
Evolution of Sensory Configurations for Intelligent

Vehicles1

Yizhen Zhang Alcherio Martinoli Erik K. Antonsson Ross D. Olney

Mechanical Engineering Electrical Engineering Mechanical Engineering Automotive Electronics R&D

California Institute of Tech. California Institute of Tech. California Institute of Tech. Delphi Delco Electronic Sys.

Pasadena, CA, USA Pasadena, CA, USA Pasadena, CA, USA Malibu, CA, USA

yizhen@caltech.edu alcherio@caltech.edu erik@design.caltech.edu rolney@aed.delphiauto.com

Abstract

An evolutionary design synthesis methodology was in-

troduced with special concern for the design and opti-

mization of distributed embodied systems. Its efficacy

was validated in a case study on the design of collective

sensory configurations for intelligent vehicles. Candi-

date sensory configurations were tested in sample traf-

fic scenarios simulated in an embodied and sensor-based

simulator, and in more abstracted and computationally

efficient evaluation tests. Sample results evolved un-

der different design preferences are presented, including

approximate Pareto fronts representing the engineer-

ing design trade-offs characterizing the problem inves-

tigated in the case study.

1 Introduction

Advanced transportation systems consisting of hun-
dreds of intelligent vehicles which sense, decide, and
act in the same shared environment can be designed
and controlled in two fundamentally different ways, us-
ing a centralized or distributed approach. The central-
ized approach implies an external system taking over
the control of the vehicles and coordinating them, for
instance by forming platoons, so that safety and flu-
idity are maintained. The distributed approach, in-
stead, does not rely on any external control system
and leaves the decisional autonomy to the individual
vehicles. While the former approach has been shown
to achieve a great degree of reliability, the latter rep-
resents an extremely appealing alternative because of
its scalability and possible use in environments not en-
dowed with external control systems [5]. In this sce-
nario, the active safety net would be implemented by
the intelligent vehicles themselves, which would include
technologies such as object detection, collision warning,
and ultimately collision avoidance by accident predic-

1This material is based upon work supported, in part, by
Delphi Delco Electronic Systems, and by the Engineering Re-
search Centers Program of the National Science Foundation un-
der Award Number EEC-9402726.

tion and autonomous vehicle control (brake, throttle,
and steering).

However, our human intuition and current engineering
design methods are not well adapted to design such in-
telligent vehicles. In particular, when a certain group
(or macroscopic) behavior is targeted, reverse engineer-
ing the individual (or microscopic) behavior is a non-
trivial process. This process is even more complex,
and characterized by severe reliability and robust re-
quirements, when each unit consists of an intelligent
vehicle and a human being. The main challenges in-
clude, but are not limited to, the following difficulties:
1) high, or sometimes even a priori unknown, complex-
ity of good solutions; 2) multiple objectives, competing
factors, trade-offs and/or simultaneous hardware and
software optimization requirements; 3) the evaluation
process and result for a given design solution could be
intrinsically dynamic and stochastic instead of static
and deterministic, especially in traffic scenarios [8]. All
these problems make it difficult for an engineer, using
traditional engineering methods, to synthesize an ap-
propriate design solution under complex system design
requirements such as a traffic system.

Formal engineering design synthesis methodologies [1,
4] reduce the reliance on human resources and shorten
design cycles, and can be used to computationally syn-
thesize designs and assist the human designers in the
engineering design decision making process with more
knowledge and reduced uncertainties.

Natural evolution has been an inspiration for engineer-
ing design researchers to develop automatic design syn-
thesis methods. Since the 1960’s, there has been an
increasing interest in simulating the natural evolution
process to solve optimization problems, leading to the
development of evolutionary computation (EC) meth-
ods [2, 3, 6], such as genetic algorithms (GA), genetic
programming (GP), evolutionary strategies (ES), and
evolutionary programming (EP). The idea is to have a
pool of candidate solutions evaluated in parallel, from
which the “fittest” solutions are chosen to mate and
breed new candidate solutions using stochastic opera-
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tors. This procedure is iterated until the population
converges or a preset condition is met.

In previous work [5, 8], an evolutionary computational
synthesis methodology was proposed for designing and
optimizing distributed embodied systems in an au-
tonomous way. This method is platform-independent,
system-oriented, and off-line but realistic enough to be
transported to real hardware. In comparison to tradi-
tional hand-coded design, the human engineering effort
involved is minimized to the mathematical formulation
of desired performance and to the encoding of the real
problem in the search space of the stochastic explo-
ration algorithm.

As a first case study, the problem of determining sen-
sory configurations for intelligent vehicles in collective
traffic scenarios is considered in this paper, following
the previous work.

In the following sections, the evolutionary computation
methodology is presented, including special features in-
troduced to face the engineering design challenges of in-
telligent vehicles. The case study problem is presented
next, with encoding of a given sensory configuration,
the simulation tools employed and the fitness function.
A few sample results obtained in the framework of this
first case study are then presented and discussed, in-
cluding different sensory configurations evolved under
various settings. The paper concludes with a brief dis-
cussion of future promising research directions.

2 Evolutionary Methodology

In this paper, different sensory configurations are
evolved for intelligent vehicles based on the automatic
design synthesis methodology introduced in previous
papers [5, 8]. Based on evolutionary computation, this
methodology was shown to be able to synthesize novel
design configurations of good quality with acceptable
computational cost under certain level of abstraction.

Based on GA and ES, the evolutionary optimization
loop used is shown in Figure 1. First, an initial pool of
solutions is generated randomly. Then, each individual
is evaluated under an evaluation test for one evalua-
tion span. According to the evaluation results, i.e., the
fitness of each individual, the parent selection scheme
will choose pairs of parent solutions for crossover, pro-
moting individuals with higher fitness. Crossover be-
tween the selected pairs of parents is conducted under
certain crossover probability to generate pairs of off-
spring. Mutation is also applied to each gene of the
original pool under certain mutation probability and
generates more offspring. If the fitness is deterministic,
then only the offspring (from both crossover and mu-
tation) is evaluated, otherwise the original pool is also

Generate initial population randomly

Evaluate the initial population

Selecting parents according to a
given selection scheme

Apply crossover to pairs of selected
parents and generate offspring

Apply mutation genewise to each
individual in the population and
generate more offspring

last generation?

End

Yes

No

Evaluate only the offspring for static
fitness, also re-evaluate the original
population for non-static fitness

Select the best individuals from the
offspring and original population to
generate the new population

Figure 1: The evolutionary optimization loop used in the
automatic design synthesis process

re-evaluated. The best individuals are then selected
from both the original pool and the offspring, i.e., eli-
tist generation selection, to constitute the next genera-
tion. Hence an offspring will only replace an individual
of the original population if it has a higher fitness, con-
forming to the (µ+λ)-selection scheme which insures
that the mean of the pool fitness is non-decreasing over
generations. At the end of each generational loop the
program verifies whether or not another generation is
needed in order to meet a pre-established criterion for
terminating the evolutionary run.

This evolutionary methodology is especially built to
address the challenges of designing intelligent vehicles
mentioned above. First, the encoding allows variable-
length chromosomes, making it possible to evolve de-
sign solutions of suitable complexity (appropriate num-
ber of design parameters) and optimize these param-
eters at the same time. In this case, the initial pool
will be generated to contain solutions of random com-
plexity. The crossover and mutation operators have
to be adjusted from the standard ones to conform to
the variable-length chromosome encoding, which was
explained in detail in [5, 8].

Second, various objectives and competing factors can
be carefully incorporated into a fitness function with
adjustable weights on each factor and degrees of com-
pensation between factors [7], whose respective influ-
ence on the final design can be easily examined from



the different evolutionary results generated.

Third, when the evaluation process and result is dy-
namic and stochastic, as characterized by real traf-
fic scenarios investigated in the case study, solutions
are selected based not only on their one time perfor-
mance but also on their robustness through multiple
re-evaluations, where the worst result over an individ-
ual’s life span (the number of generations it has sur-
vived, also the number of times it has been evaluated)
is considered to be a better estimate of its actual fitness
than a single evaluation. The selection here is therefore
based on individuals that have been evaluated different
numbers of times. This dynamic evaluation approach is
naturally more computationally expensive than a stan-
dard evolutionary algorithm, where the fitness is of-
ten assumed to be static and hence a single evaluation
suffices. However, it is more computationally efficient
than systematically evaluating all offspring for a con-
stant number of times, since more computational power
is reserved for more promising solutions that survived
over multiple generations. In order to assess the best,
and also the most robust individual at the last gen-
eration, a fair final test consisting of 100 evaluation
spans is performed on all distinct individuals in the fi-
nal population and again the worst result is taken to
be an individual’s final fitness.

3 Case Study

As a first case study, the evolutionary methodology was
applied to a simple problem in a complex (dynamic and
noisy) environment. The goal is to determine the op-
timal configuration (such as number, type, and place-
ment) of proximity sensors on an intelligent vehicle,
in order to monitor a pre-established detection region
around the vehicle in realistic traffic scenarios. The
vehicles considered here are circular and unicycle (i.e.,
single axis with two motor wheels), and the detection
region is also circular, as shown in Figure 2. An object
vehicle is considered detected by the collective sensory
system if the vehicle’s body has overlap with at least
one sensor’s scanning area or ray.

3.1 Encoding of Sensory Parameters

Sensors are mounted on the periphery of the vehicles,
as shown in Figure 2. The type and placement param-
eters as well as the number of sensors are the design
variables to be determined and optimized by the evo-
lutionary algorithm according to some performance re-
quirements. Except for the number of sensors, all the
other design variables are encoded in this case study
as discretized real numbers, taken from pre-defined fi-
nite ranges. The placement parameters of each sensor
are characterized by two angles: position angle ϕ (the
angle between the front direction of the vehicle and
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Figure 2: Sensor parameters and the detection region: the
sector shows a sample sensor’s scanning area

the radius pointing to the sensor’s mount) and orienta-
tion angle θ (the angle between the radius pointing to
the sensor’s mount and the center line of the sensor’s
scanning area). Each sensor’s type is specified by the
sensor range ρ and cone of view δ, which jointly decide
the sensor cost f(ρ, δ). The sensors with wider cones of
views and longer ranges should have a higher cost. The
cost formula can be estimated from real sensor data or
sensor models. The total cost of the collective sensory
system is the sum of costs of all the sensors present
in the configuration, and appears in the fitness func-
tion explained in section 3.3. Therefore, each sensor is
characterized by four design variables and the number
of design variables for a collective sensory system with
n sensors will be 4 ∗ n.

3.2 Evaluation Tool

To understand the role of noise in shaping the evolved
solutions and to find the best and most efficient simu-
lation, six different types of evaluation tests have been
implemented [8]: static, 1D/2D full coverage, 1D/2D
quasi-static, and an embodied test.

As described in previous work, realistic sample traf-
fic scenarios are simulated in the embodied simulator,
where test vehicle and object vehicles are controlled by
simple but realistic driver behaviors to move on a sim-
ulated three-lane highway, as shown in Figure 3. The
sensors and actuators simulated are characterized by
realistic noise values. Each vehicle is initialized with
random preferred cruising speed and initial position
for each evaluation span. They either keep or change
lanes to try to safely maintain their respective cruis-



Figure 3: Screen shot of the embodied simulator: Webots2

ing speeds, and brake when they have to avoid poten-
tial collisions. The positions of all the object vehicles
within the test vehicle’s detection zone are recorded at
each time step and accumulate to the vehicle occur-
rence data. The full coverage and quasi-static tests
are based on the probability density functions (PDFs)
(shown in Figure 4) generated from the vehicle occur-
rence data collected in the embodied simulation3 for
a long enough period of time. Only the approach-
ing angle of the object vehicles is considered in the
one-dimensional (1D) PDF, while the relative distance
of the approaching vehicle is also recorded in a two-
dimensional (2D) PDF. In quasi-static tests, the PDF
is used to generate the random occurrences of other ve-
hicles on a ring (1D) or an area (2D) within the detec-
tion region. In full coverage tests, the object vehicles
are placed systematically along the ring (1D) or the
area (2D) within the detection region, and the PDF is
used as weight in the fitness function at each object
position, as explained in section 3.3. Finally, having 20
static object vehicles distributed evenly on the same 1D
ring, the static test represents a simple control experi-
ment, whose vehicle distribution is not at all related to
a traffic scenario.

Table 1 shows a comparison of the approximate relative
time costs of the six types of evaluation tests used in
the case study.

In a previous paper [8], it was shown that evolution-
ary runs under computationally more efficient evalua-
tion tests such as the 2D full coverage and quasi-static
tests, can evolve solutions of equivalent, if not better,
quality as those under the embodied test. Based on
this previous outcome, we present in this paper results

2Refer to www.cyberbotics.com.
3It might be possible to collect the same data from real traffic

scenarios in the future.
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Figure 4: 1D and 2D PDFs generated from the vehicle
occurrence data collected in the embodied sim-
ulation.

Evaluation Tests Relative Time Cost

Static 1.0
1D Full Coverage 2.1
1D Quasi-static 3.4
2D Quasi-static 116
2D Full Coverage 134
Embodied: Webots 8100

Table 1: Approximate relative time costs of evolutions
under different evaluation tests

exclusively gathered with a 2D full coverage test, a de-
terministic implementation test about 60 times faster
than embodied simulations.

Note that the optimal number of sensors is unknown
in this seemingly simple case study problem, hence the
number of design parameters is also open and increases
with the number of sensors in the solution. Moreover,
the coverage of the detection region and the sensor to-
tal cost are two competing factors here, whose relative
importance is established by the fitness function that
leads to a trade-off between the two.

3.3 Fitness Function

The fitness function used is as follows:

Fitness = Coverage · Cost (1)



Coverage =

V∑

i=1

ki · PDF(αi, ri) (2)

Cost = max{1− a · Total cost, 0} (3)

Equation 1 shows that the Fitness is the product of
its two factors: Coverage and Cost, both expressed by
real numbers between 0 and 1. The Coverage factor
is defined in Equation 2, where V is the number of ve-
hicles effectively appearing within the detection region
during the evaluation span; ki is 1 if the object vehicle
i is detected, or 0 if it is not; αi and ri are the ap-
proaching angle and distance of the ith object vehicle
relative to the test vehicle. For full coverage tests, the
PDF is generated from the vehicle occurrence data, as
those shown in Figure 4; while for all other tests, the
PDF is simply 1/V for any αi or ri. The Cost factor is
simply defined to be linearly inversely proportional to
the Total cost of the sensory system, since low cost is
generally desirable. The weighting factor a in the cost
Equation 3 sets the relative importance of the two com-
peting factors: Coverage and Cost. It is easy to see
that small a means less weight on the sensor cost and
emphasizes better coverage; while increasing a means
that reducing cost is more important.

4 Results

Various evolutionary experiments have been performed
using the 2D full coverage test with different settings:

• A variable or fixed number of sensors.

• A symmetric or free sensory configuration.

• With or without lane change scenarios.

• Fitness functions with different choices of the
weighting factor a in Equation 3.

Each evolutionary experiment was repeated ten times
to get a good estimate of the evolutionary results.
Standard genetic operators were chosen for the evolu-
tionary algorithm, except for the variable-length chro-
mosome cases, where the crossover operator was specif-
ically modified to ensure proper operation between par-
ents with chromosomes of different lengths [5, 8], and
insertion and deletion operations were additionally in-
troduced to change the chromosome lengths more effi-
ciently.

4For the plots on the right, the small solid circle at the center
is the test vehicle with its front at the top, the lines and sectors
show the sensor rays or scanning areas, and the two large (inner
and outer) dash circles show respectively the center lines and
outer edges of object vehicles on the outer edge of the detection
region.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s,

 C
ov

er
ag

e 
&

 C
os

t

Fitness
Coverage
Cost

a = 0.1

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s,

 C
ov

er
ag

e 
&

 C
os

t

Fitness
Coverage
Cost

a = 0.06

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s,

 C
ov

er
ag

e 
&

 C
os

t

Fitness
Coverage
Cost

a = 0.01

Figure 5: Evolution of the population’s mean fitness and
its two factors (left) and the best phenotypes
(right4) at the end of evolutions.

Figure 5 shows some evolutions under the 2D full cover-
age evaluation test based on the 2D non-lane-changing
PDF shown in Figure 4 with a variable number of sen-
sors and enforced symmetry of the sensory configura-
tions. The plots on the left show the evolution of the
population’s mean fitness and its two factors (cover-
age and cost) over 200 generations, while those on the
right show the corresponding best phenotypes evolved.
From top to bottom, the weight factor a in Equation 3
decreases from 0.1 to 0.01, showing that the designer’s
emphasis was gradually shifted from reducing cost to
obtaining better coverage. As expected, this shift in the
designer’s preferences caused the evolved solutions to
change considerably, from a simple and cheap sensory
system of four line sensors with low coverage (about
60%) to a rather complex and expensive sensory system
of eight sensors with high coverage (about 99%), corre-
sponding to the different engineering design trade-offs
obtained under different design preference (weighting)
settings.

Figure 6 summarizes the best engineering design trade-
off points, expressed as the total cost of the sensory
systems versus their respective coverage performance,
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Figure 6: Evolved design trade-offs between coverage and
total cost under two traffic scenarios

evolved under different choices of the weighting factor a
(ranging from 0.1 to 0.01) under the two different traffic
scenarios investigated in this case study. The approx-
imate Pareto fronts can be fitted from those trade-off
points by polynomials of degree 4, as shown in Figure
6, which clearly outlines the trends of the achievable
coverage at various levels of cost quantitatively. It can
be observed from these curves that the lane-changing
scenario requires sensory systems that cost about 1 ad-
ditional unit to achieve the same level of coverage per-
formance as the non-lane-changing scenario, indicating
that the latter case is easier. By comparing the two dif-
ferent traffic scenarios based on their 1D vehicle occur-
rence PDFs shown in Figure 4, one can observe that the
non-lane-changing PDF exhibits more drastic changes
between the valleys5 and the peaks. On the other hand,
the lane-changing PDF, with vehicles occurring at all
directions in this scenario, has slightly higher valleys
and lower peaks, a situation that is closer to a homo-
geneous distribution of vehicles around the test vehicle.
Hence the latter situation requires obviously more sen-
sors to achieve the same level of coverage. This explains
why the lane-changing trade-off curve shown in Figure
6 is shifted right from the non-lane-changing curve.

5 Conclusion and Outlook

An evolutionary design synthesis methodology was in-
troduced and validated in the case study concerned
with the configuration synthesis of a collective sensory
system. Evaluation tests of different levels of abstrac-
tion and relative time costs were introduced, and it
was previously shown that the realistic embodied traf-
fic simulation test could be represented by more ab-

5It is obvious that vehicles do not appear on the lane markers’
directions in this case.

stracted and computationally more efficient evaluation
test models, such as the 2D full coverage test, with-
out compromising the evolutionary results for this case
study. Based on this outcome, this paper presents a
more systematic series of experiments based on the 2D
full coverage test with different design preference set-
tings. Some of the best sensory configurations evolved
are reported, along with the approximate Pareto fronts
that outline the engineering design trade-offs character-
izing the problem investigated in this case study.

More realistic and emergency traffic scenarios (such as
a suddenly stopping vehicle) will be investigated in the
near future, along with more realistic sensor models.
More complex metrics that involve vehicle dynamics
and quantify traffic safety will be developed as new fit-
ness functions to guide evolution. Finally, co-evolution
of the sensory hardware system and control software
system (e.g. warning and overriding rules) in collective
traffic scenarios represents one of the long-term goals
of the current research.
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