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Abstract

A data-driven controller design procedure is proposed in this paper. The controller is based on both an estimated plant model and
its estimated uncertainty described by an ellipsoid in parameter space. Desired performance is speci"ed by the speed and the damping
of the modeled response. The unmodeled response is rejected by requiring robust performance with respect to a generalized stability
region. Moreover, estimation of a disturbance model enables further rejection of the unmodeled response. The methodology is applied
to a nonlinear and unstable magnetic suspension system. High performance is achieved for various speci"cations over a large
operational range. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The concept of identi"cation for control has recently
been introduced to emphasize the intended use of the
identi"ed model. There have been several attempts to
link the identi"cation criterion to the control objective
(Bitmead, 1993; Van den Hof & Schrama, 1995). The
identi"cation is typically carried out in a closed loop,
since this is the situation the model should be able to
describe. For example, if an oscillatory nonlinear system
is adequately controlled around a setpoint, a linearized
model may su$ce to describe the closed-loop behavior.
Conversely, the uncontrolled open-loop system may ex-
hibit highly nonlinear responses that cannot adequately
be modeled by a linear system. Therefore, the identi"ca-
tion of highly oscillatory, unstable and/or nonlinear sys-
tems can be expected to bene"t greatly from closed-loop
identi"cation techniques. Landau and Karimi (1997) il-
lustrated the bene"ts of using closed-loop identi"cation
for a #exible transmission system. Similar bene"ts were
also shown for a highly #exible arm by Langer and
Landau (1996). In the latter work, the fact that the con-
trolled plant could handle input signals of larger ampli-
tude was useful to avoid the e!ects of friction in the

identi"cation procedure. Gevers and Ljung (1986) pro-
ved that, for minimum-variance control, closed-loop op-
eration represents an ideal experimental con"guration
provided that the perfect controller is used (Hjalmarsson,
Gevers, De Bruyne & Leblond, 1996). However it may be
argued that, if the perfect controller is already known,
there is no incentive for identifying a suitable model for
control design. Although the ideal experimental con"g-
uration is never achieved in practice, the closed-loop
results have been interpreted as one motivation for iter-
ative approaches based on repeated identi"cation and
control design (Van den Hof & Schrama, 1995).

In practice, it is only necessary to re-tune a controller
that is not working satisfactorily. The usefulness of
iterative schemes can therefore be questioned when con-
vergence is not guaranteed. In order to guarantee im-
provements from one iteration to the next, De Callafon
and Van Den Hof (1997) introduced an iterative scheme
based on robust performance. A robust control design
based on estimated model uncertainty enables monitor-
ing the control performance before the next iteration is
started. However, the procedure, which is formulated in
the H

=
framework with identi"cation of the dual Youla

parameters, tends to be rather involved and is di$cult to
implement.

Herein, a di!erent procedure based on robust perfor-
mance is proposed. Robust performance is speci"ed
through the desired speed and damping for an identi"ed
uncertainty model set. The model is identi"ed using the
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"ltered least-squares method which, in addition to
a nominal model, also provides an ellipsoidal parametric
uncertainty domain. The model estimation setup is sim-
ilar to that proposed by As stroK m (1993) but with the
important di!erence that the data "lter and the model
uncertainty are estimated. Moreover, designing the con-
troller for robust performance results in substantial per-
formance improvements, thereby avoiding the need for
iterations. The procedure proposed is therefore presented
as a non-iterative scheme. This paper focuses on the meth-
odology. Thus, the choice of the algorithm used for the
robust design problem is considered less important and is
not described here.

An optional extension is also proposed for minimizing
the unmodeled response when a given reference signal is
considered. It is inspired from Tsypkin (1991) (see also
the iterative approach by Holmberg, Myszkorowski and
Bonvin (1997)) and is based on the internal model prin-
ciple with the unmodeled response treated as a distur-
bance. This appears to be more bene"cial towards the
rejection of the unmodeled response than iterating be-
tween model identi"cation and control design.

A magnetic suspension system is chosen to illustrate
the methodology. The process represents an excellent
benchmark example for identi"cation-for-control
schemes since it is both unstable and nonlinear. The
scenario considers that a stabilizing but poorly tuned (to
motivate re-tuning) controller is available. The objective
is to constructively use the measured data for improving
the performance, rather than repeating experiments with
iterations between identi"cation and controller design. It
will also be shown that a tailor-made model that matches
the known structures of the plant is quite advantageous
for the identi"cation step.

The paper is organized as follows. In Section 2, the
robust performance design is presented, consisting of
di!erent steps from identi"cation of plant model and
uncertainties to robust controller design. The use of the
internal model principle for rejecting the unmodeled re-
sponse is described in Section 3. Section 4 summarizes
the methodology in a step-by-step procedure. The mag-
netic suspension system is described in Section 5, and
a tailor-made parameterization is proposed for model
estimation. Experimental results are discussed in Section
6 using the proposed procedure with di!erent design speci-
"cations. Finally, conclusions are presented in Section 7.

2. Design for robust performance

A robust controller is to be designed based on experi-
mental data from a single closed-loop experiment with
a stabilizing controller. The procedure involves: (i) identi-
"cation of a data "lter, a model and a model uncertainty
set, and (ii) the design of a robust controller. The di!erent
steps are described below.

2.1. Notation

The plant input, u(t), plant output, y(t), and external
reference, r(t), are related via the linear control law

R(g)u(t)"!S(g)y(t)#T(g)r(t). (1)

The plant is, thus, considered to be in closed loop and is
modeled as

A(h)y(t)"B
d
(h)u(t)#eh,g(t) (2)

where A and B
d

de"ne a linear model. Notice that the
equation error, eh,g(t), de"ned in (2), can be large if the
plant is nonlinear or has higher-order dynamics than
the linear model. The notation eh,g (t) is used to reinforce
the dependence on the plant model parameter vector
h and the controller parameter vector g, which are
de"ned as

h"(a
12

a
degA b

d2
b
degB

d
)T,

g"(r
12

r
degR s

02
s
degSt

0
)T,

where

A(h)"1#a
1
q~1#2#a

degA q~degA,

B
d
(h)"b

d
q~d#2#b

degB
d
q~degB

d ,

R(g)"1#r
1
q~1#2#r

degR q~degR,

S(g)"s
0
#s

1
q~1#2#s

degS q~degS,

T(g)"t
0
.

All operators above are polynomials in the backward-
shift operator q~1. The dependencies of the operators
and the signals on q~1 and t, respectively, will be omitted
wherever possible for brevity. Combining (1) and (2) and
de"ning

A
c
(h, g)"A(h)R(g)#B

d
(h)S(g), (3)

the closed-loop system can be written as

y"
B
d
(h)T(g)

A
c
(h, g)

hgigj
ym

r#
R(g)

A
c
(h, g)

eh,g . (4)

The term y
m

is referred to as the modeled closed-loop
response, and

e
u
"y!y

m
"

R(g)

A
c
(h, g)

eh,g (5)

is the unmodeled response that is driven by unmodeled
dynamics and external disturbances via eh,g .

2.2. Identixcation of a data xlter and a plant model

Suppose that N data points have been collected using
a stabilizing controller with the parameters g

i
. From (2)

and (5), and using a stable "lter W chosen such that
WR(g

i
)"(1!q~1) to eliminate nonzero-mean data
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(e.g. if the controller lacks integral action), the "ltered
unmodeled response can be expressed as

We
u
(t, h)"A(h)y

F
(t)!B

d
(h)u

F
(t)"y

F
(t)!u(t)Th, (6)

where

u(t)"A
!y

F
(t!1)

2

!y
F
(t!deg A)

u
F
(t!d)

2

u
F
(t!degB

d
)
B ,

G
y
F
(t)"Fy(t),

u
F
(t)"Fu(t),

F(h, g
i
)"

1!q~1

A
c
(h, g

i
)
.

At "rst glance, it appears that the model estimation can
be achieved using the linear least-squares method, i.e., the
criterion

<(h, g
i
)"

1

N

N
+
t/1

[We
u
(t, h)]2"

1

N

N
+
t/1

[ y
F
(t)!u(t)Th]2.

(7)

However, the linear dependence on h in (6) is deceptive
since the data "lter F also depends on h. (As stroK m, 1993)
ignored the nonlinear dependence by replacing A

c
(h, g

i
)

in F by AD
c

chosen as a design variable in a pole-
placement approach. This is not necessarily adequate. To
clarify this point, the notation e

u,NL
(h, g

i
) is introduced to

emphasize the nonlinear dependence on h via F(h, g
i
).

Furthermore, e
u,L

(h, g
i
) denotes the corresponding linear

expression where the data "lter is "xed, FD"

(1!q~1)/AD
c
. The nonlinear criterion (7) is <

NL
(h, g

i
)"

DDWe
u,NL

DD. The modi"ed linear criterion is related to
We

u,NL
as

<
L
(h, g

i
)"DDWe

u,L
DD"KK

A
c
(h, g

i
)

AD
c

We
u,NL KK .

This suggests that, when the linear criterion is used to
"nd an estimate hK , closeness of A

c
(hK , g

i
) and AD

c
should be

checked to justify the linear problem formulation. Conti-
nuing this argument, just as A

c
(hK , g

i
) represents an esti-

mate of the closed-loop characteristic polynomial, it
would be judicious to select AD

c
as an educated guess of

that polynomial as well. This can be done by choosing it
from an estimate of the closed-loop system from r to y.
Introduce

AH
c
(h

c
, g

i
)"1#a

c1
q~1#2#a

cdegAH
c
q~degAH

c ,

where h
c
"(a

c1
2a

cdegAH
c
)T. The choice of AD

c
is replaced

by an estimation problem for h
c
. Standard prediction

error methods can be used. From (4), an ARMAX struc-
ture seems appropriate.

Thus, in order to make <
L
(h, g

i
) close to <

NL
(h, g

i
), the

data "lter is chosen as

FH"
1!q~1

AH
c
(hK

c
, g

i
)
. (8)

Then, with the criterion <
L
(h, g

i
), the parameter estima-

tion becomes a linear least-squares problem with the
analytical solution

hK "C
N
+
t/1

u(t)u(t)TD
~1 N

+
t/1

u(t)yF H(t). (9)

Clearly, the criterion <
L
(h, g

i
) and the estimates depend

on the initial controller g
i

via u and y. The choice of
a data "lter also suggests validating the model prior to
controller implementation. The way that this can be
performed is described below.

2.3. Validation of the data xlter and the plant model

The linear least-squares problem, resulting from keep-
ing the data "lter F H "xed, is a valid approximation
to the original nonlinear problem provided that the
polynomials A

c
(hK , g

i
) and AH

c
(hK

c
,g

i
) are &close' in some

sense. In order to introduce a measure of &closeness'
between (characteristic) polynomials, de"ne j(A

c
)"

Mz: A
c
(z~1)"0N (which are the reciprocal poles of the

system, or equivalently, the poles of the system when
using the forward-shift operator). Those z3j(A

c
) closest

to the unit circle have the most dominant in#uence on the
response. Hence, an a priori (prior to implementation)
validation test is to compare j(A

c
(hK , g

i
)) and j(AH

c
(hK

c
, g

i
))

for DzD closest to one.
Note that since both B

d
(h

c
) and AH

c
(h

c
, g

i
) can be esti-

mated as the closed-loop dynamics from r to y, an esti-
mate of A(h) could be calculated from relation (3). But
this is inconvenient since it requires a polynomial divis-
ion, which, furthermore, makes it di$cult to obtain un-
certainty bounds.

2.4. Estimation of uncertainty bounds

Since the least-squares method is used in the model
identi"cation, it is natural to take advantage of the ellip-
soidal parameter error bound associated with it. A bound
on the estimation error, *h"hK !h

P
, where h

P
is an

unknown &true' parameter value, can be expressed by an
ellipsoid (Ljung, 1987)

*hTP~1*h41. (10)

For example, a 100a% con"dence ellipsoid is obtained
with

P"s2
n,a

N

N!n
<(hK , g

i
)C

N
+
t/1

u(t)u(t)TD
~1

, (11)
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where n is the dimension of h, and s2
n,a the a-level of the

s2 distribution with n degrees of freedom. The derivation
of this bound is based on the assumption that We

u
is

white noise, which will never be achieved exactly. None-
theless, it still makes sense to use this uncertainty descrip-
tion to improve the robustness of the controller.

2.5. Robust controller design

The control objective is to make the dynamics from
r to y well behaved in a certain sense, e.g. having a
speci"ed speed and damping. For the continuous-time
system G(s)"u2

0
/(s2#2fu

0
s#u2

0
), with poles p

1,2
"

!fu
0
$iu

0
J1!f2, the step response speed and over-

shoot are solely determined by u
0

and f, respectively.
The larger u

0
the faster the response, and the smaller

f (0(f(1) the larger the overshoot. Therefore, stan-
dard pole placement design could be used for assessing
the speed and damping of the dynamics from r to y

m
.

However, this gives no guarantee that the contribution of
the unmodeled response e

u
"y!y

m
is small and, conse-

quently, the response y may deteriorate due to distur-
bances. To circumvent this problem, a robust approach is
taken. It can be formulated as follows:

Find a controller g such that j(A
c
(h, g))3D for all h in the

ellipsoid (hK !h)TP~1(hK !h)41, where D represents the
desired stability region.

2.5.1. Parameterization of the desired stability region
The generalized stability region D is chosen to be

a subset of the unit disc. For simplicity, the boundary of
the D region, symmetrical around the real axis, can be
parameterized as z"e*ui(u), u3[0,p] where

i(u)"G
e~Ju2

min~u2, 04u4u
min

J1!f2
min

,

e~
fmin

J1~f2min
u, u

min
J1!f2

min
(u4p.

This means that, for any z3D, with corresponding natu-
ral frequency u

0
(in radians per number of sampling

periods) and relative damping f, de"ned as z"es with

s"!fu
0
#iu

0
J1!f2, it follows that u

0
'u

min
and

f'f
min

. Thus, u
min

and f
min

specify the position of the
dominant (forward-shift) poles (those DzD closest to one).
The design parameters for the D region, u

min
and f

min
, do

not correspond exactly to the speed and overshoot, since
the in#uence of both the nondominant poles and the
zeros have been neglected. The shape of D is therefore not
&holy' and the suggested parameterization is used only for
simplicity. Examples of D regions are given in Figs. 3b
and 5b.

2.5.2. Fixed factors in R and S
It is usually of interest to specify the "xed factors

R
fix

and S
fix

of the polynomials R and S, respectively, as
constraints in the robust design problem.

For example, the choice R
fix

"1!q~1 gives integral
action to the controller and the choice S

fix
"1#q~1

reduces high-frequency gain and, therefore, the sensitivity
to measurement noise.

2.5.3. Algorithms for the robust controller synthesis
Various algorithms can be used to solve the robust

control problem formulated above. It is not the purpose
of this paper to describe them in detail. Instead the focus
is on the methodology for using robust control tech-
niques in an identi"cation-for-control procedure. The
particular algorithm for robust control design used here
was the pole-projection approach proposed by Holm-
berg and Valentinotti (1997). This was chosen because of
its algorithmic simplicity and its #exibility regarding the
choice of the D region. Furthermore, the pole-projection
approach does not approximate the problem and may
therefore be less conservative than other approaches such
as those proposed by Rantzer and Megretski (1994) and
Raynaud (1991). The main drawback with the approach
by Rantzer and Megretski (1994) is that the controller is
found numerically by searching in an in"nite-dimen-
sional space, and any reasonable truncation gives im-
practically high-order controllers. The H

=
approach by

Raynaud (1991) gives a "nite-order controller of reason-
able order, but is restricted to D regions of simple shapes
such as circles.

3. Minimizing the unmodeled response

The unmodeled response is made small by the speci-
"cation of robust performance. For further reduction of
the unmodeled response, the di!erence in closed-loop
response between the real plant and the nominal model
can be used. The bene"t with this approach is that the
unmodeled response can be rejected considerably, in par-
ticular when only one speci"c reference signal is used,
making the model mismatch dependent on that reference.
The drawbacks are that a new experiment should be
made with a robust controller and the complexity of the
controller increases. The key idea is to include a distur-
bance model in the controller according to the classical
concept of internal model principle. Since the disturbance
model serves to describe the unmodeled response, it is
unknown a priori. However, using an appropriate para-
meterization of the controller, the disturbance model can
be estimated using linear least-squares estimation.

3.1. Internal model principle

Suppose the disturbance eh,g can be modeled as
'eh,g(t)"0, t5deg '(q~1), where ' is a known poly-
nomial. Many disturbances can be modeled in this way.
For example, the class of steps or o!sets of any size
corresponds to '(q~1)"1!q~1; ramps are modeled
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by '"(1!q~1)2; N-periodic signal are modeled by
'"1!q~N, etc. The notion of internal model principle
is to include this disturbance model in the controller by
requiring ' to be a factor in R. Then, the unmodeled
response e

u
"[R(g)/A

c
(h, g)]eh,gP0 for tPR.

3.2. Estimation of the internal model

The concept can be generalized to be used even when
the polynomial ' is partially or completely unknown,
which is the situation considered here. The equation
error eh,g will, due to imperfect modeling, include un-
known parts from the model mismatch. Rather than
trying to estimate directly ', an indirect parameteriz-
ation is used that enables, as before, the estimation to be
posed as a linear least-squares problem.

Parameterization of all solutions MR, SN, including the
pre-chosen factors R

fix
, S

fix
, to the polynomial equation

(3) gives

R(g(hQ , h))"(R
1
!Q(hQ)B

$
(h)S

fix
)R

fix
,

S(g(hQ , h))"(S
1
#Q(hQ)A(h)R

fix
)S

fix
, (12)

where MR
1
R

fix
, S

1
S

fix
N is one particular solution and

Q is an arbitrary polynomial. The unmodeled response
e
u

de"ned in (5) can be parameterized using the poly-
nomial Q(q~1)"q

0
#q

1
q~1#2#q

deg Qq~deg Q as

e
u
(t, hQ )"e

1
(t)!Qe

2
(t)"e

1
(t)!ue(t)ThQ , (13)

where hQ"(q
02

q
deg Q ), ue(t)"(e

2
(t)2e

2
(t!deg Q))

and

e
1
"

R
1
R
fix

A
c
(h, g)

eh,g ,

e
2
"

B
$
S
fix

R
fix

A
c
(h, g)

eh,g .

Thus, for an estimated plant model and a corresponding
A

c
, the unmodeled response e

u
(t, hQ ) becomes linear in

hQ . Identi"cation of hQ can therefore be posed as a linear
least-squares problem with the criterion

<h(hQ )"
N
+
t/1

e
u
(t, hQ )2"

N
+
t/1

[e
1
(t)!ue(t)ThQ]2,

having the minimizing solution hK Q"
[+N

t/1
ue (t)ue (t)T]~1+N

t/1
ue (t)e1 (t). According to (12), the

controller parameters g are linear functions of the poly-
nomial Q, which is used to indirectly model the distur-
bance, i.e., to obtain the appropriate factor ' in
R according to the internal model principle. If no a priori
assumption is made about ', the choice R

fix
"1 is made

in (12).
Notice that, since unmodeled dynamics can give a de-

stabilizing controller, this approach should only be ap-
plied after a robust pole placement has been found. Thus,

a new experiment using the robust controller should be
made for the estimation of Q.

A particular feature with this approach is that the
number of parameters to be estimated (deg Q ) can be
chosen freely and, therefore, can be smaller than is
needed for estimating the plant model. This is of particu-
lar importance in cases of small signal-to-noise ratio
when reliable estimation of many parameters is not pos-
sible. In other words, the fact that fewer parameters are
estimated enables the use, in the identi"cation experi-
ment, of excitation signals that are used in normal opera-
tion. This is bene"cial for optimal disturbance rejection
for normal operation.

4. Identi5cation-for-control procedure

The proposed identi"cation-for-control procedure
that uses a single data set is summarized below in Steps
1}7. Optionally, Steps 8}9 allow further minimization of
the unmodeled response for a particular reference signal,
but at the price of a repeated experiment and a more
complex controller.

1. Collect N data points of (r, y, u) in closed-loop opera-
tion, corresponding to deviations from the setpoint
(r
0
, y

0
, u

0
) using the (stabilizing) controller g

i
.

2. Estimate hK
c
using a simple ARX or ARMAX structure

and construct the data "lter F H"(1!q~1)/AH
c
(hK

c
, g

i
).

3. Compute the "ltered least-squares estimate hK as in (9).
4. Compare the dominant (close to unit circle) poles of

j(A
c
(hK , g

i
)) with those of j(AH

c
(hK

c
, g

i
)). Continue to next

step if a close "t is found, otherwise repeat Step 2 with
a di!erent model structure.

5. Choose a level of con"dence and calculate the ellip-
soidal uncertainty set (10).

6. Choose the desired performance by specifying
u

min
and f

min
.

7. Specify the "xed factors R
fix

and S
fix

and solve the
robust control design problem by any suitable method
(see Section 2.5) to obtain g(hK , P). If no solution is
found, either decrease the level of con"dence (i.e. the
size of the ellipsoidal uncertainty set) in Step 5 or relax
the performance speci"cations in Step 6.

8. Repeat Steps 1}4 using the robust controller g(hK , P)
from Step 7.

9. Choose R
fix

, S
fix

, deg Q and calculate the least-
squares estimate hK Q using the model (13), whereafter
the corresponding controller follows from (12).

5. Magnetic suspension system

The procedure above will now be illustrated for a la-
boratory system. First, the nonlinear and unstable mag-
netic suspension system is described. It is then shown
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Fig. 1. (a) Magnetic suspension system. (b) Nonlinear sensor characteristics.

how structural knowledge can be taken into account to
reduce the number of parameters to be estimated. The
experimental results are given in Section 6.

5.1. Experimental setup

The magnetic suspension system consists of keeping an
iron ball suspended in the air by using a magnetic force to
compensate for the gravitational force. A schematic de-
scription of the process is given in Fig. 1a. A force balance
gives the equation

mxK"F
g
!F

m
,

where m is the mass of the ball, x its position, F
g
"mg the

gravitational force and F
m

is the magnetic force. The
latter can be expressed as F

m
"!1

2
(d¸/dx)i2, where ¸ is

the inductance that decreases with x. The dynamics of the
current i can be approximated well by a "rst-order
system. The current loop is controlled by an analog
high-gain controller and, therefore, its dynamics can be
neglected. Since d¸/dx depends on x, linearization of the
ball dynamics around a stationary point gives the follow-
ing transfer function between the magnet voltage u

m
and

the sensor voltage u
x
:

G(s)"
b

s2!a
.

The parameters a and b vary with the linearization point,
especially b due to the particular nonlinear relationship
between the measured voltage u

x
and the ball position x

(Fig. 1b). Sampling using zero-order hold gives the
discrete-time system

H(q~1)"c
q~1#q~2

1!bq~1#q~2
, b'0. (14)

Thus, there are only two unknown parameters to be
estimated rather than the four of a general second-order
system.

5.2. Scales and units

Engineers like to display input and output signals
as physically meaningful-quantities. This makes sense.
However, a common mistake is to use these signals
without proper scaling directly in the identi"cation algo-
rithm. The problem comes from the fact that unscaled
signals might be of di!erent orders of magnitude, leading
to parameters of di!erent orders of magnitude as well.
Thus, the variance of the larger parameters will totally
destroy the accuracy of the smaller ones. The problem is
usually avoided if the signals are scaled appropriately,
i.e., each scaled signal covers the same domain (e.g.
!1}1, or 0}1). Alternatively, the signals can be taken
directly, without scaling, from the A/D and D/A conver-
ters. For the magnetic suspension system, the input u cor-
responds to the D/A converter voltage deviation from the
linearization point u

0
. The output y is the measured A/D

converted voltage u
x

(Fig. 1a) calibrated through the
static sensor nonlinearity to correspond to the ball dis-
tance deviation. The calibration serves to compensate for
the worm-like shape of the sensor characteristics and not
to introduce a scale that changes the magnitude. The
resulting unit for y is 10~4 m.

5.3. Tailor-made plant model estimation

From (6) and (14), the unmodeled response can be
parameterized as follows:

We
u
(t, h)"z(t)!u(t)Th,
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Fig. 2. Initial closed-loop response. (a) y (solid), r (dashed); (b) u.

where

h"(b c)T,

z(t)"(1#q~2)y
F
H (t),

u(t)"[q~1y
F
H (t) (q~1#q~2)u

F
H (t)]T,

and y
F
H"F Hy and u

F
H"F Hu with F H"

(1!q~1)/AH
c
(hK

c
, g

i
). Least-squares estimation gives hK "

[+N
t/1

u(t)u(t)T]~1+N
t/1

u(t)z(t), and the uncertainty do-
main (10) is an ellipse.

6. Experimental results

First, following Steps 1}4 of the procedure given in
Section 4, the closed-loop and open-loop models will be
estimated and validated. Then, continuing with Steps
5}7, various design choices will be discussed. These in-
clude the size of the uncertainty ellipse, the desired re-
sponse speed, and trading o! the size of the unmodeled
response to reduce control e!ort. Finally, after a second
experiment using the robust controller from Step 7, Steps
8 and 9 illustrate the improvement obtained by using
the internal model principle to reject the unmodeled
response.

6.1. Plant model estimation

Step 1: Collecting the initial closed-loop response
The initial parameter vector g

i
"(!0.11 0.1344

!0.091 0.0499) (degR"1, deg S"1) gives a PD-like
controller. The stationary linearization point u

0
is man-

ually adjusted to make y
0

approach r
0

without static
o!set. A square wave excitation of the reference deviation
r is then chosen with an amplitude of 1.5]10~4 m.
Larger amplitudes are not possible due to saturation of
the control input u. The total data length used for estima-
tion is 5 s. Three seconds of the initial closed-loop re-
sponse are shown in Fig. 2.

Steps 2}4: Data "lter estimation using an ARX
structure

There is no need to choose the degrees of AH
c
(hK

c
, g

i
))

and A
c
(hK , g

i
)) the same since the latter includes non-

dominant poles (close to the origin). By choosing
deg AH

c
(hK

c
, g

i
) smaller to only include the dominant part,

the identi"cation is easier with less requirement on the
excitation. For simplicity, an ARX structure with
deg AH

c
(hK

c
, g

i
)"2 is tried "rst. The calculated and the

directly estimated closed-loop poles are

j(A
c
(hK , g

i
))"0.8663$0.2771i, 0.2604,

j(AH
c
(hK

c
, g

i
))"0.7622$0.2458i.

The dominant poles are rather close. Nevertheless, it may
be of interest to see whether closer "t can be obtained

with a data "lter estimated using an ARMAX structure
which, according to (4), should be more appropriate.

Steps 2}4 repeated: Data "lter estimation using an
ARMAX structure

With an ARMAX structure,

j(A
c
(hK , g

i
))"0.8900$0.2600i, 0.2300,

j(AH
c
(hK

c
, g

i
))"0.8821$0.2554i.

The dominant closed-loop poles are closer, which im-
proves the con"dence in the estimated model. The para-
meter vector estimated in Step 3 is

hK "(bK c( )T"(2.0203 0.9217)T. (15)

6.2. Slow desired response with large robustness

Step 5: Uncertainty ellipse speci"cation
The P matrix in (11) is scaled to correspond to a 99%

con"dence level. The resulting large ellipse will thus ac-
count for large uncertainties, see Fig. 3a.

Step 6: Performance speci"cations
The performance is speci"ed by the choice of the

generalized stability region, D. It is characterized by
u

min
"0.05 (slow response) and f

min
"0.7 (well-damped

response), see Fig. 3b.
Step 7: Robust controller synthesis
Integral action is speci"ed by choosing R

fix
"

1!q~1. The resulting pole placement satisfying robust
performance is

j(A
c
(hK , g(hK , P)))"0.9465, 0.5884, 0.4220, 0.1528.

The corresponding closed-loop response is shown in
Fig. 4. Notice the remarkably close "t between the
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Fig. 3. Robust design for slow response. (a) Nominal model &x' and
99% uncertainty ellipse; (b) generalized stability region (u

min
"0.05,

f
min

"0.7). Closed-loop nominal poles &x' and poles corresponding to
the ellipse boundary (with special examples marked h and e).

Fig. 4. Robust design for slow response. (a) y (solid), y
m

(dashed); (b) u.

modeled response y
m

(dashed) and the actual response
y (solid). As a posteriori validation of the scheme, the
unmodeled response standard deviation is evaluated:
STD(e

u
)"0.10]10~4 m and the closed-loop poles

re-estimated

j(AH
c
(hK

c
, g(hK , P)))"0.9512, 0.5313.

The modeled response y
m

is mostly dependent on the
dominant slow pole near 0.95. However, if AD

c
"

1!0.95q~1 would be chosen in a standard pole place-
ment design, the resulting controller would not satisfy
robust performance, and in fact, would not stabilize the
real system. Conversely, the robust design makes all the
plants in the estimated uncertainty set satisfy the perfor-
mance speci"cation. Moreover, the dominant closed-
loop poles are almost the same for all the plants in the
uncertainty set (Fig. 3b) which is the reason for the
invariant, linear-like closed-loop behavior (compare
Figs. 2 and 4).

6.3. Trade-ow between unmodeled response
and control ewort

The small variance in the unmodeled response error is
at the cost of a very noisy control signal. Quanti"cation
noise caused by the "nite precision in the A/D converter
may be one signi"cant noise source. Let the noise level in
the control signal be measured as max D*uD, with *u being
the change of u between two consecutive samples. This
noise level can be reduced by choosing S

fix
"1#q~1,

which makes the controller gain drop to zero at the
Nyquist frequency. This modi"cation reduces the noise
level in the control signal by a factor of nearly 4 at the
price of an increase in the unmodeled response standard
deviation by a factor of 1.5 (see Table 1).

6.4. Faster desired response with lesser robustness

Step 5: Uncertainty ellipse
The uncertainty ellipse is now reduced to correspond

to a 90% con"dence level in order to make it possible to
obtain robust performance with a smaller D region, see
Figs. 5a and b.

Step 6: Performance speci"cation
A faster response is speci"ed by choosing u

min
"0.2,

see Fig. 5b.
Step 7: Robust controller synthesis
In order to avoid control signal saturation and noise

ampli"cation, S
fix

"1#q~1 is chosen. The pre-chosen
factor in R is speci"ed to be R

fix
"1!0.96q~1, rather

than, as before, R
fix

"1!q~1. This modi"cation reduc-
es the e!ect of high-frequency disturbances on the un-
modeled response. The static o!set is removed by manual
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Table 1
Noise reduction in the control signal by using S

fix
"1#q~1

S
fix

STD(e
u
) (10~4 m) MaxD*uD (V)

1 0.10 0.45
1#q~1 0.15 0.12

Fig. 5. Robust design for faster response. (a) Nominal model &x' and
90% uncertainty ellipse; (b) generalized stability region (u

min
"0.2,

f
min

"0.7). Closed-loop nominal poles &x' and poles corresponding to
the ellipse boundary (with special examples marked h and e).

Fig. 6. Robust design for faster response. (a) y (solid), y
m

(dashed); (b) u.

tuning of u
0
. The resulting pole placement satisfying

robust performance is

j(A
c
(hK , g(hK , P)))"0.7603$0.0954i, 0.5416, 0.1201

$0.1312i. (16)

From Fig. 5b, it is seen that the dominant closed-loop
poles for various plants in the uncertainty ellipse can be

quite di!erent (although they satisfy the same perfor-
mance speci"cation). For one model in the uncertainty
ellipse, the dominant poles are complex, thus, giving
a response with overshoot. For another model in the
uncertainty ellipse, the dominant pole is real and a mon-
otonous response is expected. This behavior is also ob-
served in Fig. 6a, where the upward step is monotonous
while the downward step has an oscillation. The re-
estimated closed-loop poles are

j(AH
c
(hK

c
, g(hK , P)))"0.8270$0.1043i. (17)

The unmodeled response standard deviation is
STD(e

u
)"0.1704]10~4 m. Note that this is larger than

for the slow desired response (0.10]10~4 m). However,
as illustrated below, further reduction of the unmodeled
response standard deviation can be obtained by using the
internal model principle.

6.5. Minimizing the unmodeled response

An extension to the single data set procedure Steps 1}7
is now illustrated. A second experiment is made using the
robust controller from Step 7. An improved, but higher-
order controller is then estimated via the internal model
principle.

Steps 8 and 9 repeated experiment: Re-estimation of
hK and estimation of hK Q

From the repeated experiment, shown in Fig. 4, the
plant model is re-estimated:

hK
2
"(bK c( )T"(2.0308 1.2366)T.

The subscript 2 is used here to indicate the second experi-
ment. Notice that the estimated gain c( is 34% larger than
the previous estimate from the "rst experiment (see (15),
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Fig. 7. Robust design for fast response based on the internal model
principle. (a) y (solid), y

m
(dashed); (b) u.

Fig. 8. Minimizing the unmodeled response. (a) Nominal model &x' and
90% uncertainty ellipse; (b) closed-loop nominal poles &x' and poles
corresponding to the ellipse boundary (with special examples marked
h and e).

in the sequel denoted by hK
1
). The new model, together

with the robust controller from Step 7, gives

j(A
c
(hK

2
, g(hK

1
,P)))"0.8284$0.0956i,

0.3691$0.5607i,!0.1674. (18)

Clearly, hK
2

enables to predict the identi"ed dominant
closed-loop poles (17) better than hK

1
does (16). The inter-

nal model principle is now illustrated for the estimation
of one (dim h1Q"1) and two (dim h2Q"2) parameters. In
both cases R

fix
"1 and S

fix
"1#q~1. The resulting

controllers g(hK 1Q , hK
2
) and g(hK 2Q , hK

2
) are evaluated below.

For g(hK 1Q , hK
2
), the estimated closed-loop poles are

j(AH
c
(hK

c
, g(hK 1Q , hK

2
)))"0.8368, 0.7020 (19)

with the unmodeled response standard deviation
STD(e

u
)"0.1675]10~4 m. With dim h1Q"1, degQ"

0, and the order of R does not augment compared to the
design in Step 7. Also, the dominant pole of j(R) is 0.96,
which corresponds to the choice of R

fix
in Step 7. There-

fore, the reduction of the unmodeled response is merely
a result of the improved estimated plant model hK

2
. How-

ever, the improvement is only 1.7% (of 0.1704]10~4 m
in Step 7).

For g(hK 2Q , hK
2
), the estimated closed-loop poles are

j(AH
c
(hK

c
, g(hK 2Q , hK

2
)))"0.7821$0.0547i. (20)

These are closer than (19) to the dominant designed
closed-loop poles (18). Moreover, STD(e

u
)"0.1386]

10~4 m, a reduction of 18.66% compared to Step
7 (0.1704]10~4 m). The response is shown in Fig. 7a.
Notice that the oscillations in the downward steps have
disappeared. This can also be expected from Fig. 8b
showing that the dominant closed-loop poles are almost
invariant for the uncertainty ellipse.

Steps 8 and 9 show that there is a lot more to gain for
the rejection of the unmodeled response by estimating
the internal disturbance model rather than estimating the
plant model.

7. Conclusions

A data-driven controller design procedure with robust
performance has been developed and evaluated on
a magnetic suspension process. The data are used to
estimate, in closed-loop operation, the plant model as
well as the model uncertainty.

A data "lter is estimated "rst. There are two reasons
for this: (i) it enables the subsequent use of a linear
least-square technique, and (ii) it provides a straightfor-
ward means to validate the estimated model.

An ellipsoidal uncertainty bound in parameter space is
estimated. A trade-o! between robustness and perfor-
mance is possible by specifying the sizes of the ellipsoid
and of a generalized stability region, respectively.
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A simple generalized stability region, parameterized by
specifying the desired speed and the relative damping, is
used for illustration. The ellipsoidal robustness consid-
eration turns out to be important and gives improved
performance over a large operational range.

An extension of the robust performance procedure is
also proposed, where a disturbance model describing the
unmodeled response is estimated according to the inter-
nal model principle. This optimizes the rejection of the
unmodeled response for a given reference signal. For the
magnetic suspension system studied here, this is con-
siderably more bene"cial for reducing the unmodeled
response standard deviation (19% improvement) than
one additional iteration involving estimating a new plant
model and designing a new controller (1.7% improve-
ment).
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