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Abstract

Standard helicopters use the propeller angle to alter the
aerodynamic force and have been shown to be feedback
linearizable with the pitch, yaw and roll angles being
the flat outputs. In this work, a-two-degree-of-freedom,
laboratory-scale helicopter-like system (termed the toy-
copter), where the aerodynamic force is manipulated using
the propeller speed, is considered. For such a system the
yaw and pitch angles are not flat outputs contrarily of the
real helicopters. Moreover, the system does not seem to
be flat and is shown to admit at most a one dimensional
defect. Various properties of this system are investigated
to illustrate the difficulties that arise in the control of the
toycopter.

1 Introduction

Laboratory-scale experimental setups have always been
used to illustrate certain aspects of important industrial
and technological problems. However, they sometimes,
in their own potential, throw challenging control issues
unseen in the real-world setups that they try to imitate.
The classical example is that of an inverted pendulum,
which was proposed to illustrate the problems encountered
in rocket control [8]. However, the problem of swinging
the pendulum to its upright position has occupied many
researchers, ever since its conception. Swinging is com-
pletely foreign to the original rocket control problem; nev-
ertheless, it has been the testground for many an interest-
ing idea [1].

A similar situation arises in the helicopter problem as
well. The elements to be illustrated are the multi-input
multi-output scenario that naturally arises and the gy-
roscopic effects that come into picture due to a moving
propeller. In the standard helicopter (7], the aerodynamic
force is controlled using the propeller blade angle. In small

setups however, it is much easier to have a propeller with
fixed blade angle and to adjust the aerodynamic force by
manipulating the propeller speed. Such a setup, termed a
toycopter, will be considered in this work. A modification
of this sort does not remove any of the essential couplings
that need to be illustrated, but adds an extra coupling
caused by the reaction of the force necessary to change
the propeller speed.

The presence of this coupling has drastic effects on the
control problem at large. If the blade angle had been used
for control, the system would have been feedback lineariz-
able [6] and flat. For the sake of simplicity, we restrict our-
selves to two-degrees-of-freedom (2-DOF) systems where
there is no roll movement. The flat outputs are then the
pitch and yaw angles. However, it will be shown that if
the propeller speed is varied, the system is no longer flat
due to the presence of this extra coupling. Flat systems
are those in which the states and the inputs can be recon-
structed from the outputs and their time derivatives [4].
Such systems are easy to control and the control strategies
are well studied. However, if a system falls out of this cat-
egory, control becomes more involved, and sophisticated
techniques need to be employed.

In this paper, the toycopter is compared and contrasted
with a 2-DOF helicopter, a system where the blade angle
is used for control. The modeling of the two systems is
performed in an unified Newtonian framework. Various
properties of these two systems, such as linearizations, flat
outputs, defects and the residual dynamics are studied to
illustrate the need for more sophisticated control schemes
for the control of a toycopter.

Section 2 is devoted to the modeling of the 2-DOF he-
licopter and the toycopter. The linearized systems are
analyzed and the their flat outputs derived in Section 3.
A discussion of flat outputs and defects of the nonlinear
systems is undertaken in Section 4, and Section 5 proposes
a mechanical solution to overcome the defect. The paper
concludes with Section 6 where possible control alterna-
tives are discussed.



2 Modeling of a 2-DOF helicopter
and a toycopter

The aerodynamic force of a propeller can be varied by ei-
ther changing the propeller speed or the propeller blade
angle. In this section, we will develop a model of a
helicopter-like system where the aerodynamic force of the
main propeller is controlled using both the blade angle and
propeller speed. The rear axis however has a fixed blade
angle. The model of a 2-DOF helicopter and a toycopter
will then be derived as special cases.

Figure 1 shows the descriptive diagram of such a heli-
copter system which, however, cannot fly. The main body
is fixed to the ground through a rotational joint permit-
ting a rotation around the ¢ axis. The second part, the
arm, is attached to the main body through another ro-
tational joint which permits rotation in the 1 direction.
Two electrical drives, perpendicular to each other, that
rotate the main and the rear propellers on each end of the
arm are mounted. These drives are positioned in such a
way that the aerodynamical force of the main motor gen-
erates a torque in the 9 direction while the rear propeller
acts on the ¢ coordinate.
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Figure 1: Helicopter model

The following hypotheses are considered in the mechan-
ical modeling of the above mentioned system:

e The aerodynamical force is considered proportional
to the propeller speed.

e The aerodynamic cross coupling is neglected.

e Frictional effects are neglected.

The electrical drives are torque controlled.

2.1 Modeling using the Newtonian ap-

proach

The classical Newtonian approach using Euler formula will
be used for modeling [5]. The Newtonian modeling con-
sists of the following steps: (a) decomposition of the sys-
tem into smaller units (subsystems) (b) modeling the dy-
namics of these subsystems and (c) the computation of

the external torques, which include (i) gravity, (ii) aerody-
namical forces and (iii) forces from the other subsystems.

The system of Figure 1 is decomposed into two subsys-
tems: (i) the arm, and (ii) the two rotating propellers.
The arm dynamics will be derived in detail in the next
subsection while the dynamics of the propellers are just
integrators. The coupling between the propeller subsys-
tem and the arm is caused by the gyroscopical torques
resulting from the change in kinetic momentum of the
propellers. However, the coupling between the arm and
the propellers will be neglected, since its speed is far less
than that of the propellers.

2.2 Arm dynamics

Let €, €3, €3 be a frame (e-frame) attached to the arm
at its center of rotation, as shown in Figure 2. The arm
speed, w, with respect to an inertial frame, expressed in
the e-frame is given by,

w = e — d'Scos(z/;)eg + ésin(w)eg (1)
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Figure 2: Epsilon frame attached to the arm

The momentum of the arm is then I = E?=1 Lw;e;,
where I; is the inertia along the ith axis. The dynamics is
obtained by inserting the momentum into the fundamental
equation %L = M, with M; being the external torque
along the €; axis. Noting that & = Z?=1 wj€; A €;, the
dynamics, after some simplification, can be obtained as,

Iy — %15432 sin(29) = M, (2)
(s + I sin?(y)] ¢ + I sin(2¢)
= M3sin(y) — M, cos(y) (3)

where Ic = I3 e Iz, I¢ = Ig and I¢, = Il.

2.3 External torques
Three types of torques are applied to the arm:

1. Aerodynamical torques (M§#): These are due to the
propeller angular speed and blade angle. The aerody-
namical forces are proportional to the angular speed,



and the ratio is an invertible function of the blade
angle of attack.

2. Gravitational torque (ME): This torque is due to
gravity.

3. Gyroscopical torques (M#): These are due to the gy-
roscopic effects caused by the change in kinetic mo-
menta of the propellers.

The first two types of torques can be computed as:
Ma
MC

Crn(Mwmer + Crw,res (4)
(G, sin(y) + G, cos(¥)) e, (5)
where C,,(n) is a monotonic function of n and C,, G,

G, are appropriately-defined constants. The gyroscopic
torque has two components, MY and M 9 given by:

an = ImwmésCOS('lﬁ)El + Imwm"/‘)e? = Inwnes (6)
M? = —Id.€ — I,w,dbsin(z/})ez - Irqu'ﬁcos(w)eg (7)
These are generated by the reaction torque to the one

needed to change the kinetic momentum of each pro-
peller (Set L,, = I,,wmes for the main propeller and

L, = ILw,e€; for the rear one and noticing that M,; =
%i =-M f with ¢ = m, r gives the previous formulas).

Note that the external torques do not contain a wrd
term due to the combination M3 sin(1) — M; cos(y). This
phenomenon can be explained by the fact that the change
of orientation of the rear kinetic momentum creates a
torque only on the roll coordinate whose movement is pre-
vented by the structure.

2.4 The model

Putting together the results of the previous subsections
gives the final model:

I,,,{L; +Lw, = Cpn(n)wm+ G,sin(y) + G, cos(®))
+ Inwm cos(yh) + %Ic sin(2¢)$? (8)

(s + Icsin?(9)] ¢ + L@ sin() = Cpw, sin(3)
~Imtwm cos($)¢ — I sin(29)p 9)

(10)
(11)

Where 7 is the blade angle of attack and the terms
Crm(n)wm and Crrw, are aerodynamic reaction torques
as seen by the different motors, with the constants defined
appropriately.

The model of the 2-DOF helicopter is obtained by set-
ting wr, to be a constant, W, = 0 and dropping (10). The
states are {1, ), ¢, @, wr} and inputs {n,u,}. The input

Cmm(N)wm
Crrwy

Kmum -

K., —

L, =

Lo, =

Um is utilised by another controller (outside the realm of
this study) to maintain wy, at a constant value and hence
is unavailable to us. On the other hand, the model of
the toycopter can be derived by having 7 constant. The
states of the toycopter are {¥, 9, 0,0, wpn, wr} and inputs
{%m,u,}. For both systems the outputs are {9, ¢}.

As far as the dynamics are concerned, the most impor-
tant change is that the term I,,,, sin(y) of (9) drops out
in the model of the 2-DOF-helicopter since wm = 0. To
understand the source of this term, note that the gyro-
scopic torque can be generated two ways : (i) a change
in orientation of the kinetic momentum and (ii) a change
in propeller speed. I,,wn, sin(%) is typically a term of lat-
ter type. The complexity that such a term generates is
illustrated in the next section by analyzing the linearized
models of these two systems.

3 Linearized systems and their
corresponding flat outputs

Flat outputs of a system are those combinations of the
states which have the following properties: (i) Given the
flat outputs and their derivatives, all states and inputs can
be reconstructed. (ii) The number of flat outputs is equal
to the number of inputs. (iii) If the system outputs are
flat then the residual dynamics are trivial (no residual dy-
namics). Flat outputs of a linear system are the standard
Brunowsky outputs discussed in literature [2]. In this sec-
tion, the models of the two systems under consideration
are first linearized. The flat outputs and the nature of
the residual dynamics of the linearized systems are then
analyzed.

3.1 Linearization of the 2-DOF helicopter

The linearization of the 2-DOF helicopter has the form,

AY+cibir = AP +c3Ad+csAn  (12)
A& = c5Awr + cgAY

+erAY + cgAd (13)

Aw, = cgAw, + cpAu, (14)

where ¢;,i = 1,2,---,10 are coefficients of the linearized
system expressible as a function of the states and model
constants. It can be easily seen that the flat outputs for
this system are variations of the original outputs, Ay and
A¢ themselves. Let 7 = Ay and k = A¢ be used to
represent the flat outputs. The variations of the various
states and outputs can be derived as follows: Aw, can be
obtained from (13) since the other quantities are assumed
to be known. Differentiating and back substituting Aw,
and Aw, in (12) gives An. Since the outputs of the system
are flat the residual dynamics are trivial.



3.2 Linearization of the toycopter

The linearization of the toycopter has the form,

AY + C AG, CoAY + C30¢ + CyAw,,  (15)
Ad+ CsAiy = CoAw, + CrAw,,

+CsAy + CoAY + CioAd (16)

Awy, = CyAwn, + Cr2Au, (17)

Aw, = C13Aw, + C14Au, (18)

where Cj,i = 1,2,---,14 are the coefficients of this lin-

earized system.

Clearly we see that A and A¢ are not the flat outputs.
To find the flat outputs of a differentially cross-coupled
system, we transform the same so that the Brunovsky
outputs can be readily obtained. The state transformation
that needs to be employed and the transformed system
should look like :

Aw,, + C_’lA’(/) + C_'zA’l/) + 03A¢ + C—'4Aq'5,
Aw, + G529 + CoAgh + CrA¢ + CsAd(19)

Ay, =

Ad,

i

élA‘l/J + ézA(ﬁ + é;;Athm + C~'4A(4:.'J,- =
65A1/J + C.'GA¢ + C7A(4;Jm + égA(;'Jr =

N
A, (20)

where C;s and C;s can be expressed in terms of coeffi-
cients C;s. It is easy to verify that 7 = [ [ Ad,, dtdt and
k={ f Ady, dt dt expressed as a function of the original
states are the Brunowsky outputs of (21) and hence of the
system (16)-(19). If the constants in equations (16)-(19)
are such that they are already in the form (21), then the
physical interpretation of the flat outputs is that they are
the integral of the two propeller angles.

Looking at the development, it is clear that the cross-
coupling term has increased the complexity of finding a
flat output. The expressions are lenghty and mathemati-
cally complicated even when the linearized system is con-
sidered and it is not clear how the flat outputs can be
found for the complete nonlinear model.

Since the original system outputs are not flat, the sys-
tem possesses residual dynamics. Since the system is
linear, the residual dynamics can be _studied by setting
Ap = Ap = A = Ad = A = Ad = 0 in (16)-(19).
This leads to the homogeneous system

Wi _ Cr; Cs Wm
(.L',- - C4 0 Wy
The eigenvalues of the homogeneous system described

. CZ+4C,C, .
in (22) are ﬁ@ Since Cy4,Cs > 0, one of

the eigenvalues is always positive and the other nega-
tive. This clearly shows that the system outputs exhibit
nonminumum-phase characteristics.

(21)

4 Flat outputs and Defect of the
nonlinear systems

Having obtained the flat outputs of the linearized sys-
tems in the previous section, we proceed with the flatness
analysis of the nonlinear original models. As would be
expected, the flat outputs of the 2-DOF helicopter are the
system outputs themselves, while it is not possible to get
a set of flat outputs for the toycopter. With the system
outputs, the residual dynamics have dimension 2, though
it can be reduced to 1 by a suitable choice of outputs. The
dimension of the residual dynamics will be defined as the
‘defect’ of the system.

4.1 Flat outputs of the 2-DOF helicopter

From the dynamics of the 2-DOF helicopter, consider the
flat outputs candidates 7 = 4 and k = ¢. We now check
whether all states and initial inputs can be reconstructed
from 7, k and a finite number of their time derivatives.
The states {1,,,1} are trivially reconstructed. The
procedure to reconstruct, w, and the inputs is given below.
Using (9), w, can be expressed as:

N o .
wy = Coonlr) { [T + I sin®(7)] & + Lpwn, cos(r)i

+I.sin(27)7R} = fy(r, &, &) (22)

Then using (8) and noting that Cp,(n) is an invertible
function of 7, the input 7 can be computed as:

C;l (wi [I,ﬁ + I fi(r, 7,7, k, &, &®)
— Ggsin(7) — G, cos(T)

~Ipwm# cos(T) — %Ic sin(2T)D

7]:

= for, 7,7,k &, ) (23)

Reconstruction of the other input is then straightfor-
ward by substituting (23) in (11). This leads to the expres-
sions u, = f3(1,7,7, Kk, &, fi(3)). By choosing 7 and k®) as
the new inputs, the 2-DOF helicopter can be transformed
into two chains of integrators, one with 2 and another with
3 integrators. Note that the original system has 5 states,
which is the same number as the number of states in the
chain of integrators. Hence, the transformation can be
realised using static feedback.

4.2 Residual dynamics of the toycopter
with system outputs

For the toycopter, one possibility is to choose T = 1 and
k = ¢ as the flat output candidates. However, with such
a choice, all the states cannot be reconstructed, and this
leads to unstable residual dynamics. The residual dynam-
ics, of dimension 2 (states {wm,,w, }), are given by,



Lw, — Iywmk cos(T) — Crawy, = %Ic sin(27)42

—Iy7 + Gssin(r) + G cos(T)  (24)
I, sin(T) + Inwp, cos(7)7 — Crwy sin(r) =
— [I + I sin®(1)] & — I, sin(2¢) 7% (25)

The residual dynamics are linear in {wy,,w,} and the
homogeneous part is given by,
Om | —In,7 tan(r) C, W (26)
Wr | | Cm+ Inkcos(t) 0 wy
Comparing (27) with the (22), it is clear that the residual

dynamics are unstable.

4.3 Defect one outputs of the toycopter

Instead of taking % and ¢, consider the following as flat
output candidates:

T = —Iycos(y)
+ (I + Insin(om + Losin®(9)) (27)
K = ¢ (28)

The expressions have been so chosen that the input ap-
pears only after 3 differentiations for the 7 output and
after 2 for . Since the system has dimension 6, and since
the input appears in & itself, we are left with an internal
dynamics of one dimension. Thus we have reduced the
dimension of the residual dynamics from 2 to 1. Hence
the system is said to have a defect of at most one.

4.4 Reconstruction of the original states
and the internal dynamics

To obtain the residual dynamics, we reconstruct from T, K
and their derivatives, all possible original states. Recon-
struction of ¢ = n,é = K are trivial. The states wy, and
wr can be obtained as expressions of 1 and ¥

G= (7 + Iy cos(9)) — Isf — Lisin®(h)
o= I 5i0(%) (29)

1 7 .
= = — =1,
@ I, {sin(t/:) '/ﬂ/}}
Due to the one-dimensional defect, either of the vari-
ables 1 or 3 will be undetermined, and the relationship
between them leads to the following internal dynamics.
Using (30)-(31), we obtain,

(30)

¥ = %é% {T - %Ic sin(24) sin(y)&? — G, sin(y)?
~ Gesin(y) cos(y) — Fnt )

[Co(r + Iy cos(9)) — L(ly + L. sin(3))] }(31)

If the internal dynamics are always stable for all {r, &}
profiles, then one can design controller without taking
these dynamics into account. However, for most trajec-
tories these dynamics are unstable. To ilustrate this, an
evolution of {1, ¢} is considered. The curves shown in
Fig.3 is the step response of the closed loop system with
a simple PD controller. For such an evolution, the defect
one outputs {7, k} are calculated using the knowledge of
the states {wm,w,}. From these defect one outputs, the
internal dynamics (32) is simulated to give the curve Yint
of Fig.3. It can be seen that even the numerical roundoff
errors is sufficient to push these dynamics into instability.
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Figure 3: Simulation of the unstable internal dynamics

5 A Mechanical solution to over-
come the defect

Figure 4: Mechanical compensation

As shown in the previous section, the toycopter has a
one-dimensional defect. It is interesting to see if this defect
can be overcome by changing the mechanical structure of
the system retaining the fact that the aerodynamic force
is controlled by varying the speed.



The key idea is to generate another term equal in mag-
nitude and opposite in direction to the I,.w, in (8). For
this purpose, an inertia as shown in Figure 4 can addition-
ally be constructed. This inertia will spin in a direction
opposite to that of the propeller so that the I, term can
be canceled. Such a transformation will alter (8) to:

IpY = Cmwm + G,sin(y) + G cos(y)
+ Inwmd cos(v) + %Ie sin(2y))¢? (32)

while the other equations remain the same. The resulting
system is flat and the flat outputs are 7 = ¢ and k = @.
The system can be transformed into chains of integrators,
one with 4 integrators and the other with 3.

Note that for compensation it is not necessary that the
compensating inertia be equal to that of the rear propeller.
The only requirement is that the rate of change of kinetic
momenta should be of the same magnitude but of opposite
sign. Hence, one can have a much smaller inertia turning
very fast or vice versa.

The same idea can be used to compensate the term
Iy, sin(y) caused by the main propeller, so as to ob-
tain a flat system with the flat outputs being the same
as before. The only drawback is that the inertia of the
main propeller is larger than that of the rear propeller.
Since compensating the smallest inertia is more natural,
a fixture for the rear propeller is preferable.

6 Conclusion

By analyzing various properties of the toycopter, it was
seen that it is more difficult to control than a 2-DOF heli-
copter. Hence, one is forced to use more intricate control
techniques, specifically due to the following reasons : (1)
the nonminimum-phase character of the system, (ii) the
fact that it is not possible to get the flat outputs and (iii)
the internal dynamics obtained in the defect 1 case are
unstable.

Possible directions for the control of the toycopter in-
clude, (i) control of the clock [3] (ii) hierarchical control
and (iii) predictive control with a lower bound on the pre-
diction horizon [9]. On the other hand, the authors feel
that the challenge this problem poses is interesting enough
to make this simple laboratory setup a benchmark for
many sophisticated nonlinear control algorithms to come.
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