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Abstract - In this paper, the on-line optimization of batch reactors under parametric uncertainty is con- 
sidered. A method is presented that estimates the likely economic performance of the on-line optimizer. 
The nmthod of t)rthogonal collocation is employed to convert the differential algebraic optimization problem 
(DAOP) of the dynamic optinfization into a nonlinear t)rogram (NLP) and determine the nominal optimum. 
Based on the resulting NLP, the optimization steps are approximated by neighbouring extremal problems 
and the average deviation from tile true process optimum is determined dependent on the measurement error 
and the parametric uncertainty. A back off from the active path and endpoint constraints is determined at 
each optimization step which ensures the feasible operation of the process. 
The method of the average deviation from optimum is developed for time optimal problems. The theory is 
demonstrated on an example. 

I N T R O D U C T I O N  parameters using past and present process measure- 
A wide variety of products in the chemical industries ments. The updated model is then optimized with 
are produced in batch mode. Due to disturbances respect to the manipulated variables and a new opti- 
during operation and uncertainties in process param- mal input trajectory over the remaining time horizon 
eters, such as reaction kinetic parameters, there is a is determined. This sequence of an estimation and 
danger of producing unsatisfactory batches where the optimization step is referred to in the following as 
product or safety specifications are not met and path an Estimation-Optimization-Task, EOT (Ruppen et 
or endpoint constraints are violated. Therefore, it is at., 1997). The first part of the calculated input tra- 
desirable to supervise and optimize the process dur- jectory is applied to the process until a new EOT is 
ing its operation in order to meet the product and carried out at some future point in time. 
safety specifications while maximizing an objective 
function, for example the yield of the desired product. O R T H O G O N A L  C O L L O C A T I O N  

This can be achieved by acquiring on-line process in- Since in batch processes the dynamic behaviour is 
formation which is then used to determine an im- dominating and usually no steady state is reached, 
proved operation policy for the rest of the batch. This the objective function needs to be optimized with re- 
results in the following on-line optimization scheme spect to the dynamic model equations. Time optimal 
which consists of two steps, as depicted in Figure 1. problems, where the only objective is the minimiza- 
In a first step, the process model is identified or up- tion of the final batch time, have the following form: 
dated by estimating the state variables and/or a set of 

min t /  (1) 
~ uncertainty/disturbances u,tt 

- I  I s.t. x = f ( x , u , p , t ) ,  x(to) = xO (2) 
~1 Process I ~ 9(X,U,p, t )  < O, (3) 

past and present past and present 
inputs measurements with x representing the states, u the control inputs 

_1 I_ -~ and p the uncertain process parameters. Since be- Estimation 
r[ V ~timation. sides the dynamic model equations, f a set of al- 

J ~parameter/state estimates Optimization- gebraiv path/endpoint constraints, g is present, this 
future inputs ] Optimization ] Task, EOT problem is called a differential algebraic optimization 

problem, DAOP. One or more conditions, which are 
represented by a subset of the constraints g, need 

Figure 1: General structure of an on-line batch opti- to be reached in the minimum possible time. This 
mization system, subset of the constraints corresponds to the so-called 
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terminal conditions, which define the moment when A V E R A G E  D E V I A T I O N  F R O M  O P T I M U M  
the terminal time t /  is reached. Due to the different error sources which are present 
One method that  circumvents the numerically expen- during on-line optimization, such as measurement er- 
sive integration of the system and allows the easy rors and parametric uncertainties, the optimizer will 
incorporation of algebraic path/endpoint  constraints usually not predict the true optimum, but there will 
and discontinuities in the inputs is the method of be a deviation from the same. Therefore, the per- 
orthogonal collocation (Cuthrell and Biegler, 1987). formance of an on-line batch optimization system de- 
In this method, the system is solved and optimized pends on the available measurements together with 
simultaneously. This is achieved by converting the their quality and the amount of uncertainty in the 
DAOP into a nonlinear algebraic optimization prob- process parameters. For continuous processes, the 
lem, NLP. The conversion into an NLP consists of method of the average deviation from optimum (de 
two steps: parametrization and discretization. In the Hennin et al., 1994; Loeblein and Perkins, 1996) was 
first step, the input and state variable profiles, u and developed in order to estimate the likely economic 
x are approximated by polynomials parametrized by performance of a given structure of an on-line opti- 

and v. In the second step, the dynamic model equa- mization system. In this paper, the method of the 
tions are discretized and the residual equations are average deviation from optimum is extended to the 
enforced on a finite number of collocation points in or- time optimal operation of batch reactors under uncer- 
der to obtain a finite dimensional problem. Together tainty. It estimates the economic performance of an 
with the algebraic path and endpoint constraints, the on-line optimization system by analysing how close to 
DAOP (1)-(3) is converted into the following NLP in the true optimum it is possible to operate the process. 
~, ~, and t I which can be solved with standard NLP This performance can be compared against off-line 
solvers: optimization and the economic benefit of on-line op- 

timization identified. Also, the relative performance 
min t /  (4) of different on-line optimization systems, involving ~,v,tt 

for example different choices of measured and ma- 
s.t. .~(~, u, ti) - f(~', u, p, ti) = 0 (5) nipulated variables or different estimated parameters, 

g(~, y,p, t~) < 0, Vti. (6) may be compared. The error sources are described by 

In this approach, the dynamic model equations are • a normally distributed measurement error, e 
considered as algebraic equality constraints which with given standard deviation a, and 
only need to be satisfied at the final solution, but 
not at every iteration during the optimization. This • a normally distributed parameter uncertainty 

around a nominal value, r /with given standard is also referred to as an infeasible path method. 
deviation, a o. Usually the input and state variable profiles are ap- 

proximated by piecewise polynomials on a number of In the analysis which follows, it will be assumed that  
finite elements. This improves the approximation of the optimization using orthogonal collocation is car- 
sharply changing profiles, where a global approxima- ried out with respect to piecewise constant, equally 
tion would require a very high degree of the approxi- distributed input variables, see Figure 3. This im- 
mation polynomial. Furthermore, superelements are plies that the inputs are approximated by a zero or- 
introduced which allow the definition of discontinu- der polynomial on equally distributed superelements 
ities in the input variables, see Figure 2. In this case, with one finite element defined on each superelement. 

The state variable profiles are approximated by first 
or higher order polynomials in order to give a good 
approximation of the system. Furthermore, the dif- 
ferent EOTs are carried out at the discontinuities in 
the input variables. 

tl 

t 
SE SE I I 

! 

Figure 2: Piecewise approximation of input and state I I I ~, 
profiles on finite elements and superelements. EOTs l I I t 

the continuity conditions for the input and state vari- Figure 3: Input profile and EOTs. 
able profiles at the boundaries of the finite elements 
and for the state variable profiles at the boundaries of 

the superelements are added to the equations of the First and second order approximation 
NLP (4)-(6). A detailed description of the method 

In a first step towards the analysis, the problem (4)- 
of orthogonal collocation can be found in the paper (6) is solved with the nominal parameter values in 
by Cuthrell and Biegler, (1987). 

order to obtain the nominal optimum. Since the 
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method is based on an approximation of the non- finite differences of the perturbed first order quanti- 
linear problem, a first and second order perturbation ties. Taking the last row of the sensitivities gives the 
model around the nominal trajectory is derived from following second order approximation of the objective 
the collocated system. Due to this representation of function: 
the problem, both the estimation and the optimiza- 

1 

tion steps can be solved analytically and the effect (ftf = Cl~Ul -b ~pTC2e~Ul h- ¼(~uTC3~Ul 
of the error sources can be mapped through the es- 1 T ~5 

t imation and optimization steps in order to analyse +C4~p + -~p Cs(fp. (9) 
their effect on the optimizer performance. The re- 
quired perturbation model is obtained from a second Note that  the minimization of (ftf represents an un- 
order Taylor series expansion of the objective func- constrained QP in the reduced space of the remain- 
tion, t f  with respect to the input variables and the ing degrees of freedom 5Ul after the active inequal- 
uncertain process parameters. However, the input ity constraints including terminal conditions are met. 
variables u do not directly affect the terminal time, The process variables which are measured for the pa- 
rr. The terminal time is only affected by changes in rameter estimation at each EOT are linearized with 
the terminal conditions, i.e. the appropriate subset respect to the uncertain parameters: 
of the constraints g, which are in turn dependent on 
the input variables, u. Therefore, the second order 5y = JSp. (10) 
Taylor series expansion of the objective function can 
only be obtained through the terminal constraints. Least squares parameter estimation 
Initially, the entire set of path and endpoint con- The following minimization problem is solved in order 
straints which are active at the nominal optimum is to obtain estimates of the uncertain process parame- 
linearized with respect to the piecewise constant in- ters: 
puts, u, the uncertain parameters, p and the final 
batch time, tl: min (~yi - ~fli)TQTQ(~Yi - ~Yi) 

3 g = [ H H t , l [  6u ] +(5~S,--5/50)TwTw(sIS,--5/~o) (11) 
6tf + GSp = 0. (7) s.t. 5~i = JiS~i; 5yi = Ji6p + e~, 

During the calculation of Htl, it needs to be taken where 6~)i are the past model outputs and 6yi is 
into account that  with changing t I the locations of the vector of all the measurements collected in the 
the discontinuities in the input variables, ti change, past with normally distributed measurement errors 
since the piecewise constant inputs were assumed to e~. The objective function is weighted with the co- 
be equally distributed, see Figure 4. variances of the a-priori parameter uncertainty and 

l ~ the measurement error, W = diag(a~ 1) and Q = 
u diag(a/,1)- 5P0 is the a-priori estimate of the un- 

certain parameters. By considering the vector of all 
past measurements this formulation allows the cal- 

. . . . . .  culation of an analytical expression for the parame- 
~, ter estimates, dependent on the measurement error 

ti. 1 t i ti+ 1 tf t and the a-priori parameter uncertainty. Due to the 
incorporation of a-priori knowledge of the estimated 

Figure 4: Change of the switching times in the inputs parameters, the covariance of the parameter estimate 
with changing final time. can never be bigger than the covariance of the a-priori 

uncertainty, regardless of the quality of the measure- 
In the case of more than one active constraint, the ments. 
vector of the piecewise constant inputs, 5u and the The estimation problem can be equivalently reformu- 
matrix H need to be partit ioned according to the lated in a recursive manner (Ljung, 1987). This is 
dimension of 5g such that  [H2 Htt] is a square matrix necessary in an on-line implementation of the algo- 
and Equation (7) is rewritten as: rithm where it is not desired to store all past mea- 

surements but update the current parameter estimate 
r 1 [ (~u2 ] = ¢ ~ t f  --[/-/2 Htt]-l(H15u1 +G~p). (8) with every new measurement coming in. 

Assuming that  [HHtl] is of full row rank there always Optimization and back offs from active constraints 
exists a part i t ion such that  [/-/2 Htj ] is nonsingular. If Since it is not always possible to obtain full informa- 
[H Htt] is not of full row rank then two or more of the tion about the state of a system, it is very difficult to 
constraints are linearly dependent and are affected by decide when the terminal conditions of the batch are 
the inputs in the same way. The corresponding sin- reached and the batch can be stopped. Additionally, 
gular rows can be removed until [H Htl] has full row measurement errors represent an error source even 
rank. The second order sensitivities are then deter- with all the states measured. Therefore, some con- 
mined by perturbing 6ul and (fp and calculating the servatism is introduced into the optimization at each 
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EOT in form of a back off from the active constraints This represents an unconstrained QP where the nec- 
which tries to ensure that  the batch reaction is not essary back off from the process constraints appears 
stopped before the endpoint specifications are met. in the objective function. It can be solved analyti- 
The basic idea of the back off is shown in Figure 5. cally dependent on the current parameter estimates, 
The true process optimum often lies on a boundary of the back off from the active constraints and the in- 
the feasible region defned by one or more active path puts that were applied to the process in the past, 
or endpoint constraints. Due to the uncertainty in the 8u~1 = 8u~1 (~i, 8/~i, 8~2il). Note that  only the first el- 
parameters and the measurement errors, it is unlikely ement of 8u~1 is applied to the process since at the 
that  the optimization will predict the true optimal in- next discontinuity in the inputs a further EOT is car- 
put variables which would operate the process exactly ried out. The optimal input variables that are deter- 
on this set of active constraints. Dependent on the mined during on-line optimization with n EOTs are 
error sources the suboptimal input variables might a function of the set of back offs, ~ and the set of 
cause a violation of the process constraints once they parameter estimates, 8/~: 
are applied to the process. The back off tries to ac- 
commodate all the possible error sources and keep 8u~(fl0,... ,~n, 8i50 . . . .  ,8/~n)= 8u~(fl,8/~). (15) 
the variation of the process constraints due to un- 
certainty and measurement errors inside the feasible The index starts at i = 0 to allow for the back off in 
region of the process, while still operating as closely the first time interval, before the first EOT is carried 
to the constraints as possible, Figure 5. out. The corresponding optimal values for 8u~ can 

be obtained from Equation (12). 
I ~ The necessary back off from the active constraints 

constraint variation is recomputed at every EOT and decreases the more 
/ ~ / ~ / ~ ~  ~ ~ i i  _ confidence in the uncertain parameters is gained. It is 

determined by examining the variation of the process 
constraints when the inputs calculated during the op- 
timization are applied to the process and depends on 

ii 3 the confidence in the uncertain parameters: 

"/ / / " / / / /  /~, ai(Sp - (fiSi) < Bi. (16) 
t 

EOT EOT EOT 
Since the error sources are normally distributed and 

Figure 5: Back off from active constraints, all the dependencies are linear, the variation in the 
active process constraint functions is also normally 

The back off, B is introduced into the linearized equa- distributed. The variance of the process constraints 
tion of the constraints, Equation (7): can be determined dependent on the standard devia- 

tions of the parametric uncertainty and the measure- 

6g = [H Ht,] [ 6u J ~t! + Gcfp +/~ = O. (12) ment error and the back off is calculated to ensure 
feasible operation with a probability of a%. 
If at a particular EOT there are more active path 

Similar to the approach that  was taken above, the and/or  endpoint constraints than there are degrees 
second order sensitivities are determined and the fol- of freedom for optimization, the process cannot be 
lowing second order perturbation model of the prob- reoptimized. Instead, it needs to be run in open loop 
lem including back off from the active constraints is until enough degrees of freedom are available again 
obtained: or the end of the batch is reached. 

1 T 
6t! = CI ~Ul Jr 6pT C26ul -}- ~6u 1 C3(~Ul -~- C46p Integration of the deviation from optimum 

+ ~6pTCsJp + C6/~ + ~TC76Ul Similar to the calculation of the inputs during the on- 
line optimization, the true optimum input variables 

q-/~TCs~ p + ~Tcgfl.  (13) can be determined by minimizing Equation (9) de- 
pendent on the normally distributed parametric un- 
certainty, 5p = r/. The true minimum final batch 

At each EOT, the process is reoptimized and the op- time is then obtained from Equation (9) with the 
timal inputs are determined over the remaining time true optimum input variables, ¢iu~(Sp) introduced. 
horizon. Taking the appropriate submatrices and ne- The final batch time that  is achieved in reality is 
glecting the constant terms, the optimization step at 
each EOT is approximated for the analysis by the given by Equation (13) with the predicted optimal 
solution of the QP: inputs 5u~(f~,~/~) and the back off at the last EOT 

n, f~n introduced. The deviation of the achieved fi- 
min CnSun dr-(~pyCi2~Uil "~ ~'~ilCi2(~Uil nal batch time from the true minimum final time is 
6u~ integrated with respect to the distribution functions 

dr~JuTCi35Uil q- ~Tci75Uil. (14) of the parametric uncertainty and the measurement 
error and gives the average deviation from optimum 
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for the on-line optimization with n EOTs: ~ Parameters ~ H Initial conditions 

kA 0.053 I~ (tool rain) CO0 0.09 mol/l  
j kD O.X281/(molmin) Cpo 0 .72mol / l  

0 . . . .  [Stf(6u~(Sp), 6p) ko 0.028 1/min CpAAO 0.1 mol/l  
- ~  -c~ kF 0.003 l /(molrain) eDHAO 0.02 mol/1 

-Stf($u;(/3,5~),~p,/~n)]f(7?)f(e)dedrl(17) CD! 5.82 mol/l  vRO 1.0 l 
= O(/3, an , a , , n ) .  (18) 

Table 1: Nominal model parameter values and initial 
conditions. 

E X A M P L E  

The method of the average deviation from optimum 
is demonstrated on a semi batch reactor which is op- CD(ty ) <_ 0.025 mol/l  
erated to produce 2-acetoacetyle pyrrole from pyrrole f (t) _> 0. 
and diketene in the minimum possible time (Ruppen 
et el., 1997). The model of the reaction system that  A detailed description of the diketene chemistry, the 
proved to be adequate for the case of continuous feed modelling of the reactor and the experimental set up 
addition comprises the following reactions: of on-line optimization can be found in the paper by 

Ruppen et el., (1997). 

P + D --~ PAA 
D + D --~ D H A  Nominal optimum 

The first step towards the analysis is the determine- 
D - ~  oligomers tion of the nominal optimum. The dynamic model 

PAA + D --~ F equations in DAOP (24) are collocated on eight 
equally distributed superelements with one finite el- 

with P:  pyrrole, D: diketene, K:  pyridine (catalyst), ement per superelement. The state variables are ap- 
PAA: 2-acetoacetyl pyrrole, DHA:  dehydroacetic proximated with quadratic polynomials while the in- 
acid and F:  by-product. Assuming constant density put variables are specified as piecewise constant. The 
of the components and isothermal operation results resulting NLP is then solved using the nominal pa- 
in the following reaction model. The dilution of cat- rameter values and initial conditions given in Table 1. 
alyst is considered by normalizing the rate constants The input and state variable profiles at the nomi- 
with respect to the reaction volume. This is not im- 
plemented for the rate constant ko, since the rate of 0.~ 
oligomerization is also promoted by other intermedi- 

0.1~ 
ate products (Ruppen et el., 1997): 

0.lIB ,~ 
_ - n 

daD kA a p e D  - -  - -  - -  koeD . . . .  2 kDc2D o.~, 1 
dt vn vR 7¢o1~ 

k f  ~(cos eD) (19) - - - - C p A A C D  + - -  o.1 
V R  V R  $ E o.o~ 

dc____~p kA g 

~ -  - - - - a p e D  - -  J-~--Cp (20)  0 0 e  
dt vR vR 

f a P A A  0.o4 dCPAA kA k f  (21) 
~- --CpaD -- ~CPAA CD -- ~ o.o~ 

dt vR vR vR 

kD.c f (22) ~ £ ~0 ~ ,~ ,20 14o d e D H A  _ 2l) - -  - - C D H A  

dt v R v R ,~, [rain l 
dVR dt = f" (23) Figure 6: Input profile at nominal optimum. 

The concentration of diketene D in the feed stream is nal optimum are shown in Figure 6 and 7 respec- 
represented by eDy. The manipulated input variable tively. Due to the high number of superelements, 
is the feed rate, f [l/rain] of diluted diketene. The the approximation of the system is quite accurate, 
nominal values of the kinetic parameters and the ini- as can be seen in Figure 7, where both the approxi- 
tial conditions are given in Table 1. mated and integrated state variables profiles are plot- 
With  the necessary endtime specifications and a path ted. The terminal time at the nominal optimum is 
constraint on the feed rate, the optimization problem t!  = 138.62 rain. Besides the three endpoint con- 
can be written as follows: straints, the lower bound on the feed rate becomes 

active in the last superelement. 
min t!  (24) 
l.tt Optimization analysis 
s.t. dynamic model equations (19) - (23) In order to demonstrate the analysis of the on-line 

CpAA(t!)vn(t!) > 0.42 tool optimization, it is assumed that  the uncertain pro- 
COHa(t!) < 0.15 mol/l  cess parameters are the two rate constants ka and 

CACE 21:1]-CC 
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tion result, where measuring C.pA A gives the least av- 
erage deviation from optimum with O = -17.86 min 

0.,o, '~-=° , ~ ~  ~,0.5 compared to O = -23.44 min when cp is measured. 

s~ l~o ~so o so too lso CONCLUSIONS 

o,4 ~ o , 2 ~  The method of the average deviation from optimum 

~ ~ ~ ~  allows the estimation of the economic performance of 
~10.1 o'o.2 ~ o a given on-line batch optimization system. This per- 

. , formance can be compared against off-line optimiza- 
so lo0 ,s0 ,so tion and the economic benefit of on-line optimization 12 lime [min] 

identified. Different on-line optimizer structures can 
~,,, be compared and the structure with the best perfor- 

mance can be chosen for implementation. Further- 
' is0 more, the analysis method returns the necessary back 

time [min] Off from the active path and endpoint constraints at 
Figure 7: State variable profiles at nominal optimum, each Estimation-Optimization-Task EOT in order to 

ensure the feasible operation of the process. 
The method of the average deviation from optimum kD. The uncertainty is described as normally dis- 
has been developed for time optimal problems and tributed with the standard deviations Gn,k a = 0.003 
demonstrated on an example. and amkD = 0.007. In the following, three differ- 

ent structures of the on-line optimizer are analysed 
and their performance is compared against off-line N O T A T I O N  
optimization. The different structures are character- (~u* optimal piecewise constant input variables 
ized by the selection of the measurement, y which is 6ul degrees of freedom in the reduced optimi- 
used to update the estimates of the uncertain param- zation space 
eters. For that purpose, it is assumed that one or (~u2 inputs determined by the constraints 
more state variables can be measured on-line. The 5uil remaining degrees of freedom in the future 
alternatives consist of measuring either one of the at EOT i 
concentrations cp, CD or CpAA. The standard devia- 5fii1 input variables applied to the process 
tion of the measurement error is assumed to be 1% in the past at EOT i 
of the approximate average nominal value of the cot- ~p uncertain process parameters 
responding state variable. Since the three terminal 615 parameter estimates 
constraints and the lower bound on the feed rate in /7i back off at EOT i 
the last superelement are active at the nominal op- 7/ normally distributed parameter uncertainty 
timum, the process has to be run in open loop with e normally distributed measurement error 
respect to the last four inputs. This is necessary for a standard deviation 
the optimization to have enough degrees of freedom O average deviation from optimum 
at the last EOT to back off from the four active con- 
straints. The system is collocated on eight superele- R E F E R E N C E S  
ments which implies that four EOTs are carried out 

J.E. Cuthrell and L.T. Biegler, (1987). On the op- during on-line optimization. 
The analysis results are shown in Table 2. Off-line timization of differential-algebraic process systems. 

AIChE Journal, 33(8), 1257-1270. 

Optimization I y [ a~ I 0 
S.R. de Hennin, J.D. Perkins and G.W. Barton, 

Off-line - - -47.56 min 
On-line co 0.001 -39.12 min (1994). Structural decisions in on-line optimization. 

In Proc. of Int. Conf. on Process Systems Engineer- 
On-line cp 0.005 -23.44 min ing PSE '94, pp 297-302. 
On-line CpAA 0.003 --17.86 min 

Table 2: Analysis results. L. Ljung, (1987). System Identification-Theory for 
the User. Prentice-Hall. 

optimization shows an average deviation from opti- 
mum of O = -47.56 rain. Implementing an on-line C. Loeblein and J.D. Perkins, (1996). Economic 
optimizer, where the diketene concentration, co is analysis of different structures of on-line process op- 
measured, does not improve this result significantly, timization systems. Computers chem. Engng., 20, 
In this case, the average deviation from optimum is $551-$556. 
O = -39.12 rain. However, a much better operation 
of the reactor can be obtained when either the pyrrole D. Ruppen, D. Bonvin and D.W.T. Rippin, (1997). 
concentration, cp or the acetoacetyle pyrrole concen- Implementation of adaptive optimal operation for a 
tration, CpA A is measured. Both options show a sub- semi-batch reaction system. Computers chem. En- 
stantial improvement against the off-line optimiza- 9ng., to appear. 


