

Context Based Reasoning in Business Process Models

Pavel Balabko, Alain Wegmann
Systemic Modeling Laboratory (LAMS)

IC-EPFL, Lausanne, Switzerland
Pavel.Balabko@epfl.ch; Alain.Wegmann@epfl.ch

Abstract - Modeling approaches often are not adapted to
human reasoning: models are ambiguous and imprecise.
A same model element may have multiple meanings in
different functional roles of a system. Existing modeling
approaches do not relate explicitly these functional roles
with model elements. A principle that can solve this
problem is that model elements should be defined in a
context. We believe that the explicit modeling of context is
especially useful in Business Process Modeling (BPM)
where the meaning of any model element should be defined
precisely. The contribution of our work is at the context-
aware modeling framework for BPM. We model a system
as the composition of small roles, where each role of a
system is defined in its own context.

Keywords: Context, role, business process modeling,
model, human reasoning.

1 Introduction
In the design of information and business systems,

modeling plays two roles: an implementation role and a
communication role.

In the implementation role, a model can be considered
as a bridge between a developer’s understanding of a
problem domain and a code that has to be implemented. In
this case models can be used for the verification of some
critical properties of software, for code generation, for
simulation etc. This role of modeling is well studied: there
are many formal approaches for program verification,
automatic code generation and etc.

In the communication role, a model can be considered
as a means that allows system stakeholders (users,
developers, etc) to talk about systems to be designed. This
role of modeling is underestimated. Modern modeling
approaches often are not adapted to human reasoning. This
problem was clearly stated in [5]: “We would like to
emphasize informal and yet conceptually precise and
practically significant approaches, rather than merely
formal languages theory using different formalisms and
therefore making them hard to comprehend and compare”.
We therefore need to make existing approaches more
convenient for human reasoning.

A shift from an implementation oriented modeling
approach to a “human-friendly” one should be based on a
set of disciplines (like philosophy and system sciences) that
pay attention to a cognitive side of modeling. These

disciplines can provide a set of principles that can integrate
human factors in existing modeling techniques. In this work
we consider one principle that states that “all of human
inquiries occur within contexts” [7]. We argue that an
explicit modeling of a context plays an important role in
system modeling and makes models more comfortable for
human reasoning. This observation is based on the sign
model of the American pragmatist philosopher Charles
Sanders Peirce. In his sign model he emphasized that a
model element stands for an entity in the Universe of
Discourse, not in all respects, but in reference to a sort of
idea or situation modeled as context.

We believe that an explicit modeling of a context is
especially important for business system and business
process modeling (BPM). However this explicit modeling
is impossible with existing approaches for BPM. Therefore,
in our work, we propose a framework for BPM that makes
contexts explicit in models. This framework is called
SEAM1. In our framework a system is modeled as a set of
roles, where each role is modeled in its own context. To
reason about a system as a whole, one should analyze
relationships between different roles of this system.

The structure of this paper is the following. In Section
2 we explain a problem that is addressed in our paper.
Section 3 is a main contribution of our paper that gives a
solution to the addressed problem. In this section we
explain the theoretical foundations (Section 3.1) and
description (Section 3.2) of our context-aware modeling
framework for BPM. In Section 4 we give an example of a
model of Simple Banking System built in our modeling
framework. We finish with the conclusion.

2 Problem Statement
Our belief in the importance of the explicit modeling of

a context in the field of BPM is based on two evidences.
The first evidence is the business process definition of

the Workflow Management Coalition that accumulates the
experience of over 300 member organizations worldwide.
This definition states that an objective (goal) of a business
process has to be defined within a context:

1 SEAM stands for Systemic Enterprise Architecture Methodology. See

[16] for details.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147889096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Business Process [17] is “a set of one or more linked
procedures or activities which collectively realize a
business objective or policy goal, within the context of an
organizational structure defining functional roles and
relationships”. The notion of context is made explicit in this
definition. In section 2.1 we consider how this definition
corresponds to the existing business process modeling
techniques.

As the second evidence, in section 2.2 we consider a
practical example that illustrates the core of a problem: the
necessity of the explicit context modeling for the
understanding a meaning of a model element in different
functional roles of a system.

2.1 State of the Art
The Workflow Management Coalition definition of a

business process is based on four key elements: a business
process goal (or a business objective), context for this goal,
collaborative activities and roles that participate in these
activities. Object (or business object) is yet another concept
that should be considered when the business process has to
be implemented. An object is the model of an entity in the
Universe of Discourse. It plays roles in a business process
by means of participating in different activities. In all, we
have to address five key elements: goals, context, activities,
roles and objects. [10].

To model these five business process elements, some
Process Modeling Technique (PMT) should be used.
Carlsen in [3] refers to the following PMT types:
Traditional Input Process Output (IPO) techniques;
Conversation Based techniques; PMTs based on role
modeling; System thinking and system dynamics
techniques; Constrained-based representations techniques.
None of the existing PMTs model a context explicitly.
However the PMT based on role modeling is a technique
that can be extended to model a context. This is because the
concept of context is tightly related with the concept of
role. The role of a system is a partial specification of a
system behavior in a given context.

We use the PMT based on role modeling as a basis for
our framework. There are several PMTs based on role
modeling. The following three seem to be the most
important: RIN – Role Interaction Networks [14], RAD –
Role Activity Diagram [12] and OORAM – the Object-
Oriented Role Analysis Method [13]. These approaches are
quite similar. Roles are considered as sets of sequentially
ordered actions and/or interactions. The main drawback of
these approaches is that goals are difficult to model with
these PMTs. Another problem is that states are defined in
such a way that it is difficult to split the state into subsets
(for different contexts). These two problems are related to
the fact that the PMTs do not have a state structure (state is
considered as an instant between connective actions).
Therefore we are looking for a new PMT based on role
modeling that makes explicit the five key elements of a
business process (goals, context, activities, roles and
objects) and the state structure of a system.

2.2 The Core of a Problem
The model of a complex system has many functional

roles. Each role is an abstraction of a system behavior in
some given context. In a typical situation of time shortage,
a system designer does not model all functional roles
independently. Instead he tries to build one “universal”
model (a tradeoff between model size and its
understandability) as an implicit composition of all
functional roles of a system. In this case, the meaning of a
model can be difficult to understand: the meaning of any
model element depends on the functional role of a system.
Since a system has many functional roles, the same model
element can have multiple meanings. As a result, it
becomes difficult to reason about different roles of a
system.

To illustrate, we give an example that we use
throughout our paper. Let’s consider a business system
model that models a Simple Bank (see figure 1).

debit from credit to

Bank Account
CalcCharges

PrintStatement

holds *1 Customer
address
name

Transaction

value

1 1

* *

belongs-to 1*

Figure 1. Simple Banking System Object Model

This example was taken from the Ratio Group’s white
paper [6] that explains the UML notation for Object-
Oriented Analysis and Design. This is a pure UML example
that does not have any notion of context. So, what is the
problem? The model in figure 1 was built as a tradeoff
between the model’s size and its understandability. This
model represents some (but not all) concepts that can be
used to explain two roles of a Simple Banking System in
two different contexts.

First, this model can be used to explain the role of the
Simple Banking System in the context of the relation
between a customer and a bank. It can be considered as a
model of a bank from the customer’s point of view. A
customer creates an account in a bank and then makes
credit/debit transactions with its account. Note that in order
to explain the relation between a customer and a bank, a
customer does not need to know that a bank holds many
accounts. Therefore only one account can be modeled.

Second, this model can be used to explain a role of the
Simple Bank System in the context where there are multiple
accounts. However, in this model, all these bank accounts
are not related to each other explicitly. Each account is
responsible only for keeping its own balance. We cannot
see the whole idea of a bank: how a bank accumulates
money from depositors and invests it.

We can see that the model in figure 1 is a mixture of
concepts used to reason about different roles of a business
system. Concepts are not specified with roles they belong
to, which complicates the overall comprehension of a

model. In our work we propose the explicit modeling of
context can make the meaning of model elements more
precise and improve model understandability.

3 Our Approach for Context Modeling
This section presents the results of our research work.

In section 3.1 we begin with theoretical foundations of our
context-aware modeling framework for BPM. In section 3.2
we continue with a description of our modeling framework.

3.1 Theoretical Foundation of Context
In this section we introduce the five Context Modeling

Principles that provide the basis of our modeling
framework. As we mentioned in the introduction, to make
models more “human-friendly” we should use principles
based on a set of disciplines (like philosophy and system
sciences) that pay attention to the cognitive side of
modeling. The first three principles have a philosophical
foundation. The forth and fifth principle are based on
system sciences.

First we show where the term context originates from.
The simple observation that all of human inquiry occurs
within contexts triggered the use of the concept of context.
This observation was clearly seen by the American
pragmatist philosopher Charles Sanders Peirce in the end of
ninetieth century. In his sign model2 he emphasized that a
model element (in a model) stands for an entity (in the
UoD), not in all respects, but in reference to a sort of idea
or situation (in the UoD). Based on this observation, Pieter
Wisse extended the Peircean sign model with the notion of
context (in a model) that models a given situation (in the
UoD). The result is a hexad shown in figure 2. “The
original three triadic elements of Peirce reappear as
dimensions [in this hexad]” [15]. Figure 2 shows what we
have just explained. Model element sense and context sense
in figure 2 are defined in a semantic domain that means that
they have a well defined meaning.

context
(in a model)

model element
(in a model)

entity
(in UoD)

situation
(in UoD)

model element sense
(in semantic domain)

context sense
(in semantic

domain)
Figure 2. Pieter Wisse hexad sign model.

2 Peircian sign model is considered as a triad <entity, model element,

model element sense> [we use our terminology, the original Peirce triad is
<object, sign, interpretant>], where entity is “any concrete or abstract thing
of interest” [9] in the Universe of Discourse (UoD). The UoD corresponds
to what is perceived as being reality by a business analyst. Identified
entities are modeled as model elements in a model. Model element sense is
a meaning of a model element.

As a result we can conclude that for the correct
interpretation of a model element in a model, any model
element should be specified explicitly within a context (1st
context modeling principle).

“The history has been dominated by invariantism”
[Vassallo01]. This means that only one epistemological
interpretation of any model element was considered, i.e. the
knowledge was considered as context invariant. However in
recent times humans face the need to reason about complex
systems. These complex systems can be observed in
different situations and interpreted differently, which means
that the notion of context allows for multiple models of the
same system. Systems can be modeled differently
depending on the situations in which they are “situated”.
This is especially useful in the analysis of complex systems
because it allows for dealing with complexity in a
systematic way. “An essential feature is that contexts
provide means to focus on aspects that are relevant in a
particular situation while ignoring others” [11]. We call this
principle as a “Multiple contexts” principle (2nd context
modeling principle).

As we explain in the next section, each model is a set
of related model elements (attributes, actions, etc). Each
model element models an entity from the UoD. Moreover,
some model elements (modeled in different contexts) can
model the same entity in the UoD. We call such model
elements identical. The modeling process for a complex
system consists in building models in specific contexts and
in finding identical model elements in these models. We
call this an “Identity” principle (3rd context modeling
principle).

The 4th modeling principle is based on the System
Science [4] principle that any system can be explained with
a goal. A goal shows the results to be achieved by a system,
placed in a given context. This gives us the “Goal driven
context” principle that states a context has a goal (4th
context modeling principle).

The 5th context modeling principle is based on the
System Science [4] principle that a system is defined
through its relations with an environment or as a set of its
internal properties. Therefore a context can be perceived
dually. First, it can be perceived as a set of possible
influences from a model environment. In this case, the most
common way to define context is to specify it as a set of
objects and events that can influence the behavior of an
object (see for example [11]). Second, a context can be
perceived as states that can be changed by external
influences. We have found in literature3 the following two
definitions that take in account both meaning of context:

“Context (1st definition) [Cambridge International
Dictionary of English]: the influences and events that
helped cause a particular event or situation to happen”.

3 See [2] where he reviews different context definitions.

“Context (2nd definition) is a subset of the complete
state of an individual [a system] that is used for reasoning
about a given goal”; this definition is given in the field of
Knowledge Representation and Reasoning (KRR) in [8].

In a summary of this section we repeat the five Context
Modeling Principles that we have used as a basis for our
context-aware modeling framework:

Table 1. Context Modeling Principles

1. “Explicit
context” principle

Any model element should be
specified explicitly within a contexts;

2. “Multiple
contexts”
principle

Multiple models of the same system
are possible, where each model is
defined in its proper context

3. “Identity”
principle

Identity of model elements from
different contexts should be specified
explicitly.

4. “Goal driven
context”
principle

Context should define consequences
of the behavior of an object that is
placed in this context.

5. “Duality”
principle

Context should be specified dually:
as influences form the environment
of an object and as object states that
can be changed by these influences;
these two specifications should not
be contradictory;

In the next section we show how these principles have
been used in our framework.

3.2 SEAM Modeling Framework for BPM
In this section we introduce our context-aware

modeling framework for BPM. The core of this framework
is the SEAM Visual Language (SEAM VL). In section
3.2.1 we give definitions for model elements in SEAM VL.
Then in section 3.2.2 we explain the notation of SEAM VL.
Section 3.2.3 gives an overview of the SEAM methodology
that explains how SEAM VL should be used for building
multicontextual models.

3.2.1 Definition of the main concepts.
In this subsection we present concepts that we use in

SEAM VL. In order to give rigorous definitions for
concepts that we use in our VL, we had to choose a
consistent semantic framework. We use the ISO/ITU
standard “Reference Model for Open Distributed
Processing” – part 2 [9] as a framework.

Based on RM-ODP, modeling consists of identifying
entities in the universe of discourse and representing them
in a model. The universe of discourse (UoD) corresponds to
what is perceived as being reality by a business analyst and
entity is “any concrete or abstract thing of interest” [9] in
the UoD. Identified entities are modeled as model elements
in a model. Model elements are different modeling concepts
(object, action, behavior etc). We give definitions of some
modeling concepts necessary for the understanding of our

paper (other definitions see in the RM-ODP). We begin
with the definition of an object. If in the UoD we have
entities that can be modeled with state and behavior, we
model these entities as objects:

Object: “An object is characterized by its behavior and
dually by its state” [9].

The duality of state and behavior means that the state of
an object determines the subsequent behavior of this object.
The definition of an object is based on the definition of
behavior and state:

Behavior: A collection of actions and a set of (sequential)
relations between actions.

State: A collection of attributes, attribute values and
relations between attributes.

Attributes can change their values; relations between
attributes can be created or deleted. To specify these
changes we use pre- and postconditions. Based on the
definition of behavior we define a role:

Role: “An abstraction of the behavior of an object”
intended for achieving a certain common goal in
collaboration with other roles.
Up to this point we have specified all necessary terms that
we need to give a definition of context. For the following
definition (1st notion of context from section 2), we were
inspired by OOram [13]:

Context (1st definition) is the set of collaborating roles
along with their state and behavior.

This definition allows for the explicit specification of
external roles that can influence the behavior of an object.
To specify context as “a subset of the complete state of an
individual” (the second notion of context from section 2)
we use the following definition:

Context (2nd definition) is state and behavior of a role.
The last definition that we need is:

Goals (of a system in a context) are postconditions for all
actions in a role. This role is a role of a system in a given
context.

Based on the above-mentioned definitions, we can see
that we specified all four elements of the business process:
roles, activities (behavior of collaborating roles), goals and
objects (that play roles in the implementation).

3.2.2 Notation
To visually represent context, we use a notation

inspired by UML (see an example in figure 3.a and 3.b).
We represent a context (a set of collaborating roles) by a
rectangle that includes a set of collaborations (dashed
ovals), set of roles (stick men) and role names (names
below stick men). The name of a context is given in the
upper part of a box. We represent objects with cubes; object
names are given below cubes.

For each role in a collaboration we can show a detailed
specification (see an example in figure 3.c). We show it as a
box with three panes. This notation is similar to the
representation of a class in UML. The difference is that
instead of an attribute compartment in UML (middle pane

in each box) we use graphical notation based on a UML
class diagram. It contains not only attributes and relations
between them, but also actions. Actions are used to specify
the belonging of attributes to a certain context. Each role in
the middle pane should contain at least one action of the
same name (like the “Create Account” action in the “Create
Account” role). This action is associated with attributes that
are defined in the context of this role. In the following table
we explain the semantics of relations between actions and
attributes:

Table 2. Semantics of relation between actions and
attributed in the SEAM Visual Language

The super-action includes m sub-actions. This means
that m instances of an action happen in the life cycle of
super-action.
Action is responsible for the creation of an attribute
(attribute multiplicity changes from 0 to 1). We
emphasize newly created attributes and relations with
thick lines (postconditions).

msuper-
action

sub-
action

0g1
action attribute

Action is responsible for the destruction of an attribute
(attribute multiplicity changes from 1 to 0).

1g0
action attribute

Action is responsible for the persistence of an attributeaction attribute

In the lower pane of each box, instead of the
compartment that holds a list of operations in UML, we use
the graphical notation based on a UML activity diagram to
represent a role behavior.

(a)

(b)

(c)

Transaction

Customer

1

1

0g1

Create
Account

Account

Balance

Create
Account

Initiate
Account
Creation

Account
Creation

Create
AccountH H

Control
Account

External Observer

Create Account Role

Customer
Simple Bank

1

Control
Account

Transaction

Hold
Account

1 1

Customer Simple Bank
Account
Deletion

Account
Creation

1 1

1 1

11

"Account Life Cycle" Context

"Account Creation" Context

1

11

Txn
List

1 1
0g 1

Figure 3. Roles of a Simple Bank object in different

contexts (a) “Account Life Cycle” context; (b) “Account
Creation” context; (c) Detailed specification of the “Create

Account” role

Figure 3.b gives an example of a model of a Simple
Bank object in the “Account Creation” context. It models a
situation where a customer creates an account in a simple
bank. This context includes two roles: “Initiate Account
Creation” and “Create Account” and limits the scope of the
model to communications that can be observed by an
External Observer between Customer and Simple Bank
objects. These communications have a final goal of creating
an account by the Simple Bank object. This goal is reflected
in a diagram from figure 3.c. An Account is created with
TxnList (transaction list) and Customer attributes. Note that
creating an account is not an end in itself. This account will
be further used by the Customer object in the “Account Life

Cycle” context (figure 3.a) for making debit and credit
transactions and then for the account deletion. To reflect a
fact that a created account will be used in a “higher”
context, we include the “Control Account” action in the
middle pane of the “Create Account” role (figure 3.c). We
connect this action to the Account attribute with a thick line
(to emphasize postconditions). This line shows that
Account, Customer and TxnList attributes will be used in
another context.

Model elements, presented up to this point, show the
usage of the three context modeling principles given section
2. The context of model in figure 3 was specified explicitly
(“Explicit Context” principle), the goal of a Simple Bank
object in the “Account Creation” context was specified as a
set of postconditions (“Goal Driven Context” principle) and
we have specified the context dually (“Duality Principle”)
as a set of roles in the environment of a Simple Bank object
and as a set of internal properties (attributes). Two
remaining principles (“Multicontextual Paradigm” and
“Duality principles”) make sense in a multicontextual
model. In the next subsection we consider SEAM
methodology, which explains how we work with
multicontextual models.

3.2.3 SEAM methodology
The SEAM methodology explains how a system

considered in several situations is modeled using the SEAM
VL. In SEAM methodology we do not prescribe how a
modeler should build a model. We only give modeling
constraints that a modeler should follow in our
methodology:

1st constraint: A system of interest can be considered in
a number of meaningful situations. Each situation should be
modeled as a group of collaborating objects (1st notion of
context) with a certain goal. We recommend using the
“Create Collaboration, Do Collaboration, Delete
Collaboration” pattern. This pattern makes explicit the life
cycle of relations between roles. Thus we can specify how a
relation is created, how it is used and how it is deleted. For
example in Figure 4 we have specified the “Account Life
Cycle” context as three collaborations: “Account Creation”,
multiple “Transactions” and “Account Deletion”.

2nd constraint: The hierarchy of contexts should be
specified using the whole-part relation. It specifies context
containment and the multiplicities of context containment.
For example, in the model of a Simple Bank we have to
specify that the “Account Life Cycle” context contains one
“Account Creation” context, multiple “Transaction”
contexts and one “Account Deletion” context.

3rd constraint: For each context (a group of
collaboration roles) a separate model of a system of interest
should be built (2nd notion of context). For example, in the
“Account Creation” context a model of a Simple Bank
object is given in figure 3.c.

4th constraint: Based on the hierarchy of contexts, a
composition of roles from lower level contexts should be
made. For example, the “Control Account” role (in the

“Account Life Cycle” context) in figure 4 is composed of
one “Create Account” role, multiple “Make Transaction”
roles and one “Delete Account” role. Roles are composed
basically by finding identical attributes and putting
compositional constraints. Detailed information about the
composition of roles in our methodology can be found in
[1].

The first modeling constraint of the SEAM
methodology reflects the “Goal Driven Context” and
“Multiple Context” principles (see Section 3.1). The fourth
constraint defines a composition of roles from different
contexts by means of finding identical attributes (the
“Identity” principle). The first and third reflect the
“Duality” principle and all constraints are based on the
“Explicit context” principle. Thus SEAM modeling
framework reflects all five context modeling principles that
we have identified in section 3.1.

Due to the limit of space we can not give a more
extended description of the SEAM methodology. However
we believe that SEAM methodology can be better
understood through examples. In the next section we give a
practical example that shows how the SEAM context-aware
framework for BPM (SEAM visual language and SEAM
methodology) can be used to specify a Simple Bank model.

4 Example
In this section we give an example that illustrates how

the SEAM modeling framework is used to build models.
This example’s goal is to build a model of the Simple Bank
object in the “Simple Bank Life Cycle” context that is the
broadest context in our model (upper part of figure 4).

Transaction

Account Life
Cycle

Control Bank

Hold Account

Hold Account Control Account

Account
Creation

"Account Life Cycle" Context

"Simple Bank Life Cycle" Context

Simple
Bank

1

Customer Simple Bank

1

1 1

*

Transaction

Account
Deletion

1

1

1

1

Create Bank

Bank
Creation

Delete Bank

Bank
Deletion

1

1

1

1

Customer

Shareholder

Figure 4. Hierarchy of contexts for a model of the

Simple Bank object

The “Simple Bank Life Cycle” context includes
multiple “Account Life Cycle” contexts, one “Bank
Creation” context and one “Bank Deletion” context. The
“Account Life Cycle” context (lower part of figure 4) in its
turn includes one “Account Creation” context, multiple
“Transaction” contexts and one “Account Deletion” context
(see figure 3 from the previous section). Diagrams from
figures 3 and 4 represent a hierarchy of contexts for a
Simple Bank object. Therefore up to this point we have
satisfied the first two SEAM methodology constraints: we
have different contexts that model different situations for a
Simple Bank object and we have a hierarchy of contexts.

Now we can build a model of Simple Bank for each of
the specified contexts (third SEAM methodology
constraint). We start with the three lowest contexts in the
hierarchy: “Account Creation”, “Transaction” and
“Account Deletion”. The three models of a Simple Bank
(“Create Account”, “Make Transaction” and “Delete
Account”) in these contexts are shown in figure 5.

Txn

Value

1

1

0g1
0g1

1

credit to
Account

Balance
0g1

1

1
1

*

exclusive

Create
Account

M ake
Transaction

Account

Balance

Delete
Account

1g0

1g0
1

1

1

Control
Account Control

Account

Create Account Role

Control
Account

Make Transaction Role

Create
Account

H

1

H Make
TransactionH H

Delete Account Role

De lete
AccountH H

untDeleteAccoctionMakeTransa
ctionMakeTransactionMakeTransa

ctionMakeTransauntCreateAcco
AccountuntDeleteAccoountControlAccintionMakeTrasacfor

AccountctionMakeTransaAccountuntCreateAcco

→
→

→
↔∀

↔
.)(

..

Control
Account Role

0g1

1 * 1

Create
Bank Role

Delete
Bank Role

Control Bank
Role

Txn
List

Account

Balance

Txn
List

1
debit from

1

Customer

1 1

1

1
1

1

Figure 5. “Control Account” role as a set of three lower

level roles and synthesis constraints

The context, one level higher, is the “Account Life
Cycle” context. By means of composing the three roles
(“Create Account”, “Make Transaction” and “Delete
Account”), we can obtain the “Control Account” role for
this context. The “Control Account” role is a model of a
Simple Bank from the point of view of customer’s account.
It specifies how a customer works with a single account
that he creates in a Simple Bank.

The fourth SEAM methodology constraint states that in
order to compose roles we have to specify identical
attributes and put compositional constraints. We give them
in the lower part of figure 5.

The three models in figure 5 help us to reason about
attributes and actions in their original contexts. However
this diagram does not help us to reason about the “Control
Account” role as a whole, without looking into details of

the base roles. In order to do this, we define a
multicontextual view that we show in figure 6.

0g1 1 1g0

1

1

Control Account Role

Control
Account

Customer

1

1

Account

Balance

1 * 1

Txn

Value

credit to

1

1
debit from

exclusive

*

*

1

Create
Account

Make
Transaction

De lete
Account

H H

*

Create
Account

M ake
Transaction

Delete
Account

Txn
List

1

1

1

0g1

Figure 6. “Control Account” role

A multicontextual view shows the result of the
composition of base roles. It allows for the reasoning about
a composite role as a whole by means of hiding details
about base roles. Base roles are represented as actions
(ovals in the middle pane of role model). A multicontextual
view shows the relationship of attributes to lower level
roles with dashed lined arrows. This helps the reader of a
diagram to understand the meaning of attributes for lower-
level roles. If the meaning is not clear, a reader can always
refer to a detailed model of a lower-level role. Another
important property of a multicontextual view is that it
preserves multiplicity constraints. Multiplicities in figure 5
are consistent with multiplicities in figure 6. For example,
TxnList in the “Make Transaction” role (figure 5) includes
zero or one Txn attribute because in the context of making a
transaction, we are interested in the modeling of only one
debit/credit transaction. The “Control Account” role
includes multiple “Make Transaction” roles (figure 6).
Therefore TxnList in figure 6 includes multiple Txn
attributes. In another example, a “Make Transaction” role
(figure 5) includes one Account. There are multiple “Make
Transactions” roles in a “Control Account” role (figure 6).
However, Account in any “Make Transaction” role is
identical with Account in the only one “Create Account”
role. Therefore Accounts in all “Make Transaction” roles
are identical and there is only one Account in the “Control
Account” role. This kind of reasoning allows for the
automatic generation of figure 6 based on the three based
roles and composition constraints presented in figure 5. The
composition of roles as it is shown in this example
addresses the scalability problem of VLs. A visual model
can be specified as a composition of smaller visual models
(roles) and a composed model (multicontextual view) can
be generated automatically.

Let’s resume with the specification of a Simple Bank
object. Once again we can go to the higher context: “Simple
Bank Life Cycle”. By means of composing the three roles

(“Create Bank”, “Control Account” and “Delete Bank”), we
can obtain the “Control Bank” role for this context. The
composition of the tree roles is done in a similar way as in
the previous level of the context hierarchy (therefore we do
not show details of composition). However this
composition is different in one important aspect: there is a
new “Bank Assets” attribute in a model (see figure 7). This
attribute illustrates an emergent property appeared as a
result of composition. This property has an important
business value. The idea of this attribute is to relate all
accounts of a Simple Bank. This can be expressed with
composition constraints:

ControlBank.BankAssets.Balance =
∑ ControlAccount.Account.Balance (1)

Control Account

ControlBank.BankAssets.Balance > 0 (2)
These constraints show that the balance of a Simple

Bank is the sum of all account balances in this bank. Thus
we can see the idea of a Simple Bank: it accumulates
money from depositors (customer’s credit transaction). A
Simple Bank can also invest money (customer’s debit
transactions) if the overall balance of a Simple Bank is
positive (see the second constraint above).

Based on the composition constraints given above, the
three roles (“Create Bank”, “Control Account” and “Delete
Bank”) can be composed. The result of composition is
given in figure 7.

Control Bank

Control
Bank

Customer

1

1

1 * 1

Txn

1

1

1

1

exclusive

*

*

*

Create Bank Delete
BankH H

1

Create Bank Control
Account

De lete
Bank

Txn List

1

*

1

*1 1
Create

Account
Delete

Account
Make

Transaction

1

Control
AccountControl

Account

Bank
Assets

Balance *1

1

credit to

debit from

Value

1

0g1

0g 1

0g1 1g 0

0g 1

1g 0Account
List

Account

Balance

Figure 7. “Control Bank” role

The “Control Bank” role is a model of a Simple Bank
that includes several customers’ accounts. The goal of this
model is to show how a Simple Bank accumulates money
from depositors and invest them.

Putting actions on the same diagram with attributes (or
concepts), like in figures 6 and 7, provides several
advantages for system modeling. It allows for:

• Linking a model in a diagram with a concrete context
where this model is valid. This helps to avoid diagram

misunderstanding like in the case with the diagram in figure
1. In our approach we explicitly make a choice of a
situation that we model. For example, for a Simple Bank,
depending on the situation, we can get diagrams in figure 6
or 7.
• Relating system attributes and behavior. This helps in
the analysis of models. Analysis becomes easer because a
business modeler can immediately see how actions can
influence the state of a system. Therefore a modeler can
“play” with a model by mentally “executing” actions. This
can be important in discussions with non-professionals
(customers, business people).
• Making explicit the life cycle of attributes. Our
framework forces a modeler to think about attribute
creation, persistence and deletion, which helps to avoid
mistakes in later phases. In case of IT systems, modeling of
attribute persistence is useful for its later implementations
with data bases.

Note that if we remove all actions from the middle pane
of the “Control Account” and “Control Bank” roles, we can
obtain usual UML class diagrams (figure 8).

1

1

Customer

1

1

Txn

1

1

1

1

exclusive

*

*

Txn List

1

*

1
1

Bank
Assets

Balance *1 credit to

debit from

Value

Account
Lis t

Account

Balance

Bank

Figure 8. UML models of a Simple Bank object.

The diagram in figure 8 originates from figure 1. The
problem with the diagram from figure 1 was that the
purpose of this diagram was not clear. It represented some
(but not all) concepts that were used to explain two roles of
a Simple Bank object (“Control Account” and “Control
Bank”). As a result neither of two roles was modeled
accurately. In the diagram from figure 8 we do not have
such a problem. It specifies only concepts necessary for
reasoning about both roles of a Simple Bank System in
corresponding contexts.

5 Conclusion
In this work we introduced a context-aware modeling

framework. Our framework supports the explicit modeling
of contexts. We believe that the explicit modeling of
contexts makes system stakeholders’ (users, developers,
etc) reasoning about models easier. Due to easier reasoning,
our framework is useful for business process modeling
where a business analyst needs to get an immediate
feedback on models. We explained how our framework can
be used for the business process modeling. Our framework
allows for the modeling of all elements of a business
process (goals, activities, roles, objects and context).

Our framework is based on a role modeling technique
proposed in [13] and adopted for business process modeling
in [1]. In the context of role modeling, our contribution is
that we have shown that a context can be modeled as a role
model, where a role represents a subset from the complete
set of attributes and actions for the whole model.

Our belief, that the proposed framework makes the
reasoning about models easier, is based on our practical use
of this framework for undergraduate courses. To make a
quantitative analysis, we are planning to work out a
questioning that can show the comparison of the human
reasoning efficiency of our framework comparing with
other modeling frameworks that use “UML-like” visual
languages.

We expect the best output of our modeling framework
when using a case tool, which will be the goal of our future
work. This case tool must support the specification of a
business process as a composition of smaller models, such
that each of them has its own goal and is small enough to
get immediate feedback on it.

6 References
[1] Balabko, P., Wegmann, A., “A Synthesis of Business

Role Models”, Proc. of ICEIS conference, 2003,
Anger, France.

[2] Bouquet, P., et al., “Theories and Uses of Context”,
Knowledge Representation And Reasoning, 2001,
technical report, Centro Per La Ricerca Scientifica e
Tecnologica: Povo (Trento), retrieved from
http://www.itc.it

[3] Carlsen, S., “Conceptual Modeling and Composition
of Flexible Workflow Models”, Norwegian University
of Science and Technology, PhD Thesis, 1997.

[4] Checkland, P., “Systems Thinking, Systems Practice”,
Chichester, UK: Wiley, 1999.

[5] Chang, S.K., et al. “The Future of Visual Languages”,
Proc. IEEE Symposium on Visual Languages, 1999,
Tokyo, Japan.

[6] Collins-Cope, M., “Object Oriented Analysis and
Design using UML”, white paper, 1998, Ratio Group
Ltd.: London, retrieved from
http://www.ratio.co.uk/white.html

[7] Dembski, W.A., “The Fallacy of Contextualism”, The
Princeton Theological Review, 1994, retrieved from
http://www.arn.org/docs/dembski/

[8] Giunchiglia, F., “Contextual Reasoning”, Technical
Report #9211-20, University of Trento, 1993.

[9] ISO/IEC, (1996). 10746-1 | ITU-T Recommendation,
“Open Distributed Processing - Basic Reference
Model - Part 2: Foundations”.

[10] Kueng, P., et al., “How to compose an Object-
Oriented Business Process Model?” Proc. IFIP
Conference on Method Engineering, 1996

[11] Motschnig-Pitrik, R., “Contexts as means to
decompose Information Bases and represent
relativized Information”, Proc. CHI Workshop #11:
The Who, What, Where, When, Why and How of
Context-Awareness, 2000, Hague, Netherlands.

[12] Ould M. A., “Business Processes: Modeling and
analysis for re-engineering and improvement”, John
Wiley & Son, 1995

[13] Reenskaug, T., et al., “Working With Objects: The
OOram Software Engineering Method”. ed: Manning
Publication Co, 1996

[14] Singh, B. & Rein, G.L., “Role Interaction Nets
(RINs): A Process Description Formalism”,
Technical Report #CT-083-92, MCC, 1992.

[15] Wisse, P., “METAPATTERN: information modeling
as enneadic dynamics”, 2001, Technical report,
University of Amsterdam: Amsterdam, Netherlands,
retrieved from http://primavera.fee.uva.nl/html/

[16] Wegmann A., “The Systemic Enterprise Architecture
Methodology (SEAM)”, Proc. ICEIS conference,
2003, Anger, France

[17] Workflow Management Coalition, “The Workflow
Reference Model”, January 1995, retrieved from:
http://www.wfmc.org/standards/standards.htm

[18] Vassallo, N., “Contexts and Philosophical Problems
of Knowledge”, Proc. CONTEXT conference, 2001,
Springer-Verlag.

