
3

FROM RM-ODP TO THE FORMAL
BEHAVIOR REPRESENTATION

Pavel Balabko, Alain Wegmann

Laboratory of Systemic Modeling

Ecole Polytechnique Fédérale de Lausanne
EPFL-IC-LAMS

{pavel.balabko,alain.wegmann}@epfl.ch

Abstract. In this work we consider the behavioral aspects of system modeling. In order to specify the
behavior of a system, many different notations can be used. Quite often, different terms in these
notations are related to the same element in a system implementation. In order to relate these terms and
guarantee the consistency between different notations, a standard framework should be used. In this work
we show how the Reference Model for Open Distributed Processing (RM-ODP) can be used for the
purpose of the mapping of terms from different behavioral notations. RM-ODP behavior models are
based on the concept of Time Specific Action. Time Specific Actions represent directly things that
happen in the Universe of Discourse with explicit reference to time. However the explicit reference to
time leads to a considerable loss of abstractness. To elevate the level of abstraction we have considered
Time Abstracted RM-ODP models where concrete time information is omitted. We used Time Abstracted
RM-ODP models to show the correspondence between terms in UML Activity Diagrams, UML
Statechart Diagrams and CCS process algebra by means of relating them with RM-ODP terms. This
allows us to consider RM-ODP as a possible meta-model for behavior specifications written in UML. It
can help to insure the consistency of UML models.

1 INTRODUCTION

Behavior models play a central role in system specifications. Many specification
languages can be used to specify the behavior of a business and IT systems. A
system designer chooses a particular language depending on the designer’s
experience and on the problems he is trying to solve. For example, to show the
conformance of the implementation of a system behavior with its specification, a
system designer can use formal languages (for example, Pi-calculus). To visualize
the state machine of a developed system, a system designer may use a UML
statechart diagram or activity diagram (a variation of a state machine in which the
states represent the performance of actions or subactivities [O1999]). The design of
complex systems requires that a system designer solve many problems
simultaneously (visualize a model, check the conformance of a model, etcetera), thus
several specification languages should be used. This raises a problem: a system
designer needs to build several independent models of the same system. This leads to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147889065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

42 Chapter 3

the duplication of the information, which can be an additional source of errors:
models done in different languages can be inconsistent.

To avoid building several mutually dependent models, we can build a generic
model (see Figure 1).

Goal:
conformance

test

Semantic D.:
Generic Model

Satisfies

Semantic D:
UML Activity Diagram

Process algebra
(graph view)

UML Activity Diagram View

e1 e2

e1
S1 S2

e2

a1

a2

a3(p)
[e1]

[e2]

[e2]

[e1]

s1

s2

e1/a1

e2/
a2

e2/a3(p)

e1/
a2

UML Statechart Diagram
View

P = e1.a1.P1
P1 = e2.a2 + e2.e3.e1.a2.P

Process algebra
(expression) View Semantic D.:

Process algebra

Goal: Visual
representation

Satisfies

Satisfies

Satisfies

Satisfies

Model of a system
(with generic
semantics)

Different Views on
Generic Model

Time Action

ConstraintState

Action

Event

State

Action

Process

;|;
;;.

PP
MMPa

τ
+

S
e

s1 H

H

e/a

a
H[e]

ca

s
t

Syntactic D:
Process algebra

(graph view)

Syntactic D:
UML Statechart

Diagram

Syntactic D:
UML Activity Diagram

Syntactic D.:
Process algebra

(expression)

Syntactic D.:
Generic Model

State

begin
end

state constraint action

includes
includes

changes

Signal

triggers

changesis

State

Event

changes

triggers Action

Semantic D:
UML Statechart Diagram

Figure 1. Generic Model and different views on a generic model
All other models can be considered as views of this generic model. Any view on

a model should address some particular problems that a system designer wants to
solve. Any view is based on a particular specification language. J. Wing in [W1990]
defines specification language as a triple <Syntax, Semantics, Satisfies>, where
Syntax is called a language syntactic domain; Semantics is a language semantic
domain, and Satisfies is “satisfies relation”. Satisfies relation defines the relation
between syntactic terms in a system specification and their semantic meanings in a
semantic domain.

The semantic domain of the generic model should cover the semantics of all
possible views that a generic model can have. In other words, any concept in the
semantic domain of any view should be mapped with one or more concepts in the
semantic domain of the generic model. This shows that the semantic domain of the
generic model should be generic enough to include all fundamental concepts for the
specification of business and IT systems.

In this work we propose to use the Part 2: Foundations of the Open Distributed
Processing - Reference Model RM-ODP [I1996] as a semantic domain for the

Form RM-ODP to the Formal Behavior Representation 43

generic model. “RM-ODP, ITU-T Recommendations X.901 to X.904 | ISO/IEC
10746, is based on precise concepts derived from current distributed processing
developments” [I1996]. We choose RM-ODP because “RM-ODP introduces generic
terms that apply to any form of modeling activity” [N2001] and RM-ODP provides
rigorous semantics for these terms. We use a formalization of this semantics written
in the Alloy languagei. This formalization was proposed in [N2001], where
Naumenko shows the classification of RM-ODP concepts with the aid of the set
theory and using regular predicate logic. RM-ODP concepts described in [N2001]
can be used only as a basis for the semantics of the generic behavior model. The
work of Naumenko contains too many different concepts: not all of them are related
with behavior modeling. Thus in this work we consider only a subset of concepts
from [N2000] and refine some of them in order to define semantics for generic
behavior models.

In section 2 we consider the minimum set of RM-ODP concepts that we need to
build generic behavior models. We define more precisely some RM-ODP behavior
modeling concepts (particularly behavioral constraints, time and state). We have to
do this because RM-ODP does not define all modeling concepts precisely enough to
relate them with other existing formal notations. One of the basic RM-ODP
modeling concepts that we consider in section 2 is action. It represents directly
things that happen in the Universe of Discourse with explicit reference to time. In
other words, any action (or time specific action) is specified for the particular time
interval. We call a model built with time specific actions Time Specific RM-ODP
model.

Time Specific RM-ODP model can not be used to specify an infinite behavior
that may contain infinitely many actions. To specify infinite behavior, a system
designer has to use action types. In section 3 we introduce two action types: Time
Abstracted Action (section 3.1) and Parameterized Time Abstracted Action (section
3.1). Based on these two types, we define a Time Abstracted RM-ODP model. This
model can be taken as a generic from figure 1. The main contribution of this chapter
consists in making explicit the relations between Time Specific and Time
Independent RM-ODP models.

In section 4 we show an example of how a Time Abstracted RM-ODP model
can be used as a generic model. We show how it can be seen from the three views
done with the following specification languages: CCS process algebra, UML
Activity Diagram and UML Statechart Diagram. Section 5 is a conclusion.

2 RM-ODP A GENERIC SEMANTIC DOMAIN

In this section we consider the concepts from the RM-ODP semantic domain that are
necessary for the modeling of the behavior of systems.

The basic concepts that we use in our work are taken from the clause 8 “Basic
modeling concepts” of the RM-ODP Part 2. These concepts are: action, time, and
state. According to [N2001] these concepts are essentially the first-order propositions
about model elements. We will also use some concepts (type, instance, precondition,

44 Chapter 3

postcondition) from the clause 9 “Specification concepts”. Specification concepts are
the higher-order propositions applied to the first-order propositions about the model
elements. Wegmann [W2001] states: “Basic Modeling Concepts and generic
Specification Concepts are defined by RM-ODP as two independent conceptual
categories. Essentially, they are two qualitative dimensions that are necessary for
defining model elements that correspond to entities from the universe of discourse”.

To explain the semantics of the generic model more clearly, we will use the
Alloy formalism. Alloy is a simple modeling language that allows a modeler to
describe the conceptual space of a problem domain. Using Alloy we specify the RM-
ODP semantic domain.

RM-ODP conceptual elements from the semantic domain can be partitioned in
the following way:
model RM-ODP {
domain {ODP_Concepts}
state {
partition … BasicModellingConcepts, SpecificationConcepts : static ODP_Concepts
…
}
Code Fragment 1. RM-ODP model

Let’s consider the minimum set of modeling concepts (Basic Modeling
Concepts and Specification Concepts) necessary for the specification of systems
behavior. There are a number of approaches for specifying the behavior of
distributed systems coming from people with different backgrounds and considering
different aspects of behavior. “However, they can almost all be described in terms of
a single formal model” [L1990]. Based on Lamport, to specify the behavior of a
concurrent system a system designer has “to specify a set of states, a set of action
and a set of behavior”. Each behavior is modeled as a finite or infinite sequence of
interchangeable states and actions. To describe this sequence there are mainly two
dual approaches. According to [B1991] they are:

1. “Modeling systems by describing their set of actions and their behaviors”.
2. “Modeling systems by describing their state spaces and their possible

sequences of state changes”.
“These views are dual in the sense that an action can be understood to define state
changes, and state changes occurring in state sequences can be understood as abstract
representations of actions” [B1991]. In our work we consider both of these
approaches as an abstraction of the more general approach based on RM-ODP. In the
next subsection we consider the first approach where we give the definition of action
and behavior. Then we consider the definition of state and state structure. Finally we
show how state and behavior are related, thus showing their duality.

2.1 Action Structure

In this subsection we show how systems are specified “by describing their set of
actions and their behaviors”. Action in RM-ODP is defined as:
Action: “Something which happens”.

Form RM-ODP to the Formal Behavior Representation 45

This definition means that “action characterizes a model element for its being
“something that happens” [W2001]. To specify a model element as an action we
have to consider two other modeling concepts that model changes happening in a
system when an action occur. They are state and time. The definition of the state
concept is given in the next subsection. The concept of time is a fundamental concept
in modeling of systems. Based on RM-ODP time is a basic modeling concept that is
used to specify the beginning and the end of an actionii. Therefore each RM-ODP
action is bound to the specific time interval. That is why in our work we call RM-
ODP action as Time Specific Action (TSAction):
partition …, TSAction, Time, … : static BasicModellingConcepts
 // Time and TSAction are BasicModellingConcepts

instant_begin : TSAction −>Time! // each TSAction has one time point when it starts
instant_end : TSAction −>Time! // each TSAction has one time point when it finishes
Code Fragment 2. Beginning and end of TSAction

However RM-ODP does not explain how time is modeled. A system designer has to
decide how accurate he wants to model time. Henri Poincaré in [P1983] shows that a
precise clock that can be used for time measurement does not exist in practice but
only in theory. So the measurement of the time is always approximate. In this case
we should not choose the most precise clocks, but those that explain the investigated
phenomena in the best way. “Simultaneity of two events or their sequentiality,
equality of two durations should be defined in the way that the formulation of the
physical laws is the easiest” [P1983]. According to this idea we can choose different
models of time. RM-ODP confirms this idea by saying that “a location in space or
time is defined relative to some suitable coordinate system” [clause 8.10]. The time
coordinate system defines a clock used for system modeling.

In our work we consider a time coordinate system as a partially ordered set of
time points. Each point can be used to specify the beginning or the end of TSAction.
A time coordinate system must have the following fundamental properties:
• Time is always increasing. This means that sequences of time points can not

have loops.
• Any time point is defined in relation to other time points (next, previous or not

related). This corresponds to the partial order defined on the set of time points.
We use the following formalization of time in Alloy: time is defined as a set of time
points. Any time point has to be defined in relation with some other time points
(partial order):
nextTE: Time -> Time // defines the set of nearest following time points for any time point
 // note that any time point may include several nextTE time points

We will also use the followingTE relation to define the set of the following time points
or the transitive closure of the time point t over the nextTE relation:
// part of Alloy time declaration
followingTE: Time ->Time // defines all possible following time points

Using followingTE we can write the following Alloy invariantiii that defines the
transitive closure and guarantees that time point sequences do not have loops:

46 Chapter 3

inv TimeInvariant {
all t: Time | // For all time points t
((no t.nextTE)->(no t.followingTE)) && // (if t does not have nextTE it also does not have

followingTE) and
 ((some t.nextTE && no t.nextTE.followingTE) // (if t has the nextTE that does not have any

followingTE
 ->(t.followingTE=t.nextTE)) && // then t.followingTE is equal to t.nextTE) and
 ((some t.nextTE && some t.nextTE.followingTE) // (if t has the nextTE that has some followingTE
 ->(t.followingTE=t.nextTE.followingTE + t.nextTE)) && // then t.followingTE includes t.nextTE

and t.nextTE.followingTE) and
(t not in t.followingTE) // (time does not have loops)
}
Code Fragment 3. Time invariant
Now, using the already defined concept of Time we can give a formal Alloy
definition of TSAction:
def TSAction{
 all a: TSAction // for each TSAction a
 | some t1:a.instant_begin // [(exists t1 = a.instant_begin) and
 | some t2: a.instant_end // (exists t2 = a.instant_end)] then
 | (t2 in t1.followingTE) // (t2 happens after t1)
}
Code Fragment 4. TSAction

In this definition we suppose that the duration of any TSAction is not equal to
zero (t1 can not be equal to t2). But in certain cases we can make an abstraction of
the information about the fact that TSAction starts and ends in different time points
(to define so called instantaneous actions). For this purpose we have to use an
abstraction of time information that we consider in section 3.

To make a specification that includes more than one TSAction, we have to
consider how TSActions in a specification can be structured. We use the RM-ODP
behavior concept to define the TSAction structure:
Behavior: “A collection of [Time Specific] Actions with a set of [Time Specific
Behavioral] Constraints on when they may occur”,
That can be formally represented in the following way:
// part of Alloy behavior declaration
Behavior: BasicModellingConcepts
partition TSAction, TSBehavioralConstraints: static Behavior
 // Behavior is partitioned into the set of actions and the set of constraints.
corresponding_constraint (~constrained_action) : TSAction -> TSBehavioralConstraints
 // TSActions defined with corresponding TSBehavioralConstraints and vice versa.
def Behavior {
all b: Behavior | // For any element b from Behavior set; (note that behavior is
 // partitioned into the set of TSActions and the set of
 // TSBehavioralConstraints)
 ((b in TSAction) && // [(if b is a TSAction) then
 (some b.corresponding_constraint))) || // (b has a at least one corresponding_constraint)]

and
 ((b in TSBehavioralConstraints) && // [(if b is a TSBehavioralConstraint) then
 (some b.constrained_action)) // (b has a at least one constrained_action)]
}

Code Fragment 5. Behavior

Form RM-ODP to the Formal Behavior Representation 47

This definition uses a concept called (TimeSpecificBehavioral) constraint. RM-ODP
does not give us the precise definition of these constraints. But it gives some
examples. Constraints may include, for example, constraints of sequentiality, non-
determinism, concurrency or real-time constraints. From the definition of behavior,
we can only conclude that TSBehavioralConstraints are part of a system behavior
and that they are associated with TSActions (see the formal definition above). We
will extend the definition of behavioral constraints in the next subsection.

2.1.1 Time Specific Behavioral Constraints

Many modeling techniques represent behavioral constraints implicitly. Quite often
we can infer them from behavior representation, like a transition graph. For example,
figure 2 shows an example from the Milner’s book [M1999] with two different
specifications of a coffee/tea vending machine. This machine accepts coins of value
2p and provides a customer with coffee or tea. To get a coffee or tea a customer has
to introduce coins and press a corresponding button (coffee or tea). The price for tea
is 2p and the price for coffee is 4p. Figure 2.a shows the specification that has only
constraints of sequentiality, since in any state of a system the next action is precisely
defined depending on the request of a customer. Figure 2.b shows the specification
with constraints of sequentiality as well as constraints of non-determinism. We can
infer that the system in figure 2.b is specified using constraints of non-determinism;
“after we have put in the first 2p, it may be in a state in which we can only get tea (it
will not accept a further 2p), or it may be in a state in which we can only put in more
money to get coffee” [M1999]. These two specifications “are annoyingly different
for a thirsty user”

2p

coffee

2p

tea

2p

coffee

2p

tea
2p

(a) (b)

Figure 2. Specification of the system using: a - sequential deterministic constraints; b -
sequential and non-deterministic constraints

We base our approach on RM-ODP, where BehavioralConstraints are
represented explicitly (“Behaviour of an object: A collection of (TS) Actions with a
set of (TS) Behavioral Constraints on when they may occur” [I1996]). In our work
we show how TSBehavioralConstraints can be made explicit: how the behavior of a
system can be specified using a set of TSAction and TSBehavioralConstraints of
sequentiality and non-determinism.

Constraints of Sequentiality

We begin with the analysis of TSBehavioralConstraints of sequentiality
(TSSeqConstraints in Alloy code fragment 6). Each TSSeqConstraint of sequentiality
should have the following properties:

48 Chapter 3

• It is defined between two or more TSActions.
• Sequentiality has to guarantee that one TSAction is finished before the next one

begins.
TSSeqConstraints: TSBehavioralConstraints // TSSeqConstraints are
TSBehavioralConstraints

def TSSeqConstraints {
all sc: TSSeqConstraints | // for any sc: TSSeqConstraints
some a1, a2: TSAction | (a1 != a2) && // (there are two different TSActions a1, a2) such that
 (a1 in sc.constrained_action) && (a2 in sc.constrained_action) && // (sc is defined between

a1 and a2) and
 ((a2.instant_begin in a1.instant_end.followingTE) || // [(a1 is before a2) or
 (a1.instant_begin in a2.instant_end.followingTE)) // (a2 is before a1)]
}

Code Fragment 6. TSBehavioralConstraints of Sequentiality

The Alloy definition from the code fragment 6 requires TSSeqConstraints to have a
minimum of two sequential actions that happen one after another. But this Alloy
definition does not tell us which TSActions happen first. To specify this we use two
Alloy relations (seq_constraint and next_actions) and SeqInvariant (see code fragment
7). The seq_constraint relation relates a given TSAction (let’s call it tsa) to one
TSSeqConstraint. Then the next_actions relation relates TSSeqConstraint to the set
of the TSActions. This set of action is the set of next TSActions for tsa.
seq_constraint: TSAction->TSSeqConstraints! // for any TSAction there is one TSSeqConstraint

that connect TSAction with next TSActions
next_actions: TSSeqConstraints -> TSAction // any TSSeqConstraint can have several next

TSActions
inv SeqInvariant {
 all sc:SeqConstraints | // for any sequential constraints sc and
 all a1:sc.constrained_action | // for all TSActions a1 and a2
 all a2:sc.constrained_action | // constrained by sc

 ((a2.instant_begin in
 a1.instant_end.followingTE) -> // if a1 is before a2 then
 ((sc=a1.seq_constraint) && // [(sc is seq_constraint for a1) &&
 (a2 in sc.next_actions) && // (sc includes a2 as the next action) &&
 (a1 not in sc.next_actions) && // (sc does not include a1 as the next action) &&
 (sc not in a2.seq_constraint)) // (sc is not sequential constraint for a2)]
) && // AND
 ((a1.instant_begin in
 a2.instant_end.followingTE) -> // if a2 is before a1 then
 ((sc=a2.seq_constraint) && // [(sc is seq_constraint for a2) &&
 (a1 in sc.next_actions) && // ((sc includes a1 as the next action) &&
 (a2 not in sc.next_actions) && // (sc does not include a2 as the next action) &&
 (sc not in a1.seq_constraint)) // (sc is not sequential constraint for a1)]

)
}

Code Fragment 7. Invariant that defines the sequence of TSActions

To illustrate the Alloy definition of TSSeqConstraints we show the example of
the model (see figure 3) that corresponds to the formal Alloy semantics given above.

Form RM-ODP to the Formal Behavior Representation 49

tsa2
(TSAction)

t1
(Time)

t0
(Time)

t2
(Time)

t3
(Time)

nextTE

nextTE

instant_begin

instant_end

tsa1
(TSAction)

nextTE

c0
(SeqConstraints)

instant_end

instant_begin

seq_constraint

next_actions

corresponding_constraint
constrained_action

corresponding_constraint
constrained_action

Figure 3. Example of the model of a system behavior built with Alloy Constraint Analyzer

The model from figure 3 was built with the Alloy Constraint Analyzeriv. This
model is a result of the analysis of formal behavior semantics done with alloy
Constraint Analyzer. The Alloy Constraint Analyzer checks the consistency of the
formal semantics, randomly generates a sample configuration and visualizes it.
Figure 3 shows a model that consists of the set of TSActions {tsa1, tsa2}, the set of
TSBehavioralConstraints {c0}, the set of time points {t1, t0, t2, t3} and relations
between model elements. Note that labels for model elements in figure 3 are
generated automatically. That is why these labels are not ordered. We can see that
the constraint c0 is the TSBehavioralConstraint of sequentiality between two
TSActions tsa1 and tsa2. In figure 3 we show the corresponding_constraint and
constrained_action relations with dotted arrows. We do it because these two relations
do not do not have a particular interest for us for the rest of this work. They have
been used only to define TS behavioral constraints. Thus we do not show these
relations in following figures. Instead we use the seq_constraint and next_actions
relations to show the sequence of TSActions.

The fact that the Alloy Constraint Analyzer has found a sample model allows us
to conclude that formal behavioral semantics done in Alloy does not contain
contradictions.

The definition of the constraints of sequentiality allows us to specify the
semantics of the concepts defined in the section 13 of RM-ODP “Activityv
Structure”. Here we give two examples (for Chain of actions and Head action) that
show how the formal semantics for these two concepts can be done based on the
constraints of sequentiality.
Head action: In a given activity, an action that has no predecessor.
def HeadAction{
 all ha:HeadAction| // for all ha:HeadAction
 no a:TSAction| // does not exist any a:TSAction
 ha in a.seq_constraint.next_actions // such that ha is successor of a
}
Additionally we have to guarantee that all TSActions that do not have predeccessors
are Head actions. We do it with the following Alloy invariant:

50 Chapter 3

inv HeadActionInvariant {
 all a:TSAction| (no a1:TSAction| a in a1.seq_constraint.next_actions) ->(a in HeadAction)
}

Another concept that can be formalized using constraints of sequentiality is a chain
of actions:
Chain (of actions): A sequence of actions within an activity where, for each adjacent
pair of actions, occurrence of the first action is necessary for the occurrence of the
second action.
Based on the definition of synthesis constraints, we have to require that for any
action in a chain maximum one successor and maximum one predecessor is possible:
def Chain {
 all ch:Chain | // for all chains of actions
 (not sole ch.actions_in_chain) && // {there are min 2 action} &&
 (all a:ch.actions_in_chain | // {for all actions a in chain ch:
 ((one a1: ch.actions_in_chain | // [(there is one
 a in a1.seq_constraint.next_actions) || // predecessor action a1) or
 (a in HeadAction)) && // (a is Head action)] &&
 (one a.seq_constraint.next_actions || // [(there is one successor) or
 no a.seq_constraint.next_actions) && // (there is no successors)] &&
 (one a2: ch.actions_in_chain | a2 in HeadAction) // [one Head action per chain]}
)
}

Constraints of Non-determinism
In order to formalize TSBehavioralConstraints of non-determinism we considered
the following definition given in [B1991]: “A system is called non-deterministic if it
is likely to have shown a number of different behaviors, where the choice of the
behavior cannot be influenced by its environment”. This definition of non-
deterministic constraints is given from the point of view of the external observer of a
system: when the external observer can not predict the reaction of a system after an
interaction with a system. This means that the system at one point makes an internal
choice between a minimum of two “branches” of different behavior.

Let’s see how this definition works for the example from figure 2.b. In figure
2.b we can see that when a user of the coffee machine introduces first 2p, the system
can enter into two different states and therefore it can have two different behaviors: it
will wait for the second 2p or will provide tea for the user of the coffee machine.
Thus a system has two different behaviors and the choice of the behavior can not be
influenced by its environment.

In a general form, TSBehavioralConstraints of non-determinism should be
defined between a minimum of three TSActions. The first TSAction should precede
the two following internal TSActions. We can write this in Alloy in the following
way:
TSNonDetermConstraints: TSBehavioralConstraints // TSSeqConstraints are
TSBehavioralConstraints
def TSNonDetermConstraints {
all ndc: TSNonDetermConstraints | // for any ndc:
TSNonDetermConstraints

some a1:TSAction | // (there is an TSAction a1) and
some a2, a3 in InternalTSAction | // (there are two internal TSActions a2
and a3) such that

Form RM-ODP to the Formal Behavior Representation 51

 (a1 in ndc.constrained_action) && // (sc is defined for a1) and
 (a2 in ndc.constrained_action) && // (sc is defined for a2) and
 (a3 in ndc.constrained_action) && // (sc is defined for a3) and
 (a2.instant_begin in a1.instant_end.followingTE) && // (a1 is before a2) and

(a3.instant_begin in a1.instant_end.followingTE) // (a1 is before a3)
}

Code Fragment 8. Constraints of non-determinism

Note that intuitively we may think to model a constraint of non-determinism as an
internal action that makes a non-deterministic choice between two (or more)
following actions. Can we really do that? An action that makes a choice between two
“branches” of behavior should be specified with two (or more) different post-states.vi
Each post-state defines a separate “branch” of behavior. But in our case we use time
specific actions. This means that each action has a particular time when it starts and
ends. As we will show in the next section, each time moment is associated to only
one state. Thus the specification of a non-deterministic choice is not possible using
TSAction and we use behavioral constraints to represent it in our models.

The discussion from the previous paragraph shows that the semantics of
behavioral concepts would not be complete without considering the state of an
object: “an object is characterized by its behavior and, dually, by its state” [I1996].
In the next section we discuss the definition of the state of an object and relate the
concept of state with behavioral concepts considered above.

2.2 State Structure

Here we consider the second approach based on “Modeling systems by describing
their state spaces and their possible sequences of state changes” [B1991]. We begin
with RM-ODP definition of state:
[TS]State (of an object) (RM-ODP, Part 2, clause 8.7): At a given instant in time,
the condition of an object that determines the set of all sequences of [TS]Actions in
which the object can take part.

This definition shows that the state of an object is defined in a given time point.
That is why we call this state as Time Specific State (TSState).

In this work we use some simplifications. Since in this paper we consider the
behavior only for one object, we do not make objects explicit on diagrams and in
Alloy code. Therefore we declare TSState in Alloy without making a reference to an
object:
// part of Alloy state declaration
state-existence: Time! -> TSState_! // state is defined at a given moment in time
This Alloy definition taken from [N2001] can hardly be used in practice: to make
specifications of complex systems it is not enough to specify TSState of an object in
any point in time. We have to specify particular details that show how the TSState of
an object changes. For this purpose we use the state structure:
TSState Structure (of an object): A set of attributes, a set of attribute values.

Based on the TSState Structure we can specify states of each attribute. The state
of an attribute specify the value that this attribute has in a given time point. Each

52 Chapter 3

action can change values of some attributes while keeping other attributes
unchanged. The composition of states of all attributes of an object gives us the
composite state:
Composite TSState (of an object): Composition of states of all attributes of an
object.
To specify the Composite TSState of an object we will use a function that specifies
the relation between attributes and their values at a given moment in time. In Alloy
this definition is written in the following way:
// part of Alloy declarations
partition … Information … : static BasicModellingConcepts // Information is a basic modeling

concept
partition StructuralInfo, BehavioralInfo : static Information // Information can be structural

and behavioral
// State Structure
Attrs, AVals: StructuralInfo // state structure: set of attributes and attribute values
attrValue [Time]: Attrs -> AVals! // any attribute has one value at a given moment
Code Fragment 9. Structural and behavioral information
Note that our definition of a Composite TSState extends the definition of the state
proposed in RM-ODP. A Composite TSState shows how RM-ODP state can be
specified as a composition of the states of several attributes.

As we said above “an action can be understood to define state changes and state
changes occurring in state sequences can be understood as abstract representations of
actions” [B1991]. This shows that TSState is dual with the concept of TSAction and
these modeling concepts cannot be considered separately. To show the duality of
TSAction and TSState we have to extend the definition of TSAction from the
previous subsection in order to show that TSActions changes the state of a system:
def TSAction{
 all a: TSAction // for each TSAction a
 | some attr: Attrs // there is at least one attribute such that

| some t1:a.instant_begin // (if t1 = a.instant_begin) and
| some t2: a.instant_end // (if t2 = a.instant_begin) then
| (t2 in t1.followingTE) && // [(t2 happens after t1) and
(attr.attrState[t1] != attr.attrState[t2]) // (attributes change their values in this

TSAction)]
}
Code Fragment 10. TSAction (new definition)
Note that in this definition each TSAction changes the value of at least one attribute.
To understand it, let’s go back to the definition of state. To determine the sequence
of TSActions in which an object can take part, TSState has to keep information about
which TSActions are already executed, which TSActions are currently executed, and
which TSActions can be executed in the future. Thus each TSAction changes at least
one attribute in the TSState of an object. This attribute keeps information about the
fact that this TSAction is finished (or not)vii.

Figure 4 shows the example of the model of state structure corresponding to the
Alloy formal semantics.

Form RM-ODP to the Formal Behavior Representation 53

attr1
(Attribute)

attr2
(Attribute)

v1
(AVal)

v0
(AVal)

attrState[t2] attrState[t1]attrState[t3] attrState[t0] attrState[t3] attrState[t0] attrState[t1] attrState[t2]

Figure 4. Example of the model of a system state, built with Alloy Constraint Analyzer
This example continues the example from figure 3. It shows that a system has two
attributes (attr1, attr2). Each attribute may have two values (v1, v0) in different time
points (t0, t1, t2, t3). By analyzing two diagrams from figure 3 and figure 4 we can
see that the TSAction tsa2 changes the value of the attribute attr1
(attr1.attrState[t1]=v0 and attr2.attrState[t0]=v1) and the TSAction tsa1 changes
the value of the attribute attr2 (attr2.attrState[t2]=v0 and attr2.attrState[t3]=v1).

2.3 Example of Complete Time Specific RM-ODP Model

The semantics of RM-ODP makes explicit how TSState and TSAction structures are
related to each other. But the visual representation of models provided by Alloy
Constraint Analyzer is not yet explicit enough. It represents TSState and TSAction
structures separately (see figure 5 and figure 6). However, figure 5 and figure 6 are
related by means of time points: any TSAction is defined between two time points
(see code fragment 9) and any TSState is defined for a given time point (see code
fragment 8). In order to explicit this relation between TSAction and TSState
structures and to simplify Alloy diagrams, we use our notation. We use ovals to
represent TSActions, rounded rectangles to represent TSStates. Each TSState is
specified as a composition of TSStates of systems attributes. To represent time points
we use small gray circles and to represent behavioral constraints we use stars. To
represent relations between model elements we use arrows named in the same way as
in figures 3 and 4 with a slight difference. First, we do not show
corresponding_constraint and constrained_action relations. We show only
seq_constraint and next_actions relations that we use to indicate the sequence of
actions. Second, instead of showing states of each attribute in a given time point, we
show the state of all attributes together. For this purpose we use state existence
relation. In our work we call diagrams built using this notation Time Specific RM-
ODP diagrams. Figure 5 shows an example of such diagram that corresponds to the
model automatically generated with Alloy Constraint Analyzer. This example is
based on the models from figures 3 and 4: the specification of the states of attributes
from figure 4 was added to the specification of behavior from figure 3. The states of
attr1 and attr2 are shown as parts of the composite states.

54 Chapter 3

attr1=v0
attr2=v0

t1 t0 t2 t3

c0
<<TS>>

attr1=v1
attr2=v0

attr1=v1
attr2=v0

attr1=v1
attr2=v1

tsa2
<<TSAction>>

tsa1
<<TSAction>>

nextTE nextTEnextTE

Figure 3

Figure 4} instant_begin instant_end instant_begin instant_end

seq_constraint next_actions

state_existence state_existence state_existence state_existence

Figure 5. Time Specific RM-ODP model that combines the state structure from figure 5 and
the TSAction structure from figure 6
We call a model specified with TSActions, a Time Specific RM-ODP model. As we
can see a Time Specific RM-ODP model is precise but quite bulky (it contains too
many details), even if the behavior to be modeled is simple. Fortunately, we can use
a number of abstractions and simplifications to reduce the complexity of the model.
Using simplifications can bring us to other different models. Further in our work we
show some simplifications that can bring us to some existing modeling techniques:
CCS process algebra, UML Statecharts and UML Activity diagrams.

3 TIME ABSTRACTED AND PARAMETRIC RM-ODP
MODEL

As we have seen in section 2, Time Specific RM-ODP models have precise
semantics that explain how different RM-ODP model elements are related to each
other. However Time Specific RM-ODP models can not be used for modeling of the
behavior with infinitely many TSActions. The behavior of an object may contain
infinitely many TSActions due to the two following reasons. First, if the
specification of the behavior is not limited in time. In this case, the sequence of
actions would be unlimited. In order to make a finite specification of the infinite
sequence of actions, we have to make an abstraction of time. In section 3.1 we show
how an abstraction of time can be done. Second, the specification of behavior may
contain infinitely many actions if at some point in time only one TSAction is
possible out of the infinitely many TSActions. For example, if an object receives
from its environment a single value out of infinitely many possible values, then using
Time Specific RM-ODP model we have to specify a separate TSAction for each
possible value. We have to do this because each TSAction can have only one post-
state that would correspond to the reception of a concrete value. This will result in
infinitely many TSActions and states of an object. In section 3.2 we show how to
deal with this problem by means of specifying parameterized actions.

Form RM-ODP to the Formal Behavior Representation 55

3.1 Time Abstracted Actions

System designers often do not make explicit time information and keep only
constraints of sequentiality. Sometimes the presence of time information makes
modeling precise, however “the incorporation of concrete timing properties leads to
a considerable loss of abstractness” [B1991]. For example, using only TSAction does
not allow specifying infinite behavior since it requires infinite sequence of
TSActions. To make the specification of infinite behavior, we have to consider an
abstraction of actual time information.

Based on the definition of TSAction, any TSAction changes the values of some
attributes. We have also mentioned in section 2 that any TSAction must change the
value of at least one attribute. This attribute or attributes show the state of a
TSAction (if this TSAction has been finished or not). We call attributes that show the
state of a TSAction, temporal attributes. These attributes specify which TSActions
can be executed next. Hence we call them temporal. All other attributes we will call
ordinary attributes. In Alloy code we partition the set of all attributes to the set of
temporal attributes and the set of ordinary attributes.
partition TAttrs, OAttrs :static Attrs // attrubutes can be temporal or ordinary

For example, figure 6 shows the example from the previous section where we
distinguish between temporal and ordinary attributes.

c1
<<TS>>

S1
tsa1_fin= false
tsa2_fin= false
attr1= v0
attr2= v0

tsa2
<<TSAction>>

tsa1
<<TSAction>>

t1 t0 t2 t3

S2
tsa1_fin= true
tsa2_fin= false
attr1= v1
attr2= v0

S2
tsa1_fin= ture
tsa2_fin= false
attr1= v1
attr2= v0

S3
tsa1_fin= true
tsa2_fin= true
attr1= v1
attr2= v1

temporal
attributes
section

ordinary
attributes
section

Figure 6. Time Specific RM-ODP model
Now we can define a predicate that characterizes the collection of TSActions

that have the same result. For this purpose we use specification concepts presented in
section 2. Among specification concepts we use pre- and post-conditionsviii. In order
to define a collection of TSActions with the same result, we will use
TAPreconditions and TAPostconditions:

TAPrecondition: precondition in the form: equals(attr,val) (or “attr = val”),
where attr∈{ordinary attributes} and val∈{values of ordinary attributes}.

TAPostcondition: postcondition in the form: equals(attr,val) (or “attr = val”),
where attr∈{ordinary attributes} and val∈{values of ordinary attributes}.
pre_attributes: TAPrecondition -> OAttrs! // one precondition specifies the value of one OAttrs
post_attributes: TAPostcondition -> OAttrs! // one postcondition specifies the value of one OAttrs
pre_values: TAPrecondition -> AVals! // preconditions includes values for the ordinary attributes
post_values: TAPostcondition -> AVals! // postconditions includes values for the ordinary

attributes

56 Chapter 3

Using pre and postconditions we can define a type of TSAction that we call:
Time Abstracted Action (TAAction). We define it in the following way:
Type of TSAction (TAAction): It is a type characterizing the set of TSActions: it
specifies values of all ordinary attributes before and after any TSAction (that is an
instance of TAAction). These values are specified with TAPreconditions and
TAPostconditions.
Instance of TAAction (): TSAction that satisfies TAAction.
Note that the definition of TAAction is a predicate stating that each TAAction
requires ordinary attributes to have certain values before and after TSActions. Let’s
consider how this predicate can be expressed in Alloy.
…TAAction, TAPreconditions, TAPostconditions…: SpecificationConcepts
satisfies_type(~type_for): TSAction -> TAAction+ // each TSAction has at least one type
TAA_preconditions: TAAction -> TAPreconditions+ // each TAAction has at least one

TAPrecondition
TAA_postconditions: TAAction -> TAPostconditions+ // each TAAction has at least one

TAPrecondition

Based on the definition of TAAction we have to require that each TAAction has
TAPrecondition and TAPostcondition for each ordinary attributes (OAttrs):
def TAAction{
 all taa:TAAction |
 all tsa:TAAction.type_for | // for all instancess of TAAction: tsa (TSAction)
 all attr:OAttrs | // and for any ordinary attribute attr
 one pre: taa.TAA_preconditions| // there is one precondition for taa
 one post: taa.TAA_postconditions | // there is one postconditions for taa, such that
 attr = pre.pre_attribute && // (attr is an attribute of the pre precondition) &&
 attr = post.post_attribute && // (attr is an attribute of the post postcondition) &&
 (one t:tsa.instant_begin | attr.attrValue[t] = pre.pre_value) &&
 // (the pre precondition specify the value of attr before TAAction) &&
 (one t:tsa.instant_end | attr.attrValue[t] = post.post_value)
 // (value of attrs is the same as the value of the precondtion)
 }

The class of TSAction is defined in the following way:
Class of TSActions: A set of TSAction satisfying a TAAction type.
To define formally the Class of TSActions, for each class we have to indicate which
TSActions should be included in this class. In Alloy we can do this in the following
way:
… TAAction_Class…: SpecificationConcepts // TAAction_Class is a specification concept
associated_type: TAAction_Class!->TAAction! // TAAction_Class has a corresponding

type (TAAction)
member_of(~members): TSAction->TAAction_Class+ // each TSAction belongs to at least one

TAAction_Class
def TAAction_Class{
all c:TAAction_Class | // for every TAAction_Class
c.associated_type in c.members.satisfies_type // the type for the TAAction_Class is the

same as the type for members of this
class

}

Form RM-ODP to the Formal Behavior Representation 57

To better illustrate these definitions we use the example from section 2. In section 2
the example was used to show a sample model generated by Alloy Constraint
Analyzer. This model included two time specific actions (tsa1 and tsa2) and two
attributes (attr1 and attr2). Here we show other elements of the model that we did not
show in section 2. These elements are specification concepts: TAActions,
TAAction_Classes, TAPreconditions and TAPostconditions (See figure 7).

Figure 7. Example of the model of a system behavior and state built with Alloy Constraint
Analyzer
In the example from figure 7, we suppose that the two attributes (attr1 and attr2) are
ordinary attributes (we do not show temporal attributes in this example). To make
reading of the model easier, we also do not show relations of TAPreconditions and
TAPostconditions with attributes for the tsa2 action.

The example form figure 7 demonstrates how the abstraction of time can be
done: instead of using TSActions (tsa1, tsa2) we can specify TAActions (that are
types of TSActions). TAActions specify values for ordinary attributes before and
after each TSAction. Thus the model of TAAction does not specify any particular
time interval where it may occur and information about actual time intervals can be
hidden (we show with dotted lines in figure 7). This allows us to specify infinite
behavior.

In order to do this we have to review the definition of TSBehavioralConstraints.
We will use a concept of time abstracted (TA) behavioral constraints: constraints
defined between TAActions. Therefore behavioral constraints of sequentiality define
the sequence of TAActions such that this sequence preserves the sequence of

tsa2
(TSAction)

t1
(Tim e)

t0
(Tim e)

t2
(Tim e)

t3
(Tim e)

tsa1
(TSAction)

seq_constraint

c0
(SeqConstraints)

next_actions

attr1
(OAttrs)

attr2
(OAttrs)

v1
(AVal)

v0
(AVal)

tsa2
(TAAction)

taa1
(TAAction)

c2
(TAAction_Class)

c1
(TAAction_Class)

member_of

associated_type

pre1
(TAPrecnds)

pre5
(TAPrecnds)

pos t2
(TAPostcnds)

post1
(TAPostcnds)

satisf ies_type

members

pre3
(TAPrecnds)

TAA_preconditions
TAA_preconditions

TAA_postconditions

TAA_postconditions

pre_attribute
post_attribute post_attribute

pre_value pre_value

post_value post_value

pre6
(TAPrecnds)

pos t7
(TAPostcnds)

pos t8
(TAPostcnds)

members

TAA_preconditions

TAA_preconditions

TAA_postconditions

TAA_postconditions
satisf ies_type

type_for

A
b

strac
tion o

f tim
e

A
b

strac
tion o

f tim
e

A
b

strac
tion o

f tim
e

A
b

strac
tion o

f tim
e

type_for

pre_attribute

member_of

associated_type

attrState[t2] attrState[t3] attrState[t2]attrState[t1]Abstraction o f timeAbstraction o f timeAbstraction o f timeAbstraction o f time Abstraction o f timeAbstraction o f timeAbstraction o f timeAbstraction o f time

58 Chapter 3

TSActions: if two TSActions in the Time Specific RM-ODP model are sequentially
constrained then two corresponding TAActions should also be sequentially
constrained. Using TAActions and TA behavioral constraints brings us to the Time
Abstracted RM-ODP model. To show how Time Abstracted RM-ODP model can be
built based on the Time Specific model we use a slightly different example (see
figure 8) than the example from figure 7.

c1
<<TS>>

c2
<<TS>>

S1
a1_fin= false
a2_fin= false
a3_fin= false
attr= 7

tsa1
<<TSAction>>

tsa2
<<TSAction>>

tsa3
<<TSAction>>

t1 t2 t3 t4 t5 t6

S2
a1_fin= true
a2_fin= false
a3_fin= false
attr= 13

S2
a1_fin= ture
a2_fin= false
a3_fin= false
attr= 13

S3
a1_fin= true
a2_fin= true
a3_fin= false
attr= 7

S5
a1_fin= true
a2_fin= true
a3_fin= false
attr= 7

S6
a1_fin= true
a2_fin= true
a3_fin= true
attr= 13

temporal
attributes
section

ordinary
attributes
section

(a)

pre-cond 1
attr = 7

post-cond 1
attr = 13

pre-cond 2
attr = 13

post-cond 2
attr = 7

A1
<<TAAction>>

A2
<<TAAction>>

first instance of A1 is finished
[second instance of A1 is finished]

 (b)
Figure 8. RM-ODP diagram: From Time Specific RM-ODP model (8.a) to Time Abstracted
RM-ODP model (8.b)
In the example from figure 8.a we suppose that the TSActions tsa1 and tsa3 have the
same TA preconditions (attr = 7) and TA postconditions (attr = 13). In that case they
can be specified with TAAcion A1 (see figure 8.b). The TSAction tsa2 has to be
specified with another TAAction A2.

Time Abstracted RM-ODP model does not include the partially ordered set of
time points. It makes it possible to specify the infinite behavior of an object. But still
we have to keep the information about the order of TSActions. To keep this
information, we have to introduce two elements: initial and final points (black dot
and black dot in a white circle). Another thing we should pay attention to is how to
specify the constraints of sequentiality between TAActions. Any TAAction in Time
Abstracted RM-ODP model may specify several TSActions, such that any TSAction
has TSBehavioralConstraints with other TSActions. Thus we have to distinguish
between instances of TAActions in order to specify constraints sequentiality
correctly. The easiest way to do this is to introduce for each TAAction a counter that
shows which instance of this TAAction has been finished. Based on this counter we
can specify the sequence of TAActions. In case if some TAAction is followed by
several TAActions, we specify conditions at corresponding arrows (for example
“Second instance of A1 is finished”). Note that we simplified our notation for the

Form RM-ODP to the Formal Behavior Representation 59

constraints of sequentiality. We show them as arrows between sequentially
constrained TAActions.

3.2 Parameterized TAActions

In the previous subsection we saw that by using TAActions we can specify a set
of TSActions that assign the same values to ordinary attributes. But what about
TSActions that assign different values to ordinary attributes but assign them in a
similar way (based on some known mathematical function)? For them we can define
TAPostcondition in the following way:
TAPostcondition (with parameter) [ver1]: postcondition in the form: equals
(attr,val) (or “attr=val”); where val: attr@pre→{values of ordinary attributes} and
attr@pre is a value of attr before action.
Here val is a unary function that takes the value of the attribute before action
occurrence. TAPreconditions we can keep almost in the same form as before with
the difference that val becomes a nullary function that can point to any element from
the subset of ordinary attribute values:
TAPrecondition: precondition in the form: equals (attr,val) (or “attr = val”), where
attr∈{ordinary attributes} and val:__→{precondition values}⊂{values of ordinary
attributes} is an unary function. In order to simplify our notation we will write these
TAPreconditions in the form: “attr∈{precondition values}”.
Figure 9, for example, shows two TSActions (b1 and b2).

S1
attr=1

S2
attr=2

S3
attr=2

S4
attr=3

precond postcond
attr = attr@pre + 1

b1
<<TSAction>>

b2
<<TSAction>>

B
<<TAAction>>

T1 T2
T3 T4

{1,2}attr ∈

Figure 9. RM-ODP diagram: postcondition as a function

In this example we can define the TAAction B with TAPrecondition “attr ∈{1, 2}”
and TAPostcondition “attr = attr@pre + 1”. Thus we have defined TAAction with
parameterized TAPostconditions. The parameter is the value of an ordinary attribute
before the TSAction. In the similar way we can define TAPostcondition that takes
TSAction as a parameter. This leads us to the concept of action with a parameter
used in many modeling languages. Often a parameter is defined as value that can be
passed to the object. For example, UML defines parameter in the following way:
Parameter [O1999] “is an unbound variable that can be changed, passed, or
returned. Parameters are used in the specification of operations, messages and
events, templates, etc. In the meta-model, a Parameter is a declaration of an
argument to be passed to, or returned from, an Operation, a Signal, etc.”
Let’s see what parameter means in RM-ODP terms. Figure 10 shows a set of
TSActions from the Time Specific RM-ODP model {c0, …,cN}. Only one of them
can take place, depending on the choice of environment. Let’s suppose that all these

60 Chapter 3

TSActions have similar TAPostconditions: these TAPostconditions differ only in the
value that is assigned to the state attribute attr.

precond
attr=XXX

...

C(par)
<<TAAction>>

postcond
attr=par

S
attr=XXX

S0
attr=0

SN
attr=N

c0
<<TSAction>>

cN
<<TSAction>>

T1 T2

T3 T4
Figure 10. RM-ODP diagram: TAAction with parameters
To specify all these TSActions {c0, …,cN} with one type (one TAAction) we define
TAPostcondition with a parameter [version 2]:
TAPostcondition (with parameters) [ver2]: postcondition in the form: equals(attr,
val) (or “attr = val”), where val: TSActionClass→{values of ordinary attributes}
and TSActionClass⊂TSAction.
In this definition val is a unary function that takes as an argument TSAction (from
some TSActionClass) and returned a value to be assigned to the attribute attr. Based
on the definition of TAPostconditions with parameters we can define TAAction
(with parameter):
TAAction (with parameters): It is a type characterizing the set of TSActions: it is a
predicate that specifies values of ordinary attributed before and after any TSAction
(that is an instance of TAAction). These valued are specified with TAPreconditions
and TAPostconditions (with parameter).
In the example, C(par), par∈{0...N} in figure 10 is TAAction that characterizes the
set of TSActions {c0, … cN}.You can see that we use a parameter par in the notation
for TAAction. Thus par in figure 10 allows us to relate a particular TSAction (the
instance of TAAction) with a value assigned to the attribute attr.

In this section we considered different TAPreconditions, TAPostconditions and
TAActions that have been defined using them. Many other TAActions can be
defined by means of mixing the TAPreconditions and TAPostconditions presented in
this section. For example, we can specify TAAction with mixed TAPostconditions:
we can represent a value that is assigned to an attribute as an n-ary function: val:
attr1@pre, attr2@pre, TSActionClass →{values of ordinary attributes}. Thus the
value assigned to the attribute of an on object depends on: values of two attributes
before TSAction and TSAction itself.

4 MAPPING RM-ODP SEMANTICS WITH SEMANTICS OF
DIFFERENT SPECIFICATION LANGUAGES

The abstraction of time considered in the previous section brings us to a Time
Abstracted RM-ODP model. This model can be used as a generic model that we

Form RM-ODP to the Formal Behavior Representation 61

considered in the introduction. In this section we show how different views can be
built on a genetic Time Abstracted RM-ODP model.

We begin with the example of the Time Specific RM-ODP model. We show
how this example can be reduced to a Time Abstracted RM-ODP model using
TAActions instead of TSActions. Then we consider how three views on the Time
Abstracted RM-ODP model can be built. We show the three following view: CCS
process algebra view, UML activity diagram view and UML statechart diagram
view.

4.1 Example

Figure 11 shows the example of a Time Specific RM-ODP model. This model
specifies the behavior of an object with nine TSActions. Five of them are
TSInternalActions (they take place without the participation of the environment) and
four of them are TSInterActions (they take place with the participation of the
environment of the object). Names of TSInternalActions start with “a” and names of
TSInterActions start with “e”.

Figure 11. Time Specific RM-ODP model: an example of a behavior
The example shows the system TSStates before (pre-states) and after (post-states)
each TSAction, TS Constraints and time points. You can see that a post-state after
each TSAction is the same as a pre-state for the next TSAction. However, in general,
these pre- and post-states can be different, since some other concurrent process can
change the state of a system between two TSActions. Here we suppose that in our
system there are no concurrent processes and thus there are no other processes that
can change the state of the system between two consecutive TSActions. In this
example we suppose that TSActions a1_1 and a1_2; e1_1 and e1_2; e2_1 and e2_2
have the same TA preconditions and TA postconditions. TSActions a3_1 and a3_2
also perform the same functionality (not specified here), with the slight difference

wait for
e1_1

t1 t2 t3 t4

c1 c2

t5 t6
attr=0

t7' t8'

c3

t7

t8
t10 t9t14 t13 t12 t11

c7 c6 c5 c4

attr=1

t16 t15

t16
e2

received c1- Time points - TSAction - TSState - TSConstraint

initial statefinal state

final state

e1_1
received

wait fot
e2

e2_1
received

wait for
e1_2

e1_2
received

wait for
e2_2

e2_2
received

e1_1
<<TSA>>

a3_2
<<TSA>>

a1_1
<<TSA>>

e2_1
<<TSA>>

a3_1
<<TSA>>

a2_1
<<TSA>>

e1_2
<<TSA>>

a1_2
<<TSA>>

e2_2
<<TSA>>

a3_2
<<TSA>>

62 Chapter 3

that a3_1 makes the state attribute attr equal to 0, while a3_2 makes this attribute
equal to 1.

First, if we make an abstraction of time. This brings us to the following Time
Abstracted RM-ODP model:

E1
<<TAAction>>

A3_1
<<TAAction>>

A1
<<TAAction>>

E2
<<TAAction>>

A3_2
<<TAAction>>

A2
<<TAAction>>

[first e2 finished] [second e2 finished]

[first e2 finished]

Figure 12. Time Abstracted RM-ODP model

Here A1, A2, E1, E2, A3_1 and A3_2 are TSActions that characterize the following
collections of TSActions from figure 11: {a1_1;a1_2}, {e1_1;e1_2}, {e2_1;e2_2},
{a3_1} and {a3_2} (for the purpose of simplicity we do not show TA preconditions
and TA postconditions for these TAActions). Note that we introduced a counter for
the action E2 and the conditions on the constraints of the sequentiality. It allows us
to specify the same sequence of action instances in figure 12 as the sequence of
TSActions in figure 11.

4.2 CCS Process algebra

In this section we consider how the Time Abstracted RM-ODP model can be
transformed into a CCS [M1999] model. First we explain how to build a CCS
transition graph based on the RM-ODP model and then we show a corresponding
CCS process expression. A transition graph can be built in the following way: any
action becomes arc in the transition graph, constraints of sequentiality become states.
Let’s note that that just constraints of sequentiality become states in the transition
graph but not pre- or post states. Some other concurrent process can change the state
of a system between two actions. This means that the pre-state of an action and the
post-state of a consecutive action can be different. But constraints of sequentiality in
RM-ODP define exactly the same meaning as states in a transition graph: they
specify the sequence of actions.

e1 a1

e2

a3_2

e1

e2

S1 S2

S3S4
a3_1

a2

e1 e2

e1
S1' S2'

S5

e2

e2
__

__ __

__

 (a) (b)
Figure 13. Transition graphs of the system (a) and its environment (b)

Form RM-ODP to the Formal Behavior Representation 63

Here also we have to pay attention to the transforming of constraints of non-
determinism. In order to express them in the transition graph we have to model
action e2 twice. It shows that the system makes the internal choice between the two
“branches” of behavior without being influenced by its environment. For a better
illustration we also show the behavior model for the system environment. An
interaction of an object with its environment can be represented as a reaction
between the following pairs of actions and their complements {e1,e1} {e2,e2}. The
same specification in the form of concurrent process expressions would be:

2_35
1.14

1_34.23
3.25.22

2.11
1.1

aS
SeS

aSaS
SeSeS

SaS
SeSystem

=
=

+=
+=

=
=

22

22.21

1.1

eS

eSeS

SetEnvironmen

=′
+′=′

′=

Note, that the transition graph in Figure 13 does not allow us to count instances of
action e2. Thus e2 in figure 13 can have more than two instances. To have only two
instances (e2_1 and e2_2) we have to specify them separately without grouping them
into one action.

4.3 RM-ODP and UML Statechart and Activity Diagram

The further simplification (using modeling of actions with parameters) of our
example from figure 12 leads us to the behavior model shown in figure 14, where the
post-condition for action a3(p) is “attr = p”. We use the model in figure 14 to show
how UML Activity and Statechart views can be defined.

Note, that in all behavior models we considered above, interactions and internal
actions are modeled using the same notation (the sign of oval). But UML uses a
slightly different notation. UML has the two following terms:
(UML) Action: “An action is a specification of an executable statement that forms
an abstraction of a computational procedure that results in a change in the state of the
model, and can be realized by sending a message to an object or modifying a link or
a value of an attribute” [O1999].
(UML) Event: “An event is a noteworthy occurrence. For practical purposes in state
diagrams, it is an occurrence that may trigger a state transition” [O1999].
Although there is no direct mapping of an RM-ODP interaction and an RM-ODP
internal action with a UML Action and UML Event, in our particular example we
can conclude that E1 and E2 correspond to UML events and A1, A2, A3 correspond
to UML actions. “An event is something done to the object; an action is something
that the object does” [S2000]. An event in UML is considered as an action trigger
and modeled in the way it is shown in figures 15 and 16.

64 Chapter 3

E1
<<TAAction>>

A3(0)
<<TAAction>>

A1
<<TAAction>>

E2
<<TAAction>>

A3(1)
<<TAAction>>

A2
<<TAAction>>

[first e2 finished] [second e2 finished]

[first e2 finished]

Figure 14. RM-ODP diagram: Simplification of the model using actions with parameters

a1

[second e2]

[first e2]

a2

a3(0)e1

H

e2

H

a3(1)

[first e2]

 Figure 15. UML activity diagram

s1

s2

e1 /a1

e2 [first e2] /a2

e2 [first e2] /a3(0)

e1 /a2

H
e2 [second e2] /

a3(1)

 Figure 16. UML statechart diagram

5 CONCLUSION

In this work we analyzed the possibility of using RM-ODP Part 2 “Foundations of
the Open Distributed Processing” as a generic semantic domain for systems behavior
modeling. We have considered the minimum set of RM-ODP concepts that a system
designer needs for “any kind of modeling activity” [I1996]. These concepts form the
generic semantic domain for system behavior modeling and allow a system designer
to specify generic behavior models.

RM-ODP behavior models are based on the concept of Time Specific Action
(TSAction) and Time Specific State (TSState). Time Specific Actions directly
represent things that happen in the Universe of Discourse with explicit reference to
time. An object in each time point is specified with one Time Specific State. We call
a model that use TSActions and TSStates, a Time Specific RM-ODP model.
However, “the incorporation of concrete timing properties leads to a considerable
loss of abstractness” [B1991]. To make Time Specific RM-ODP models more
abstract and to be able to specify the infinite behavior, we considered a Time
Abstracted RM-ODP model. A Time Abstracted RM-ODP model makes an
abstraction of time by means of using Time Abstracted Actions (TAActions) and
Parameterized TAActions. TAAction characterizes the set of TSActions that assign
the same value to some ordinary attributes of an object. Parameterized TAAction
characterizes the set of TSActions whose postconditions can be specified as a
mathematical function.

Form RM-ODP to the Formal Behavior Representation 65

We believe that a Time Abstracted RM-ODP model can be used as a generic
behavior model. Having a generic behavior model allows a system designer to define
different views on this model, where each view addresses particular problems that a
system designer wants to solve. Each view may have its specification language. In
this work we considered how a Time Abstracted RM-ODP generic model can be
seen from the three views done with the following specification languages: CCS
process algebra, UML Activity Diagram and UML Statechart Diagram. We
explained the mapping of corresponding concepts from the semantic domains of
these three languages and from the generic semantic domain based on RM-ODP.

This work continues the work done by Naumenko [N2001] that formalizes the
semantics of RM-ODP. The main contribution of this work is the formal definition
of TAAction. We show a formal relation of Time Specific Behavior with Time
Abstracted Behavior. This relation can be used in case tools to check the consistency
between behavior instance diagrams (like UML Sequence Diagram) and behavior
type diagrams (like UML Activity diagrams). The definition of Time Abstracted
Action is based on the definition of State Structure and Composite State. These
concepts extend the notion of composition presented in RM-ODP. RM-ODP defines
the composition of object and the composition of behavior. However RM-ODP does
not define how the state of the composite object can be defined. In this work we
define the Composite State that can be used to specify a state of the composite
object.

ENDNOTES
i “Alloy is a language for describing structural properties. It offers declaration syntax

compatible with graphical object models, and a set-based formula syntax powerful enough
to express complex constraints” [J2000]. See also http://sdg.lcs.mit.edu/alloy/.

ii “Location in time: An interval of arbitrary size in time at which action can occur.” [I1996]
iii Do not confuse this Alloy invariant with the invariant defined in RM-ODP. We use an Alloy

invariant to guaranty the consistency of concepts on the meta-level. This invariant can not
become a part of our model, while the RM-ODP invariant is a specification concept. It is a
predicate that can be used in a model. In this work we use the concept of invariant only at
the meta-level.

iv See http://sdg.lcs.mit.edu/alloy/
v RM-ODP defines activity in the following way: “Activity: A single-headed directed acyclic

graph of actions, where occurrence of each action in the graph is made possible by the
occurrence of all immediately preceding actions.”

vi Post-state is a state of an object after the occurrence of an action.
vii This again shows the duality of state and behavior. Constraints of sequentiality are dual with

the state information that tells which actions are finished (they specify the same thing from
the point of view of behavior and state).

viii RM-ODP gives the following definition for preconditions and postconditions:
Precondition: A predicate that a specification requires to be true for an action to occur.
Postcondition: A predicate that a specification requires to be true immediately after the
occurrence of an action.

66 Chapter 3

REFERENCES

[B1991] Broy, M., Formal treatment of concurrency and time, in Software

Engineer's Reference Book, J. McDermid, Editor. 1991, Oxford:
Butterworth-Heinemann,. p. 23/1-23/19.

[I1996] ISO/IEC 10746-1, 3,4 | ITU-T Recommendation X.902, Open Distributed
Processing - Basic Reference Model - Part 2: Foundations . 1995-1996.

[J2000] Jackson, D., Alloy: A Lightweight Object Modeling Notation, Technical
Report 797, 2000, MIT Laboratory for Computer Science: Cambridge,
MA.

[L1990] Lamport, L. and N.A. Lynch, Distributed Computing: Models and
Methods, in Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics. 1990, Elsevier and MIT Press.

[M1999] Milner, R., Communicating and Mobile Systems: the pi-Calculus. 1999:
Cambridge University Press.

[N2001] Naumenko, A., et al. A Viewpoint on Formal Foundation of RM-ODP
Conceptual Framework, Technical report No. DSC/2001/040, July 2001,
EPFL-DSC ICA.

[O1999] OMG, Unified Modeling Language Specification, v 1.3, 1999.
[P1983] Poincaré H, The value of science, Moscow «Science», 1983
[S2000] Stevens, P. and R. Pooley, Using UML Software Engineering with

Objects and Components (Updated Edition). Object Technology Series.
2000.

[W2001] Wegmann, A. and A. Naumenko. Conceptual Modeling of Complex
Systems Using an RM-ODP Based Ontology. in 5th IEEE International
Enterprise Distributed Object Computing Conference - EDOC 2001.
2001. Seattle, ACTION.

[W1990] Wing, J.M., A Specifier's Introduction to Formal Methods. IEEE
Computer, 1990. 23(9): p. 8-24.

