
IEEE SENSORS - JUNE 2002 1

Distributed Odor Source Localization
Adam T. Hayes, Alcherio Martinoli, Rodney M. Goodman

Abstract—This paper presents an investigation of odor lo-

calization by groups of autonomous mobile robots. First, we

describe a distributed algorithm by which groups of agents

can solve the full odor localization task. Next, we estab-

lish that conducting polymer-based odor sensors possess the

combination of speed and sensitivity necessary to enable real

world odor plume tracing, and we demonstrate that simple

local position, odor, and flow information tightly coupled

with robot behavior is sufficient to allow a robot to localize

the source of an odor plume. Finally, we show that elemen-

tary communication among a group of agents can increase

the efficiency of the odor localization system performance.
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I. Introduction

RECENT advances have been made in understanding
biological odor localization and tracking as developed

in moths [1], [2] and rats [3] in the air, and lobsters [4] and
stomatopods [5] in water. Biology utilizes olfaction for a
wide variety of tasks including finding others of the same
species, communication, behavior modification, avoiding
predators, and searching for food. Animals use a com-
bination of ‘hardware’ (frequency of receptor adaptation,
perhaps), ‘software’ (temporal integration and/or spatial
integration), and behavioral search strategies (both intrin-
sic and landmark-based) to locate odor sources. Odor lo-
calization is in essence a behavioral problem that varies
from animal to animal. While some animals exploit fluid
information at different layers (lobster) or several residues
on the ground (ants), others can track odors in the air
(moths) or use a combination of information (dogs). From
an engineering standpoint there are advantages to combin-
ing odor tracking with mobile robots [6], such as in the de-
tection of chemical leaks and the chemical mapping of haz-
ardous waste sites. We are interested in developing groups
of small mobile robots that use odor tracking algorithms,
multiple sensory modalities (e.g. odometry, anemometry,
olfaction), and sensory fusion to search out and identify
sources of odor.

We design the agent control algorithms using principles
of Swarm Intelligence (SI), a computational and behav-
ioral metaphor for solving distributed problems that takes
its inspiration from biological examples provided by social
insects. In most biological cases studied so far, robust and
capable group behavior has been found to be mediated by
nothing more than a small set of simple interactions among
individuals and between individuals and the environment
[7]. The application of SI principles to autonomous collec-
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tive robotics aims to develop robust task solving by mini-
mizing the complexity of the individual units and empha-
sizing parallelism, exploitation of direct or indirect interac-
tions, and distributedness. These principles favor the de-
sign of behavior-based robotic systems, similar at the indi-
vidual level to those of Brooks [8] and Arkin [9], which em-
phasize tight coupling between sensation and action, avoid-
ance of representational knowledge, and action decompo-
sition into contextually meaningful units [9]. The main
advantages of the SI approach are three: first, scalability
from a few to thousands of units, second, flexibility, as units
can by dynamically added or removed without explicit re-
organization, and third, increased system robustness, not
only through unit redundancy but also through the design
of minimalist units. Several examples of collective robotics
tasks solved with SI principles can be found in the litera-
ture: aggregation [10] and segregation [11], beacon local-
ization [12], stick pulling [13], and collective transportation
[14].

The aim of the case study described in this paper is four-
fold. First, we describe a distributed algorithm by which
groups of agents can solve the full odor localization task.
Second, we establish that conducting polymer-based odor
sensors possess the combination of speed and sensitivity
necessary to enable real world odor plume tracing. Third,
we demonstrate via real robots and embodied simulations
that simple sensory information tightly coupled with robot
behavior is sufficient to allow an agent to find the source
of an odor plume. Last, we show that integrating the in-
formation collected by a group of agents in an elementary
manner can increase the efficiency of the odor localization
system performance.

II. The Odor Localization Problem

A. Task Description

The general odor localization problem addressed in this
paper is as follows: find a single odor source in an enclosed
2D area as efficiently as possible. This can be broken down
into three subtasks: plume finding - coming into contact
with the odor, plume traversal - following the odor plume to
its source, and source declaration - determining from odor
acquisition characteristics that the source is in the immedi-
ate vicinity. Plume finding amounts to a basic search task,
with the added complication, due to the stochastic nature
of the plume, that a simple sequential search is not guar-
anteed to succeed. Plume traversing requires more spe-
cialized behavior, both to progress in the direction of the
source and to maintain consistent contact with the plume.
Source declaration does not necessarily have to be done
using odor information, as typically odor sources can be
sensed via other modalities from short range, but here we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147895108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE SENSORS - JUNE 2002 2

propose a solution using no extra sensory apparatus.
As an odor source dissolves into a fluid medium, an odor

plume is formed. The turbulent nature of fluid flow typi-
cally breaks the plume into isolated packets, areas of rela-
tive high concentration surrounded by fluid that contains
no odor [15]. The task of odor localization is thus one of
plume traversal, or following the trail of odor packets up-
stream to the source. This becomes difficult as odor packets
become more sparse (due to source intermittency and dif-
fusion below detectable levels) and more dispersed (due to
flow meander).
Previous odor localization research has utilized concen-

tration gradient information to locate the centerline of a
plume, and then either anemotaxis [16], [17] or further
chemotaxis [18] to proceed to the source. These systems
were restricted to operation in the proximal region of the
plume (within 2 m of the source) and had to move slowly
(.01-.03 m/s) so that concentration gradient information
could be extracted with reasonable accuracy using sen-
sors with sub-Hz response or recovery times. Although
these efforts were successful in demonstrating the feasibil-
ity of odor localization with mobile robots, it is not clear
that any method that involves spatial concentration extrac-
tion will extend to more sparse plumes (i.e. longer plume
tracking distances), since as odor information becomes less
frequent, concentration integration times will increase, de-
creasing system performance accordingly [19]. Moreover,
these investigations were limited by the speed of the sen-
sors they incorporated. In the distal plume region where
plume information is intermittent, sensors that are too slow
to register passing odor packets are of little use.

B. Biological Inspiration

Although the approach of moving slowly and continu-
ally sampling odor and flow data to reduce environmental
noise is used in nature (starfish) and has been applied to
robotic systems [17], [20], environmental and behavioral
constraints (e.g. significant plume sparseness or meander,
time critical performance) can render these systems inef-
fective. In that case, upon sensing an odor signal, a good
policy is to move directly upwind, as a good immediate lo-
cal indication of source direction under such circumstances
is the instantaneous direction of flow [21]. When the odor
is no longer present, a good strategy is to perform a local
search (known as casting in the biological literature) un-
til it is reacquired, as the location of the previous packet
encounter provides the best immediate estimate of where
the next will occur. This type of surge-cast behavior has
been observed in moths [22], and its performance has been
studied in simulation [2].
The previous work on this odor localization algorithm

was aimed at studying biology, which limited the sensory
and behavioral time scales investigated. When applying
these ideas to artificial systems, however, the separation
between algorithm and underlying hardware is much more
clear, and it no longer makes sense to constrain behavior
strictly by sensory response characteristics. Therefore, in
this work key aspects of the search behavior, such as surge

duration and casting locality, are treated as algorithm pa-
rameters.

C. The Spiral Surge Algorithm

The basic odor localization algorithm used in this study,
Spiral Surge (SS), is shown in Figure 1. It consists of dif-
ferent behaviors related to the three different subtasks.
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Fig. 1. Spiral Surge odor localization behavior.

TABLE I

Spiral Surge Algorithm Parameters

SpiralGap1 Initial spiral gap width
SpiralGap2 Plume reacquisition spiral gap width
StepSize Surge distance post odor hit
CastTime Length of time before reverting from

reacquisition to initial search spiral
SrcDecThresh Significance threshold between

consecutive separate odor hits
SrcDecCount Number of significant differences

before source declaration

Plume finding is performed by an initial outward spiral
search pattern (SpiralGap1). This allows for thorough
coverage of the local space if the total search area is very
large and initial information can be provided by the deploy-
ment point (an external ‘best guess’ as to source location).
Alternatively, if no a priori knowledge is available, a spiral
with a gap much greater than the arena size (producing
essentially straight line search paths) provides an effective,
although not optimal [23], search procedure.
Plume traversal is performed using a type of surge al-

gorithm. When an odor packet is encountered during spi-
raling, the robot samples the wind direction and moves
upwind for a set distance (StepSize). If during the surge
another odor packet is encountered, the robot resets the
surge distance but does not resample the wind direction.
After the surge distance has been reached, the robot begins
a spiral casting behavior, looking for another plume hit.
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The casting spiral can be tighter than the plume finding
spiral (SpiralGap2), as post surge the robot has informa-
tion about packet density and a thorough local search is a
good strategy. If the robot subsequently re-encounters the
plume, it will repeat the surging behavior, but if there is
no additional plume information for a set amount of time
(CastTime), the robot will declare the plume lost and re-
turn to the plume finding behavior (with a wider, less local,
spiral gap parameter).
Source declaration can be accomplished using the fact

that a robot performing the plume traversal behavior at
the head of a plume will tend to surge into an area where
there is no plume information, and then spiral back to the
origin of the surge before receiving another odor hit. If
the robot keeps track internally of the post spiral inter-hit
distances (using odometry, for example, which is sufficient
because information must be accurate only locally), a series
of small differences can indicate that the robot has ceased
progress up the plume, and must therefore be at the source.
However, because small inter-hit distances can occur in all
parts of the plume, this method is not foolproof, and tun-
ing of the difference threshold (SrcDecThresh), as well
as the number of observed occurrences before source decla-
ration (SrcDecCount), is required to obtain a particular
performance within a given plume. See Table I for a sum-
mary of individual SS parameters.
SS uses only binary odor information generated from a

single plume sensor because this is the most simple and
reliable type of information that can be obtained from
real hardware in the temporal operating regime of inter-
est. There may be information encoded in distal fine plume
structure [24], however, due to the highly stochastic nature
of turbulent fluid flow and the odor-packet nature of the
plume, it is unclear that more complex sensing – via graded
intensity information or larger fixed sensor arrays – would
benefit an odor localizing agent when flow information is
available through other means.

D. Collaborative Spiral Surge

While more complex odor sensing may be beneficial to
the odor localization task, another possible route to greater
efficiency is physical distribution of the odor sensing el-
ements, which in principle could improve system speed
and robustness via parallelization of the search procedure.
This can be achieved by constructing an arbitrarily large
and complex single robot or, perhaps more conveniently,
distributing a number of sensors throughout a group of
smaller, more simple communicating robots. With a suit-
able command and control interface, this collective can be
viewed as an ‘odor localization sensor’ in much the same
way a single larger robot, or more generally device, could.
One way to increase the performance of such a robot swarm
is collaboration between individual nodes. In particular, if
collaboration is obtained with simple explicit communica-
tion schemes such as binary signaling, the team perfor-
mance can be enhanced without losing autonomy or signif-
icantly increasing complexity at the individual level.
Several simple types of communication can be integrated

into basic SS. In this study, we examine the performance
impact of three types of communication: no communi-
cation (None), a ‘come here’ signal emitted by upwind
surging robots that causes all robots downwind or with
no plume information to surge in the direction of the call-
ing robot (Attract), and a ‘stop’ signal emitted by the
first robot to receive odor information that causes all other
robots to surge away from the signaling robot and then
enter a power save mode from which they cannot be awak-
ened (Kill). We investigate the influence of these types of
communication across group size to determine their impact
on system efficiency.

E. Odor Localization Performance

To study odor localization, we place groups of agents
within a starting area inside an enclosed arena containing
an odor plume. Over repeated trials we measure the time
and distance traveled by the whole group until the group
completes the task, which can be defined in a number of
ways: an agent comes within a given radius of the plume
source (allocentric determination – useful to emulate a non-
odor related target sensor that each robot might carry), an
agent declares the plume source found (egocentric determi-
nation, no additional sensor necessary), or any combination
and extension (i.e. multiple declarations required within a
given radius) thereof. In this paper, we examine both single
robot allo- and egocentric stopping criteria, so for the pur-
poses of performance we simply assume that some measure
of time and group energy (which can be considered pro-
portional to the sum of the individual distances traveled)
necessary for task completion exist (TTC , DTC).
Efficiency for the odor localization task cannot be de-

fined in the general case. Instead, we combine the two
basic measures of task performance in a task specific man-
ner. Since these measures are physically independent, a
composite metric incorporating a particular weighting of
these two basic factors can be considered.

Q = αTTC + βDTC (1)

P =
αTMIN + βDMIN

Q
(2)

Q is an arbitrary weighting of time and distance. By
choosing specific values for α and β, the appropriate re-
lationship can be generated for evaluating any particular
application. The form of P ensures that for any α and β
greater than 0, the optimal system will achieve a perfor-
mance of 1, and any that require more time or distance
will have a performance less than 1. We determine the op-
timum values for the given task (TMIN , DMIN ) from an
agent executing the optimal behavior (a straight line path
from start to goal areas at maximum speed). Maximum
speed, which determines the relationship between the time
and distance values, is determined by the maximum safe
operating speed of the agent in the given environment. In
this study we set α and β so that the time and energy com-
ponents of the task factor equally into the minimum cost,
so α

β
= DMIN

TMIN
.
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III. Materials and Methods

A. Real Robots

We use Moorebots, as shown in Fig. 2, which were origi-
nally designed by Owen Holland at the University of West
England, Bristol, U.K.. Each 24 cm diameter robot is
equipped with two DC motor-driven wheels, a castor wheel,
a 2 Mbit wireless LAN transceiver, and 12-bit A/D and
D/A converters. See [25] for a more detailed robot de-
scription. We extended this basic configuration with four
infra-red range sensors for collision avoidance, a single odor
sensor, and a hot wire anemometer. On-board high-level
control is provided by a PC104 based Intel 386 processor
running Linux. Low level control such as motor speed reg-
ulation is executed by dedicated hardware interfaced to the
PC104 bus.

Marker for
Overhead
Camera

Proximity Sensors

Polymer
Odor
Sensor

Directional
Wind
Sensor

Fig. 2. A Moorebot equipped with wind, odor, and proximity sensors,
as well as markings for overhead tracking.

B. Robot Arena and Infrastructure

The plume traversal arena is 6.7 by 6.7 m. The odor
plume is created by a 23 cm square hot water pan and a
bank of 5 fans 30 cm in diameter, and it extends diagonally
from one corner of the arena toward the opposite corner.
Flow characteristics based on data taken along the plume
axis 15 cm above the floor are summarized in Table II.
The coefficient of variation is a measure of the intensity of
the flow turbulence. It represents the ratio of the standard
deviation of the wind velocity to the mean wind velocity,
and 20% is a value typically measured outdoors [16].

TABLE II

Wind Field Characterization

Distance from source [m] 1 4 8
Mean wind speed [m/s] 1.13 1.01 .34
Coefficient of variation [%] 15.4 21.2 52.0

The robot start area is located in the corner opposite the
plume source. An overhead camera tracking system, com-
bined with a radio LAN among the robots and an external

workstation, is used to log position data during the trials,
reposition the robots between trials, and emulate the bi-
nary communication signals. Trials of different group size
are interleaved and inactive robots are automatically po-
sitioned at recharging stations. The arena layout, as seen
from the overhead camera, is shown in Figure 3.

Plume Source

Recharging Stations

Start Area

Wind Flow

Robot

Fig. 3. Real robot arena as seen from overhead camera.

C. Odor Sensor

While many types of odor sensing technology currently
exist [26], a good combination of ease of transduction,
reversibility, reproducibility, tunability, ease of produc-
tion, robustness across environments, miniaturization, and
speed is offered by carbon-doped polymer sensors [27]. This
odor sensor detects the presence of an airborne substance
through a change in the electrical resistance of a chemically
sensitive carbon-doped polymer film [28]. While this type
of sensor can lack baseline stability, it is very fast (response
times < .1 s [20]), and signal processing techniques can be
used to counteract its baseline drift.
We fabricate sensors from solutions consisting of 20%

carbon black and 80% polymer (poly-vinylpyrrolidone) dis-
solved in dichlormethane, using methods as described in
[29]. The conducting polymer solution is spray coated [30]
onto the surface of a surface mount universal board so that
the sensor film closes the circuit between two mounting
pads. Polymer solution is applied until sensor resistance
nears 100 kOhm, and baseline resistances typically settle
to a value between 30 and 300 kOhm after a 24 hour drying
period. A sensor close-up can be seen in Figure 4.
The interface circuitry applies an input bias voltage

across a multiplexer selectable range resistor to generate
a current through the sensor via a Wilson current source.
The output voltage across the sensor is then filtered to re-
move high frequency noise and buffered for reading. The
variable bias voltage and selectable range resistor allow a
wide range of sensor baseline resistances (10 kOhm to 10
MOhm) and automatic calibration, an important feature
because polymer sensors are difficult to fabricate precisely
and their baselines drift over time. The calibration proce-
dure consists of switching through all range resistors with
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Fig. 4. Odor sensor close-up.

the bias voltage centered (and no stimulus present), choos-
ing the resistor that results in an output closest to the
desired output, and then adjusting the bias voltage until
the desired baseline output is achieved. The resistor and
bias values are then stored for later use. The desired out-
put value is 25% of the ADC’s range, as the sensor values
are more likely to drift up than down.

Previous versions of the interface circuit used a local
analog feedback loop to maintain the output voltage at
a constant level. However, this low-pass hardware filtering
attenuated not only the sensor drift but the signal as well,
reducing sensor sensitivity. Sensitivity is crucial for the
study of plume tracing, because the agents must be able
to sense a meaningful plume structure, not simply respond
when very close to the odor source. In our indoor experi-
mental set-up, room ventilation is limited, so enhancement
of the plume signal is not an option. Thus, instead of us-
ing analog feedback, we digitally filter the output signal
and record an odor hit whenever the filtered signal rises
above some threshold. We use a sixth order Butterworth
bandpass filter, and we set the filter parameters by compar-
ing the power spectral density given no stimulus with the
output power spectral density with the robot stationary in
the distal part of the plume. Given that we want to select
a frequency range that provides the highest possible SNR,
we use bandpass cutoff values of .3 to 1.8 Hz based on the
data shown in Figure 5. Although the sensors can respond
at higher frequencies, no information is available above 2
Hz given our transduction circuitry and experimental con-
ditions. The amplitude threshold for odor detection is set
at 4 times the baseline standard deviation (recorded from
10,000 samples taken at an average rate of 85 Hz following
calibration) to render false positives improbable.

When executing the odor localization algorithm, the
odor sensor polling rate averages 85 Hz. Because the robot
CPU is performing the polling, the filtering, and handling
all other tasks the robot requires (e.g. communications,
high-level motor control, and memory management), the
sensor polling rate is not precise, and we do not use a real
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Fig. 5. Power spectral density of the odor sensor output when no
stimulus is present and when the robot is in the distal end of plume.

time Linux kernel (which could provide reliable, although
slower, polling rates) due to the overhead it requires. We
do not account for this imprecision in the digital filter, and
treatment of the polling jitter, through, for example, the
use of a dedicated microcontroller to take sensor readings,
could increase sensitivity. However, the combination of the
calibration procedure and digital filtering produces a ro-
bust binary odor detection sensor. Figure 6 compares raw
and filtered data from the distal end of the plume against
filtered baseline data from the same sensor. The detection
threshold is plotted 4 std above 0, and the raw data has
been DC shifted about -3 V for ease of presentation. The
presence of odor hits 8 m from the plume source shows
that a significant plume stimulus exists to be tracked, even
in the distal plume region where odor information is inter-
mittent. Mapping the plume using a random walk behav-
ior indicates that the plume is stable over time and across
robots (see Figure 7 and Figure 8).
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Fig. 6. Raw distal plume data, filtered distal plume data, and filtered
baseline data. The threshold is 4 std above 0.
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Fig. 7. Total plume hits received by 6 real robots over 1 hour while
performing a random walk behavior.

Fig. 8. Plume hits received by 6 individual real robots over 1 hour
while performing a random walk behavior.

D. Wind Sensor

The anemometer is a Shibaura F6201-1 air flow sensor,
as used by [16], which can sense wind flow down to .05
m/s. It is enclosed in a tube to provide unidirectional sen-
sitivity, which, combined with a scanning behavior, allows
the robot to measure wind direction. When wind direc-
tion information is required, the robot first rotates 90 de-
grees, then rotates slowly 360 degrees while reading the
wind sensor output, and finally rotates back to the head-
ing corresponding to the highest sensor value. The robot
takes the shortest path back to the desired heading, and
either over or under rotates to the target to account for
the 1 s time delay of the internal anemometer processing
circuitry. The initial rotation reduces the probability that
the robot begins facing upwind, in which case the discon-
tinuity in the scanning behavior can degrade the resulting
wind direction value. Wind sensor performance has yet to
be fully characterized due to the requirements of a suitable
testing environment (flow must be laminar), although the
data from the odor localization experiments suggests it is
sufficient for the given task. A wind map of 2102 individual

samples averaged spatially is shown in Figure 9.
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Fig. 9. Average wind direction in plume traversal arena as measured
by the real robots. Plume source at upper right. Arrow lengths are
proportional to the uniformity of flow direction at the tail of each
arrow.

E. Embodied Simulation

When studying the performance of distributed robotic
systems, it can be useful to model the system using differ-
ent levels of abstraction. Successful modeling provides a
way of understanding the essential aspects of the system,
as well as a significantly decreased evaluation time, which
enables a more complete investigation of the system param-
eter space. Models also allow treatment of environmental
conditions which (for some technical limitation) cannot be
implemented physically. In this work, the use of a model
permits us to enlarge the search arena and examine agent
performance on the full odor localization problem. Because
the source declaration phase of the task can lead to elevated
agent densities around the source, and thus is very sensitive
to inter-agent repulsion parameters, non-embodied simula-
tions, which can only approximate such interactions, are
not able to provide faithful results. Thus, we use Webots
[31], a 3D sensor-based, kinematic simulator, originally de-
veloped for Khepera robots [32], to systematically investi-
gate the performance of SS in simulation. This embodied
simulator has previously been shown to generate data that
closely matches real Khepera [13], [10], [33] and Moore-
bot [12] experiments, so we are confident that real robot
behavior is accurately captured.
We performed simulations in an arena modeled after the

physical arena, as shown in Figure 10, to verify that our
simulator produces accurate results, and we also used a
25 times (area) larger arena, which is large enough to al-
low study of the full odor localization problem (see Figure
11). The agent behavioral algorithms correspond exactly
to those used by the real robots. To properly capture the
plume stimulus, we incorporated a series of leaky source 2D
PLIF plume images generated in a water flume by Donald
Webster and Philip Roberts at Georgia Tech [34] [35]. Such
‘plume movies’, even though they do not capture the influ-
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Fig. 10. Webots plume traversal arena with average plume intensity
map.

Plume Source

5x Longer Arena Length

Start Area

Mean Wind Flow

Fig. 11. Layout of larger Webot arena.

ence of the agents on plume dynamics, offer a good approx-
imation to the discretized (packet-like) nature of odor stim-
ulus received in real environments. We scaled the recorded
plume data to imitate the average speed and envelope of the
real plume data (see Figure 12 and Figure 7), and tuned
the odor sensitivity threshold (higher threshold leads to
less odor information) based on performance observed in
our real arena. Odor hit frequency differences between the
real and simulated maps are due to the fact that for ef-
ficiency the simulated sensors are bandwidth limited only
by the update rate of the plume data (10 Hz) rather than
by a bandpass filter like the one used on the real robots
(.3-1.8 Hz). While we used the same plume stimulus in
both arenas, simulations of the physical arena incorporate
flow information taken directly from the real robot data (as
shown in Figure 9), and in the larger arena, in an effort to
emulate more open flow patterns, wind information is gen-
erated by adding ±10% white noise to a constant direction
parallel to the main plume axis.
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Fig. 12. Plume hits received by 6 simulated robots over 1 hour.

IV. Results and Discussion

A. Real Robots

The real robots experiments focus on the plume traver-
sal subtask because it contains most of the plume related
complexity present in the full odor localization task, and
due to experimental limitations it is not feasible to study
all phases with real robots at this time. Since source decla-
ration is not being studied, a trial is complete when a robot
reaches a given distance, the source find radius, from the
plume source. To justify the high density of agents in the
plume (which would be unlikely given that in the general
problem the plume area is a small percentage of the total
search area), we allow Attract communication between
the agents to hold the group together as it traverses the
plume.

We tested real robot plume traversal performance using
two sets of SS parameters and two control experiments.
Only SpiralGap2 and StepSize are considered because
we are looking only at the plume traversal aspect of the
task. SS1 represents a non-local search in that its search
paths are straight and its surges extend to the boundaries
of the arena. SS2 uses a smaller spiral gap and surge length
to perform a more local exploration of the arena. Random
Odor uses SS2 parameters, and receives odor hits that are
generated from the time sequence of SS2 odor hits but are
not correlated with robot position in the arena. This con-
trol experiment investigates whether an algorithm incor-
porating precise odor packet location information is more
efficient than a blind upwind surging behavior. An alterna-
tive experiment could be to decouple the wind source from
the odor source by creating a wind field with an array of
fans, but due to practical limitations in our experimental
set-up, the Random Odor case was easier to implement and
provided equivalent information from a proof-of concept
point of view. Random Walk takes straight line paths and
random avoidance turns at boundaries (using no odor or
flow information) to provide a traversal performance base-
line. Specific parameters relating to the real robot tests
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are listed in Table III. 15 trials of each group size were
run for SS1, SS2 and Random Odor, and 30 trials were run
for Random Walk due to the high variance of performance
values. All error bars in the plots represent standard error.

TABLE III

Plume Traversal Parameter Values

Agent speed .325 m/s
Arena length 6.7 m
Plume length 8 m
Plume speed ∼1 m/s

Source find radius .88 m
Plume:Arena area 1:2.3

Goal:Search perimeter 1:18.0
TMIN 19.0 s
DMIN 6.2 m

α
β

.326 [m/s]

SS1: SpiralGap2 1785 km
SS1: StepSize 9.1 m

SS2: SpiralGap2 .357 m
SS2: StepSize .91 m
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Fig. 13. Normalized time across group size for real robot trials.
Lower values are better.

Figures 13 and 14 show that for all conditions studied,
traversal time decreases with group size while group dis-
tance traveled increases. This indicates, as expected for
a search task, that as time becomes more important to
performance than energy usage, larger group sizes will be
preferred.
Figure 15 shows that while single robots are gener-

ally most efficient in this arena (given this particular
choice of α and β), SS1 generates the best results for
each group size (significant via K-S test to p < .01 for
group size ∈ {1, 2, 3}), demonstrating successful real robot
plume traversal. Random Odor performs worse than SS2

for all group sizes (significant as above for group size
∈ {1, 2, 4, 6}), indicating that location of odor information
is an important aspect of the search algorithm. This means
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Fig. 14. Normalized distance across group size for real robot trials.
Lower values are better.
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Fig. 15. Performance across group size for real robot trials. Higher
values indicate better performance.

that SS is actually plume tracing rather than simply local-
izing the source of the wind, because if it were only wind
localizing, one would expect Random Odor to perform ex-
actly the same as SS2. Also, SS2 performs worse than SS1

(significant as above for all group sizes), suggesting that lo-
cal search is not a good strategy in this small arena where
the goal-to-search perimeter ratio is high (i.e., it is likely
to find the goal by chance). The Random Walk behavior re-
tains relatively constant performance across group size, and
at the larger group sizes its performance tends to approach
the optimal observed performance. This suggests that as
a search arena becomes overcrowded, random movement
becomes the best strategy.

B. Embodied Simulations

We successfully reproduced the real robot performance
data in Webots, as shown in Figure 16. Data represents
1000 trials per group size. All parameters in Table III ap-
ply to the Webots data as well. Only SS1 for group size
of one robot produces significantly different results (as de-
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termined by a 2-tailed K-S test with p < .01) between
Webots and the real robots, and even in this case the er-
ror bars overlap. Because our Webots data closely matches
our available real robot data, it is reasonable that further
simulated experiments will accurately reflect real world be-
havior.
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Fig. 16. Performance of real robot and Webots trials across group
size. Higher values indicate better performance.

C. The Full Odor Localization Task

The principal limitation of the experiments described
thus far is the relatively small arena available for the real
robots. In simulation we can expand the arena size and
move the start area outside the plume extent. This enables
the study of all phases of the odor localization task and calls
for a change to the task stopping condition. Source decla-
ration defines the end of a trial, and the time and distance
data below contains only trials that result in a successful
source declaration, i.e., a declaration of the source within
the source found radius.
Techniques are under development to optimize system

performance across the entire array of SS parameters, but
for the purposes of this work, to illustrate that a distributed
group of sensors can confront the odor localization prob-
lem and show that simple communication can affect per-
formance, a functional set will suffice. The SS parameters
are based on SS2, because in comparison to SS1 its tight
casting spirals are more likely to result in small inter-hit
distances. We assign SpiralGap1 to a large value to gen-
erate straight line search paths, set CastTime to a behav-
iorally reasonable value, and fix the source declare param-
eters in a functional regime. For the sake of simplicity, all
communication signals are assumed to extend throughout
the testing arena. Environmental and algorithmic param-
eter values that differ from the real robots experiments are
shown in Table IV.
We examine the performance impact of the three types

of communication described earlier: None, Attract, and
Kill, which correspond to parameter sets None, Attract,
and Kill. 1500 trials were performed for each parameter

TABLE IV

Full Task Parameter Values (Simulation)

Arena Length 33.6 m
Plume:Arena Area 1:58

Goal:Search Perimeter 1:55
Wind Noise ±10%
SpiralGap1 3570 m
SpiralGap2 .357 m
StepSize .91 m
CastTime 96 s

SrcDecThresh .27 m
SrcDecCount 3

set and group size.
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Fig. 17. Normalized time and distance to find source across group
size and communication type.

Figure 17 shows the time and distance necessary for each
group of robots to find the source of the plume. Note that
qualitatively the curves resemble those of Figures 13 and
14, as one would expect, except here the reduction in time
with group size is more pronounced. This is a result of
the increased significance of the search phase of the task,
which benefits more directly from the parallel nature of dis-
tributed random search than the other phases. In fact, the
traverse and declare phases are possibly done best serially,
as Kill, which uses only one agent for these tasks, requires
shorter group distances than the other sets. However, note
that Kill needs more time than None to complete the task
as group size grows, which is a reflection on the high tempo-
ral cost of plume loss when the parallel plume-reacquisition
search capability is lost. Attract does not seem to offer
any benefits at all, as it uses the same amount of time as
Kill but much more energy. This is due to a high inter-
ference rate as the agents collect in the plume, impeding
in particular the proper spiral search paths necessary for
source declaration.
Figure 18 indicates that Kill is the most efficient form

of communication for this environment, with its substan-



IEEE SENSORS - JUNE 2002 10

1 2 3 4 5 6 7 8 9 10
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Group Size

   
   

   
   

   
P

er
fo

rm
an

ce
 w

/ s
td

er
r 

   
   

 

Attract
None   
Kill   

Fig. 18. Performance across group size and communication type.
Higher values are better.

tial energy savings outweighing its slightly longer running
times. Also, again for this environment, the efficiency
peaks at a group size of 5 agents. In fact, all of the com-
munication types peak at group sizes larger than 1, which
suggests that distributing and coordinating sensors in this
manner is an effective way to increase system efficiency.
It is important to note that these results, particularly the
relative efficiencies of the different communication types,
are likely to be heavily dependent on the task description.
More complex plume stimuli (containing a sparser signal
or more large scale meander) that are more difficult for in-
dividual robots to track should favor systems that achieve
higher agent densities in the plume. This is difficult to test
currently because real plume data with large scale mean-
der are not available, although this is an avenue of ongoing
research.
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Fig. 19. Median distance from source upon declaration across group
size and communication type.

Figure 19 shows the effect of group size on declaration
accuracy across plume type. All communication types are
able to yield high success rates (>95%) for low group sizes,

with only None’s performance dropping off to below 70%
at the large group sizes. Kill maintains a constant per-
formance across group size, as should be expected because
only one robot is performing the operation. More interest-
ingly, None degrades at larger group sizes, while Attract
does not. This can be explained if the agents in Attract,
even though their physical interactions are repulsive, are
able to maintain a tightly clustered group at the head
of the plume through their communication signals. Thus
even though physical interactions slow down the declara-
tion process, when source declaration does occur the declar-
ing agent is likely to be near the plume source. However,
because None also has repulsive physical interactions but
no attractive force other than the plume itself, the cloud
of agents formed around the head of the plume will be less
dense, and when there are many agents the probability of
the declaring agent being far from the source increases. It
is important to note that these results depend heavily on
the details of the physical interactions between the agents,
which are accurately modeled by the embodied simulator,
although interactions between the plume and the agents
(which are not modeled) may also play a role.
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Fig. 20. Normalized time and distance across group size for different
subtasks for Kill.

Figure 20 offers a detailed look at Kill performance dur-
ing each task phase. Time to find the plume is defined as
the length of time from the start of the trial to the first odor
plume encounter. Time to traverse the plume is defined as
the amount of time between the first odor encounter and a
robot entering within the source find radius of the source.
Time to declare the plume is the time between entering the
source find region and declaring that the plume has been
found. Note that for any particular trial it need not be the
same robot completing each phase. The time to find the
plume decreases with group size, yet the group distance re-
mains nearly constant, indicating that the random search
is effectively parallel. Also note that at high numbers of
agents, because they all start in the same location, a perfor-
mance penalty appears due to unnecessary search overlap
near the start area. Since only a single robot is performing
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the traversal and declaration tasks for all group sizes, it is
not surprising that the time required does not change, and
the linear increase in group distance can be attributed to
the non-zero energy consumption of the inactive robots.

V. Conclusion

This paper presented an investigation of odor localiza-
tion by groups of autonomous mobile robots. First, we de-
scribed a distributed algorithm by which groups of agents
can solve the odor localization task. Because this algo-
rithm is based upon both odor and flow information, it is
not designed to function in environments in which flow is
too weak to detect reliably (typically < .05m/s [19]). Still,
there are a broad range of military and industrial situa-
tions that involve stronger flows (in particular any outdoor
environment) for which it does apply.
Next, because we were able to show that our robots

could detect plume information as far as 8 m away from
the source, we established that conducting polymer-based
odor sensors possess the combination of speed and sensitiv-
ity necessary to enable real world odor plume tracing. This
is important because previous efforts at mobile robotic odor
localization [17] relied on slower sensor technologies which
in turn restricted the classes of algorithms that could be
applied. Yet through an appropriate combination of cal-
ibration and filtering techniques we showed it is possible
to overcome the lack of stability inherent in polymer odor
sensors and investigate new algorithm domains permitted
by fast response times and low-power, lightweight (i.e. po-
tentially mobile) odor sensors. Note we are not proposing
that polymer sensors are the only suitable sensor type for
all environments and robotic applications. Rather, these
findings suggest that response times should be factored in
along with steady-state sensitivity when selecting a sensor
for a particular task, and sensor precision may have dimin-
ished importance because even binary odor concentration
information can be useful for an odor localization system.
We also demonstrated that simple sensory information

tightly coupled with robot behavior is sufficient to allow a
robot to find the source of an odor plume. This shows the
power of integrating actuation into sensory systems, and
suggests that complicated sensory transduction may not
be necessary when a behaving sensory mechanism is well
tuned to its designated task [36]. In addition, we showed
that integrating the information collected by a group of
agents in an elementary manner can increase the efficiency
of the odor localization system performance, an avenue
that has not been previously explored using real robots.
If we view the entire system as an odor localization sensor,
the distributed approach opens up a new axis of optimiza-
tion (inter-agent communication) not available when only
a single unit is considered, and the organizational princi-
ples of SI allow such distributed systems to remain scalable
and require minimal additional complexity. The particular
communication types explored in this paper represent the
most basic interactions available, and as the complexity
of the task description increases (more complicated plume
types, higher frequencies of false-positive odor hits), corre-

spondingly more complicated interaction schemes (greater
number of signals, variable signaling range) will likely be
necessary to yield a performance benefit. More work needs
to be done to determine how this complex parameter space
can be explored in a systematic way.

Fig. 21. An Alice robot with 400 element olfaction chip.

Finally, it may seem contradictory that while the SI ap-
proach stressed in this paper emphasizes minimalism, the
actual robots used in this study feature general purpose mi-
croprocessors and high bandwidth communication. How-
ever, because care was taken to keep system requirements
low, the algorithms used in this study can be ported di-
rectly to much less expensive or smaller platforms, such as
the Alice robot [37] shown in Figure 21. Only when robot
swarms can be implemented on a large scale will the ro-
bust nature of these systems be fully exploited. As more
advanced sensors become available which can combine sen-
sitivity, discrimination, and mobility, such as the polymer
odor sensing matrix consisting of 400 elements integrated
on a chip [38] shown next to the Alice, truly useful real-
world odor localization systems will become feasible.
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