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ABSTRACT
In the engineering design process, it is important to know

the engineering trade-offs achievable under various design pref-
erences and strategies. In this paper, a family of engineering
design trade-offs are evolved from an automatic design synthesis
methodology based on evolutionary computation. The complete
Pareto optima frontier can be evolved by a consideration of fit-
ness function that aggregates the weighted fuzzy design prefer-
ences under different trade-off strategies. An initial case study
concerned with the configuration of a collective sensory system
is presented and discussed, along with preliminary results ob-
tained from simulations under a specific scenario. The results
indicate that the approach can be useful for designers to solve
complex engineering problems.

KEYWORDS
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INTRODUCTION
Design has traditionally been a creative process that requires

human ingenuity and experience. Currently, for a highly com-
plex design task characterized by severe reliability and robust
requirements, the main challenges include, but are not limited to,
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the following difficulties: 1) high, or sometimes even a priori
unknown, complexity of good design solutions; 2) multiple ob-
jectives, competing factors, trade-offs and/or simultaneous hard-
ware and software optimization requirements; 3) the evaluation
process and result for a given design solution can be intrinsically
dynamic and stochastic instead of static and deterministic [1].
All these problems make it difficult for an engineer, using tradi-
tional engineering methods, to synthesize an appropriate design
solution under complex system design requirements.

Formal engineering design synthesis methodologies [2, 3]
reduce the reliance on human resources and shorten design cy-
cles, and can be used to computationally synthesize designs and
assist the human designers in the engineering design decision
making process with more knowledge and reduced uncertainties.

Natural evolution has been an inspiration for engineering de-
sign researchers to develop automatic design synthesis methods.
Since the 1960’s, there has been an increasing interest in simulat-
ing the natural evolution process to solve optimization problems,
leading to the development of evolutionary computation (EC)
methods [4–6] such as genetic algorithms (GA), genetic pro-
gramming (GP), evolutionary strategies (ES), and evolutionary
programming (EP). The idea is to have a pool of candidate solu-
tions evaluated in parallel, from which the “fittest” solutions are
chosen to mate and breed new candidate solutions using stochas-
tic operators. This procedure is iterated until the population con-
verges or a preset condition is met.

In previous work [1, 7], an evolutionary computational syn-
thesis methodology was proposed for designing and optimiz-
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ing distributed embodied systems in an autonomous way. This
method is platform-independent, system-oriented, and off-line
but realistic enough to be transported to real hardware. In com-
parison to traditional hand-coded design, the human engineering
effort involved is minimized to the mathematical formulation of
desired performance and to the encoding of real problems in the
search space of the stochastic exploration algorithm.

However, it is often unclear at an early design stage how
to appropriately formulate the design problem with many un-
knowns and multi-criteria, and what level of design performance
is achievable under different conditions. To assist the design en-
gineers in the engineering design decision making process, the
evolutionary design synthesis methodology was applied to search
for Pareto optimal design solutions, representing the different en-
gineering design trade-offs, under various conditions and formu-
lations of design problems.

As a first case study, the problem of designing the config-
uration of a collective sensory system for intelligent vehicles is
considered in this paper, following the previous work.

In the following sections, the evolutionary engineering de-
sign synthesis method is presented, including special features
introduced to face the modern engineering design challenges.
The case study problem is presented next, with encoding of a
given sensory solution, and the fitness function which aggregates
the weighted fuzzy preferences. Sample results obtained in the
framework of this case study are then presented and discussed,
including the approximate Pareto frontier evolved under differ-
ent weights and trade-off strategies. The paper concludes with a
brief discussion of future promising research directions.

DESIGN SYNTHESIS METHODOLOGY
In this paper, engineering design trade-offs are evolved us-

ing the automatic design synthesis methodology introduced in
previous papers [1, 7]. Based on evolutionary computation, this
methodology has been shown to be able to synthesize novel de-
sign configurations of good quality with acceptable computa-
tional cost under a certain level of abstraction.

Based on GA and ES, the evolutionary optimization loop
used is shown in Fig. 1. First, an initial pool of solutions is gen-
erated randomly. Then, each individual is evaluated under perfor-
mance test for one evaluation span. According to the evaluation
results, i.e., the fitness of each individual, the parent selection
scheme chooses pairs of parent solutions for crossover, promot-
ing individuals with higher fitness. Crossover between the se-
lected pairs of parents is conducted under certain crossover prob-
ability to generate pairs of offspring. Mutation is also applied to
each gene of the original pool under certain mutation probability
and generates more offspring. If the fitness is deterministic, then
only the offspring (from both crossover and mutation) are eval-
uated, otherwise the original pool is also re-evaluated. The best
individuals are then selected from both the original pool and the
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Figure 1. THE EVOLUTIONARY OPTIMIZATION LOOP USED IN THE

AUTOMATIC DESIGN SYNTHESIS PROCESS

offspring, i.e., elitist generation selection, to constitute the next
generation. Hence an offspring will only replace an individual
of the original population if it has a higher fitness, conforming
to the (µ+λ)-selection scheme [6] which insures that the mean of
the pool fitness is non-decreasing over generations. At the end
of each generational loop the program verifies whether or not
another generation is needed in order to meet a pre-established
criterion for terminating the evolutionary run.

This evolutionary design synthesis methodology is espe-
cially built to address the engineering design challenges intro-
duced above. First, the encoding allows variable-length chromo-
somes, making it possible to evolve design solutions of suitable
complexity (appropriate number of design parameters) and op-
timize parameter values simultaneously. In this case, the initial
pool will be generated to contain solutions of random complex-
ity. The crossover and mutation operators have to be adjusted
from the standard ones to conform to the variable-length chro-
mosome encoding, which was explained in detail in [1, 7].

Second, various objectives and multi-criteria are expressed
as preferences using fuzzy sets [8, 9]: each value of a design or
performance variable is assigned a preference value between zero
(totally unacceptable) and one (completely acceptable). Each
preference may have different levels of importance, or weights.
The weighted preferences can be aggregated, with a certain de-
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gree of compensation s, to get the overall preference, which is
also the fitness function in the evolutionary methodology. The
whole family of achievable engineering trade-offs can be evolved
by varying the compensation and weights parameters. Simul-
taneous hardware and software optimization could also be ad-
dressed by co-evolution of the system morphology and controller
[10, 11], which appears to be more promising than evolving the
morphology or controller alone, but is not considered in this pa-
per.

Third, when the evaluation process and result is dynamic and
stochastic, as characterized by real traffic scenarios investigated
in the case study, solutions are selected based not only on their
one time performance but also on their robustness through multi-
ple re-evaluations, where the worst result over an individual’s life
span (the number of generations it has survived, also the number
of times it has been evaluated) is considered to be a better esti-
mate of its actual fitness than a single evaluation. The selection
here is therefore based on individuals that have been evaluated
different numbers of times. This dynamic evaluation approach is
naturally more computationally expensive than a standard evolu-
tionary algorithm, where the fitness is often assumed to be static
and hence a single evaluation suffices. However, it is more com-
putationally efficient than systematically evaluating all offspring
for a constant number of times, since more computational power
is reserved for more promising solutions that survived over mul-
tiple generations. In order to assess the best, and also the most
robust individual at the last generation, a fair final test consisting
of 100 evaluation spans is performed on all distinct individuals
in the final population and again the worst result is taken to be an
individual’s final fitness.

CASE STUDY
As a first case study, the automatic design synthesis method

was applied to a simple problem in a complex (dynamic and
noisy) environment. The goal is to determine the optimal con-
figuration (such as number, types, and placement) of proxim-
ity sensors on an intelligent vehicle, in order to monitor a pre-
established detection region around the vehicle in realistic traffic
scenarios. The vehicles considered here are circular and unicy-
cle (i.e., single axis with two motor wheels), and the detection
region is also circular, as shown in Fig. 2. An object vehicle is
considered detected by the collective sensory system if the vehi-
cle’s body has overlap with at least one sensor’s scanning area or
ray.

Encoding of Sensory Parameters
Sensors are mounted on the periphery of the vehicles, as

shown in Fig. 2. The type and placement parameters as well
as the number of sensors are the design variables to be deter-
mined and optimized by the evolutionary algorithm according to
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Figure 2. SENSOR PARAMETERS AND THE DETECTION REGION

the designer’s preferences and trade-off strategies. Except for
the number of sensors, all the other design variables are encoded
as discretized real numbers, taken from some pre-defined finite
ranges. The placement parameters of each sensor are character-
ized by two angles: the position angle ϕ (the angle between the
front direction of the vehicle and the radius pointing to the sen-
sor’s mount) and the orientation angle θ (the angle between the
radius pointing to the sensor’s mount and the center line of the
sensor’s scanning area). Each sensor’s type is specified by the
sensor range ρ and cone of view δ. The sector in Fig. 2 shows
a sample sensor’s scanning area with its four parameters. There-
fore, the number of design variables for a collective sensory sys-
tem with n sensors will be 4∗n.

Each sensor also has a cost factor that depends on its range
ρ and cone of view δ1. The sensors with wider cones of view
and longer ranges have a higher cost. The cost formula can be
determined from real sensor data or sensor models. A simple
linear relationship is assumed in this case study:

costi = c1ρi + c2δi + c3 (1)

Total cost =
n

∑
i=1

costi (2)

where costi, ρi, and δi are the ith sensor’s cost, range, and cone

1For a real sensor, besides its range and cone of view, the sensor cost may
also depend on several other factors, such as accuracy, scanning frequency, and
power, etc., which are ignored in this case study for simplicity.
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Figure 3. THE 2D FULL COVERAGE TEST

of view respectively; c1, c2, and c3 are constant coefficients; n
and Total cost are respectively the number and the total cost of
all sensors used in the current sensory system. Note that costi, ρi,
and δi are all positive real numbers except that δi is also allowed
to equal to zero when the ith sensor is a line sensor.

As an important competing factor in the engineering design
process, the engineer’s preference on cost will be defined and
incorporated into the fitness function later.

Evaluation Tool
To understand the role of noise in shaping the evolved solu-

tions and to find the best and most efficient simulation, six differ-
ent types of evaluation tests were implemented [1]: static, 1D/2D
quasi-static, 1D/2D full coverage, and an embodied test. It was
shown that the evolutions under computationally more efficient
evaluation tests such as the two-dimensional (2D) full coverage
and quasi-static tests, can evolve solutions of equivalent, if not
better, quality as those under the embodied test. Based on this
earlier result, we present in this paper results exclusively gath-
ered with a 2D full coverage test (shown in Fig. 3), a determin-
istic implementation test about 60 times faster than embodied
simulations.

As described in previous work, realistic sample traffic sce-
narios are simulated in the embodied simulator, where a test
vehicle and object vehicles are controlled by simple but realis-
tic driver behaviors to move on a simulated three-lane highway.
The sensors and actuators simulated are characterized by realis-
tic noise values. Each vehicle is initialized with random preferred
cruising speed and initial position for each evaluation span. They
either keep or change lanes to try to safely maintain their respec-
tive cruising speeds, and brake when they have to avoid potential
collisions. The relative distances and approaching angles of all
the object vehicles that have been in the test vehicle’s detection
zone are recorded at each time step and accumulate to the vehi-
cle occurrence data. The 2D full coverage test is based on the 2D

Figure 4. 2D PDF GENERATED FROM THE VEHICLE OCCURRENCE

DATA COLLECTED IN THE EMBODIED SIMULATION FOR ACCUMU-

LATIVE 5000 EVALUATION SPANS

probability density function (PDF) (shown in Fig. 4) generated
from the vehicle occurrence data collected in the embodied sim-
ulation for a long enough period of time. The test vehicle lies at
the center statically while the object vehicles are placed system-
atically within the detection region in a 2D full coverage test, as
illustrated in Fig. 3. The PDF is used to weigh the detection or
not event at each object position in order to estimate the coverage
achieved by the current sensory solution in the traffic scenario, as
explained later.

Note that the optimal number of sensors is unknown in this
seemingly simple case study problem, hence the number of de-
sign parameters is also open and increases with the number of
sensors in the solution. Moreover, the coverage of the detec-
tion region and the sensor total cost are two competing factors
here, whose relative importance lies in the aggregated fuzzy fit-
ness function that leads to a trade-off between the two.

Fitness Function
First, the Coverage under the 2D full coverage test is com-

puted as follows:

Coverage =
V

∑
i=1

ki ·PDF(αi,ri) (3)

where V is the number of vehicles effectively appearing within
the detection region during the evaluation span; ki is 1 if the ob-
ject vehicle i is detected, or 0 if it is not; αi and ri are the ap-
proaching angle and distance of the ith object vehicle relative to
the test vehicle. The PDF indicates the weight derived from the
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percentage of vehicles that approach the test vehicle at each par-
ticular position αi and ri. Figure 4 shows the sample 2D PDF
used in the 2D full coverage test considered in this paper. Due
to unity of the PDF, the values of Coverage fall in the range [0,
1], hence the designer’s preference on Coverage only needs to be
defined on this range.

The designer’s preference functions µcoverage and µcost of the
two competing factors, Coverage and Total cost respectively,
are simply given by:

µcoverage = Coverage2 (4)

µcost =
20−Total cost

18
(5)

as shown in Fig. 5. Note these simple curves are chosen for con-
venience in this case study, the same methodology can be applied
with more complicated preferences.

A common way to construct the multi-criteria fitness func-
tion is to assign importance weights to each of the criteria, and
then use a weighted sum to aggregate preferences; the best de-
sign will have the highest overall preference. However, it was
shown in [12] that a weighted sum cannot always identify all
Pareto points for a design problem. It is just one instance of a
more general result about the aggregation of preference. All cur-
rent multi-criteria decision making ultimately rely on the aggre-
gation of disparate preferences with aggregation functions. The
axioms that an aggregation function should obey to insure ratio-
nal design decision making were presented in [8]. It was also
shown that there is a family of aggregation function operators Ps

that spans an entire range of possible operators between min and
max, and satisfies the design axioms [9]. The class of functional
equations [13] known as quasi-linear weighted means is given
by:

Ps(µ1, µ2; ω1, ω2) =
(

ω1 µ1
s + ω2 µ2

s

ω1 + ω2

) 1
s

(6)

Here, µ1 and µ2 are individual preferences on performances of
a particular solution. The parameter s establishes the degree of
compensation, or the trade-off strategy adopted by the designer.
Higher values of s indicates a greater willingness to allow high
individual preferences to compensate for lower ones. The param-
eters ω1 and ω2 are importance weights, and their ratio ω = ω2

ω1
is sufficient to characterize the relative importance of the two at-
tributes. The definition above is only for two attributes, but can
be extended to more than two. It was also shown [9] that

P−∞ = lim
s→−∞

Ps = min(µ1, µ2)

P0 = lim
s→0

Ps = (µ1
ω1 µ2

ω2)
1

ω1+ω2

P1 = lim
s→1

Ps =
ω1 µ1 + ω2 µ2

ω1 + ω2

P∞ = lim
s→+∞

Ps = max(µ1, µ2)

Thus the common weighted sum is just one instance of this fam-
ily of aggregation functions, with the compensation parameter s
equal to 1. And it was also shown that any Pareto optimal point
can be reached by the optimal point under a choice of some com-
bination of the weight ratio ω and the trade-off strategy s.

Therefore the fitness function used is the aggregation of the
weighted preferences, given by

Fitness(ω,s) =
(

µ s
cost + ω µ s

coverage

1+ ω

) 1
s

(7)

where

ω =
ωcoverage

ωcost
.

The design goal here is to maximize the fitness of the sensory
configurations, which boils down to maximizing the coverage
of the detection zone while at the same time reducing the to-
tal cost of sensors. To get better coverage of the detection re-
gion, more sensors and/or sensors of wider cones of view and/or
longer ranges are needed. This will tend to increase the cost of
the sensing system. The fraction of vehicles that can be detected
in the detection region depends, to an important degree, on the
number, types, and capabilities of the sensors. This is the engi-
neering design trade-off present in the example problem. Thus
the question arises for the design engineers as how to choose the
weight ratio ω and trade-off strategy s that leads to a desirable
trade-off between the coverage and system cost under different
situations. Therefore it is important to not arbitrarily limit the
range of Pareto optimal points that can be selected by choosing
a pre-determined trade-off strategy. A method for establishing ω
and s for a given problem has been presented in [12].

Solutions under various conditions can be easily obtained
by setting the pair of weight ratio ω and trade-off strategy s
to different combinations in Eqn. (7) and letting the evolution-
ary algorithm automatically synthesize solutions under different
conditions. By this method the design engineer will be able to
learn what level of performance can be achieved under the cur-
rent preference settings, along with the corresponding cost of the
sensing system, even in an early stage of design. This will help
guide the design decision to an appropriate trade-off between
cost and coverage.

Algorithmic Parameters
In this case study, a parent selection based on a roulette

wheel scheme, with an elitist generation selection, one-point
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Figure 5. PREFERENCES FOR COVERAGE AND TOTAL COST

Table 1. ALGORITHMIC PARAMETERS

Parameters Values

Population size 50

Selection scaling factor 2

pcrossover 0.2

pmutation 0.182

pinsertion 0.05

pdeletion 0.05

crossover, and a uniform mutation, was adopted. Due to the use
of variable-length chromosome, insertion and deletion are also
used as mutation operators, in addition to the normal mutation,
to change the lengths of chromosomes. The one-point crossover
had to be modified to ensure proper crossover operation between
parents with chromosomes of different lengths, which was ex-
plained in [7].

Table 1 summarizes the numerical parameters used in the
evolutionary algorithm. The probabilities of genetic operators
are fixed during an evolutionary run and are calculated per ge-
netic individual (chromosome).

RESULTS
In this section, the automatic design synthesis method was

applied to search the optimal sensor configurations for the case
study problem described above under different conditions, i.e.,
fitness functions with different values of the weight ratio ω and

trade-off strategy s, which reflect the designer’s different em-
phasis assigned to the two competing factors, Coverage and
Total cost, and how much higher preference values compensate
for lower ones.

The evolutionary runs were conducted under the 2D full cov-
erage evaluation test based on the 2D traffic PDF shown in Fig. 4.
For simplicity, the sensor configurations are forced to have left-
right symmetry2 in the evolutions, conforming to the traffic PDF
used. For each different experiment, evolutionary runs were re-
peated 10 times with different random number generator seeds
and terminated after 200 generations for each run. The initial
population contains solutions with a randomly chosen number of
sensors from 1 to 20, and the final optimal number of sensors is
determined by the algorithm.

Although it is not guaranteed that a global optimum from
a strict mathematical point of view can always be generated,
an evolutionary algorithm is able to discover some good and
near-optimum solutions suitable for the engineering design use.
Highly tuned systems are often sensitive to small imperfections,
so engineers commonly design them to be slightly suboptimal to
avoid such problems [14].

Figure 6 shows some evolutionary results obtained from the
evolutionary experiments under three different conditions. The
graphs in the upper row show the evolutions of the mean of
the population Fitness as well as the two individual preferences,
µcoverage and µcost , over 200 generations; while the lower row
shows the corresponding best phenotype sensor configurations
evolved with the values of their Coverage and Total cost.

It was shown in Eqn. (7) that, the Fitness, i.e. the over-
all preference, is aggregated as a generalized weighted mean of

2The sensors lying close to the symmetry axis itself are mirrored to the oppo-
site end, as shown in Fig. 6
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Figure 6. EVOLUTION OF THE POOL MEAN FITNESS AND PREFERENCES (TOP) AND THE BEST PHENOTYPES EVOLVED (BOTTOM)

the individual fuzzy preferences, µcoverage (dashed line) and µcost

(dotted line), hence all of them take real values between zero (to-
tally unacceptable) and one (completely acceptable), as shown
in Fig. 6. Starting from randomly initialized population of so-
lutions, the evolutionary algorithm tries to search for an optimal
trade-off between the two competing factors at the end of evolu-
tion. Due to different settings of the importance weights parame-
ter ω and the degree of compensation s, different trade-offs were
reached at the end of evolution.

The left graph and sensor configuration of Fig. 6 shows the
result of an experiment with the weight ratio ω less than one
and the degree of compensation s equal to 0, which indicates
that reducing cost is considered to be relatively more important
than increasing coverage, and that the higher individual prefer-
ence (µcost ) can compensate for the lower one (µcoverage). Hence
a simple and inexpensive sensory system of four sensors with
low cost and low coverage was selected by the design synthesis
methodology. On the other hand, the right graph and sensor con-
figuration shows the result of an experiment with the weight ratio
ω greater than one and the degree of compensation s equal to 0,
which means that the designer’s emphasis was on obtaining bet-
ter coverage rather than reducing cost, and that the same trade-off

strategy was adopted with opposite effects, i.e. the higher indi-
vidual preference (µcoverage) could compensate for the lower one
(µcost). Consequently, a rather complex and expensive sensory
system with eight sensors was evolved. The middle graph and
sensor configuration in Fig. 6 shows the result of a special case
with the degree of compensation s at −∞, which means that the
min of the individual preference was taken to be the overall pref-
erence no matter their relative weights, i.e. a non-compensating
trade-off strategy was adopted. It turned out that a sensory sys-
tem of medium cost and coverage was synthesized by the algo-
rithm in this case.

As expected, the automatic design synthesis method gen-
erates considerably different results from economical to expen-
sive, from a small number of sensors with small cones of view
and ranges to more sensors with larger cones of view and longer
ranges, under different choices of the parameters ω and s in the
fitness function shown in Eqn. (7). More experiments based on
different values of ω and s have been performed and the set of
the final best trade-offs evolved by the algorithm constitutes an
approximate feasible Pareto optimal frontier for this design prob-
lem, which is shown in Fig. 7. The left plot illustrates the Pareto
frontier by plotting the Coverage versus Total cost of the best
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Figure 7. EVOLVED PARETO FRONTIER FOR THE DESIGN TRADE-OFFS

sensory configurations at the end of evolutions, while the right
one plots the same Pareto frontier normalized with respect to the
fuzzy preferences. Each data point represents the best result of
one particular evolutionary experiment under a different combi-
nation of ω and s.

Figure 7 quantitatively outlines the trend of the achievable
coverage at various levels of cost under different settings: the
coverage increases as the cost increases, but the coverage will
only approach 1.0 with a large cost increase, which agrees with
one’s common sense. The right plot in Fig. 7 shows this relation-
ship in terms of preference. It is desirable, of course, to maximize
the preference for both performance measures, however, as Fig. 7
illustrates, this is not possible simultaneously, therefore a com-
promise must be selected by trading-off higher preference for one
performance against the other. This trade-off is quantitatively es-
tablished by determining appropriate values for the ratio of the
relative importance (ω) of the two performance measures, and
the degree of compensation (s) between the two performances.

This important information can be helpful to assist the de-
sign engineers in the engineering design decision-making pro-
cess. With the automatic design synthesis method used here,
these results were obtained without much difficulty under an
acceptable computational cost. Although the best solutions
achieved at the end of the evolutions do not necessarily repre-
sent the optimal solutions under the specified situations, they
can quickly provide the design engineers with a general idea in
the early stage of design. Furthermore, the parameters in the
Eqn. (1, 5, 4, and 7) and the algorithm can be varied by the design
engineers to easily examine their influence on the final trade-offs
found by the automatic design synthesis method.

CONCLUSION

An original automatic design synthesis method based on
evolutionary computation was applied to generate engineering
design trade-offs under fuzzy fitness functions with different im-
portance weighting ratios and trade-off strategies. Sample results
of a case study concerned with the configuration problem of a
collective sensory system were presented and discussed. The
experimental results show that the proposed method can be ef-
ficiently applied in the engineering design decision-making pro-
cess to generate useful alternatives for the design engineers. This
is an early application of an automatic design synthesis method,
which is anticipated to be a useful tool for the design engineers
to address more complex engineering design problems.

FUTURE WORK

Although more work needs to be done to improve the al-
gorithm efficiency and accuracy, the results reported in this pa-
per appear promising. In the near future, more elements can be
incorporated into the engineering design trade-offs, from which
more comprehensive information can be obtained to help the de-
sign engineers in their decision-making progress. More realistic
elements at the sensory and vehicle level as well as more emer-
gency traffic scenarios will be introduced. More complex metrics
and fitness functions that involve the vehicle dynamics and traffic
safety will be developed and investigated. It is anticipated that,
when the number of design parameters is large and when noise is
involved, the evolutionary design could be superior to traditional
design methods in terms of solution quality and cost.
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