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Abstract: Run-to-run optimization methodologies exploit the repetitive nature of
batch processes to find the optimal operating policy in the presence of uncertainty.
For the class of batch optimization problems where the solution is determined by
terminal constraints, the update of the decision variables towards their optimal values
is realized using a constraint control scheme. The methodology is adapted to improve
the cost function from batch to batch without constraint violation. (Copyright c©2000
IFAC )
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1. INTRODUCTION

Batch and semi-batch processes are of great im-
portance to the fine chemicals industry. Three
characteristics that differentiate batch processes
from continuous processes are (i) unsteady-state
operation, (ii) limited operating time, and (iii) the
repetitive nature. Optimization of such processes
have received increased attention since, in the face
of increased competition, optimization is a natural
choice for cutting production costs. In addition,
industry sees the potential of process optimization
with respect to safety, product quality and ease of
scale-up (Bonvin, 1998).

Classically, optimal control theory has been uti-
lized in the literature to calculate the input pro-
file for specific batch processes (Ogunnaike and
Ray, 1994). In most cases, the proposed implemen-
tation has been open-loop. However, open-loop
implementation of the optimal input trajectory
may not lead to optimal product formation due

to uncertainty in initial conditions and model pa-
rameters, and to process disturbances.

Traditionally, batch processes have been operated
with very little instrumentation. However, in the
last two decades, sensor technology has improved
considerably for the purpose of monitoring the
production on-line (Nichols, 1988). For instance,
the measurement of melt index and monomer con-
centration by IR spectroscopy is fairly standard in
the polymer industry. Hence, these measurements
can be used effectively to cope with uncertainty.
This way, the focus of optimization is shifted
from being a model-based framework to being a
measurement-based framework.

Since batch processes are intended to be run re-
peatedly, it is logical to exploit this repeatable na-
ture for process optimization. The goal of batch-
to-batch optimization is to find iteratively the op-
timal operating conditions in the presence of un-
certainty, while performing the fewest number of
sub-optimal runs. There have been several propos-
als in the literature that take advantage of batch-
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to-batch similarities for input profile optimization
of batch processes (Filippi et al., 1989; Zafiriou
and Zhu, 1990). Run-to-run optimization is also
of interest in the semiconductor and related in-
dustries (Adivikolanu and Zafiriou, 1998). On the
one hand, model-free approaches such as evo-
lutionary optimization (Box and Draper, 1987)
or MultiSimplex (Guide, 1999) use many batch
runs to converge to an optimal solution. On the
other hand, model-based approaches could con-
verge faster but they suffer from the lack of ac-
curacy of the model, especially when the model
needs to be identified in the presence of noise. As
a compromise, a scheme that only necessitates a
structurally-correct model will be proposed in this
paper.

Constraints play an important role in optimiza-
tion. In continuous processes, the optimal oper-
ating policy is often determined by constraints
(Maarleveld and Rijnsdorp, 1970). The same is
true for batch processes, but the dependence of
the input profile on the constraints (especially
terminal constraints) is considerably more com-
plicated. The run-to-run optimization methodol-
ogy proposed in this work is for batch processes
whose optimal solution is governed by terminal
constraints, i.e., constraints which depend only on
the final condition of the batch. Typical terminal
constraints arise from selectivity considerations,
where the concentration of particular species (e.g.
side products) must be less than specified values
to facilitate down-stream processing or simply to
avoid additional separation steps.

2. PRELIMINARIES

In this paper, the study will be restricted to a typ-
ical problem structure frequently encountered in
batch process optimization. In most batch chem-
ical processes, the manipulated inputs are flow
rates that enter the system equations in an affine
manner. Examples of typical manipulated inputs
include flow rates of hot and cold fluids, and
flow rates of reactants. Such systems are called
affine-in-input systems or control-affine systems.
Furthermore, the batch objective involves meeting
certain specifications only at the end of the batch
cycle. Typical cost functions are the maximization
of yield or ratio between two products at final
time. Thus, the objective function depends only
on the final state. Without loss of generality, the
final time, tf , can be assumed to be fixed.

Let us assume that the parameters of the model,
θ, are unknown but constant from batch to batch.
To cope with this uncertainty, the run-to-run op-
timization utilizes measurements taken from one
batch operation to improve the optimal operating

policy in subsequent batches. The fact that the
batch operation is repetitive is exploited to con-
verge to the optimal operating policy over suc-
cessive batch runs. The run-to-run terminal-cost
optimization problem under uncertainty can be
formulated as follows:

min
uk(t)

Jk = φ(xk(tf )) (1)

s.t. ẋk = f(xk, θ) + g(xk, θ) uk + dk (2)

xk(0) = x0

yk = h(xk, θ) + vk

S(xk, uk) ≤ 0

T (xk(tf )) ≤ 0

given yj(i), ∀ i, ∀j ≤ (k − 1)

where Jk is the cost function, xk(t) ∈ <n is the
state, uk(t) ∈ <m is the input, and dk(t) is the
process noise of the kth batch. Let y(t) ∈ <p be the
combination of states that can be measured, yk(i)
the ith measurement in time taken during the kth

batch, and vk(t) the measurement noise. f ∈ <n
and g ∈ <n×m describe the system dynamics,
S ∈ <σ the path constraints, T ∈ <τ the terminal
constraints, and φ ∈ < the cost function. The
objective is to utilize the measurements from the
previous (k−1) batches to handle the uncertainty
in θ and find the open-loop optimal input policy
for the kth batch.

The solution of terminal-cost optimization of
control-affine systems has the following properties
(Bryson and Ho, 1975):

• The input is in general discontinuous; yet, in
between discontinuities, the input is analytic.

• Two types of intervals (nonsingular and sin-
gular) are possible between two switching in-
stants; analytical expressions can be obtained
for either type of interval.

The pieces described above are sequenced in an
appropriate manner to obtain the optimal solu-
tion. The sequence of pieces and the switching
times need to be determined. Though analytical
expressions are available for the input in either
type of intervals, for ease of implementation, the
input is considered to be piecewise constant or
linear. In summary, the sequence of arcs, the cor-
responding switching times, and the coefficients
of the approximation completely parameterize the
input.

It is reasonable to assume that the sequence of
pieces is unaffected by the parametric uncertainty,
while the switching times and the coefficients of
the approximation depend on the uncertain pa-
rameters. Let these decision variables, i.e., the
switching times and the coefficients of the approx-



imation, be represented by ν. Let νk be the set
of decision variables for the kth batch run. The
goal of the run-to-run optimization is to choose
the decision variables in such a manner that, as k
increases, the computed solution approaches the
(unknown) optimal solution of the real system.

Depending upon whether or not a model is used,
various strategies for run-to-run optimization are
possible.

Model-free Evolutionary Optimization:
In this approach, no model is used, and the
performance of a proposed input is evaluated
experimentally. The algorithm for evolutionary
optimization is as follows:

(1) Parameterize the input using a finite number
of decision variables ν and choose the corre-
sponding initial values.

(2) Run the batch with the given input and com-
pute the performance index and the path and
terminal constraints from the measurements.

(3) Sequentially perturb every component of ν,
each time re-running the batch in order to
calculate the corresponding gradient, and
thus the search direction.

(4) Use an optimization algorithm (such as
steepest descent) to update ν. Repeat Steps
2-4 until the objective function is minimized.

As can be seen, dim(ν) + 1 batch runs are nec-
essary for each optimization iteration. Also note
that the optimization algorithms that do not
use gradient information typically converge more
slowly, thereby requiring even more process runs.

Evolutionary Optimization with Model-based Gra-
dient:
The expensive part in the evolutionary optimiza-
tion approach, in terms of the number of batch
runs, is the calculation of the gradient (Step 3).
The key idea in the model-based gradient ap-
proach is to use a dynamic model of the process,
instead of an experimental run, to calculate the
gradient. The model can be run as many times as
the dimension of ν to obtain the gradient. Another
possibility is to use the Hamiltonian formulation,
where the gradient is calculated from the states
and adjoint variables. The states are measured
or inferred from an experimental batch run. The
adjoint variables are obtained from the model of
the system by integrating the adjoint equations
backward in time (Zafiriou and Zhu, 1990).

Optimization via Model Refinement:
This approach uses a model of the process for opti-
mization and refines it using information gathered
from previous batches. An optimization problem
is solved before each batch run with the refined
model. The algorithm is as follows:

(1) Choose initial guesses for the parameters θ.
(2) Use the model and an optimization algorithm

to obtain the optimal ν.
(3) Run the batch open-loop with the optimal ν.
(4) Use an identification algorithm and all the

available measurements to obtain a new es-
timate for θ. Repeat Steps 2-4 until conver-
gence.

The model-free evolutionary optimization has the
drawback of using numerous batch runs to calcu-
late the gradient, while, when a model is used,
the accuracy of the model becomes crucial. If the
model has to be refined, care should be taken to
guarantee that the input is persistently exciting to
uncover the parameters that have to be identified.
This is normally not the case when the optimal
input is implemented. Thus, there exists a clear
conflict between identification and optimization
(Roberts and Williams, 1981).

The scheme proposed in this paper attempts to
resolve this conflict for batch processes whose
optimal solution is governed by terminal con-
straints. The scheme lies in between the model-
free evolutionary optimization and evolutionary
optimization with model-based gradient. The gra-
dient is obtained implicitly from the structure of
the problem. Hence, no model is used for the
implementation and no parameters need to be
adapted. However, a structural model is necessary
to devise the scheme.

3. OPTIMIZATION VIA CONSTRAINT
CONTROL

Consider the class of problems where optimal op-
eration, in the absence of terminal constraints,
corresponds to constant operating conditions (in-
put on one of the bounds with no switching, such
as the batch mode in chemical reaction systems).
This happens in controllable linear systems or
when the input-cost linearization of the system
is controllable. For these cases, which are quite
frequent in batch processing, the optimization
potential arises solely from selectivity considera-
tions. Thus, the optimal solution is governed by
terminal constraints. Without loss of generality,
one can assume all terminal constraints active
- the inactive constraints being simply removed
from the optimization problem.

For a given parameterization of the input, the
optimal solution consists in choosing ν such that
all the terminal constraints are active. Hence, the
deviations from the constraints represent a mea-
sure of non-optimality and also gives the direction
to update ν. The algorithm is as follows:



(1) Use prior knowledge or a structural model
to determine the active terminal constraints.
Inactive constraints are removed from the
optimization problem.

(2) Parameterize the input and choose an initial
guess of parameters ν1, k = 1.

(3) Run the batch using the input corresponding
to νk. Compute T (xk(tf )) from the measure-
ments at tf .

(4) Update the input parameters using νk+1 =
νk + K T (xk(tf )), with K being an appro-
priate gain matrix. Set k = k + 1 and repeat
Steps 3-4 until convergence.

This procedure is similar to evolutionary opti-
mization to the difference that extra batch runs
are not required to compute the gradient. The
gradient is obtained directly from the deviations
from the terminal constraints. Also, in the pres-
ence of disturbances, the gradient obtained from
deviations from terminal constraints is more ro-
bust than the gradient calculated using finite dif-
ferences. This is due to the fact that the gradient
calculation using finite differences uses the differ-
ence of two quantities corrupted by noise, while
that obtained from terminal constraints uses the
difference between a quantity corrupted by noise
and a fixed value. Thus, the constraint control
method does not have to excite the system to
get the gradient. Also, the optimization via con-
straint control considerably reduces the number
of batch runs required for convergence. Another
attractive feature of this approach is its model-
free implementation. However, a structural model
is necessary to determine the active constraints on
which the solution will lie.

The update law νk+1 = νk +G T (xk(tf )) can be
easily implemented by a feedback controller. The
system to be controlled is a static one represented
by S : ν → T (x(tf )) and the reference to
be tracked is Tref = 0. Note that S does not
represent the dynamic system (2), but just a static
map between the input parameterization and the
terminal constraints. In this controlled system,
the independent variable is the batch index k
and not the time t. The controller, which has to
be dynamic to avoid algebraic inconsistency, is
the only dynamic element in the control scheme
(Figure 1). Figure 1 also indicates the effect of
process noise on the terminal constraints, Td, and
the effect of the measurement noise, Tv.

The idea presented here is similar to that of
tracking constraints using feedback for the sake
of optimality (Maarleveld and Rijnsdorp, 1970).
The particularities of the present work are: (i)
terminal constraints are considered, and (ii) the
independent variable of the control loop is the

Controller
Update Law S

T

T
d

Tv

Tref
- +

+

ν

Fig. 1. Optimization via tracking of terminal con-
straints Tref = 0

batch number. Thus, the solution is implemented
open-loop within each batch, and the feedback
works over the successive batches.

The update law (Step 4) represents an integral
controller. To improve the rate of convergence, a
proportional or a derivative term can be added,
thus resulting in a PI or a PID controller, for
the design of which standard controller design
methodologies can be used. To reject the effect
of the process noise Td, a high-gain controller is
required, while to be insensitive to the measure-
ment noise Tv, the gain of the controller has to be
as low as possible. Hence, a compromise has to be
reached in the controller design.

The system S is in general multi-input, multi-
output and non-square. However, if the elements
of T can be controlled by the input u(t), and if
an appropriate parsimonious parameterization of
the input is used, one needs only as many degrees
of freedom in ν as the dimension of T , thereby
leading to a square system S. Note that the static
map S varies considerably with the operating
point, which complicates the controller design. Ei-
ther a centralized or a decentralized controller can
be used. In the latter case, a decoupling scheme
can be useful. In addition, once the solution has
converged to the optimum, one need not keep the
control loop active and the adaptation can be
stopped. In this case, convergence to the optimum
can be tested by looking at the error Tref − T
or the adaptation can be stopped after a fixed
number of batch runs.

Since constraint violations may mean that the
batch is wasted, it is better to be sub-optimal
than to violate the constraints. Hence, heuristics
can be used to first render the solution feasible
and then approach the constraint from within the
feasible region. In addition, conservatism needs to
be introduced to account for disturbances (process
and measurement noise). For example, one can
backoff from the active constraint Tref = 0 by
defining Tref negative so that T remains negative
despite disturbances:

Tref = −max
z

∣∣∣∣ Td(z)
1 +G(z) S

∣∣∣∣−max
z

∣∣∣∣G(z) S Tv(z)
1 +G(z) S

∣∣∣∣



k1 0.053 l/mol min

k2 0.128 l/mol min
k3 0.028 min−1

k4 0.001 l/mol min

cbin 5 mol/l

ca0 0.72 mol/l
cb0 0.05 mol/l

cc0 0.08 mol/l
cd0 0.01 mol/l
V0 1 l

Table 1. Parameter values and Initial
conditions

where G(z) is the controller transfer function.
Note that Td(z) is the z-transform of the noise
sequence T kd , where k is the batch number.

4. EXAMPLE

The methodology proposed in this work will be
applied to a semi-batch reactor system, specifi-
cally, the acetoacetylation of pyrrole with diketene.
The reaction system considered is described below
and, for a more detailed description of the process
and model, the reader is referred to (Ruppen et
al., 1998):

A+B→C

2 B→D

B→E

C +B→ F

where A: pyrrole, B: diketene, C: 2-acetoacetyl
pyrrole, D: dehydroacetic acid, E: oligomers and
F: undesired by-products. The optimization prob-
lem is

min
u(t)

J = −cc(tf )V (tf )

s.t. ċa = −k1cacb − (u/V ) ca
ċb = −k1cacb − 2 k2c

2
b − k3cb − k4cbcc

+(u/V ) (cbin − cb)
ċc = k1cacb − k4cbcc − (u/V ) cc
ċd = k2c

2
b − (u/V ) cd

V̇ = u

0 ≤ u ≤ 0.002

cb(tf )− 0.025 ≤ 0, cd(tf )− 0.15 ≤ 0

where ca, cb, cc and cd are the concentrations of
A, B, C, and D in mol/l, respectively, in the kth

batch. The feed consists of only the species B
with concentration cbin . The goal is to maximize
the number of moles of C at the final time, tf =
250 min, by manipulating the feedrate u in l/min,
while satisfying the two terminal constraints on

the concentrations of B and D. It is assumed
that the concentrations of Species B and D are
measured at final time.

The optimal solution for this problem, obtained
numerically, can be characterized as having three
intervals: (i) input at its maximum value, (ii) in-
put being singular, approximated by an unknown
constant value, and (iii) input at its minimum
value. The maximum amount of C obtained is
0.4884. From the optimal solution, the natural
parameterization corresponds to the following set:
tm, switching time between the maximum input
and the singular interval, us, the feedrate during
the singular interval, and ts, the switching time
between the singular interval and the minimum
input.

Two degrees of freedom are necessary to meet
the two terminal constraints. To check how much
can be gained with the third decision variable,
tm was set to zero and the other two variables
were manipulated. The maximum amount of C
obtained in such a case is 0.4882, a deterioration
of 0.05%, which is indeed negligible. Thus tm
could be set to zero, thereby leaving only two
intervals, the singular one with feedrate us and
the switching to the zero feed at time instant
ts. Hence the parameterization: ν = [us, ts]T ,
T (x(tf )) = [cb(tf ) − 0.025, cd(tf ) − 0.15]T . The
static map S obtained at the optimum solution
was

S =
[

1.2× 10−3 0.5× 10−3

0.2× 102 1.6× 102

]

The scale-independent diagonal dominance of S
was tested using the relative gain array technique,
which gave λ = 1.054 (Ogunnaike and Ray, 1994).
This implies that two independent control loops
could be constructed, with cb(tf ) being paired
with ts and cd(tf ) with us. PI-controllers tuned
for the static map S were used for the ts → cb(tf )
and us → cd(tf ) loops with proportional gains,
Kb = 100 l-min/mol,Kd = 2.5×10−3 l2/mol min,
and integral time constants, Tib = 0.33 min and
Tid = 10 min, respectively.

An initial input parameterization of us = 0.001
l/min and ts = 175 min was used. The initial
values were chosen in a conservative manner so
that the optimal solution is approached from the
safe side. While running this simulation, there was
a 5% zero-mean gaussian multiplicative measure-
ment noise added to the concentration measure-
ments of B and D. The results of a typical series
of runs are shown in Figures 2-4. It can be seen
that neither constraint was violated during the
series of 150 batches, therefore producing usable
product each time. Thus, the introduced backoff



efficiently accounted for the measurement noise.
Figure 4 demonstrates the motivation for tracking
terminal constraints for optimal control: as the
constrained variables are pushed closer to their
limits, the objective function is improved, in this
case, producing more of the desired product. It is
important to note that the main improvement in
the cost is realized in the first 20 batches. Clearly
after 100 batch runs, the improvement in the cost
is marginal and the adaptation can be stopped.
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5. CONCLUSION

This work has demonstrated the effectiveness of
constraint control for the run-to-run optimization
of a class of batch processes, where the solution
is determined by terminal constraints. The up-
date of the parameters required for optimization
is realized using a simple control scheme. The
update direction was obtained implicitly, thereby
avoiding the need to excite the system for the
estimation the gradient. The methodology has

been adapted such that production of the desired
product increases with each progressing batch,
without constraint violations.

The design of the controller is a direction which
merits further research. The gain matrix S varies
with the operation point and hence between iter-
ations. If this variation is large one needs more
sophisticated control methodologies to avoid in-
stability problems.
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