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Abstract
Maximizing the yield of a second-order reaction by
manipulating the inlet flow rate is considered in both the
isoperibolic and isothermal modes. For safety considerations,
constraints on (i) the amount of heat produced, and (ii) the
temperature under cooling failure are imposed. The optimal
solution is discontinuous and is first obtained numerically.
Analytical expressions for (i) the evolution of the input
between the discontinuities, and (ii) the switching times are
obtained. Using the analytical characterization of the optimal
solution, an efficient feedback implementation strategy is
designed.

1. Introduction

An important objective in the chemical industry is to find the
operating conditions that maximize profit while ensuring safe
operation. The safety considerations arise from the
exothermic nature of most industrial chemical reactions. For
normal operation, the system must be able to remove the heat
produced [1]. But at the same time, the system must be
capable of withstanding a cooling failure [2]. These goals can
be best achieved by working with a semi-batch reactor since
the contents of the reactor can be controlled by the external
feed.

Two modes of operation are studied in this work: (a) the
isoperibolic mode, where the temperature of the cooling fluid
is kept constant, and (b) the isothermal mode, where the
temperature of the reaction mass is kept constant by adjusting
the temperature of the cooling fluid.

The operation of reactors under isoperibolic and isothermal
modes is well studied ( [3, 4] for isoperibolic mode, [5] for
isothermal mode). The optimization aspects are considered in
[6, 7]. The safety aspects under cooling failure are described
in [8], though the optimization issues are not considered
therein. Abel et al. [9] propose optimization-based approaches
to the design of batch reactors upon consideration of

operational and safety constraints. Abel and Marquardt [10]
present a model predictive scheme for the on-line
optimization of strongly exothermic semi-batch reaction
systems under explicit safety requirements.

This article discusses the optimisation aspects under safety
constraints for a second-order reaction. The objective is to
maximise the conversion for a given terminal time. A
numerical solution is first obtained using a software tool
based on MATLAB© [11]. The interpretation of the results
leads to a piece-wise analytic characterisation of the solution.
A feedback implementation strategy is designed to handle
model mismatch and disturbances [12].

The paper is organised as follow. Section 2 formulates the
problem, while the numerical solution is discussed in Section
3. The solution is characterised in Section 4, and Section 5
deals with implementation aspects. Finally, Section 6
concludes the paper.

2. Problem formulation

2.1 Modeling

The exothermic reaction A + B à C in a semi-batch reactor is
considered. The reactor is filled initially with A (Na

° moles
and volume Va

°). Nb
°  moles of B of initial volume Vb

° are fed
through the inlet at the concentration cb,in = Nb

° /Vb
°.

The number of moles of A and B, Na and Nb, can be
expressed in terms of the molar conversion, xa, and the
volume of the reaction mass, V, as follows:

N a = N a
° (1 − x a )

N b = N b
° V − Va

°
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The reaction rate is assumed to obey the power law:
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where Ea is the activation energy, R the gas constant, T the
temperature and k° the rate constant.

Heat is removed by a fluid of temperature Tc circulating in a
cooling jacket. The heat transfer area is related to the volume
of the reaction mass:

2V2
A σπ+

σ
=

where σ is the radius of the reactor.

Material and energy balances result in the following dynamic
model:
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where u is the feed flow rate, Tin the inlet temperature, ∆H the
heat of reaction, ρ the density, cp the heat capacity and U the
global heat transfer coefficient.

2.2 Optimization problem

The optimal control problem consists of minimizing the
number of moles of A at the given final time tf by adjusting
the feed flow rate u(t). In addition to the dynamic system
equations (1)-(3), the following operational and safety
constraints are present:

maxmin uuu ≤≤ (4)
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umin and umax are the input bounds, and Vmax the maximum
volume. Constraint (6) states that the temperature under
cooling failure, Tcf, should not exceed the maximum
temperature Tmax. In case of a cooling failure, the system
becomes adiabatic. The best strategy is to immediately stop
the feed. Yet, due to the presence of unreacted components in
the reactor, the reaction goes on. Thus, chemical heat will be
produced, which causes an increase in temperature. The term
min(Na,Nb) serves to calculate the maximum extent of
reaction that could occur following the failure, and
( − ∆H) ρcpV  represents the adiabatic temperature rise.
Hence, Tcf  represents the maximum attainable temperature.

The system will be studied in two operational modes:
isoperibolic (Tc = constant) and isothermal (T = constant).

In isothermal operation, T is kept constant by adjusting Tc as
follows:
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Eq. (7) can also be written as:

)TT(AU)TT(curV)H( cinp −=−ρ+∆− (8)

or           Qrx           +           Qin            =   Qex (9)

where Qrx is the heat produced by the chemical reaction, Qin
the relative heat added by the inlet stream, and Qex the heat
removed by the cooling jacket. The heat produced or added
should not exceed the maximal heat removal capability,
Qex,max, that is obtained for the lowest possible value of Tc,
Tc,min:

Qrx + Qin ≤ Qex,max (10)

Isoperibolic operation (Tc = constant)

)t(Nmin fa)t(u

Subject to dynamic equations (1)-(3)

algebraic constraints (4)-(6)

Isothermal operation (T = constant)

)t(Nmin fa)t(u

Subject to dynamic equations (1)-(2)

algebraic constraints (4)-(6) and (10)

3. Numerical solution with PADPOS

PADPOS [13] is a toolbox for MATLAB that has been
written in house for dynamic optimization, i.e. for both
parameter estimation and optimal control problems. The core
idea is to convert the dynamic optimization problem into a
standard nonlinear programming problem using (a)
parameterization, and (b) time discretization [14]. The inputs
and states are parameterized using piece-wise polynomials.
The differential equations of the system are verified only at
discrete collocation points. The resulting nonlinear program is
solved using functions available in the optimization toolbox
distributed with MATLAB.



3.1 Isoperibolic operation

The optimal constant cooling temperature and the optimal
feed rate profile are determined using PADPOS and the
numerical values of system parameters and experimental
conditions given in the Appendix. For this example with Tin =
Tc, the optimal cooling temperature is 351K. For this
temperature, the optimal input is given in Figure 1, and the
corresponding temperature under cooling failure in Figure 2.
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Fig. 1 Optimal feed rate
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Fig. 2 Comparison of Tcf (solid line) and Tmax (dash line)

First, reactant B is fed as quickly as possible until Tcf = Tmax.
Then, u is adjusted to maintain Tcf constant. The constraint is
not violated. Finally, when the constraint V=Vmax becomes
active, u=0.
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Fig. 3 Conversion with constant (dash line) and time-varying
(solid line) input flow rates

Constant feed rates are common in industry. To appreciate
how much can be gained using a time-varying input, the
following comparison is made. The optimal constant input
corresponds to 0.0093 l/h for the entire period. The
conversions for the constant and time-varying optimal inputs
are given in Figure 3. The curves indicate that about 20%
more product can be obtained by using a time-varying input.

3.2 Isothermal operation

The optimal solution given by PADPOS for isothermal
operation with Tin = T = 350 K is depicted in Figure 4. The
evolution of the temperature under cooling failure is given in
Figure 5. The comparison of the heat produced Qrx and the
maximum heat that can be removed Qex,max is presented in
Figure 6.
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Fig. 4 Optimal feed rate
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Fig. 5 Comparison of Tcf (solid line) and Tmax (dash line)
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Fig. 6 Comparison of Qrx (solid line) and Qex,max (dash line)



First, the reactant B is fed with the maximum rate until Qrx =
Qex,max. Then, u is adjusted to ride on this constraint.
However, the other constraint Tcf = Tmax becomes active after
some time, and u is chosen in order to maintain this other
constraint satisfied. Finally, when the volume reaches its
maximum value Vmax, u is set to zero.

As above, a comparison is made with the constant-input case.
The optimal constant input corresponds to 0.00645 l/h for the
entire period.

The conversions for the constant and time-varying optimal
inputs are given in Figure 7. The curves indicate that about
20% more product can be obtained by using a time-varying
input.
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Fig. 7 Conversion with constant (dash line) and time-varying
(solid line) input flow rates

4. Characterization of the optimal solution

4.1 Isoperibolic operation (Tc = constant)

From the numerical solution, one can formulate the nature of
the generic solution (Figure 8) as follows:
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Fig.8 Input profile for isoperibolic operation

First, Reactant B is fed at maximum rate until Tcf = Tmax.
Once the constraint is reached, the input is adjusted to
maintain Tcf constant. The value of the input which keeps the

system on the safety constraint can be calculated from

( ) 0TT
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d
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As soon as there is a stoichiometric excess of B, Na becomes
smaller than Nb, and min(Na,Nb) = Na. Addition of B does not
have any effect on Tcf, and u is set to umax to maximize the
conversion. Finally, when all B has been fed, the feed is
stopped, and u = 0.

Thus, analytical expressions for the input between
discontinuities and also for the switching conditions are
available.

4.2 Isothermal operation (T = constant)

Similar analytical expressions can be obtained for the
isothermal case.

As illustrated in Figure 9, the reactant B is fed at maximum
rate until one of the two path constraints becomes active.
Then u is chosen equal to ucon1 or ucon2, depending on which
of the two constraints is active. Switching between the
constraints is also possible. In Figure 9, it is assumed that the
second constraint (eq. 10) is active first and then the first
constraint (eq. 6).

The input ucon1 makes the system ride on the first constraint

and, from ( ) 0TT
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d
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The last part of the optimal solution is similar to that for the
isoperibolic case.
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Fig. 9 Input profile for isothermal operation

5. Implementation of the optimal solution

In the implementation of the optimal solution, model
uncertainties and disturbances (e.g. variations in initial
conditions) should be taken into account. Yet, it is reasonable
to assume that the characterization of the optimal trajectory
described in Section 4 is still valid despite these variations.

There are 4 possible input characterization modes:

1. Input at its upper bound, u=umax.
2. Input at its lower bound, u=umin.
3. Input determined by Tcf, u=ucon1.
4. Input determined by heat removal, u=ucon2.

Modes 1 and 2 have to be executed in open loop, while a
simple feedback controller can be used for the
implementation of Modes 3 and 4.

The implementation schematic is shown in Figure 10. The
block "construction of output" generates an output that
represents the distance to the safety constraint for the actual
input mode. The feedback controller then tracks a set point
value of zero for the appropriate output. Analytical
expressions for switching between the different modes are
available, as can be seen in Figures 8 and 9. This is used for
choosing the corresponding input mode.

ProcessController

Switching 
conditions

Construction of
output
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uError0 xa,V,T

-

Fig. 10 Implementation schematic

Though, as described earlier, numerical optimization is
necessary to compute the true optimum, a simple feedback
controller can take the system relatively close to the optimum
and, at the same time, provide additional robustness.

In practice, the true values of the process parameters are not
known accurately. The implementation scheme discussed
above provides an efficient way to handle such uncertainties.
As an example, the isoperibolic operation with an error of
20% in k° is considered (k° = 3.6 103 m3/mol.s). Figures 11
and 12 compare the open-loop application of the optimal
input with the feedback strategy to track the constraint. Due
to the error in k°, Tcf is no longer at its maximum value when
the "optimal" input is applied in an open-loop fashion.
However, with the feedback strategy, Tcf is closer to the
constraint, thereby leading to an improved performance (5%
improvement).
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Figure 11 Comparison of conversions: open-loop (dash line)
vs. closed-loop (solid line) implementations.
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Figure 12 Comparison of Tcf : open-loop (dash line) vs.
closed-loop (solid line) implementations

6. Conclusion

This article discusses the optimization of a semi-batch reactor
with safety constraints in both the isoperibolic and isothermal
modes. Three interesting conclusions can be made:

• In the presence of safety constraints, semi-batch
operation is preferred over batch operation.



• Using a time-varying input instead of a constant
input increases the yield significantly.

• The optimal solution can be easily implemented
using a feedback strategy.

Appendix

A1 Numerical values of system parameters.

Symbol Description Isoperibolic Isothermal Units

∆H Reaction
enthalpy

-62000 -162000 [J/mol]

ρ Density 900 900 [kg/m3]

cp Heat
capacity

2000 2000 [J/kg.K]

U Heat
transfer

coefficient

180 20 [W/m2.K]

σ Radius of
reactor

0.076 0.076 [m]

k° Pre-
exponential

factor

2.78 103 9.72 104 [m3/mol.s]

Ea Activation
energy

72500 82500 [J/mol]

B1 Numerical values of experimental conditions.

Symbol Isoperibolic Isothermal Units

Na
° 0.5 2.5 [mol]

Nb
° 0.5 2.5 [mol]

Va
° 0.32 0.32 [l]

Vb
° 0.23 0.23 [l]

Tmax 363 397 [K]
tf 24 30 [h]

umin 0 0 [l/h]
umax 0.1 0.1 [l/h]
Tin 351 350 [K]

Tc,min - 335 [K]
T - 350 [K]
Tc 351 - [K]
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