the process engineer can inter-
pret the numerical results to infer the type and
sequence and of arcs (during which intervals the
input bounds or path constraints are active, or
whether the input is singular, and which terminal
constraints are active). In this way, the shape of
the optimal solution is available, the parameters
for which will be adapted in a run-to-run manner
as discussed later.

3. RUN-TO-RUN OPTIMIZATION SCHEMES

Let the decision variables of the input parameter-
ization, i.e., the switching times and the variables
describing the inputs in the singular intervals, be
represented by π, and let πk be the set of decision
variables for the kth batch run. The goal of the
run-to-run optimization is to choose the decision
variables in such a manner that, as k increases,
the computed solution approaches the (unknown)
optimal solution for the real system. Depending
upon whether or not a model is used, various
strategies for run-to-run optimization are possible
as will be discussed in the following subsections.

3.1 Model-free Evolutionary Optimization

In this approach, no model is used, and the
performance of a proposed input is evaluated
experimentally. The procedure for evolutionary
optimization is as follows:

(1) Parameterize the inputs using a finite num-
ber of decision variables π and choose the
corresponding initial values.

(2) Run the batch with the given inputs and
compute the performance index and the path
and terminal constraints from the measure-
ments.

(3) Sequentially perturb every component of π,
each time re-running the batch in order to
calculate the corresponding gradient and,
thus, the search direction.

(4) Use an optimization algorithm (such as
steepest descent) to update π. Repeat Steps
2–4 until convergence.

As can be seen, dim(π) + 1 batch runs are neces-
sary at each optimization iteration. Also note that
the optimization algorithms that do not use gra-
dient information typically converge more slowly,
thereby requiring even more process runs.

3.2 Evolutionary Optimization with Model-based
Gradient

The expensive part in the evolutionary optimiza-
tion approach, in terms of the number of batch
runs, is the calculation of the gradient (Step 3).
The key idea in the model-based gradient ap-
proach is to use a dynamic model of the process,
instead of an experimental run, to calculate the
gradient. The model can be run as many times as
the dimension of π to obtain the gradient. Another
possibility is to use the Hamiltonian formulation,
where the gradient is calculated from the states
and adjoint variables. The states are measured



or inferred from an experimental run. The ad-
joint variables are obtained from the model of
the system by integrating the adjoint equations
backward in time (Zafiriou and Zhu, 1990; Dong
et al., 1996).

3.3 Optimization via Model Refinement

This approach uses a model of the process for opti-
mization and refines it using information gathered
from previous batches. An optimization problem
is solved before each batch run using the refined
model. The procedure is as follows:

(1) Choose initial guesses for the parameters θ.
(2) Use the model and an optimization algorithm

to obtain the optimal π.
(3) Run the batch with the optimal π.
(4) Use an identification algorithm and all the

available measurements to obtain a new es-
timate for θ. Repeat Steps 2–4 until conver-
gence.

3.4 Discussion

The model-free evolutionary optimization has the
drawback of using numerous batch runs to calcu-
late the gradient, whilst, when a model is used,
the accuracy of the model becomes critical. If the
model has to be refined, care should be taken to
guarantee that the input is persistently exciting
to uncover the parameters that have to be iden-
tified. This is normally not the case when the
optimal input is implemented. Thus, there is a
clear conflict between the identification and opti-
mization objectives (Roberts and Williams, 1981).
This conflict has also been studied in the adaptive
control literature where it is referred to as the dual
control problem (Wittenmark, 1995).

The scheme proposed in this paper attempts to
resolve this conflict. The scheme lies in between
the model-free evolutionary optimization and evo-
lutionary optimization with model-based gradi-
ent. The gradient is obtained implicitly from the
structure of the problem using the concept of
invariants. Thus, no model is used for the imple-
mentation and no parameters need to be adapted.
However, a simplified model is necessary to devise
the scheme, namely to determine the shape of the
inputs correctly.

4. INVARIANT-BASED OPTIMIZATION

The aim of this paper is to identify those impor-
tant characteristics of the optimal solution which

are invariant under uncertainty and provide them
as references to a feedback control scheme. Thus,
optimality is achieved by regulating the chosen
references, and no numerical optimization is re-
quired from run-to-run.

To guarantee optimality despite uncertainty, the
necessary conditions have to be satisfied even in
the presence of uncertainty. Thus, the invariants
simply correspond to the necessary conditions.

4.1 Necessary Conditions of Optimality

After parameterization of the inputs as u(π, x, t),
the optimization problem (1) can be written as:

min
νk,πk

J̃k = φ(xk(tf )) + (νk)TT (xk(tf )) (3)

s.t. ẋk = f(xk, θ) + g(xk, θ) u(πk, xk, t) + dk

xk(0) = x0

yk = h(xk, θ) + vk

νk ≥ 0

given yj(i), ∀ i, ∀j < k

where νk are the τ -dimensional Lagrange multipli-
ers for the terminal constraints. When the inputs
are determined by path constraints, u(π, x, t) in
that arc is obtained by differentiating S(x, u) with
respect to time. Since the path constraints are
implicit in the choice of u(π, x, t), they do not
appear explicitly in (3).

Without loss of generality, let all terminal con-
straints be active - the inactive constraints being
simply removed from the optimization problem.
Consequently, the number of decision variables
arising from the parsimonious parameterization,
nπ, need to be larger than τ in order to satisfy all
terminal constraints.

An important assumption here is that the uncer-
tainty does not affect the sequence of arcs and
the set of active terminal constraints, though,
the decision variables associated with the input
parameterization can vary with the uncertainty.
This assumption can be easily verified with a few
numerical experiments.

The necessary conditions of optimality for (3) are:

T (xk(tf )) = 0 and
∂φ

∂πk
+ (νk)T ∂T

∂πk
= 0(4)

Next, those variations in πk which affect the ter-
minal constraints are separated from those which
do not affect the terminal constraints. For this, a
transformation (πk)T → [(π̄k)T (π̃k)T ] is sought
such that π̄k is a τ -dimensional vector and π̃k is



of dimension (nπ − τ) with ∂T
∂π̃k = 0. This trans-

formation is, in general, nonlinear and requires
the solution of some partial differential equations.
However, a linear transformation which satisfies
these properties can always be found in the neigh-
borhood of the optimum. Then, the necessary
conditions for optimality of (3) are:

T (xk(tf )) = 0, and
∂φ

∂π̃k
= 0,

∂φ

∂π̄k
+ (νk)T ∂T

∂π̄k
= 0 (5)

The constraints T (xk(tf )) = 0 determine the τ
decision variables π̄k, whilst π̃k are determined
from the optimality conditions ∂φ

∂π̃k = 0. Thus,
π̄k are referred to as the nonsingular parameters
(determined by the terminal constraints) and π̃k

as the singular parameters (not determined by the
terminal constraints). The Lagrange multipliers
νk are calculated from ∂φ

∂π̄k + (νk)T ∂T
∂π̄k = 0.

4.2 Signals Invariant under Uncertainty

From the necessary conditions of optimality, a
set of signals Ik = h(xk(tf )) is constructed such
that the optimum corresponds to Ik = 0, also in
the presence of uncertainty. For the nonsingular
parameters, the invariants correspond to the ter-
minal constraints h(xk(tf )) = T (xk(tf )) and, for
the singular parameters, to the cost sensitivities
h(xk(tf )) = ∂φ

∂π̃k .

4.3 Sensitivity of the Cost

The sensitivity of the cost to non-optimal oper-
ation is in general much larger for nonsingular
parameters than for singular parameters. For a
nonsingular parameter π̄k

i , ∂φ
∂π̄k

i

is nonzero since
the necessary condition of optimality demands
∂φ
∂π̄k

i

+ (νk)T ∂T
∂π̄k

i

= 0. So, when π̄k
i deviates from

its optimal value, the change in cost is propor-
tional to ∂φ

∂π̄k
i

which is non-zero. In contrast, for

a singular parameter π̃k
i , ∂φ

∂π̃k
i

= 0. So, a small

deviation in π̃k
i will cause a negligible loss in cost.

In summary, it is far more important to regulate
the terminal constraints T than the sensitivities
∂φ
∂π̃k . Consequently, it is often sufficient in practi-
cal situations to focus attention on the terminal
constraints only.

5. OPTIMIZATION VIA CONTROL OF
INVARIANTS

As shown in the previous section, optimality can
be achieved by regulating the invariants via ma-

nipulation of the decision variables π correspond-
ing to the input parameterization. The invari-
ants are terminal constraints and sensitivities.
Together, these are referred to as generalized con-
straints. As shown above, it is often sufficient to
adapt the nonsingular parameters π̄k and keep the
singular parameters π̃k at the values determined
by the numerical optimization using a nominal
model.

It is also possible to consider the class of op-
timization problems where none of the parame-
ters is singular. Then, in the absence of terminal
constraints, the optimal operation corresponds to
constant conditions (inputs on the bounds with
no switching, such as the batch mode in chemical
reaction systems). Therefore, for these cases, the
optimization potential arises solely from the intro-
duction of terminal constraints such as selectivity
considerations.

For a given parameterization of the input, the
optimal solution consists of choosing πk such
that all the invariants are zero (i.e., terminal
constraints are active and ∂φ

∂π̃k = 0). Tracking
the invariants can also be interpreted as implicit
gradient computation. Therefore, the deviations
from the constraints represent a measure of non-
optimality and gives the direction to update πk.
The procedure is as follows:

(1) Use prior knowledge or a simplified model
to determine the active terminal constraints.
Inactive constraints are removed from the
optimization problem.

(2) Parameterize the input and make an initial
guess for the parameters πk, k = 1.

(3) Run the batch using the input corresponding
to πk. Compute the invariants Ik from the
measurements at tf .

(4) Update the input parameters using πk+1 =
πk +G Ik, with G being an appropriate gain
matrix. Set k = k + 1 and repeat Steps 3–4
until convergence.

This procedure is similar to evolutionary opti-
mization with the difference that additional batch
runs are not required to compute the gradient.
The gradient is obtained directly from the de-
viations of the invariants from zero. Thus, the
method proposed does not require to perturb the
system to calculate the gradient. So, the optimiza-
tion via control of invariants considerably reduces
the number of batch runs required for conver-
gence.

Also, in the presence of disturbances, the gradient
obtained using deviations of invariants from zero
has a lesser variance (by a factor 2) than the
gradient calculated using finite differences. This is
due to the fact that the gradient calculation using
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finite differences uses the difference of two quanti-
ties corrupted by noise, whilst that obtained from
invariants uses the difference between a fixed value
and a single noisy quantity.

Another attractive feature of this approach is
its model-free implementation. However, a simple
model is necessary to determine the active con-
straints on which the solution will lie.

The update law πk+1 = πk + G Ik can be im-
plemented easily using a feedback controller. The
system to be controlled is a static map represented
by S : πk → Ik and the reference is Iref = 0
(Figure 1). Note that S does not represent the dy-
namic system (2), but rather a static map between
the input parameterization and the invariants. In
this controlled system, the independent variable
is the batch index k and not the time t. The con-
troller, which has to be dynamic to avoid algebraic
inconsistency, is the only dynamic element in the
control scheme. Figure 1 also indicates the effects
of process noise (Ik

d ) and measurement noise (Ik
v )

on the invariants.

The idea presented here is similar to that of
tracking constraints using feedback for the sake
of optimality (Maarleveld and Rijnsdorp, 1970).
The particularities of the present work are: (i)
invariants which constitute terminal constraints
and cost sensitivities are considered, and (ii) the
independent variable of the control loop is the
batch number. Thus, the solution is implemented
open-loop within each batch, and the feedback
works over the successive batches.

The update law (Step 4) represents an integral
controller. To improve the rate of convergence, a
proportional or a derivative term can be added,

thus resulting in a PI or PID controller, for the de-
sign of which standard controller design method-
ologies can be used. To reject the effect of the
process noise Ik

d , a high-gain controller is required,
whilst to be insensitive to the measurement noise
Ik
v , the gain of the controller has to be as low as

possible. Thus, a compromise has to be reached in
the controller design.

Note that the static map S is a square system
since, as shown in Section 4, the number of in-
variants is equal to the number of parameters.
Even if the singular parameters and sensitivities
are removed, the map S̄ : π̄k → T k is again
square. However, the static map S varies consider-
ably with the operating point, which complicates
the controller design. Three possibilities exist for
the design of controllers: (a) design a single cen-
tralized multi-input multi-output controller, (b)
perform input-output pairing and design decen-
tralized single-input single-output controllers for
each input pair, and (c) use a decoupling scheme
so that a series of single-input single-output con-
trollers can be employed.

Once the solution has converged to the optimum,
the control loop need not kept active, and the
adaptation can be stopped. In this case, conver-
gence to the optimum can be tested by looking
at the error Iref − Ik or the adaptation can be
stopped after a fixed number of batch runs.

Since constraint violations may mean that the
batch is wasted, it is better to be sub-optimal
than to violate the constraints. Thus, heuristics
can be used to first render the solution feasible
and then approach the constraint from within the
feasible region. In addition, conservatism needs to



be introduced to account for disturbances (process
and measurement noise). For example, a backoff
from the active constraint Iref = 0 can be in-
troduced by defining Iref negative so that Ik re-
mains negative despite disturbances (Morari and
Zafiriou, 1989):

Iref = −max
z

∣∣∣∣ Id(z)
1 +G(z) S

∣∣∣∣ − max
z

∣∣∣∣G(z) S Iv(z)
1 +G(z) S

∣∣∣∣
where G(z) is the controller transfer function.
Note that Id(z) and Iv(z) are the z-transforms
of the noise sequence Ik

d and Ik
v , respectively.

6. EXAMPLE

The methodology proposed here will be applied to
a semi-batch reactor system for the acetoacetyla-
tion of pyrrole with diketene. The reaction system
considered is described below and, for a more
detailed description of the process and model, see
Ruppen et al. (1998):

A+B→C

2 B→D

B→E

C +B→ F

where A: pyrrole, B: diketene, C: 2-acetoacetyl
pyrrole, D: dehydroacetic acid, E: oligomers and
F: undesired by-products. The optimization prob-
lem is

max
u(t)

J = cc(tf )V (tf )

s.t. ċa = −k1cacb − (u/V ) ca
ċb = −k1cacb − 2 k2c2b − k3cb − k4cbcc

+(u/V ) (cbin − cb)
ċc = k1cacb − k4cbcc − (u/V ) cc
ċd = k2c

2
b − (u/V ) cd

V̇ = u

umin ≤ u ≤ umax

cb(tf ) − cbf,max
≤ 0

cd(tf ) − cdf,max
≤ 0

where ca, cb, cc and cd are the concentrations of
A, B, C, and D in mol/l, respectively. The feed
consists of only the species B with concentration
cbin . The goal is to maximize the number of
moles of C at the final time, by manipulating
the feedrate u (l/min), whilst satisfying the two
terminal constraints on the concentrations of B
and D. It is assumed that the concentrations of
Species B and D are measured at final time.

k1 0.053 l/mol min
k2 0.128 l/mol min
k3 0.028 min−1

k4 0.001 l/mol min
cbin

5 mol/l

cbf,max
0.025 mol/l

cdf,max
0.15 mol/l

umin 0 l/min
umax 0.002 l/min
tf 250 min

ca0 0.72 mol/l
cb0 0.05 mol/l
cc0 0.08 mol/l
cd0 0.01 mol/l
V0 1 l

Table 1. Parameter values and initial
conditions

For the parameter values given in Table 1, the op-
timal solution can be computed numerically (Fig-
ure 6). The input can be characterized as having
three intervals: (i) input at its upper bound, (ii)
input being singular, approximated by a constant
value, and (iii) input at its lower bound. From
the optimal solution, the natural parameterization
corresponds to the following set: tm, switching
time between the maximum input and the sin-
gular interval; us, the constant feedrate during
the singular interval; and ts, the switching time
between the singular interval and the minimum
input. The maximum amount of C obtained is
0.4884 mol. The optimal input parameters are
tm = 11.04 min, us = 0.0012 l/min, and ts =
224.38 min.
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Fig. 2. Nominal computed optimal input (the
singular arc is approximated by a constant
value us)

Two degrees of freedom are necessary to meet the
two terminal constraints. Thus, among the three
parameters that have been chosen, one of them
is singular. To find π̃, consider the influence of
the three parameters on the two constraints. The
gain matrix M : π → T , with π = [tm, us, ts]T

and T (x(tf )) = [cd(tf )− cdf,max
, cb(tf )− cbf,max

]T

is given by:

M =
[

0.6 × 10−3 1.5 × 102 0.5 × 10−3

1.9 × 10−5 0.2 × 102 1.1 × 10−3

]
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In the neighborhood of the optimum, the singular
parameter π̃ is given by the null space of M
and corresponds to π̃ = tm − 4 × 10−6us +
4.7 × 10−2ts. Since the contributions from us

and ts are negligible, tm essentially acts as the
singular parameter. Thus, tm can be left constant
at its numerically determined value of 11.04 min,
and the other two, π̄ = [us, ts]T , are adapted
using measurements in order to meet the two
constraints. The static map S̄ : π̄ → T obtained
at the optimum solution corresponds to the last
two rows of M.

The scale-independent diagonal dominance of S̄
is tested using the relative gain array technique,
which gives λ = 1.054 (Ogunnaike and Ray, 1994).
This implies that two independent control loops
could be constructed, with cb(tf ) being paired
with ts and cd(tf ) with us. PI-controllers tuned
for the static map S were used for the ts → cb(tf )
and us → cd(tf ) loops with proportional gains,
Kb = 100 l min/mol, Kd = 10−3 l2/mol min,
and integral time constants, Tib

= 0.33 min and
Tid

= 2 min, respectively.

The initial input parameterization us = 0.001
l/min and ts = 175 min is used. The initial
values are chosen in a conservative manner so
that the optimal solution is approached from the
safe side. A 5% zero-mean Gaussian multiplicative
measurement noise is added to the concentration
measurements of B andD. The results of a typical
series of runs are shown in Figures 3-5. It can be
seen that neither constraint is violated during the
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Fig. 5. Objective function evolution

series of 50 batches, therefore producing usable
product each time. Thus, the backoff introduced
efficiently accounts for the measurement noise.
Figure 5 illustrates the motivation for tracking
terminal constraints for the purpose of optimiza-
tion: as the constrained variables are pushed closer
to their limits, the objective function is improved,
in this case producing more of the desired product.
It is important to note that the main improvement
in the cost is realized in the first 10 batches.
Clearly after 25 batch runs, the improvement in
the cost is marginal and the adaptation can be
stopped. The cost averaged over 100 realizations,
each consisting of run-to-run adaptation over 50
batches, is J = 0.4878 mol. This small reduction
from the nominal optimum of 0.4884 mol is due
to the backoff introduced.



7. CONCLUSION

This work has demonstrated the effectiveness of
tracking terminal constraints for the run-to-run
optimization of a class of batch processes. The
update of the parameters required for optimiza-
tion is realized using a simple control scheme. The
update direction is obtained implicitly, thereby
avoiding the need to excite the system for the
estimation of the gradient.

The methodology has been adapted such that the
production of the desired product increases with
each progressing batch, without constraint viola-
tions. However, note that the technique proposed
is not inherently immune to constraint violations.
A proper choice of backoffs, initial conditions and
controller tuning are required to ensure that none
of the constraints is violated.

The design of the controller is an area which
merits further research. The gain matrix S varies
with the operating point, i.e., from one run to the
next. If this variation is large, more sophisticated
control methodologies are needed to avoid insta-
bility problems.
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