
End-to-end Congestion Control for
TCP-Friendly Flows with Variable Packet Size

Jörg Widmer, Catherine Boutremans, and Jean-Yves Le Boudec
Laboratory for Computer Communications and Applications

EPFL (Swiss Federal Institute of Technology), Lausanne, Switzerland

ABSTRACT
Current TCP-friendly congestion control mechanisms adjust
the packet rate in order to adapt to network conditions and
obtain a throughput not exceeding that of a TCP connection
operating under the same conditions. In an environment
where the bottleneck resource is packet processing, this is
the correct behavior. However, if the bottleneck resource
is bandwidth, and flows may use packets of different size,
resource sharing depends on packet size and is no longer
fair. For some applications, such as Internet telephony, it
is more natural to adjust the packet size, while keeping
the packet rate as constant as possible. In this paper we
study the impact of variations in packet size on equation-
based congestion control and propose methods to remove the
resulting throughput bias. We investigate the design space in
detail and propose a number of possible designs. We evaluate
these designs through simulation and conclude with some
concrete proposals. Our findings can be used to design a
TCP-friendly congestion control mechanism for applications
that adjust packet size rather than packet rate, or applications
that are forced to use a small packet size.

1. INTRODUCTION
Current congestion control as used by TCP or equation-based
congestion control [1] aims to adjust the number of packets
sent per time interval to the current level of congestion in the
network. Reducing the packet rate in times of congestion is
the correct behavior in a packet rate limited environment. In
an environment where the bottleneck is bandwidth limited
and flows may use packets of different sizes, however,
resources are not shared fairly among flows but governed
instead by the packet size. A “TCP-friendly” congestion
control mechanism using a smaller packet size than TCP
would only achieve a fraction of the throughput justifiable
according to its resource usage, if no corrective measure were
taken.

We expect the core network of the Internet to be mostly
packet rate limited, as the packet processing rate of the
routers is a greater bottleneck than the link capacity [2, 3].
However, there is little queuing in backbone networks, let
alone congestion-related packet drops [4]. In contrast, access
networks are often bandwidth limited, and this is exacerbated
by wireless access. It is thus likely that many network paths
are bandwidth limited.

Applications such as “Voice over IP” (VoIP) naturally prefer

to trade off packet size for packet rate. Despite the low
payload efficiency, many VoIP systems use small packets
corresponding to 20 or 30 ms of audio, in order to keep
the end-to-end delay below 150 ms. Thus, audio sources
typically generate packets at a constant rate and perform
congestion control by switching codecs, which has the effect
of varying their packet size [5, 6]. Other applications may be
driven to adjust the packet size independently of congestion
control (for example: a high bit error rate on a wireless link
induces a small packet size). While it can be argued that the
throughput of such flows is low, not using any congestion
control at all in a potentially congested environment is not
acceptable [7].

Equation-based congestion control explicitly sets the sending
rate using an equation that gives a TCP-friendly rate based
on the current round-trip time (RTT), the loss event rate,
and the packet size [1]. Therefore, using the packet size
of a “reference” TCP flow (e.g., the MTU) in the equation
rather than the flow’s actual packet size seems to be a very
simple way to achieve the same throughput as the reference
TCP flow and therefore the same utilization of resources
in a bandwidth-limited environment. This would allow a
flow using equation-based congestion control to send smaller
packets at a rate higher than TCP’s. Unfortunately, such a
simple approach does not work for the reasons we discuss
now.

Similar to TCP, where usually only one window reduction
per congestion window is possible, a loss event is defined as
one or more packets lost during one RTT (i.e., packet loss
during an RTT is aggregated to a single loss event). Using
the reference packet size in the equation when the actual
packet size is smaller results in a higher packet rate. The
higher the number of packets per RTT, the more likely it is
that multiple lost packets will be aggregated to a single loss
event and the average number of loss events per packet will
decrease, resulting in a strong bias in favor of sending small
packets at a high rate.

To remove the bias, it is either possible to postprocess the
measured loss event rate or to modify the loss measurement
process itself. We present different algorithms for these
purposes and discuss their characteristics. The mechanisms
are further evaluated through mathematical analysis and
network simulation. As we will see later in the paper, a
modified loss measurement is more robust under various
network conditions and better able to produce a TCP-friendly

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004137

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147889114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rate. Only under very stable network conditions does post-
processing produce similar results.

Depending on the queuing scheme used in the routers,
the packet drop probability may either be stochastically
independent of the packet size (e.g., with drop-tail queues
measured in packets) or not (e.g., with RED in byte mode
[8]). Consequently, since the response from the network may
differ significantly it is necessary to design both a byte mode
and a packet mode version of the algorithms.

The results obtained above can also be applied when es-
timating a TCP-friendly rate without a rate control loop,
as in equation-based congestion control. The TCP model
used for equation-based congestion control relies on the
packet rate being close to that of TCP so that the flow
experiences congestion events similar to those a TCP flow
would see. For example, when using a constant bitrate
flow to measure the network conditions, the modified loss
measurement mechanisms can be used to calculate a valid
TCP-friendly bitrate by removing the bias introduced by
sampling the bottleneck at a different packet rate.

When the bottleneck is bandwidth limited, the presented
mechanisms aim to achieve a sending rate comparable to that
of a TCP flow with path-MTU discovery [9] under similar
network conditions.1 Hence, for a fair sharing of resources,
it is no longer necessary that competing flows have the same
packet size. The modifications proposed in this paper are
intended for applications that are forced to use a small packet
size and would otherwise be tempted to use no congestion
control at all. Their purpose is not to remove all incentives to
use large packets instead of small ones. In addition to the less
favorable ratio of the payload to the packet header for smaller
packets (which is an incentive to send packets considerably
larger than the header), it is possible to limit flows sending
small packets to a throughput below the TCP-friendly rate
(e.g., by mandating that the packet rate of equation-based
congestion control must not exceed twice that of TCP).
However, in this paper we will focus on how to determine
this TCP-friendly rate. To the best of our knowledge, no prior
work on the behavior of equation-based congestion control
with variable packet sizes has been published.

The remainder of the paper is organized as follows. In Sec-
tion 2 we show that the problem of fairly sharing resources
with variable packet size cannot be solved using existing,
or simple modifications to existing, end-to-end and queuing
mechanisms. We further give a quantitative analysis of the
bias introduced into the loss measurement process when
sampling the bottleneck at different rates. In Section 3, we
propose modifications to end-to-end congestion control. We
present several alternative solutions and tune their parameters
by modeling their behavior over an erasure channel. In
Section 4, we evaluate the different designs through extensive
simulations under various network conditions. We find that
only the solutions “virtual packets” and “random sampling”

�The aim of the proposed mechanisms is to improve
protocol performance in the face of different packet sizes
and therefore, an obvious first step is to avoid the negative
impact of fragmentation [10] by bounding the packet size to
the MTU.

are robust enough if the network drops packets independent
of packet size, while if the network implements the existing
proposal for RED in byte mode, only “virtual packets” works
well. In Section 5, we summarize the findings and list some
open issues.

2. PROBLEM DEFINITION
Before discussing in detail why simply using a “reference”
packet size in the TCP model for equation-based congestion
control as well as RED in byte mode are both insufficient for
a fair sharing of resources, we briefly recall some fundamen-
tals of equation-based congestion control.

Our analysis is based on the unicast TCP-friendly equation-
based congestion control protocol (TFRC) [1, 11] and also
applies to its multicast counterpart TFMCC [12] since each
calculates a fair sending rate in a similar manner.

2.1 Foundations of Equation-Based Conges-
tion Control

For equation-based congestion control, the sending rate is
commonly determined using a model for long-term TCP
throughput such as the one described in [13].

���� �
�

�

��
��
� �

�
��
�

��
�

�
� �� � �����

� (1)

The expected throughput ���� is calculated as a function of
the the round-trip time �, loss event rate �, and the packet size
�. A receiver measures � and �, uses the above equation to
calculate ���� and feeds this rate back to the sender, which
adjusts its sending rate accordingly.

The loss event rate measures the frequency of loss events.
A loss event consists of one or more packets lost within
the same RTT. Since TCP commonly halves the congestion
window only once in response to several losses per RTT, the
loss measurement process aggregates losses within the same
RTT to a single loss event. Hence, a loss event represents the
point in time where the TCP congestion window would be
reduced in response to congestion. The initial packet loss that
results in a loss event is followed by a period of time where
all packet losses will be ignored, called the Loss Insensitive
Period (LIP). On average, if a rate-controlled flow sends �
packets per RTT, the LIP period consists of � � � packets;
since the initial packet loss is taken into account, it is not part
of the LIP. A loss interval is defined as the number of packets
between loss events. We denote the �th loss interval by ��.
The loss event rate is then computed as � � ���

�
� 	������.

Generally, older loss intervals are assigned a smaller weight
than new loss intervals [1].

2.2 Proportional Scaling of Throughput
Let � be the packet size for bulk data transfer (i.e., the
MTU if the source uses path MTU discovery or �	
 bytes,
the minimum MTU that has to be supported by an Internet
router). Because of the linear dependency of throughput and
packet size in Equation 1, a flow sending packets of smaller
size
 will only achieve a fraction of the throughput of a flow
with packet size �.

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004138

 1

 10

 100

 0.001 0.01 0.1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Drop Probability

TCP (s=1000)
avg. TFRC (s=1000)

TFRC (s=1000)
avg. TFRC (s=100)

TFRC (s=100)

 0.001

 0.01

 0.1

 0.001 0.01 0.1

Lo
ss

 E
ve

nt
 R

at
e

Packet Drop Probability

avg. TFRC (s=1000)
TFRC (s=1000)

avg. TFRC (s=100)
TFRC (s=100)

Figure 1: Normalized throughput and loss event rate for proportional scaling of throughput (per-packet drops)

 0.1

 1

 10

 0.001 0.01 0.1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Drop Probability

TCP (s=1000)
avg. TFRC (s=1000)

TFRC (s=1000)
avg. TFRC (s=100)

TFRC (s=100)

 0.001

 0.01

 0.1

 0.001 0.01 0.1

Lo
ss

 E
ve

nt
 R

at
e

Packet Drop Probability

avg. TFRC (s=1000)
TFRC (s=1000)

avg. TFRC (s=100)
TFRC (s=100)

Figure 2: Normalized throughput and loss event rate for with small packets and per-byte drops

Given a bandwidth-limited bottleneck, a first step towards
fairness is to use � instead of the actual packet size

of the flow in the loss-throughput formula. If all other
parameters remained the same, flows should achieve the
same throughput independently of the packet size.

Unfortunately, this is not the case. Sending packets at a
higher rate introduces a bias in favor of flows with small
packets in the loss measurement process. The smaller the
packet size (i.e., the higher the packet rate) and the higher
the packet drop probability, the higher the probability to
aggregate several packet drops within the same RTT to a
single loss event. In this operating regime, the increase in
the number of loss events is no longer proportional to the
increase in the number of packets the loss events are sampled
over and the measured loss event rate will decrease, as shown
in Figure 3(a). This effect was also reported in [14].

Consider a rate-controlled flow sending � packets of size
� per RTT. Assume that packets are dropped according to
a Bernoulli packet loss process and let � be the packet drop
probability. The �th loss interval �� is composed of the ���
packets within the LIP and the number of packets between
the end of the LIP and the next packet loss (including the
lost packet), which we denote as � . The random variable �
has a geometric distribution with parameter �; thus ���� �
� � � � �

� and � ������ � ���
�� . We see that the higher

the number of packets per RTT, the larger the expected loss
interval and hence the smaller the loss event rate.

Consider now a flow sending �� (� � �) smaller packets

of size
 � ��� per RTT. If the loss measurement process
remains unchanged, this flow sees ���� � �� � � � �

�

and thus overestimates the average loss interval compared to
a flow sending large packets, leading to an unfair distribution
of bandwidth.

Figure 1 shows how the throughput for these types of flows
varies for different packet drop rates.2 Here, we use a packet
size of 1000 bytes for the large TFRC and the TCP flow,
and a packet size of 100 bytes for the small TFRC flow.
The TCP flow is not depicted in the graph but achieves
exactly the same throughput as the TFRC flow with large
packets. As can bee seen from the graph, the TFRC flow with
small packets is much more aggressive even in the regime
of moderate packet drop rates between 1% and 10%, and for
extremely high drop rates above 50% achieves more than 100
times the TCP throughput. The reason for this aggressiveness
can easily be seen from the loss event rates. In contrast to the
flows with large packets, the loss event rate of the flow with
small packets levels off and stays below 1% even for packet
drop rates close to 100%.

If these flows were to compete against each other at the same
bottleneck, the TFRC flow sending small packets would lock
out the other flows. The higher the packet drop rate, the more
pronounced is the bias in favor of small packet sizes.

�The simulation results were obtained using ns-2 with a
random dropper with drop probabilities independent of the
packet size and otherwise the same simulation parameters as
in Section 4.1.1.

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004139

2.3 Network-Based Approach
Another way to reduce the discrimination against flows
sending small packets is to use RED gateways in byte mode
[8] instead of modifying the packet size in the throughput
formula. With these gateways the packet drop probability is
proportional to the packet size, so that the average number of
bytes between packet drops remains the same, independently
of the packet size. Figure 2 shows the normalized throughput
achieved by TCP and TFRC flows with large packets of 1000
bytes against the throughput of a TFRC flow sending packets
of 100 bytes. As expected, the loss event rates for the flows
with the two packet sizes differ by a factor of 10. Due to
the square-root dependency on the loss event rate, the TFRC
flow with small packets achieves a throughput only a factor
of
�
�� worse than the throughput of the large flows (whereas

using RED in packet mode or drop-tail queues would result
in a factor of 10). For high packet drop rates above 10%,
the throughput of the flow with small packets even exceeds
the throughput of “normal” TFRC and TCP because of the
overproportional reduction of throughput of the TCP model
given by Equation (1) in the high loss rate regime.

Neither a simple scaling of the sending rate nor RED in byte
mode suffice to ensure fairness between flows using different
packet sizes.

3. MODIFICATIONS TO EQUATION-BASED
CONGESTION CONTROL

In this section we propose methods of removing the bias
introduced in the loss measurement process when using
equation-based congestion control at a packet rate different
from that of a TCP connection. For all of the methods, it is
necessary to use the reference packet size � instead of the
real packet size of the flow in the equation that determines
throughput (Equation (1)). The real packet size
 need not be
fixed but can vary from one packet to the next.

The solutions depend on whether the network drops packets
irrespective of their size (“Packet Mode”), or whether a
scheme such as RED in byte mode is already deployed (“Byte
Mode”). They are designed such that the bias due to variable
packet size is removed exactly when packet drops on the
end-to-end path are independent (“Bernoulli” loss model).
In Section 4, we evaluate the robustness to other channel
conditions by means of simulation.

3.1 Loss Measurement Postprocessing
A first naive method to improve fairness is to measure the
loss interval as before, compute the bias, and then remove
this bias from the measured loss interval.

3.1.1 Unbiasing (Packet Mode)
A connection sending �� packets of size
 � ��� per RTT
measures an average loss interval (in packets) ���� �
�� � � � �

� which differs from a correct measure of the
loss interval by �� � ��� . The simplest correction is to
subtract this from the measured interval. Since both sender
and receiver know � and � , the correction can be carried out
by either of them.

3.1.2 Unbiasing (Byte Mode)
If the packet drop probability is proportional to the packet
size, the previous section is modified as follows. Assume
that the drop probability for a packet of size
 � ��� is
�� � �	��, where �	 is the probability for a large packet
to be dropped. A flow sending �� packets of size
 per RTT
measures an average loss interval ���� � ����� �

��
, thus

the correction is now ������ �
��
��

. The main difficulty at
this point is that the end system does not know �	 and thus
has to estimate it from the measured loss interval. Since the
end system knows � and � , it can easily deduce the value of
�	 from the measured interval using the equation for ����

and compute the bias as �
���������

 . Note that here the bias

depends on �� instead of � .

3.1.3 Discussion
Modifying the measured loss event rate is very challenging
when network loss conditions are not perfectly stable. The
correction depends critically on the use of correct values
for � and � , which is very difficult since � and possibly
also � vary over time. Directly using the current values can
lead to very large variations in the corrected loss interval
size. However, it is equally difficult to properly smooth the
values of� and � used for the correction without introducing
additional artifacts. In order to more reliably remove the bias
introduced in the measure of the loss event rate over a certain
time span, it is necessary to exactly follow the dynamics of
the loss process during this time interval. Since the sender
does not have access to this information, it will not be able to
accurately estimate the bias under dynamic loss conditions.
It is therefore preferable to modify the loss measurement
process itself, instead of trying to modify its outcome.

3.2 Loss Measurement Modifications
(Packet Mode)

In the following, we present three alternative modifications
to TFRC’s loss measurement mechanism. Their aim is to
estimate the process �� that would be measured by a flow
sending packets of the reference size �. In contrast to
loss measurement postprocessing, these mechanisms do not
require to estimate an average ratio of actual packet size to
reference size but directly use the packet size of the current
packet. They are therefore independent of the pattern of
variation of the packet size.

For gateways in packet mode, the packet drop probability
� is the same for small and for large packets. Under the
assumption of Bernoulli loss, we show analytically that these
modified loss measurement algorithms are unbiased estima-
tors of ��. We also evaluate the variance of the different
estimators to better be able to compare the various solutions
and analyze their conservativeness. A more detailed analysis
as well as explicit computations of the expected loss event
intervals can be found in [15].

3.2.1 Virtual Packets
The main idea of a loss measurement mechanism based on
virtual packets is to combine small packets of size
 into
packets of size �. Whenever a receiver receives � or more

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004140

LIP

LIP

LIP

LIP LIP

Loss Interval �

Loss Interval �

Loss Interval �� �

Loss Interval �� �Lost Packet

(a) Unmodified Measurement Mechanism

Loss Interval n

LIPLIP

(b) Virtual Packets

LIP LIP

Loss Interval � Loss Interval �� �

Sampled Packets

(c) Random Sampling

LIP

LIP

LIP LIP

LIP LIP

LIP

Loss Interval �

Loss Interval �� �

Loss Interval �� �

Loss Interval �� �

Loss Interval �� �

Loss Interval �� �

Loss Interval ��

(d) LIP Scaling

Figure 3: Schematic illustration of the modified loss measurement mechanisms.

bytes (in packets of size
), it records the arrival of a virtual
packet. Similarly, a virtual packet is marked as lost when
the amount of bytes lost exceeds � (see Figure 3(b)). To
apply this method, it is necessary to modify the definition of
loss event and loss interval. The duration of the LIP remains
unchanged (i.e., on average it comprises �� � � packets of
size
).

DEFINITION 1. A packet loss constitutes a loss event if
(a) the LIP following the last loss event ended and (b) at least
� bytes were lost since the end of the LIP.

DEFINITION 2. A loss interval is measured as the number
of virtual packets between two successive loss events, includ-
ing the lost packet that ends the loss interval. The size of a
loss interval need not be an integer.

A flow sending packets of size
 experiences a loss event as
soon as � packets have been lost since the end of the last
LIP. Let �� �

� be the �th loss interval measured using the
virtual-packets method. �� �

� can be expressed as �� �
� �

� � �� �

�

�����, where the �� are iid geometric random

variables with parameter �. It follows that ��� �
� � � ����,

thus the bias is removed in average. However, the variance is
������ �

���
�� for the original mechanism and ����� �

� � �
�

���
�� for virtual packets. Thus the virtual-packet algorithm

smoothes out the measure of �� (since � � �). As shown in
[16], a high variability of the loss event estimator results in a
more conservative congestion control. The reduced variation
of the measured loss interval therefore causes the virtual-

packet method to achieve a slightly higher sending rate than
that of an unmodified TFRC.

3.2.2 Random Sampling
Instead of aggregating small packets into large ones, the loss
interval can also be normalized by excluding excess packets
(and excess packet losses) from the loss measurement pro-
cess. Consider a flow that sends packets of size
 at the
same bitrate and thus at a higher packet rate than a flow with
packets of size �. Upon packet arrival (or the detection of
a packet loss), the receiver performs a random experiment
that succeeds with the probability �

	 . Only when the random
experiment succeeds is the packet arrival or packet loss taken
into account (see Figure 3(c)). The same notion of LIP,
loss event and loss interval as the one for the original loss
measurement process is used.

Let �	� be the �th loss interval measured using the random
sampling method. Each packet has a probability �
 � ���
to be sampled by the loss measurement process. Thus,
the loss interval �	� is the sum of the number of packets
sampled during the LIP (�) and the number of sampled
packets between the end of the LIP and the next sampled
packet that is lost (�). It follows from our assumptions that
� is geometric with parameter � and � is binomial with
parameters ��� � ���� �
�. We derive that ��	� � � ����
and the bias is removed in average. Further, � and � are
independent and thus ����	� � � �� � ����� �

 � �
���
�� .

The first term of the variance can be removed by taking

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004141

� � � � �. In this case, we would measure � � �
(by aggregating small packets during the LIP) instead of
estimating it by random sampling packets during the LIP.
This amounts to mixing the virtual-packet and the random-
sampling methods and would result in the same variance for
�	� as the one of ��. This way, random sampling can be
used to achieve the same responsiveness to congestion as the
unmodified TFRC, whereas the virtual-packet method results
in a smoother response.

3.2.3 LIP Scaling
A third method to reduce the number of packets contained
in a loss interval is to reduce the duration of the LIP. When
the loss insensitive period is scaled in proportion to the
factor �

	 , a flow sending � packets of size � per RTT and
a flow sending �� packets of size
 per RTT both send
� � � packets per LIP. Both flows will calculate roughly
the same loss event rate, given that they experience the same
packet drop rate. The LIP scaling mechanism is illustrated in
Figure 3(d).

Reducing the LIP increases the responsiveness of the flow,
which can give rise to undesirable oscillations in the measure
of the loss interval. To reduce this effect and make sure that
the network conditions are measured over the same timescale
as a flow sending large packets, we need to increase the size
of the loss history (i.e., the number of loss intervals used for
the calculation of the loss event rate) proportionally to the
factor 	

� . This way, the loss history should comprise roughly
the same time interval as that of flows with large packets,
while the loss event rate would be calculated over many more
samples. The impact of these changes of timescale on the
dynamics of the algorithm will be analyzed in more detail in
the simulation section.

3.3 Loss Measurement Modifications
(Byte Mode)

With RED in byte mode, the probability of dropping a packet
of size � is � times greater than ��, the probability of
dropping a packet of size
. Therefore, the average number
of packets between two packet losses is � times smaller for
the flow sending large packets while the number of bytes
between two packet losses is roughly the same for all the
flows. Again, we present three different methods. However,
in contrast to packet-mode methods, they are not equally well
suited to remove of the bias in the loss measurement process.

3.3.1 Virtual Packets
While for the virtual-packet algorithm operating in byte
mode the packets arriving in between loss events are still
aggregated to virtual packets of size �, a loss event is
declared as soon as a packet of
 bytes is lost after the LIP.
Thus, we have to relax Definition 1 and introduce a new
definition of a loss event:

DEFINITION 3. A packet loss constitutes a loss event if
the LIP following the last loss event ended.

The definition of a loss interval remains the same as the one
given in Definition 2. Let �� ��

� be the �th loss interval
measured by a flow using the virtual-packet method in byte

mode. In Definitions 2 and 3, �� ��
� is defined as the sum

of the number of virtual packets within the LIP, � � �, and
the number of virtual packets between the end of the LIP and
the next packet loss (including the lost packet), � , which is
geometric with parameter ��. The random variable �� ��

� is
now �� ��

� � � � � � �

� , the expected loss interval size is

��� ��
� � � � � � � �

��
, and is thus also free of bias.

3.3.2 Random Sampling
Remember that in byte mode, the number of bytes between
loss events is roughly the same for a flow sending small
packets and a flow sending large packets. The flow with
small packets will therefore see loss intervals that are too
large by a factor of �. Correcting the loss interval size
amounts to a random sampling of arrived data packets. Upon
packet arrival, a random experiment is performed and with
probability ��� the packet is included in the loss history.
In contrast, lost data packet always have to be taken into
account.

While the virtual-packets and the random-sampling mecha-
nisms for packet mode are each valid mechanisms of their
own with slightly different properties, random sampling in
byte mode merely ignores information that is available to
the receiver. The number of packets between packet drops is
estimated instead of being measured directly as in the virtual-
packet approach. Generally, we expect random sampling in
byte mode to be inferior to virtual packets in byte mode.

3.3.3 LIP Scaling
Adjusting LIP scaling to byte mode results is an even less
favorable mechanism. In packet mode, the expected number
of lost packets within the LIP increases with a reduction in
packet size. Consequently, reducing the LIP causes some
lost packets that would have otherwise been ignored to be
counted as loss events.

In contrast, in byte mode the expected number of lost packets
within the LIP does not increase with a decrease in packet
size. Reducing the LIP is therefore not sufficient to com-
pensate for the larger loss intervals seen by a flow sending
small packets. In theory, it is possible to introduce artificial
loss events to split the large intervals into � segments. While
the expected loss event rate would be the same as for a flow
with large packets, introducing artificial packet loss does not
capture the dynamics of the underlying loss process. We do
not recommend the use of LIP scaling in combination with a
bottleneck in byte mode.

4. EVALUATION BY SIMULATION
In order to evaluate our solutions, we implemented them in
the ns-2 network simulator [17] and measured their perfor-
mance under various conditions. This allows us to check the
feasibility and investigate the behavior under more realistic
settings than the ones used in the design phase in Section 3.
In a first set of simulations, the channel is artificial; this
allows us to isolate the effect of the channel properties. In
a second set of simulations, we use realistic network settings
with RED and drop-tail queues.

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004142

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.001 0.01 0.1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Drop Probability

TFRC
Virtual Packets

Random Sampling
LIP Scaling

Unbiasing

Figure 4: Bernoulli loss (VP-TFRC packet size 100
bytes)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.001 0.01 0.1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Drop Probability

TFRC
Virtual Packets

Random Sampling
LIP Scaling

Unbiasing

Figure 5: Dynamic Bernoulli loss (VP-TFRC packet
size 100 bytes)

For the simulation topology, we use the well-known dumb-
bell topology, with senders and receivers on either side of
a single bottleneck link. The access links to the routers
are provisioned with 100 MBit/s, while the bottleneck link
between the routers either has a lower capacity, or a loss
module is inserted at the bottleneck router so that the total
bandwidth consumed by all flows is well below 100 MBit/s.

When discussing the scenarios, we will denote TFRC flows
which use the same packet size as TCP as “TFRC” and TFRC
flows with a different packet size or with a fixed packet rate
as “VP-TFRC”. The standard ns-2 implementation of TCP
Sack is used. For all simulations, the reference TCP packet
size is 1000 bytes.

4.1 Artificial Channel
Before investigating more complex scenarios where flows
compete for resources at a common bottleneck, we will
analyze whether VP-TFRC, TFRC, and TCP flows achieve a
similar sending rate when the packet drop rate is independent
of the sending rate of the flows. Since the model for TCP
(Equation (1)) is based on this assumption, equation-based
congestion control should work best in such an environment.

We use two different parameter settings for the VP-TFRC
flows: one where the VP-TFRC packet size is fixed and the
sending rate is modified by changing the packet rate, and
another where the packet rate is a fixed number of packets
per second while the packet size varies so as to achieve the
desired sending rate. For reasons of brevity, we only show
graphs for the first setting and discuss whenever results for
the second setting differ.

We use three different loss models for our analysis: Bernoulli
loss, Bernoulli loss with a drop rate varying over time, and
a Gilbert loss model. The Bernoulli dropper discards each
incoming packet with the same probability. The second
loss model provides more variable network conditions where
the packet drop probability alternates between high and low
while the same average drop probability is maintained. The
congestion control protocols frequently have to adjust their
sending rate, putting more emphasis on the transient behavior
of the protocols. Lastly, a time-based variant of the two
state Gilbert loss model is used, where packet losses are no

longer independent but highly correlated. It is not intended
to closely model realistic network conditions but is merely
used to analyze how the mechanisms perform when the
assumption of packet loss independence is not met.

In these simulations, a loss module is inserted at the bottle-
neck router so that the total bandwidth consumed by all flows
is well below the link capacity. All packet drops are caused
by the loss module. With a delay for the bottleneck link of
30 ms and 10 ms for the access links, the RTT for all flows is
almost constant at 100 ms.

4.1.1 Bernoulli Loss Model
We insert a loss module at the bottleneck router which drops
packets with a fixed probability. Since the achieved sending
rates are below the bottleneck bandwidth, no queuing occurs
and the queuing strategy has no impact on the simulation.
Furthermore, flows running concurrently do not influence
each other.

The throughput of the mechanisms shown in Figure 4 is nor-
malized to TCP throughput. Their performance is extremely
good with deviations from TCP throughput of less than
10%. Direct unbiasing is slightly more conservative than
TFRC and the other methods are slightly more aggressive,
with virtual packets resulting in the throughput most closely
resembling that of TFRC. We obtain almost the same results
when the packet rate is fixed at 160 packets/second and the
packet size varies, although here the virtual-packets method
has the highest deviation from TFRC throughput.

4.1.2 Dynamic Bernoulli Loss Model
The dynamic Bernoulli packet dropper alternates the drop
rate between 0.5 times and 1.5 times the average. The drop
rate changes every 10 seconds (i.e, 24 times over the entire
simulation of 250 seconds).

As soon as network conditions become more dynamic, the
shortcomings of the simplest of the mechanisms, the unbi-
asing of the loss interval, become obvious. Unbiasing is
much more aggressive than TCP for both a fixed packet
size and a fixed packet rate, but this effect is much more
pronounced for a fixed packet size. For packet drop rates of
more than a few percent, the throughput is a multiple of the

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004143

rate achieved by either TCP or TFRC. The methods of virtual
packets and random sampling behave quite well, while LIP
scaling is somewhat too aggressive as shown in Figure 5. All
mechanisms tend to become more aggressive than TCP when
the packet rate is fixed and the drop probability is high.

4.1.3 Gilbert Loss Model
We use a single time-based Gilbert loss model at the bot-
tleneck with a time constant of 10 ms. The drop pattern
differs from that of a setup with a Gilbert loss model
per flow and depends on the number of flows sharing the
bottleneck and the packet rate of the flows. Nevertheless
it introduces significant correlation in the loss process. As
far as throughput is concerned, all of the methods are far
from fair, as can be seen from the normalized throughput
graph, Figure 6. Again, unbiasing is by far the most
aggressive scheme, making it unsuitable for all but very
simple static network conditions. LIP scaling achieves a
somewhat lower sending rate than TCP for loss rates but
becomes as aggressive as plain TFRC for high loss rates.
Virtual packets and random sampling perform alike, with a
throughput of less than 50% of that of TFRC. With TFRC
itself being too aggressive, they achieve a throughput much
closer to TCP throughput than plain TFRC.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.001 0.01 0.1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Drop Probability

TFRC
Virtual Packets

Random Sampling
LIP Scaling

Unbiasing

Figure 6: Gilbert loss model (VP-TFRC packet size 100
bytes)

We note that this improvement in fairness is caused by two
effects that counterbalance each other, not because the mech-
anisms themselves better model TCP performance (equation-
based congestion control in general being too aggressive
because model assumptions are violated and the modified
loss measurement mechanisms resulting in an overestimation
of the loss event rate). Nevertheless, with these mechanisms
we achieve roughly the same performance under normal
circumstances and they are more conservative than TFRC
under unfavorable network conditions where TFRC is too
aggressive. This is the behavior we would like to see in a
modified TFRC protocol and thus at this point we eliminate
unbiasing and LIP scaling and keep Virtual Packets and
Random Sampling.

Performance is slightly better when a fixed packet rate is used
instead of a fixed packet size. All of the mechanisms achieve
a throughput very close to TCP’s for low packet loss rates, but
results more and more resemble the unfair behavior shown in
Figure 6 for higher loss rates.

4.1.4 Throughput Stability
From the analysis in Section 3.2 we know that the proposed
loss measurement mechanisms have a different variance.
Figure 7 shows the coefficient of variation (CoV) of the
measured loss interval size from the previous experiments
based on the Bernoulli loss model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.001 0.01 0.1

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Packet Drop Probability

Virtual Packets
Random Sampling

LIP Scaling
Unbiasing

TFRC

Figure 7: Coefficient of variation of the loss interval size

As expected, LIP scaling and random sampling have roughly
the same CoV as an unmodified TFRC, while the CoV of
virtual packets is significantly lower. Consequently, using
virtual packets results in the most stable sending rate. A
similarly stable throughput is achieved with LIP scaling.
While with a Bernoulli loss model the loss intervals of
LIP scaling have the same CoV as those of plain TFRC,
the large loss history smoothes out throughput variations.
Random sampling results in roughly the same smoothness
of throughput as an unmodified TFRC. Unbiasing has an
intermediate CoV with variation which decreases at higher
loss rates. Despite a loss interval CoV lower than those
for LIP scaling and random sampling, unbiasing delivers
the most bursty sending rate, as shown in Figure 8.3 The
loss interval is unbiased after the measurement and this
unbiasing process depends on the current packet sending rate
as well as on the current packet size. The noise inherent in
the measurement of these parameters causes the burstiness
in the sending rate of the unbiasing method. Analyzing
the dynamic Bernoulli loss model shows a CoV that is
generally higher, but the results themselves are comparable.
In contrast, with the Gilbert loss model the CoV of LIP
scaling is significantly higher than that of the other methods.

As a consequence, for applications that require a smooth
sending rate, virtual packets is the method of choice, while
random sampling can be used to achieve the same respon-
siveness as with an unmodified TFRC.

4.2 Bandwidth Limited Bottleneck
After gaining a first insight into the performance of the
proposed algorithms, in this section we will analyze their
performance under more realistic network conditions where
flows with small and large packets compete directly at a
bandwidth-limited bottleneck. Usually, only flows with a low

�All mechanisms have the same average throughput; the lines
are shifted vertically for better readability and hence the y-
axis is omitted.

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004144

 0 50 100 150 200 250

T
hr

ou
gh

pu
t

Time (s)

Virtual Packets
Random Sampling

LIP Scaling
Unbiasing

Figure 8: Throughput over time

bandwidth requirement are forced to use a packet size smaller
than the MTU and therefore, we mainly investigate settings
with a low per-flow bandwidth.

We use four different settings for the application require-
ments, the first with a fixed packet size, two settings with
different but fixed packet rates, and lastly a setting where the
packet size and the packet rate vary.

1. The packet size is fixed at 100 bytes and the fair
bandwidth is 96 KBit/s per flow.

2. The packet rate is fixed at 50 packets/second, the
maximum packet size is 200 bytes (resulting in a
maximum sending rate of 80 KBit/s) and the fair
bandwidth is 64 KBit/s per flow.

3. The packet rate is fixed at 160 packets/second, the
maximum packet size is 100 bytes (resulting in a
maximum sending rate of 128 KBit/s) and the fair
bandwidth is 96 KBit/s per flow.4

4. The packet size is uniformly distributed between 50
bytes and 350 bytes and the fair bandwidth is 96 KBit/s
per flow (i.e., packet rate and packet size are variable).

The simulation results are averaged over six runs for each
parameter setting (together with slight variations in the avail-
able bandwidth and the starting times of the flows so as to
provide some degree of randomness).

Unless stated otherwise, the same number of VP-TFRC flows
and TCP flows is used for all the simulations (i.e., 1vs1, 2vs2,
etc.). The bottleneck capacity is scaled to the number of
flows. All of the simulations were conducted once with RED
and once with a drop-tail queue. The bottleneck buffer is set
to the equivalent of twice the bandwidth delay product (see
Appendix A for more details). The experiments were also
conducted with half the queue size with the expected result of
a decrease in the level of fairness in favor of TFRC and VP-

	The main reason for using a packet size smaller than the
MTU is to allow delay sensitive applications to send before
accumulating a full MTU worth of data. With a typical
maximum inter-packet delay for audio packets of �20ms, we
expect flows to have packet rate requirements on the order
of 50 packets/second and flows with 160 packets/second are
clearly border line cases.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
Virtual Packets

Random Sampling
LIP Scaling

Figure 11: VP-TFRC packet rate 160 packets/second
(drop-tail queue in packets)

TFRC. More details on the simulation setup can be found in
the appendix. For reasons of brevity we only present a small
selection of the simulation results. Further simulations can
be found in the technical report [15].

The access links to the routers are provisioned with 100
MBit/s. Unless stated otherwise, we use a propagation delay
of 10 ms for the access links and 80 ms for the bottleneck link
(in addition to the serialization delay and a possible queuing
delay). For all simulations, the reference TCP packet size is
1000 bytes.

4.2.1 Packet Mode
In packet mode, the decision to drop a packet at the bottle-
neck is based only on the packet rate and not on the packet
size. In Figures 9 and 10, we show the throughput of the
different VP-TFRC variants, normalized to TCP throughput,
together with the standard deviation of the original time
series. As is to be expected, the fairness of the VP-TFRC
variants improves when RED queuing rather than drop-tail
queuing is used. In the simulations, LIP scaling is the
most aggressive of the different variants. Particularly when
packet loss is correlated when using the drop-tail queue,
LIP scaling is significantly too aggressive (as evidenced
in the simulations with the Gilbert loss model). Random
sampling and virtual packets perform very similar, with
random sampling being somewhat more conservative in most
of the simulations. As mentioned before, the slightly higher
sending rate achieved by virtual packets stems from its lower
variance of the loss interval estimator and the convexity
of Equation (1). When comparing Figures 9(b) and 10(a),
we observe that using a fixed packet rate results in slightly
higher VP-TFRC throughput but overall, whether the packet
size or packet rate is fixed has little impact on the fairness
of the algorithms. The same holds for the corresponding
experiments with a RED queue. For reasons of brevity,
we only give the results of the drop-tail simulations with
160 packets/second in Figure 11. These higher packet rate
simulations generally achieve slightly better fairness than the
50 packets/second simulations.

Surprisingly, in contrast to the other loss measurement vari-
ants or plain TFRC, LIP scaling becomes more aggres-
sive as the buffer size increases. When we compare the

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004145

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
Virtual Packets

Random Sampling
LIP Scaling

(a) RED queue in packets

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
Virtual Packets

Random Sampling
LIP Scaling

(b) Drop-tail queue in packets

Figure 9: VP-TFRC packet rate 50 packets/second (buffer size 2x bandwidth delay product)

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
Virtual Packets

Random Sampling
LIP Scaling

(a) Buffer size 2x bandwidth delay product

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
Virtual Packets

Random Sampling
LIP Scaling

(b) Buffer size 1x bandwidth delay product

Figure 10: VP-TFRC packet size 100 bytes (drop-tail queue in packets)

simulation results for a bottleneck with a drop-tail queue
and two bandwidth-delay products worth of buffering (Fig-
ure 10(a)) to simulations with half the amount of buffering
(Figure 10(b)), random sampling and virtual packets behave
like plain TFRC and become more aggressive as buffer space
decreases. In contrast, LIP scaling is less aggressive (i.e.,
relatively fair to TCP) with a buffer size of one bandwidth-
delay product but consistently too aggressive for larger buffer
sizes. The same effect can be seen with RED queues (not
shown here), although on a smaller scale.

The root of this discrepancy lies in the different timescales
over which the loss measurement mechanisms operate. When
the buffer size is large, the TCP flows in the simulation tend
to synchronize, so that the buffer occupancy oscillates and
periods of no packet loss alternate with periods of very high
packet loss. We can observe two effects that counterbalance
each other:

� For random sampling and virtual packets, the number
of packets within the loss interval that comprises the
non-congested period is comparable to that of TCP.
During the same time interval, LIP scaling will expe-
rience a loss interval that is � times larger.

� Since TCP backs off within the time frame of one RTT,

virtual packets and random sampling will experience
(at most) one loss event per congested period. During
the same time frame, a flow with LIP scaling may
experience up to � loss events, given a sufficiently high
packet drop rate.

Under such circumstances, under LIP scaling the size of the
loss intervals is no longer independent of � and although
the two effects tend to counterbalance each other, they will
usually not cancel each other out. This phenomenon is
present whenever the loss process is time-driven instead of
packet-driven.

In the simulations presented so far, either the packet size or
the packet rate was fixed. To verify that the mechanisms
also work when both vary simultaneously, we perform the
same simulations as discussed before with a packet size that
is uniformly distributed between 50 bytes and 350 bytes.
VP-TFRC should then adjust the packet rate to obtain a fair
share of resources. Comparing Figure 12 to the throughput
obtained with a fixed packet rate shown in Figure 9(a), we
can see that the more variable characteristics of the VP-TFRC
flows with a random packet size do not lead to a decrease in
fairness. The same can be observed for simulations with a
drop-tail queue which give results similar to the ones shown
in Figures 9(b) and 10(a).

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004146

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
VP-TFRC RED

VP-TFRC DropTail

(a) Normalized Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Flows

TCP
VP-TFRC DropTail

(b) Modified byte mode for �	 � �� ��

Figure 13: Fairness with byte mode (VP-TFRC packet size 100 bytes)

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
Virtual Packets

Random Sampling
LIP Scaling

Figure 12: VP-TFRC packet size uniformly distributed
between 50 bytes and 350 bytes (RED queue in packets)

4.2.2 Byte Mode
Only the virtual-packet method also works in an environment
where the packet drop probability is proportional to the
packet size. In Figure 13 we show how the virtual-packet
method performs for RED gateways in byte mode as well as
for drop-tail gateways with a queue measured in bytes.

As in the previous experiments, we observe that fairness
towards TCP is significantly higher for RED queues than for
drop-tail queues, but here the discrepancy is much larger.
While with RED queues the packet drop probability is
explicitly set proportional to the packet size, for drop-tail
queues the ratio of packet drop probabilities for flows with
large and small packets depends on the distribution of queue
occupancy. Only if the probability of a small packet fitting
into the queue is a factor of � larger than the probability of a
large packet to fit in, the primary assumption of proportional
packet drop rates made in the design of the algorithm is met.

When analyzing the packet loss rates of TCP and VP-
TFRC, we observe that particularly at low levels of statistical
multiplexing small packets have a higher-than-proportional
probability of fitting into the drop-tail queue. Instead of
having a 10 times smaller packet drop rate than TCP, VP-
TFRC sees a packet drop rate 25 to 100 times lower than
TCP. As a consequence, VP-TFRC achieves a throughput of

roughly twice the TCP throughput (except at very low levels
of statistical multiplexing, where this ratio is even worse). In
contrast, with RED in byte mode, a high level of fairness is
achieved. While VP-TFRC is not exactly sending at the same
rate as TCP, at around 25% the deviation is comparable to the
packet-mode case. The simulations with a packet rate of 50
packets/second, with 160 packets/second, and with a variable
packet size lead to comparable results.

To further analyze the relationship of packet size and drop
probability in drop-tail queues, we performed a number of
simulations with constant-bitrate flows and TFRC flows with
different packet sizes and compared the packet drop rates. In
these simulations, independent of the absolute value of the
packet drop rate and the exact simulation setup, the ratio of
packet drop rates was always close to �	 � �� ��, rather than
�	 � � �� as for RED in byte mode. A variant of virtual
packets in byte mode based on this ratio performs much
better in a drop-tail environment, as shown in Figure 13(b).

Hence, with the proper dependency of packet drop prob-
ability and packet size in drop-tail queues in bytes, the
virtual-packet method can be adjusted so that even with such
queues VP-TFRC flows and TCP flows share bandwidth in
a fair manner. Nevertheless, the correction by a factor of 2
presented here is based only on simulation results; a more
solid understanding, perhaps with mathematical modeling, is
required before making any final conclusion.

4.2.3 Further Simulations
Similar simulations were also carried out with a fixed number
of 32 TCP flows and 1 to 32 VP-TFRC flows. Generally,
those simulations lead to results comparable to the simula-
tions with 16 or 32 TCP and VP-TFRC flows. The degree of
fairness is more related to the level of statistical multiplexing
than to the exact traffic mix at the bottleneck.

Simulations with a lower RTT lead to a decrease in fairness
when only few flows compete at the bottleneck. Since we
set the queue size at the bottleneck router proportional to the
bandwidth-delay product, the size of the queue decreases.
At the same time, the packet drop rate has to increase
to compensate for the drop in RTT, since the bandwidth

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004147

available for each flow remains the same. Under these
conditions, TCP performance is slightly worse and for low
levels of statistical multiplexing we obtain a lower fairness
ratio for VP-TFRC. This effect is shown in Figure 14 for a 5
ms delay at the access links and a delay at the bottleneck link
of 10 ms, thus reducing the minimum RTT by a factor of 5.

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
Virtual Packets

Random Sampling
LIP Scaling

Figure 14: Fairness with a low RTT (drop-tail queue in
packet mode)

The graph shows VP-TFRC flows with a fixed packet rate
of 160 packets per second over a drop-tail queue. On
these small timescales, LIP scaling becomes particularly
aggressive. In contrast, if we also increase the available
bandwidth per flow in conjunction with a decrease of the
RTT, the simulations give very good fairness results.

We further performed simulations with a mix of different
RTTs. Half of the TCP and VP-TFRC flows have the
low RTT used above, while the remaining flows experience
a much higher RTT. In Figure 15 we show the resulting
throughput normalized to the throughput of the high-RTT
TCP.

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

Virtual Packets
Random Sampling

LIP Scaling
TCP

Figure 15: Fairness with mixed RTTs (drop-tail queue in
packet mode)

We obtain similar fairness results as before for flows with the
same RTT. In fact, a mix of RTTs improves fairness within
the class of low RTT flows. The virtual packet mechanism
and random sampling are now less aggressive than the TCP
flow with the same RTT and also the aggressiveness of LIP
scaling is reduced. As expected, the flows with a low RTT
achieve a higher throughput than the flows with the high RTT.
However, the difference is much less than the theoretical
factor of 5 since a large contribution to the RTT comes from

the queuing delay, which is the same for all flows. All in all,
the proposed mechanisms seem to be rather insensitive to the
specific RTT values.

4.3 Failure Cases
There are different possibilities where the method used for
the loss measurement does not match the type of bottleneck:
(1) the byte mode version of the mechanisms is used with a
bandwidth limited bottleneck in packet mode or vice versa,
or (2) the assumption that the bottleneck is bandwidth limited
and not packet rate limited does not hold.

In the first case it is easy to predict the expected behavior.
When a packet mode mechanism is used with a byte mode
bottleneck, packet loss that should be treated as separate
loss events will be aggregated, leading to a too low estimate
of the loss event rate. On average (ignoring the effect of
aggregation of packet loss within a RTT)), the loss intervals
will be too large by a factor of ��
, leading to a sending rate
that exceeds the rate of TCP roughly by a factor of

�
��
.

Conversely, a byte mode mechanisms in conjunction with
a packet mode bottleneck results in much too conservative
protocol behavior, with a sending rate too low by about the
same factor. While the latter may render the congestion con-
trol mechanism useless, the former is much more dangerous
since it can harm the network itself.

The methods put forward in this paper assume that the
bottleneck is bandwidth limited, since otherwise a tradeoff
between packet size and packet rate is not possible. In case
the bottleneck is in fact packet rate limited, the proposed
modifications to the loss measurement mechanisms will
result in the VP-TFRC flows consuming more than their fair
share of the limited resources.

In case the packet mode version of the mechanisms is used,
VP-TFRC flows using a small packet size
 will achieve
roughly the same throughput as a TCP flow with large
packets of size �. However, VP-TFRC’s packet rate will be a
factor of ��
 higher than TCP’s packet rate and bottleneck
resources will be shared in a very unfair manner. It is
therefore not recommended to use the packet mode version
of the mechanisms unless it is known that the bottleneck is
bandwidth limited and packets are dropped irrespective of
their size.

An analysis of the behavior of the byte mode version in
conjunction with a packet rate limited bottleneck is more
interesting. A packet rate limited bottleneck does not dis-
criminate between packets of different size when dropping
packets. Therefore, due to the aggregation of packets, a flow
sending small packets will see much smaller loss intervals
than a flow with large packets. This counterbalances the
effect of an overproportional packet rate at the bottleneck.

For the simulations with a packet rate limited bottleneck, a
rate limiter is inserted at the bottleneck router. The limit
on the packet rate applies to all incoming links of the router
(i.e., TCP acknowledgements and TFRC receiver reports add
to the packet rate). The buffer size is set to 100 packets
and all other parameters are set as in the simulations with
a bandwidth limited bottleneck.

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004148

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of VP-TFRC flows

TCP
VP-TFRC

(a) Throughput

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 8 16 32

P
ac

ke
ts

/s

Number of VP-TFRC flows

TCP
TFMCC

(b) Packet rate

Figure 16: Packet rate limited bottleneck (VP-TFRC in byte mode with packet size 100 bytes)

When simulating a VP-TFRC flow in byte mode with a fixed
packet size of 100 bytes and a TCP flow with the settings
discussed above, the VP-TFRC packet rate greatly exceeds
TCP’s packet rate for low levels of statistical multiplexing.
When only two flows compete, TCP’s packet rate is around
100 packets/s while VP-TFRC’s packet rate is 8 times as
high, as shown in Figure 16. In these simulations, VP-TFRC
flows always achieve less throughput than TCP flows but in
any case, bandwidth is not the limited resource. Since the
queue is measured in packets, the high packet rates of the
VP-TFRC flows leave to little buffer space for the TCP flows
to get to the proper sending rate. Interestingly, for higher
levels of statistical multiplexing, this effect is mitigated and
for 16 flows and more, the VP-TFRC packet rate is even
less than TCP’s packet rate. Since at a packet rate limited
bottleneck the drop probability is independent of the packet
size, the VP-TFRC flow in byte mode will see a roughly
10 times higher loss event rate. When this drop probability
becomes significant because many flows share the link, the
VP-TFRC flow may end up in the high loss rate regime of
the throughput equation with an overproportional reduction
in throughput. Of course, if VP-TFRC modifies the packet
size but maintains a fixed packet rate, it is unresponsive to
congestion in case of a packet rate limited bottleneck.

During transition periods, a flow may be limited by two
different types of bottlenecks. This is the case if network
conditions change and the sending rate of the flow is now too
high for a bandwidth limited bottleneck and at the same time
the packet rate is too high for a packet rate limited bottleneck
on the same path. As soon as the congestion control
mechanism has adapted the rate to the new conditions, the
flow will only be limited by one of the two bottlenecks.
However, the type and location of the limiting bottleneck
may change over time. Since such cases seem to be of less
importance, we leave them for future work.

5. CONCLUSIONS
We analyzed the impact of variations in packet size on
equation-based congestion control (as used for example by
TFRC) and presented four methods to cope with it. Without
our modifications, the loss event rate measured by equation-
based congestion control mechanisms depends to a large

degree on the packet-sending rate. Protocol behavior is
either much too conservative (with an unmodified TFRC)
or too aggressive (if flows simply compensate a packet size
smaller than TCP’s by a proportional increase in their packet-
sending rates). Two of the proposed mechanisms, random
sampling and virtual packets, perform well over a wide
range of different network conditions if the network drops
packets independent of their size. As can be seen from the
variance of the loss interval estimator, random sampling has
the same responsiveness as an unmodified TFRC, whereas
virtual packets achieves a smoother sending rate which may
be particularly desirable for the type of application requiring
this modified TFRC congestion control. The smoothness
of the sending rate results in a slightly higher throughput
compared to plain TFRC in environments where the network
conditions vary a lot. Furthermore, the virtual packet method
also works in environments where the packet drop probability
is proportional to the packet size, as in RED in byte mode.
We expect these mechanisms to behave well in real-world
environments.

To be able to deploy the mechanisms proposed in this
paper, it is important to know the types of bottlenecks to
be expected in the network. To that end, measurements
that analyze the relationship of packet drop rates and packet
sizes are necessary. The type of bottleneck (and therefore
the aforementioned relationship) is likely to differ depending
on where in the network the bottleneck is located (i.e., in
the backbone or close to the edge). Getting reasonably
accurate information about the characteristics of bottlenecks
is the object of parallel, ongoing work. This information
depends largely on the type of routers and switches likely to
be deployed at network bottlenecks. Once this information is
available, the performance of the proposed mechanisms will
have to be tested in a real-world environment.

A number of issues remain. The current implementation of
virtual packets for byte mode works well together with RED.
We have studied the difference in packet drop rates for RED
in byte mode and drop-tail queues measured in bytes and
from these results can design a byte-mode variant of virtual
packets which provides a fair sharing of bandwidth in the
case of drop-tail queues. However, the results should be

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004149

confirmed by an analytical model of the drop probabilities
experienced in such a queue to be better able to adjust the
virtual-packet mechanism.

So far, the simulations are all based on the common dumbbell
topology. Deeper insight into the behavior of the different
mechanisms can be gained by also analyzing more complex
simulation topologies such as the parking lot scenario, sce-
narios with more than one bottleneck, etc.

Finally, we would like to briefly mention our experience with
an alternative solution. Both RED in byte mode and the
virtual-packet mechanism in byte mode partly compensate
for the bias against flows with small packets. Instead of
having part of the removal of the bias done by the RED
mechanism and the other part done by the loss measurement
mechanism, RED’s byte mode could be altered so that
(theoretically) a fair sharing of bandwidth among flows
with different packet sizes can be achieved without any
modifications to the loss measurement process. The fair
sending rate depends on the RTT and the loss event rate,
which in turn depends on the number of packets sent per
RTT and the packet drop probability. We can numerically
solve this equation offline to obtain the packet rate as a
function of the packet drop probability. Using a function
table, RED could then modify the packet drop probability
so as to equalize the throughput of competing flows.

Great care has to be taken with the design of the averaging
process at the RED gateway, since the instantaneous packet
drop probability of RED used for the modification can be
very different from the drop probabilities experienced at the
end systems when there is a high level of statistical multiplex-
ing. We found that the method works well when the network
is a Bernoulli dropper, but we encountered compatibility
problems with the drop uniformization procedure of RED
that still remain as an open challenge.

Acknowledgements
We would like to thank Mark Handley and Sally Floyd for
initiating the work on variable packet size congestion control
and for many helpful discussions.

6. REFERENCES
[1] S. Floyd, M. Handley, J. Padhye, and J. Widmer,

“Equation-based congestion control for unicast applica-
tions,” in Proc. ACM SIGCOMM, Stockholm, Sweden,
Aug. 2000, pp. 43 – 56.

[2] Sandeep Sikka and George Varghese, “Memory-efficient
state lookups with fast updates,” in Proc. ACM SIG-
COMM, Stockholm, Sweden, Aug. 2000.

[3] Pankaj Gupta, Algorithms for Routing Lookups and
Packet Classification, Ph.D. thesis, Stanford University,
Dec. 2000.

[4] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran,
F. Tobagi, and C. Diot, “Analysis of measured single-
hop delay from an operational backbone network,” in
Proc. IEEE Infocom, New York, June 2002.

[5] J-C. Bolot, S. Fosse Parisis, and D. Towsley, “Adaptive

FEC-based error control for internet telephony,” in
Proc. IEEE Infocom, Mar. 1999.

[6] J-C. Bolot and A. Vega Garcia, “Control mechanisms
for packet audio in the internet,” in Proc. IEEE Infocom,
Mar. 1996.

[7] Sally Floyd and Kevin Fall, “Promoting the use of end-
to-end congestion control in the Internet,” IEEE/ACM
Transactions on Networking, vol. 7, no. 4, pp. 458–472,
Aug. 1999.

[8] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IEEE/ACM Trans-
actions on Networking, vol. 1, no. 4, pp. 397–413, Aug.
1993.

[9] J. C. Mogul and S. E. Deering, “Path MTU discovery,”
RFC 1191, Internet Engineering Task Force, Nov. 1990.

[10] Colleen Shannon, David Moore, and k claffy, “Char-
acteristics of fragmented IP traffic on internet links,”
in Proc. First ACM SIGCOMM Workshop on Internet
Measurement, San Francisco, CA, Nov. 2001.

[11] Mark Handley, Jitendra Padhye, Sally Floyd, and Jörg
Widmer, “TCP friendly rate control (TFRC): Protocol
specification,” RFC 3448, Jan. 2003.

[12] J. Widmer and M. Handley, “Extending equation-based
congestion control to multicast applications,” in Proc.
ACM SIGCOMM, San Diego, CA, Aug. 2001, pp. 275
– 286.

[13] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and
James F. Kurose, “Modeling TCP Reno performance: a
simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145,
Apr. 2000.

[14] S. Ramesh and I. Rhee, “Issues in TCP model-based
flow control,” Tech. Rep. TR-99-15, Department of
Computer Science, NCSU, 1999.

[15] J. Widmer, C. Boutremans, and J. Y. Le Boudec, “End-
to-end congestion control for flows with variable packet
size,” Tech. Rep. EPFL-DI-ICA SSC/2002/82, EPFL,
Switzerland, December 2002.

[16] M. Vojnovic and J. Y. Le Boudec, “On the long-run
behavior of equation-based rate control,” in Proc. ACM
SIGCOMM, Pittsburgh, Aug. 2002.

[17] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd,
John Heidemann, Ahmed Helmy, Polly Huang, Steven
McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu,
“Advances in network simulation,” IEEE Computer,
vol. 33, no. 5, pp. 59–67, May 2000.

APPENDIX

A. SETTING THE QUEUE SIZE IN THE
SIMULATIONS

Setting a reasonable queue size for the simulations is not an
easy task. Generally, TCP performs better when there is a

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004150

large amount of buffer space available, while TFRC is rela-
tively insensitive to the queue size and therefore outperforms
TCP when the queue size is small. Particularly if the queue
size is measured in packets, with a potentially large number
of small packets in the queue the queue size available to TCP
may vary significantly. When the queue is measured in bytes,
a large TCP packet occupies the space of many small VP-
TFRC packets and when TCP sends a burst of packets, it may
occupy a large fraction of the queue space. We set the queue
parameters as follows:

� If the queue is measured in bytes, we set the queue size
to twice the bandwidth-delay product, assuming a RTT
(including buffer delay) of 500 ms.

� If the queue is measured in packets, we set the average
packet size to �	

��
�	�� where � is the TCP packet size
and
 is the size of the VP-TFRC packets in the case of
a fixed packet size or the size of a VP-TFRC packet if
the flow were sending at exactly the fair rate in the case
of a fixed packet rate. The queue size in packets is then
set to twice the bandwidth-delay product divided by the
average packet size.

� For RED queues, we further set the minimum threshold
����� to 5% of the queue size, the maximum threshold
����� to 50% of the queue size, and the maximum
packet drop probability ���� to one drop per 22.5%
of the queue size in packets (the average of ����� and
�����). The ������ option of RED is enabled.

ACM SIGCOMM Computer Communications Review Volume 34, Number 2: April 2004151

