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ical systems, Constrained Lagrangian systems. of the class is differentially flat and the coordinates of the load
constitute all or part of the components of a flat output, depend-
Abstract ing on the number of motors. Thus the solution of the motion

planning problem becomes an interpolation problem using suf-

A unified framework for the modeling of a class of weighff-Ciently smoqth functions (e.g. polynqmials). .
The remaining part of the paper is organized as follows.

handling equipment (WHE) is presented. The dynamic equa- : . )
tions are obtained using Lagrange multipliers associated to §B€ Next section gives three examples of WHEs. Section 3 de-

ometric constraints between generalized coordinates. This ﬁlbes’ the general modgl for two qnd thre.e dimensional WHEs.
proach provides a simple way to show differential flatness foiAtness of the models is proven in Section 4. Then the solu-

all WHES of the class. The flatness property can then be g0 Of the motion planing problem is provided in Section 5.
ploited for motion planning. The example of the 3D US Navy crane is studied in details in

Section 6 and some simulation results on its real reduced size
model are presented in Section 7.

1 Introduction

Many different types of weight handling equipment (WHE)? Introductory examples

and in particular cranes, are used in various industries includj . .
P U\]@ will present three examples of WHESs and describe some of

construction and naval transport [1]. The aim of their contr . Lo
. ) . . ir common points. This will then lead to a general system-
[2,6,7,8,9, 11, 13]is to increase productivity and operation . . : i
. o atic modeling procedure to be introduced in the next section.
security by assisting the human crane operator.

Such devices can be decomposed into a fully actuated, a Figures 1 to 3 represent respectively, a 2D overhead crane,

. . . D cantilever crane and a 3D US-Navy crane. The following
ticulated mechanical structure (e.g. a crane with a rotate p gt . i
. . . - characteristics are noteworthy:

form and a boom or a gantry crane with moving bridge) with in ) , i .

general one or two degrees of freedom, and a hoisting sysferi€ 10ad moves in a subspace of either dimengioa 2,

composed of ropes, winches and pulleys. such as the overhead crane of Figure Iy er 3 as portrayed
During operation, a duty cycle of a WHE consists of moving [Ir_‘hF'QWULeES 2 and 3 he followi | ]

the load from its initial position to its desired final destinatio ' "¢ . comprises the following e eme'nts. )

in its working space along a trajectory, avoiding obstacles and® A working load of massn whose coordinates are, i =

sway [10, 14]. This requires motion planning for the position L...p. o o
of the load. e The hoisting system composed of motors winding ropes

and pulleys. The motors are supposed to be torque con-
trolled and each one delivers a torque nofgdwhere

j numbers the actuatorL; stand for the different rope
lengths.

A fully articulated mechanical structure on which are at-
tached the motors winching the ropes. In Figure 1 it is
fixed (the rail structure), in Figures 2 and 3 it corresponds
to a pole that can rotate under motor actuation.

A mobile or main pulley whose coordinates arg i =

Our goal is to give a systematic way to obtain dynamic mod-
els of a class of WHEs and to show how to find trajectories
corresponding to a duty cycle exploiting the flatness property
[3, 4, 5] of the dynamic model.

To this aim, the derived model of the class of WHEs in- ®
volves Lagrange multipliers associated to geometric constraints
on the generalized coordinates. This contrasts with choosing a
minimal number of coordinates and eliminating the constraints..
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Figure 3: 3D US-Navy crane

mobile pulley

Let us enumerate and order the fixed pulleys along each rope
L2'|_0 T3l M

i > starting from the motor winding the rope to the mobile pulley
or to the load. This is possible due to the previous definition.
Denote byr; the number of fixed pulleys along théh rope
(it=1...s+1).

3.2 WHE modeling

We present here a Lagrangian approach to the WHE model-
ing. Hence, we start with the choice of generalized coordinates,
then express the Lagrangian and the geometric constraints. The

Figure 2: 3D Cantilever crane

3 General formulation for 2D and 3D model is given in Theorem 1 below.
WHEs Consider an inertial base frame such thatjits axis is
pointed in the direction opposite tg the gravity acceleration.
3.1 WHE description We introduce the following coordinates:

Letp be the dimension of the working space witle {2,3}. 5

1. position of the working load{z, . .., z,),
. position of the mobile pulley (if it existsXzo1, . . . , Zop),

Definition 1 (WHE) A WHE is constituted by the following el-3. positions of the motors(z;i, ..., x;,) fori =1...s+1,

ements:) a rigid articulated actuated mechanical system with
d € {0,1} degrees of freedoni;) motors,iii) ropes,iv) pul-

. positions of the fixed pulleysi(w;j1,...,w;;,) for i =
l...s+1landj=1...r;

leys,v) a load, and enjoys the following topographic properé

ties: . ropelengthsL; fori=1...s+1,
1. There ares + 1 motors fixed on the articulated structure. 6. rope lengthZ, between the mobile pulley (if it exists) and
2. There are as many ropes as motors. the motor W|.nch|ng the work'mg load. _
3. A motor s linked to a pulley or to the load with a rope. ' "€ load mass is: and the mobile pulley massis,. To each
. . rﬂotor fixed on the structure there is a corresponding equivalent
4. s ropes end on a unique pulley, called the mobile pulley. . . . .
. . . .2 'massn;, i = 1...s+1. The coordinatd.q is not associated to
s = 0 there is no mobile pulley. Every other pulley is fixed - X
any mass. We assume that the rigid body with at most one de-
to the structure. . . .
) i . ) gree of freedom has an equivalent magsand its coordinates
5. There is a unique rope going through the mobile pulley agdincide with the ones of the motor winching the load, namely
ending on the load. ( )
) . T(s+1)1s- -5 L(s4+1)p)-
6. Between the load and the mobile pulley there is no other The reader can easily check that all fixed pulleys along each
pulley. rope can be virtually eliminated by placing the corresponding

Moreover, the following physical property is assumed. The nroetor at the position of the last pulley with an equivalent mass
bile pulley moves in a manifold of dimensianc (p—1,p). obtained by adding to its own equivalent mass the sum of the
This manifold is determined thanks to the constraints imposeglivalent masses of all the pulleys removed. Each rope length
by the ropes and by possibly restricting the mobile pulley i®then reduced by the sum of the constant rope distances be-
move along a rail. If.=p—1 the manifold is transversal to thetween the pulleys removed along that rope. For notational con-
gravitational field. venience,L;’s stand for these new lengths. Because of space

limitations we suppose the following.



Assumptions Denote byl the total number of constraints. If (6) is present,

(A1) The mobile pulley is present. Consequently, 1. l=s-+2p—1andl = s + p otherwise.
(A2) The angular velocities of the fixed pulleys are small Here, the function§’;, ..., C; are quadratic functions of all
enough to neglect their quadratic effects w.r.t. the strutheir arguments. Moreove(,...,Cs 2 contain no product

ture. We suppose that all the motors are located on thwolving L;, for j = 0...s+1. Their exact form is not needed
structure along a line determined by the origin of the basethe sequel (see Remark 2 below).
frame and by the position of the motor winching the load: In place of obtaining an explicit differential model, we pre-
Tj; = sy forj=1...sandi=1...p. fer an implicit formulation with additional variables, known as
(A3) If the mobile pulley moves along a rail, the rail coincidesagrange multipliers
with the above line. Let us introduce a parametsuch that
¢ = 1if the rail is present and = 0 otherwise.
(A4) The crane has no redundant actuator or moter= p —
d—c.
(A5) If d = 1 the origin of the base frame is on the Jom{eadS
axis of the articulated mechanical structure. The articulated

Theorem 1 Assume that the constraints are independent in an
open subset of the generalized coordinate space. The dynami-
cal model associated to a WHE corresponding to Definition 1

ac’s+2

mechanical structure consists of either a rotational joint, to M = Ast2 ox; Owmg i=1...p )
which case the joint axis is colinear witj) or a prismatic ! 9C.
joint, to which case the joint axis is orthogonal 4o This modo; = Z )\jﬁT{ —dippmog i=1...p (8)
assumption eliminates the variable,),. (The vertical j=1 0
position of the motor winching the load remains constant.) L a0,
0=> Nzt ©)
p [ d|c | s | dis+l j:laLO
2 0 0 2 3
2 0 1 1 2 m;L jaL i=1...s+1 (10)
3 1 0 2 4
3 1 1 1 3
Table 1: Parameter values compatible with the assumptions M Z(st1)i Z/\ (%( Fi(Ty2) i=1...p—1(11)

s+1)1
The number of actuators (i.e. the actuator of the articulated

structure and the motors winiding the ropes taken togethgupject to Constraints (2)—(6), whedg, = 1 if ¢ = p and

equals tos+d+1. Table 1 gives the possible values of thé;, = 0 otherwise.T, ..., T, are the torques produced by
parameterp, d, c ands compatible with the assumptions.  the motors on the structure arfd > the one produced by the
The Lagrangian reads: structure actuator./7, . .., F,_; are the generalized external

forces depending on the torque delivered by the structure actu-

s+l ator.
(D IE SERIE SERND o2

Proof: We compute ;5= — 5o = Fq + 74
—g(mxp—i-moxop) (1) Whereq = (Il,...7l’p, To1y -5 Lop, Lo, Ll,...7LS+1,
T(s41)1s-- .,x(s+1)(p_1))T, 7, are the constraint forces. We

Constraints on the rope lengths are present either due to ropgs
terminating at the mobile pulley:
Fq = (07 s 7O7T1a s aT‘;+1a FI(T‘;+2)7 s 7F(p—1)(T§+2))T-

N——

Ci(xola"'a$0p7x(s+l)17" y L(s+1)p— 1>L ) =0 (2) 2p+1

j=1...5s, . . ; i

J Taking total differential of the constraints leads to
or due to the rope terminating at the working load, one for tﬁé?‘mq 9 dq; = 0, i = 1...1, expressing that virtual
total length between the mobile pulley and the correspondniigplacements are iker dC, wheredC' is the matrix whose
motor, and one for the length between the load and the molgitgries ar@— Since the constraint forces compatible with the

pulley:

virtual d|splacements are workless we h{jé‘“fq Tidg; = 0.

Cost(Z01, -+ Tops T(ss1y1 -+ Bss1p1, Lo) =0 (3) ;ir::sr(jfoc;g = (71,...,Tdim¢) iS @ linear combination of the
CS+2($01,...71'OP,$1,...,xp,L(),L5+1) :0 (4) . .
An additional constraint is imposed by the motion compatible Z 8q =1...dimg (12)
with the degree of freedom of the structure. In view of the j=1 !
above assumptions, the following constraint exists on=f3: 514 the theorem is proved. -
s s yeees (s p—1) = Y- 3) ; ;

Cst3(T(s11)1 T(at1p-1) =0 ®) Remark 1 As announced in the introductory example, the left
The motion of the mobile pulley along the rail (if it is presentjand side.; 2% of the model (7)—(11) is independent of the
is of the form: specific topography of the WHE, whereas the right hand side

consists of the exterior forces, plus gravity termS%—i and the
Csiprr(Tor, Top, T(s41)x) =0 k=1...p—1. (6) terms given by (12) which sum up the topographic specificity.



Remark 2 The exact form of the constrain€s;, j = 1...1 (3), (2), (4) and (9) to express the rope lengilys L1, L, and

are: As+1 in function of x, X. Next, we use Equation (8) to obtain
o 12 As, .)\SJr_pH, Ast+pt2 @S funcFions ok = (z1,... ,x?,) and their
Cj=- Z(IO’? _ Ozjx(s+1)i)2*7J —0 j=1...5(13) derivatives up to ordet. Finally, we use E_quatlons (10) gnd
P (11) to expresq’ ... Ts2 and A, 5 in function ofx and their
p—1 ) derivatives up to ordes which proves thak = (z1,...,2,) is
Csﬂzl Z(m — Z(sq1yi)? — Ly _ 0 (14) aflatoutput. [
2 Pt S K3 2 bl
1< (Lsy1—Lo)? . .
Coromy D (wi—a0i)’ — =5 =0, (15 5 Motion Planning
i=1

15p—1 2 2 _ ini . . . .
Cs+3{52i_1 T{sy1y;, — - =0 forrot. joint (16) Assume that the position, velocity, acceleration, jerk and

b2 (s41)2 — T(s+1)1t2 = O for prism. joint all derivatives up to6th order of the flat output (including
Cstp+k=TokT(s+1)p — T(s+1)kTop =0 k=1...p—1 the position of thre load) at the start time are given by
17) (x7,%X7,X1,... ,x§°>,x§6)) and the desired final configuration
of the flat output at timep is (xp, Xp, X5, . . . ,xﬁf),ng)). We
wheret = (t1,...,t,)T is the vector of joint axis of the ar-can construct 13h degree polynomials,

ticulated structure and is the constant distance between the
joint axis and the motor winching the load in the case of rota- 13 t—t;
tional joint. Note that these formulas are not needed to state wie(t) = x1i + (2Fi = 211) Zaii tr— 15 (18)
and prove our main results. J=1
wherez;. are the reference trajectories of the variables of the
4 Flatness flat outputx. The coefficientsz;; are computed by solving
linear equations, whose entries are combinations of the initial
Assume that we exclude trajectories in free fall, namely su@fd final conditions. Motion planning between two different

thatii, = —g, and such tha?—a;*"‘ £0. equilibria can Ee obtaif?ed simply by setting = X1, X1 =

’ iI:...:x():xp:OandxF:)_cF,kF:i&F:
Theorem 2 WHEs defined by Definition 1 and satisfying (A1)- _ X(F5) _ X(Fﬁ) — 0. The input references to be applied
(AS) are differentially flat. The flat output, denoted-bjn the  that generate the above trajectories are then computed using
sequel, can be chosen &8y, ..., z,), the coordinates of the ihe flatness property as described in the proof of Theorem 2.
load, ands+d+1—p coordinates of the mobile pulley.
Proof: In view of the assumptions we need to distinguish t
four cases of Table 1. We provide the proof jor= 3, the tg Example

simplest cases with = 2 are left to the reader. (Recall tha
p = 2impliesd = 0.)

Assume first thats = 2 = p — 1 and considerx =
(z1,...,2p,z0p) @s a candidate flat output. Combining th
pth equation of (7) and (4) and the fact that thg's con-
tain no cross-terms involvinglg, L2 by assumption, one ob-
tains A\, > as a function ofr,, i, andzg, since@gTS:2 # 0.
Next, as long as\sy2 # 0 which is guaranteed by the as-

Let us illustrate our approach by giving the resulting equations
for the US-Navy Crane. The constraints can be easily obtained
using Equations (13)-(17) and the notations of Figure 2.
Example: 3D US-Navy Crane.The parameters aren = 3,
d=1, ¢c=0, s=2 and the vector of generalized coordinates is
q = {x1, 2, x3, T31, T32, To1, Toz, To3, Lo, L1, L2, L3}.

The kinetic energy reads

sumption thati,, = —g, thep — 1 first Equations of (7) ex- 13 13 1 ]
press the remaining coordinates, ..., zo(,-1) as functions Wi =5 > (mi +moig;) + 5 > it + ileLf +
of z;, Z;, 7 = 1...p, andzg,. Next, we use th&p + 1 i=1 i=1

. i ; 1 . 1 .
equations (3)-(5), (8) and (9) to express the+ 1 vanables Smp L2 =my, 12 (19)
Lo, Lst1, T(s41)15- - > T(s+1)p—11 AL, - - -, Ap @S functions of 2 2
015 .-+, Topy L1,--.,Tp, Ast2 and derivatives up to orde, .
which in turn can be expressed as functionsxaind deriva- and potential energy
tives up to orded. Now, by (2), one can expreds,, ..., L, W, = mgzs + mogtos. (20)
as functions of the previous ones. By (10}, ..., T, are also P

obtained as functions of the previous ones and derivativespygine the Lagrangian bg = W), — WW,,. The constraints read:
to order6, and finally, T, and ;3 are obtained in a similar

\(l)vtzjat)élljaty (11), which proves that = (x1, ..., zp, zop,) is a flat % (Z?:1(33i —20i)? — (Ls — Lo)?) = 0
Consider now the case with=c=1 (i.e. the rail constraints (2 (wos — aqasi)? — L) =0

(6) are prgsent) and let = (z1,.. % x,) be the candidate flat 1 Zle(fm —apa3)2 — L2) =0 (21)

output. First, we use thep equations (5)-(6) and (7) to ex- ) s

press2p variableszor, . . ., Top, As42y T(s41)15- -+ > T(s+1)p—1 3 (Zi:l(‘roi —x3))2—L3) =0

in function ofz;, £;, 7 = 1...p. We proceed using Equations 1 ( 2 +a%, - 7~2) =0



The model is given by Theorem 1:

motion in the horizontal plane x-y z coordinate of the load
miy = A1 (z1 — wo1) -
mii’g = )\1 (952 — IEOQ)
m(i'g = )\1(£E3 — .’Eog) —mg z £
moZor = —Ai(z1 — zo1) — A2(zo1 — x11) o
—A3(o1 — @2x11) — Aa(xo1 — a3z11) o '
moZoz = —A1(x2 — 2o2) — Aa(To2 — T12) o
—A3(zo2 — a2x12) — Aa(wo2 — a312) L
Fos = —Ar (23 — 203) — Ao (03 — . . .
11oos 1(w3 = 70s) = Aa(T0s — 1) Figure 5: Horizontal displacement of the load

—A3(xo3 — a2x13) — Ag(@o3 — a3w13) — Mg
0=X(Ls — Lo) — MaLo
le.gq == _)\2L1 + TL1 Jxaot Motor torque T1 Lox10° Motor torque T3
mp, Lo =—A3Ls + 11,
mpyLs=—A(Ls — Lo) + T,

miZiy =—)\2(x01 —$11) —012)\3(%1 —0429511) = s
—agAa(zo1 — azz11) — Aszi1 — Tiz1o = s
miE1a = —Aa (202 — T12) — 2 A3(Zp2 — Q212)

—agha(zo2 — asx12) — Asz12 + Thz11.

One can prove, using Theorem 2 tkat= (1, z2, 73, 703) is @ et
flat output (see also [11, 12]). g Motor torque T

7 Simulation results

INm]

We illustrate the solution of the motion planning problem for
the US Navy crane modeled in the previous section. The pa-
rameters used are that of a reduced size model (1:80) realized

01 02 03 04 05_ 06 07 08 09

in the authors’ laboratory, depicted in Figure 4. The mass of 'B foec
the load i250g. Figure 6: Motor torques generating the horizontal displace-
ment

ing an obstacle placed between the initial and final load po-
sitions. The trajectory and the generating motor torques are
depicted in Figures 7 and 8.

motors with
sensors and
winches

motion in the horizontal plane x-y ) z coordinate of the load

mobile \‘
pulley |

[m]

-0.05 0.05 01 015 02 02z 03 04 05
[m] sec]

~ transmission belt

Figure 7: Parabolic displacement of the load

Figure 4: Reduced size model of the US Navy crane
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