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Abstract

A unified framework for the modeling of a class of weight
handling equipment (WHE) is presented. The dynamic equa-
tions are obtained using Lagrange multipliers associated to ge-
ometric constraints between generalized coordinates. This ap-
proach provides a simple way to show differential flatness for
all WHEs of the class. The flatness property can then be ex-
ploited for motion planning.

1 Introduction

Many different types of weight handling equipment (WHE),
and in particular cranes, are used in various industries including
construction and naval transport [1]. The aim of their control
[2, 6, 7, 8, 9, 11, 13] is to increase productivity and operational
security by assisting the human crane operator.

Such devices can be decomposed into a fully actuated, ar-
ticulated mechanical structure (e.g. a crane with a rotate plat-
form and a boom or a gantry crane with moving bridge) with in
general one or two degrees of freedom, and a hoisting system
composed of ropes, winches and pulleys.

During operation, a duty cycle of a WHE consists of moving
the load from its initial position to its desired final destination
in its working space along a trajectory, avoiding obstacles and
sway [10, 14]. This requires motion planning for the position
of the load.

Our goal is to give a systematic way to obtain dynamic mod-
els of a class of WHEs and to show how to find trajectories
corresponding to a duty cycle exploiting the flatness property
[3, 4, 5] of the dynamic model.

To this aim, the derived model of the class of WHEs in-
volves Lagrange multipliers associated to geometric constraints
on the generalized coordinates. This contrasts with choosing a
minimal number of coordinates and eliminating the constraints.
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The form of the deduced model shows that each member
of the class is differentially flat and the coordinates of the load
constitute all or part of the components of a flat output, depend-
ing on the number of motors. Thus the solution of the motion
planning problem becomes an interpolation problem using suf-
ficiently smooth functions (e.g. polynomials).

The remaining part of the paper is organized as follows.
The next section gives three examples of WHEs. Section 3 de-
scribes the general model for two and three dimensional WHEs.
Flatness of the models is proven in Section 4. Then the solu-
tion of the motion planing problem is provided in Section 5.
The example of the 3D US Navy crane is studied in details in
Section 6 and some simulation results on its real reduced size
model are presented in Section 7.

2 Introductory examples

We will present three examples of WHEs and describe some of
their common points. This will then lead to a general system-
atic modeling procedure to be introduced in the next section.

Figures 1 to 3 represent respectively, a 2D overhead crane,
a 3D cantilever crane and a 3D US-Navy crane. The following
characteristics are noteworthy:

• The load moves in a subspace of either dimensionp = 2,
such as the overhead crane of Figure 1, orp = 3 as portrayed
in Figures 2 and 3.

• The WHE comprises the following elements:
• A working load of massm whose coordinates arexi, i =

1 . . . p.
• The hoisting system composed of motors winding ropes

and pulleys. The motors are supposed to be torque con-
trolled and each one delivers a torque notedTj where
j numbers the actuator.Lj stand for the different rope
lengths.

• A fully articulated mechanical structure on which are at-
tached the motors winching the ropes. In Figure 1 it is
fixed (the rail structure), in Figures 2 and 3 it corresponds
to a pole that can rotate under motor actuation.

• A mobile or main pulley whose coordinates arex0i i =
1, . . . , p
• A rail constraining the movement of the mobile pulley

might (Figures 1 and 2) or might not be present (Figure
3).
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Figure 1: Overhead crane
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Figure 2: 3D Cantilever crane

3 General formulation for 2D and 3D
WHEs

3.1 WHE description

Let p be the dimension of the working space withp ∈ {2, 3}.

Definition 1 (WHE) A WHE is constituted by the following el-
ements:i) a rigid articulated actuated mechanical system with
d ∈ {0, 1} degrees of freedom,ii) motors,iii) ropes,iv) pul-
leys,v) a load, and enjoys the following topographic proper-
ties:
1. There ares+ 1 motors fixed on the articulated structure.

2. There are as many ropes as motors.

3. A motor is linked to a pulley or to the load with a rope.

4. s ropes end on a unique pulley, called the mobile pulley. If
s = 0 there is no mobile pulley. Every other pulley is fixed
to the structure.

5. There is a unique rope going through the mobile pulley and
ending on the load.

6. Between the load and the mobile pulley there is no other
pulley.

Moreover, the following physical property is assumed. The mo-
bile pulley moves in a manifold of dimensionn ∈ (p−1, p).
This manifold is determined thanks to the constraints imposed
by the ropes and by possibly restricting the mobile pulley to
move along a rail. Ifn=p−1 the manifold is transversal to the
gravitational field.
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Figure 3: 3D US-Navy crane

Let us enumerate and order the fixed pulleys along each rope
starting from the motor winding the rope to the mobile pulley
or to the load. This is possible due to the previous definition.
Denote byri the number of fixed pulleys along theith rope
(i = 1 . . . s+ 1).

3.2 WHE modeling

We present here a Lagrangian approach to the WHE model-
ing. Hence, we start with the choice of generalized coordinates,
then express the Lagrangian and the geometric constraints. The
model is given in Theorem 1 below.

Consider an inertial base frame such that itspth axis is
pointed in the direction opposite tog, the gravity acceleration.
We introduce the following coordinates:

1. position of the working load:(x1, . . . , xp),

2. position of the mobile pulley (if it exists):(x01, . . . , x0p),

3. positions of the motors:(xi1, . . . , xip) for i = 1 . . . s+ 1,

4. positions of the fixed pulleys:(wij1, . . . , wijp) for i =
1 . . . s+ 1 andj = 1 . . . ri,

5. rope lengths:Li for i = 1 . . . s+ 1,

6. rope lengthL0 between the mobile pulley (if it exists) and
the motor winching the working load.

The load mass ism and the mobile pulley mass ism0. To each
motor fixed on the structure there is a corresponding equivalent
massmi, i = 1 . . . s+1. The coordinateL0 is not associated to
any mass. We assume that the rigid body with at most one de-
gree of freedom has an equivalent massM and its coordinates
coincide with the ones of the motor winching the load, namely
(x(s+1)1, . . . , x(s+1)p).

The reader can easily check that all fixed pulleys along each
rope can be virtually eliminated by placing the corresponding
motor at the position of the last pulley with an equivalent mass
obtained by adding to its own equivalent mass the sum of the
equivalent masses of all the pulleys removed. Each rope length
is then reduced by the sum of the constant rope distances be-
tween the pulleys removed along that rope. For notational con-
venience,Li’s stand for these new lengths. Because of space
limitations we suppose the following.



Assumptions
(A1) The mobile pulley is present. Consequently,s ≥ 1.
(A2) The angular velocities of the fixed pulleys are small

enough to neglect their quadratic effects w.r.t. the struc-
ture. We suppose that all the motors are located on the
structure along a line determined by the origin of the base
frame and by the position of the motor winching the load:
xji = αjx(s+1)i for j = 1 . . . s andi = 1 . . . p.

(A3) If the mobile pulley moves along a rail, the rail coincides
with the above line. Let us introduce a parameterc such that
c = 1 if the rail is present andc = 0 otherwise.

(A4) The crane has no redundant actuator or motor:s = p−
d− c.

(A5) If d = 1 the origin of the base frame is on the joint
axis of the articulated mechanical structure. The articulated
mechanical structure consists of either a rotational joint, to
which case the joint axis is colinear withg, or a prismatic
joint, to which case the joint axis is orthogonal tog. This
assumption eliminates the variablex(s+1)p. (The vertical
position of the motor winching the load remains constant.)

p d c s d+s+1
2 0 0 2 3
2 0 1 1 2
3 1 0 2 4
3 1 1 1 3

Table 1: Parameter values compatible with the assumptions

The number of actuators (i.e. the actuator of the articulated
structure and the motors winiding the ropes taken together)
equals tos+d+ 1. Table 1 gives the possible values of the
parametersp, d, c ands compatible with the assumptions.

The Lagrangian reads:

L=
1
2

(
m

p∑
i=1

ẋ2
i +m0

p∑
i=1

ẋ2
0i+M

p∑
i=1

ẋ2
(s+1)i+mi

s+1∑
i=1

L̇2
i

)
− g(mxp+m0x0p) (1)

Constraints on the rope lengths are present either due to ropes
terminating at the mobile pulley:

Cj(x01, . . . , x0p, x(s+1)1, . . . , x(s+1)p−1, Lj) = 0 (2)

j = 1 . . . s,

or due to the rope terminating at the working load, one for the
total length between the mobile pulley and the corresponding
motor, and one for the length between the load and the mobile
pulley:

Cs+1(x01, . . . , x0p, x(s+1)1, . . . , x(s+1)p−1, L0) = 0 (3)

Cs+2(x01, . . . , x0p, x1, . . . , xp, L0, Ls+1) = 0. (4)

An additional constraint is imposed by the motion compatible
with the degree of freedom of the structure. In view of the
above assumptions, the following constraint exists only ifp=3:

Cs+3(x(s+1)1, . . . , x(s+1)p−1) = 0 . (5)

The motion of the mobile pulley along the rail (if it is present)
is of the form:

Cs+p+k(x0k, x0p, x(s+1)k) = 0 k = 1 . . . p− 1. (6)

Denote byl the total number of constraints. If (6) is present,
l = s+ 2p− 1 andl = s+ p otherwise.

Here, the functionsC1, . . . , Cl are quadratic functions of all
their arguments. Moreover,C1, . . . , Cs+2 contain no product
involvingLj , for j = 0 . . . s+1. Their exact form is not needed
in the sequel (see Remark 2 below).

In place of obtaining an explicit differential model, we pre-
fer an implicit formulation with additional variables, known as
Lagrange multipliers.

Theorem 1 Assume that the constraints are independent in an
open subset of the generalized coordinate space. The dynami-
cal model associated to a WHE corresponding to Definition 1
reads:

mẍi = λs+2
∂Cs+2

∂xi
− δipmg i = 1 . . . p (7)

m0ẍ0i =
l∑

j=1

λj
∂Cj
∂x0i

− δipm0g i = 1 . . . p (8)

0 =
l∑

j=1

λj
∂Cj
∂L0

(9)

miL̈i=
l∑

j=1

λj
∂Cj
∂Li

+ Ti i = 1 . . . s+ 1 (10)

Mẍ(s+1)i=
l∑

j=1

λj
∂Cj

∂x(s+1)i
+Fi(Ts+2) i=1 . . . p−1 (11)

subject to Constraints (2)–(6), whereδip = 1 if i = p and
δip = 0 otherwise.T1, . . . , Ts+1 are the torques produced by
the motors on the structure andTs+2 the one produced by the
structure actuator.F1, . . . , Fp−1 are the generalized external
forces depending on the torque delivered by the structure actu-
ator.

Proof: We compute d
dt
∂L
∂q̇ − ∂L

∂q = Fq + τq
where q = (x1, . . . , xp, x01, . . . , x0p, L0, L1, . . . , Ls+1,
x(s+1)1, . . . , x(s+1)(p−1))T , τq are the constraint forces. We
have

Fq = (0, . . . , 0︸ ︷︷ ︸,T1, . . . , Ts+1, F1(Ts+2), . . . , F(p−1)(Ts+2))T .

2p+ 1

Taking total differential of the constraints leads to∑dim q
j=1

∂Ci
∂qj

dqj = 0, i = 1 . . . l, expressing that virtual
displacements are inker dC, wheredC is the matrix whose
entries are∂Ci∂qj

. Since the constraint forces compatible with the

virtual displacements are workless we have
∑dim q
i=1 τidqi = 0.

Thereforeτ = (τ1, . . . , τdim q) is a linear combination of the
lines ofdC:

τi =
l∑

j=1

λj
∂Cj
∂qi

i = 1 . . .dim q (12)

and the theorem is proved.

Remark 1 As announced in the introductory example, the left
hand side d

dt
∂L
∂q̇ of the model (7)–(11) is independent of the

specific topography of the WHE, whereas the right hand side
consists of the exterior forcesFq plus gravity terms∂L∂q and the
terms given by (12) which sum up the topographic specificity.



Remark 2 The exact form of the constraintsCj , j = 1 . . . l
are:

Cj=
1
2

p∑
i=1

(x0i − αjx(s+1)i)2−
L2
j

2
=0 j=1 . . . s, (13)

Cs+1=
1
2

p−1∑
i=1

(x0i − x(s+1)i)2 − L2
0

2
= 0, (14)

Cs+2=
1
2

p∑
i=1

(xi−x0i)2− (Ls+1−L0)2

2
= 0, (15)

Cs+3=
{

1
2

∑p−1
i=1 x

2
(s+1)i − r2 = 0 for rot. joint

t1x(s+1)2 − x(s+1)1t2 = 0 for prism. joint,
(16)

Cs+p+k=x0kx(s+1)p − x(s+1)kx0p = 0 k = 1 . . . p− 1
(17)

wheret = (t1, . . . , tp)T is the vector of joint axis of the ar-
ticulated structure andr is the constant distance between the
joint axis and the motor winching the load in the case of rota-
tional joint. Note that these formulas are not needed to state
and prove our main results.

4 Flatness

Assume that we exclude trajectories in free fall, namely such
thatẍp = −g, and such that∂Cs+2

∂xp
6= 0.

Theorem 2 WHEs defined by Definition 1 and satisfying (A1)–
(A5) are differentially flat. The flat output, denoted byx in the
sequel, can be chosen as(x1, . . . , xp), the coordinates of the
load, ands+d+1−p coordinates of the mobile pulley.

Proof: In view of the assumptions we need to distinguish the
four cases of Table 1. We provide the proof forp = 3, the
simplest cases withp = 2 are left to the reader. (Recall that
p = 2 impliesd = 0.)

Assume first thats = 2 = p − 1 and considerx =
(x1, . . . , xp, x0p) as a candidate flat output. Combining the
pth equation of (7) and (4) and the fact that theCi’s con-
tain no cross-terms involvingL0, Ls+2 by assumption, one ob-
tainsλs+2 as a function ofxp, ẍp andx0p since ∂Cs+2

∂xp
6= 0.

Next, as long asλs+2 6= 0 which is guaranteed by the as-
sumption thaẗxp = −g, the p − 1 first Equations of (7) ex-
press the remaining coordinatesx01, . . . , x0(p−1) as functions
of xj , ẍj , j = 1 . . . p, andx0p. Next, we use the2p + 1
equations (3)-(5), (8) and (9) to express the2p + 1 variables
L0, Ls+1, x(s+1)1, . . . , x(s+1)p−1, λ1, . . . , λp as functions of
x01, . . . , x0p, x1, . . . , xp, λs+2 and derivatives up to order2,
which in turn can be expressed as functions ofx and deriva-
tives up to order4. Now, by (2), one can expressL1, . . . , Lp
as functions of the previous ones. By (10),T1, . . . , Tp are also
obtained as functions of the previous ones and derivatives up
to order6, and finally,Ts+2 andλs+3 are obtained in a similar
way by (11), which proves thatx = (x1, . . . , xp, x0p) is a flat
output.

Consider now the case withs=c=1 (i.e. the rail constraints
(6) are present) and letx = (x1, . . . , xp) be the candidate flat
output. First, we use the2p equations (5)-(6) and (7) to ex-
press2p variablesx01, . . . , x0p, λs+2, x(s+1)1, . . . , x(s+1)p−1

in function ofxj , ẍj , j = 1 . . . p. We proceed using Equations

(3), (2), (4) and (9) to express the rope lengthsL0, L1, L2 and
λs+1 in function ofx, ẍ. Next, we use Equation (8) to obtain
λs, λs+p+1, λs+p+2 as functions ofx = (x1, . . . , xp) and their
derivatives up to order4. Finally, we use Equations (10) and
(11) to expressT1 . . . Ts+2 andλs+3 in function ofx and their
derivatives up to order6 which proves thatx = (x1, . . . , xp) is
a flat output.

5 Motion Planning

Assume that the position, velocity, acceleration, jerk and
all derivatives up to6th order of the flat output (including
the position of the load) at the start timetI are given by
(xI , ẋI , ẍI , . . . ,x

(5)
I ,x(6)

I ) and the desired final configuration

of the flat output at timetF is (xF , ẋF , ẍF , . . . ,x
(5)
F ,x(6)

F ). We
can construct 13th degree polynomials,

xic(t) = xIi + (xFi − xIi)
13∑
j=1

aji

(
t− tI
tF − tI

)j
(18)

wherexic are the reference trajectories of the variables of the
flat outputx. The coefficientsaji are computed by solving
linear equations, whose entries are combinations of the initial
and final conditions. Motion planning between two different
equilibria can be obtained simply by settingxI = x̄I, ẋI =
ẍI = . . . = x(5)

I = x(6)
I = 0 andxF = x̄F, ẋF = ẍF =

. . . = x(5)
F = x(6)

F = 0. The input references to be applied
that generate the above trajectories are then computed using
the flatness property as described in the proof of Theorem 2.

6 Example

Let us illustrate our approach by giving the resulting equations
for the US-Navy Crane. The constraints can be easily obtained
using Equations (13)-(17) and the notations of Figure 2.
Example: 3D US-Navy Crane.The parameters are:p = 3,
d= 1, c= 0, s= 2 and the vector of generalized coordinates is
q = {x1, x2, x3, x31, x32, x01, x02, x03, L0, L1, L2, L3}.

The kinetic energy reads

Wk =
1
2

3∑
i=1

(
mẋ2

i +m0ẋ
2
0i

)
+

1
2

2∑
i=1

m1ẋ
2
1i +

1
2
mL1L̇

2
1 +

1
2
mL2L̇

2
2 +

1
2
mL3L̇

2
3 (19)

and potential energy

Wp = mgx3 +m0gx03. (20)

Define the Lagrangian byL = Wk−Wp. The constraints read:

1
2

(∑3
i=1(xi − x0i)2 − (L3 − L0)2

)
= 0

1
2

(∑3
i=1(x0i − α1x3i)2 − L2

1

)
= 0

1
2

(∑3
i=1(x0i − α2x3i)2 − L2

2

)
= 0

1
2

(∑3
i=1(x0i − x3i)2 − L2

0

)
= 0

1
2

(
x2

31 + x2
32 − r2

)
= 0

(21)



The model is given by Theorem 1:

mẍ1 = λ1(x1 − x01)
mẍ2 = λ1(x2 − x02)
mẍ3 = λ1(x3 − x03)−mg

m0ẍ01 =−λ1(x1 − x01)− λ2(x01 − x11)
−λ3(x01 − α2x11)− λ4(x01 − α3x11)

m0ẍ02 =−λ1(x2 − x02)− λ2(x02 − x12)
−λ3(x02 − α2x12)− λ4(x02 − α3x12)

m0ẍ03 =−λ1(x3 − x03)− λ2(x03 − x13)
−λ3(x03 − α2x13)− λ4(x03 − α3x13)−m0g

0 = λ1(L3 − L0)− λ4L0

mL1L̈1 =−λ2L1 + TL1

mL2L̈2 =−λ3L2 + TL2

mL3L̈3 =−λ1(L3 − L0) + TL3

m1ẍ11 =−λ2(x01 − x11)− α2λ3(x01 − α2x11)
−α3λ4(x01 − α3x11)− λ5x11 − T1x12

m1ẍ12 =−λ2(x02 − x12)− α2λ3(x02 − α2x12)
−α3λ4(x02 − α3x12)− λ5x12 + T1x11.

One can prove, using Theorem 2 thatx = (x1, x2, x3, x03) is a
flat output (see also [11, 12]).

7 Simulation results

We illustrate the solution of the motion planning problem for
the US Navy crane modeled in the previous section. The pa-
rameters used are that of a reduced size model (1:80) realized
in the authors’ laboratory, depicted in Figure 4. The mass of
the load is250g.

transmission beltload

mobile
pulley

motors with
sensors and
winches

power
electronics

Figure 4: Reduced size model of the US Navy crane

Suppose that we wish to find an idle to idle trajectory for the
load implying that the reference trajectory will have no sway.
This makes the implementation of a closed-loop control law
easy (not presented here), aiming to attenuate and damp the
unmodeled perturbations [10].

The trajectory depicted in Figure 5 is a horizontal idle to
idle displacement of the load obtained using polynomial inter-
polation as in Section 5. The corresponding motor torques are
given in Figure 6.

The second trajectory is again an idle to idle displacement
between the same points but along a parabolic trajectory avoid-
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Figure 5: Horizontal displacement of the load
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Figure 6: Motor torques generating the horizontal displace-
ment

ing an obstacle placed between the initial and final load po-
sitions. The trajectory and the generating motor torques are
depicted in Figures 7 and 8.
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Figure 7: Parabolic displacement of the load

References

[1] Weight Handling Equipment Handbook - MIL-HDBK-1038.
U.S. Department of Defence, 1998. available on the internet:
http://ncc.navfac.navy.mil/.

[2] G. Corriga, A. Giua, and G. Usai. An implicit gain-scheduling
controller for cranes. IEEE Transactions on Control Systems
Technology, 6(1):15–20, January 1998.
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Figure 8: Motor torques generating the parabolic trajectory
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[11] J. Lévine. Are there new industrial perspectives in the control
of mechanical systems ? In P. M. Frank, editor,Advances in
Control, pages 195–226. Springer-Verlag, London, 1999.
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