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Abstract— We consider the issue of which criteria to use when
evaluating the design of a wireless multihop network. It is known,
and we illustrate in this paper, that maximizing the total capacity,
or transport capacity, leads to gross imbalance and is not suitable.
An alternative, which is often used in networking, is to consider
the max-min fair allocation of rates, or of transport rates per
node. We apply max-min fairness to the class of wireless, multi-
hop networks for which the rate of a wireless link is an increasing
functions of signal-to-noise ratio. This class includes CDMA and
UWB. We show that, for a network in this class, the max-min fair
allocation of bit or transport rates always gives the same rate
to all flows. We show on one example that such an allocation
is highly undesirable when the network is asymmetric. Another
form of fairness, utility fairness, does not appear to have the
same problem.

Index Terms— wireless, max-min, utility fairness, best-effort

I. INTRODUCTION

In many works concerning the design of a wireless network,
the goal is to maximize the total throughput of the network
(e.g. [8], [5]). Now it is known, and we illustrate later in this
paper, that considering total throughput (or total capacity) as
a performance measure in a network with best-effort traffic
leads to gross imbalance (by shutting down more expensive
users). Another commonly used metric in wireless network is
the transport capacity, defined in [7] as the sum of bits

���������
distances over which they are carried per second. We show
that this metric suffers from the same imbalance problem as
total capacity.

A classical solution to this problem it to evaluate a network
design under the assumption that it provides max-min fairness
[3]. A rate allocation is said to be max-min fair if one cannot
increase a rate of one flow without decreasing an already
smaller rate. Max-min fairness is the target criterion used in
ATM standards for allocating rates in a best effort mode. Max-
min fairness is also widely used in wireless networking [6],
[10]. An alternative approach is utility fairness, originating in
principles of economy. Each user is assigned a concave and
increasing function of its rate, called utility, and the system
maximizes the sum of utilities of all users. The most used
form of utility fairness is proportional fairness, [4], where the
utility is the log function.

In this paper we focus on max-min fairness. We consider
the class of wireless network technologies for which the rate

The work presented in this paper was supported (in part) by the National
Competence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant number 5005-67322.

of a wireless link is an increasing functions of signal-to-noise
ratio. This class includes CDMA and UWB. Our main finding
is that, for a multi-hop network in this class, the max-min
fair allocation of bit or transport rates always gives the same
rate to all flows, whatever the routing policy. We show on one
example that such an allocation is highly undesirable when
the network is asymmetric. Utility fairness, does not appear to
have the same problem.

II. DEFINITIONS AND NOTATIONS

Consider a network with 	 flows, identified with source-
destination pairs 
�� ��������������� � ������������� . There are

�
possible

wireless links and � paths. For a flow
�
, let �! be its rate and�  #" �  %$�$ �  �& �  �$�$ its “transport rate” ( $�$ �  '& �  �$�$ is the line of

sight distance from source to destination). The vector ( of all
rates is feasible if there exists a power allocation, scheduling
and allocation of rate to paths that achieve it. We call )
the set of feasible rate vectors and * the set of all feasible
transport rate vectors (defined precisely below). The total rate
of the network is +

�
 �,  �  and -/.�0�1�2435+

�
 �,  �  is the network

capacity; the total transport rate of the network is +
�
 �,  �  and-/.�0�6 2879+

�
 �,  �  is the network transport capacity.

A rate vector (;:<) is said to be weighted max-min fair
[3] with weights =  if for any other vector (�>?:@) such that
for some

�
, ��> BA =  �C?D �  A =  , there exists E such that ��>F A = FHG� F A = FJI �  A =  . We use an analog definition for a max-min

fair transport rate allocation over set * . A weighted max-
min fair allocation, if it exists is unique. If =  K"ML for all

�
we simply say that the rate vector is max-min fair. Finally,
a utility fair rate (resp. transport rate) allocation is the one
that maximizes +

�
 �, ON ���� � over ) (resp. over * ) for a given

concave utility function N .
The network model is as follows. At the receiver of link E ,E "PL ����� � , the useful power is Q F and R F �TS � is the total power

of all interfering signals plus background noise. We assume
that the useful rate on link E is U F "WV �XQ F A R F � where V �YU � is an
arbitrary, but fixed increasing function. This defines the class
of wireless networks that allow interference, such as ultra-wide
band ( V �YU � is a linear function), CDMA, or the theoretical case
where the link rate if the Shannon capacity of a point to point
Gaussian interference channels ( V �YU � "[Z�\!] � L_^ U � ).

We assume that the power received on link E is limited to`baKcedF and let f "hg i � `jakc�d l�m5non�n�m g i � `baKced� l . The set p of
achievable link rates q is the convex closure 
�r��TS � $ SW:@f �
and any qs:hp can be written as q " +

�4tu
 �, wv  xry�YS  � , for

some S  :5f , and +
�!tu
 �,  v  "PL . We call v a scheduling and

vectors S  power allocation policies that achieves q .
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We put no restriction on routing, and a flow
�

may be
routed over several parallel paths. More precisely, an arbitrary
multi-path routing policy can be expressed with a set of linear
constraints ( "���� , q���� � , where � is the vector of rates
on paths, �y 
	 "hL if path � belongs to a flow

�
and � F 	 "PL if

path � traverses link E . Matrices � and � define the routing
policy. If they are such that the set of paths is all possible paths
between all sources and destinations, then we have a network
model with unconstrained routing. At the other end of the
spectrum, we find the more traditional single path, multihop
routing model. All of these fit in our framework. Given �
and � , the set of feasible rates ) is defined as the set of (
for which there exists �Yq � v � S � that satisfy all the constraints
enumerated in this section.

III. EQUALITY OF MAX-MIN FAIR RATES

Proposition 1: For the class of wireless networks defined
above, there exist a unique max-min fair allocation of rates
[resp. of transport rates], and it gives equal rates [resp.
transport rates] to all flows.

The proof is in appendix. If ( is the max-min fair rate
allocation, then the corresponding vector of transport rates 
is weighted max-min fair with weights $�$ �  �& �  �$�$ . There is an
analog statement for transport rates (with inverse weights).

The proposition implies that max-min fair allocation equal-
izes rates to the value of the worst link. We illustrate this
numerically in the next section.

IV. APPLICATION TO AN ASYMMETRIC EXAMPLE

Finding an allocation that satisfies max-min fairness, utility
fairness, or maximization of total rate for a general network
is a computationally difficult problem [9]. In order to illus-
trate our proposition, we consider an asymmetric, but regular
network that can easily be analyzed.

There are 	 ^�� nodes, as shown on (Fig. 1). Node V  talks
to its right-hand neighbor V  t  (node V ���  talks to V�� ), and
node

� 
talks to node

���
. All nodes use direct links to talk to

their peers. This implicitly defines the matrices � and � . We
compute the rates and transport rates that satisfy the following
criterion : max-min fairness, utility fairness, and maximization
of sum of rates. The computation is based on the following

PSfrag replacements

��� �
�
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!

Fig. 1. The network example used for a numerical application. Nodes"$#�%'&�&$&�%("*),+.- form a ring of equally spaced nodes, node /10 is located in
the center of the ring, and node / - is at a distance 2 from /�0 on the direction
orthogonal to the plane the ring.

proposition. Let us 3J ��YS � be the permutation of the power

allocation S that corresponds to the rotation with axis
�%e� �

that
maps V�� to V  axis, i.e. �43J B�YS ����576 " S 5$8 6:9<;�=*>@?7ACB , �439 ��TS � �$D*6 "
S D*6 .

Proposition 2: For any of the criteria: max-min fair, utility
fair and maximization of sum of rates, there exists a scheduling
and power allocation that maximizes the metric, has all rates
on the ring equal, and has rotationally symmetric time slots
in the form

q "
EF
 �, 

v  
�F
F , .G �43

F �YS  � ��� (1)

The proof is in the appendix. We numerically illustrate these
findings for a point-to-point Gaussian channel model of each
link, which corresponds to the V � � function U "[Z�\!] � L4^IHKJML � .
The attenuation of signal between source

�
and destination E isN  F " $�$ � & E $�$ �PO , 	 "RQ and

` aKced A J " Loi � . Utility fairness
is proportional fairness. The results are on shown on Figs. 2
and 3. The figures illustrate that the max-min fair allocation
(of rates or transport rates) equalize all sources to the worst
case. The rates tend to i when the distance S goes to T –
clearly an undesirable behaviour. The maximization of total
rate (or transport rate) does exactly the opposite: it shuts down
either the sources on the ring, or off-ring, depending on the
distance S . The off-ring source is shut down when S is large
(for maximization of total rate) or when S is either very small
or large (for maximization of sum of transport rate). This is
equally undesirable (gross unfairness towards links with large
attenuation). The proportionally fair allocation does not appear
to have this problem. On-ring sources get a rate of the same
order of magnitude regardless of S , whereas the off-ring rateU D still tends to zero when S goes to infinity, thus protecting
the performance of the network from links of very bad quality.1

V. CONCLUSION

We have shown that for a very general model of multi-
hop wireless networks, the rates of all flows in max-min fair
allocation with optimal scheduling and power allocation have
to be equal, regardless of node positions, traffic matrix and
routing policy. We show that this is unacceptable for a largely
asymmetric networks. We also show that a performance metric
that maximizes the sum of rates is also not acceptable. In
contrast, utility fairness does not appear to have such problems.
The same holds for transport rates.
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Fig. 2. Rates achieved for max-min fairness (left), maximization of sum of rates (center) and utility (proportional) fairness (right). For max-min fairness,
the on-ring rates U`a are the same as off-ring rate (this follows from proposition 1). For maximization of sum of rates, either the on-ring rates are U�aKW Y and
the off-ring rate U,V is

b Y , or vice-versa, depending on the the size 2 of link
� / - % / 0�� . For proportional fairness, the on-ring rates U<a are always positive,

and the off-ring rate U,V goes to zero when 2���� .
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APPENDIX

Proof of Proposition 1: The feasible set � is convex, which by [1]
shows the existence. Let 	�
����������	�� ^�� ^�� -�� � � )� - � be such that max-
min fair rate allocation is achieved. It follows from [1] that the set
of rates 
�� that are feasible when 	���������	�� ^ � ^�� -�� � � )� - � are fixed can
be represented as ��
 ��!"�$#&%'
)( , for appropriate matrices ! and% . Then for 
��+*$
 and for each flow , there exists a set - ^ of all
bottlenecks inequalities associated to flow , , such that for all .'/0- ^ ,	�!"� ��1 *2	3%'
 ��1 , % 1 ^5476 , and 8 1:9 8); for all < such that %'; ^ 46 . For each inequality .=/7- ^ we can also identify a set of links>@? 	A.B��, � comprising the . th bottleneck, that is for all <C/ >D? 	A.B��, � ,	�!"� � 1 ; 4E6 . If we increase the rate of any link in the set

>D? 	A.B��, � ,
inequality . is not saturated any more, and flow , looses bottleneck. .

We proceed by contradiction. Thus there are some flows , and. such that 8 ^D4 8 1 . We pick an arbitrary FG/H- ^ and link IJ/> ? 	�FC��, � such that KML 4N6 , and we also pick for each <:/0- 1 a linkO ;C/ >'? 	3<P��. � . We pick a slot Q when link I is active, and divide
it in two slots, Q - and Q 0 of lengths �SR�T 476 and �SR�UJ*$�SR VW�SR�T
respectively. In the first slot we keep the same scheduling as in slotQ , and in the second slot we turn off link I and increase the power
of link

O - such that X R�UY T 92Z\[^]�_Y T and the interferences perceived
by other active users is smaller than in the original scheduling of

slot Q . With this new scheduling all links have the same or higher
rates, except for link I whose rate has decreased by ` L - 	��SR�T � 4a6 and
link

O - whose rate has increased by ` Y - 	��SR�T � 426 , with equalities
for �SR�Tb* 6 . Therefore, we can obtain an arbitrary small ` L - and ` Y -
by choosing sufficiently small � R�T . We repeat this process for allO ;c��<d/e- 1 .

In the new allocation �f� we have Kg�L *hK L V$` L where ` L *i ;kjl 6 ` L ; , and K � Y�m *7K Ykmon ` Y; . For a sufficiently small ` L and ` Y;
we can obtain a new feasible rate allocation 
 � such that 8 �^ 	3` L � p 8 ^ ,8 �1 	3` Y; � 4 8 1 and 8 �; *q8k; for all <2r*s,���. . This contradicts the
max-min property of rate allocation 
 .

Proof of Proposition 2: Let us first consider only nodest # �vuwuvu�� t )`+P- and consider 	�x - ��x 0 � as a noise, and let �y*i )� -^z� - � ^|{ 	�� ^�� represent any achievable rate allocation. We can
then construct a new rate allocation by rotating the optimal one� � * i )B� -^�� - � ^ i )1 � - -) { 	�} 1 	�� ^���� . This allocation is feasible, and
we have K � ^ * i )1 � - -) K 1 .

For maximization of sum of rates, define ~�	�� � * i )^z� - K ^ ; we
have ~ 	�� � � * i )^�� - i )1 � - -) K 1 *�~�	�� � . Similarly, for utility fair-
ness, let �J	�� � * i )^�� -�� 	�K ^ � where � 	�K � is a strictly concave func-
tion. Thus ~�	�� � � * i )^z� -�� 	 i )1 � - -) K 1)� # i )^z� - i )1 � - -) � 	�K 1)� *
~�	�� � � with equality when � and �f� are equal up to a rotation. It
thus follows that the optimal scheduling and power allocation on
a ring for utility fairness and sum of rates is of the form ��*i )1 � - -) { 	�} 1 	�� ��� , where we call ring rate K a the equal rates of all
links. The same thing is shown in [2] for max-min fairness. Therefore
we can restrict ourselves to the ring rates that are functions of only
one power allocation.

Considering further link 	�x - ��x`0 � we see that the interference it
perceives during rotational scheduling described above is constant.
We thus now have only two-dimensional rate space 	�K a ��K V � , and
each rate can be described as in Eq 1.


