
A Formal Analysis of Syverson’s Rational Exchange Protocol�

Levente Buttyán Jean-Pierre Hubaux Srdjan Čapkun
Laboratory of Computer Communications and Applications

Swiss Federal Institute of Technology – Lausanne
EPFL-IC-LCA, CH-1015 Lausanne, Switzerland

flevente.buttyan, jean-pierre.hubaux, srdan.capkung@epfl.ch

Abstract

In this paper, we provide a formal analysis of a rational
exchange protocol proposed by Syverson. A rational ex-
change protocol guarantees that misbehavior cannot gen-
erate benefits, and is therefore discouraged. The analysis is
performed using our formal model, which is based on game
theory. In this model, rational exchange is defined in terms
of a Nash equilibrium.

1. Introduction

In [9], Syverson introduces the concept of rational ex-
change. Rational exchange appears to be similar to fair ex-
change, but it provides weaker guarantees: A rational ex-
change protocol does not ensure that a correctly behaving
party cannot suffer any disadvantages, but it does guaran-
tee that a misbehaving party cannot gain any advantages. In
other words, rational, self-interested parties have no reason
to misbehave and to deviate from the protocol (hence the
name rational exchange). Rational exchange protocols are
proposed in [5, 8, 9, 1].

We started to study the concept of rational exchange in
the context of the Terminodes Project1 [4]. This project is
concerned with the design of fully self-organizing mobile
ad-hoc networks. Such networks cannot rely on any fixed
and pre-installed infrastructure, and therefore, exchange
protocols cannot use a trusted third party. Rational ex-
change seems to be a promising alternative to fair exchange
in this environment, since it provides weaker guarantees,
and thus, one expects that it has fewer system requirements
than fair exchange has. In particular, rational exchange does
not always need a trusted third party [8, 9]. Practically, ra-
tional exchange can be viewed as a trade-off between com-
plexity and true fairness, and as such, it may provide in-

� c 2002 IEEE. In Proceedings of the 15th IEEE Computer Security
Foundations Workshop, June 2002.

1http://www.terminodes.org/

teresting solutions to the exchange problem in applications
where fair exchange would be impossible or inefficient.

In [3], we propose a formal model for rational exchange
protocols, which is based on game theory. In this model, an
exchange protocol is represented as a set of strategies (one
strategy for each party) in a game that is constructed from
the protocol description. Rational exchange is formally de-
fined in terms of a Nash equilibrium in the protocol game.
We also propose formal definitions for various other proper-
ties of exchange protocols, including fairness, and we prove
that fairness implies rationality, but not vice versa. This jus-
tifies the intuition that rational exchange provides weaker
guarantees than fair exchange does.

In this paper, we use our protocol game model for the for-
mal analysis of Syverson’s rational exchange protocol pro-
posed in [9]. For this reason, we first introduce the protocol
game model and the formal definition of rational exchange
within this model in Sections 3 and 4, respectively. We keep
the presentation brief, since this material has already been
presented in [3]. However, for completeness and for making
this paper easier to follow, we preferred not to omit this part.
Then, in Section 5, we construct the protocol game of the
Syverson protocol and prove that it satisfies the definition
of rational exchange assuming that the communication be-
tween the protocol parties is reliable. Finally, in Section 6,
we show that relaxing this assumption leads to the loss of
the rationality property.

2. Preliminaries

Before presenting our formal model of exchange proto-
cols, we need to introduce some basic definitions from game
theory [7].

2.1. Extensive games

An extensive game is a tuple

hP;A;Q; p; (Ii)i2P ; (�i)i2P i

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where

� P is a set of players;

� A is a set of actions;

� Q is a set of action sequences that satisfies the follow-
ing properties:

– the empty sequence � is a member of Q,

– if (ak)wk=1 2 Q and 0 < v < w, then (ak)
v
k=1 2

Q,

– if an infinite action sequence (ak)
1
k=1 satisfies

(ak)
v
k=1 2 Q for every positive integer v, then

(ak)
1
k=1 2 Q;

If q is a finite action sequence and a is an action, then
q:a denotes the finite action sequence that consists of q
followed by a. An action sequence q 2 Q is terminal
if it is infinite or if there is no a such that q:a 2 Q. The
set of terminal action sequences is denoted by Z. For
every non-terminal action sequence q 2 Q n Z, A(q)
denotes the set fa 2 A : q:a 2 Qg of available actions
after q.

� p is a player function that assigns a player in P to every
non-terminal action sequence in Q n Z;

� Ii is an information partition of player i 2 P , which
is a partition of the set fq 2 Q n Z : p(q) = ig with
the property that A(q) = A(q 0) whenever q and q 0 are
in the same information set Ii 2 Ii;

� �i is a preference relation of player i 2 P on Z.

The interpretation of an extensive game is the following:
Each action sequence in Q represents a possible history of
the game. The action sequences that belong to the same in-
formation set Ii 2 Ii are indistinguishable to player i. This
means that i knows that the history of the game is an action
sequence in Ii but she does not know which one. The empty
sequence � represents the starting point of the game. After
any non-terminal action sequence q 2 Q n Z, player p(q)
chooses an action a from the set A(q). Then q is extended
with a, and the history of the game becomes q:a. The ac-
tion sequences in Z represent the possible outcomes of the
game. If q; q0 2 Z and q �i q

0, then player i prefers the
outcome q0 to the outcome q.

The preference relations of the players are often repre-
sented in terms of payoffs: a vector y(q) = (yi(q))i2P of
real numbers is assigned to every terminal action sequence
q 2 Z in such a way that for any q; q 0 2 Z and i 2 P ,
q �i q

0 iff yi(q) � yi(q
0).

Conceptually, an extensive game can be thought of as a
tree. The edges and the vertices of the tree correspond to
actions and action sequences, respectively. A distinguished

vertex, called the root, represents the empty sequence �. Ev-
ery other vertex u represents the sequence of the actions
that belong to the edges of the path between the root and
u. Let us call a vertex u terminal if the path between the
root and u cannot be extended beyond u. Terminal vertices
represent the terminal action sequences in the game. Each
non-terminal vertex u is labeled by p(q) where q 2 QnZ is
the action sequence that belongs to u. Finally, the terminal
vertices may be labeled with payoff vectors to represent the
preference relations of the players.

2.2. Strategy

A strategy of player i is defined as a function si that
assigns an action in A(q) to each non-terminal action se-
quence q that is in the domain of si, with the restriction that
it assigns the same action to q and q 0 whenever q and q 0

are in the same information set of i. The domain dom(s i)
of si contains only those non-terminal action sequences q
for which p(q) = i and q is consistent with the moves
prescribed by si. Formally, we can define dom(si) in an
inductive way as follows: A non-terminal action sequence
q = (ak)

w
k=1 is in dom(si) iff p(q) = i and

� either there is no 0 � v < w such that p((ak)vk=1) = i;

� or for all 0 � v < w such that p((ak)vk=1) = i,
(ak)

v
k=1 is in dom(si) and si((ak)vk=1) = av+1.

We denote the set of all strategies of player i by Si.
A strategy profile is a vector (si)i2P of strategies, where

each si is a member of Si. Sometimes, we will write
(sj ; (si)i2Pnfjg) instead of (si)i2P in order to emphasize
that the strategy profile specifies strategy sj for player j.

2.3. Nash equilibrium

Let o((si)i2P) denote the resulting outcome when the
players follow the strategies in the strategy profile (si)i2P .
In other words, o((si)i2P) is the (possibly infinite) action
sequence (ak)wk=1 2 Z such that for every 0 � v < w we
have that sp((ak)vk=1)((ak)

v
k=1) = av+1. A strategy profile

(s�i)i2P is a Nash equilibrium iff for every player j 2 P

and every strategy sj 2 Sj we have that

o(sj ; (s
�
i)i2Pnfjg) �j o(s

�
j ; (s

�
i)i2Pnfjg)

This means that if every player i other than j follows s�i ,
then player j is not motivated to deviate from s�j , because
she does not gain anything by doing so.

3. Protocol games

There is a striking similarity between games and the sit-
uation that occurs when potentially misbehaving parties ex-
ecute a given exchange protocol:

2

� each party has choices at various stages during the in-
teraction with the others (e.g., to quit the protocol or to
continue);

� the decisions that the parties make determine the out-
come of their interaction;

� in order to achieve the most preferable outcome, a mis-
behaving party may follow a plan that does not coin-
cide with the faithful execution of the exchange proto-
col.

Therefore, it appears to be a natural idea to model this sit-
uation with a game. We refer to this game as the protocol
game. In this section, we present a general framework for
the construction of protocol games from exchange proto-
cols.

3.1. System model

We assume that the network that is used by the proto-
col participants to communicate with each other is reliable,
which means that it delivers messages to their intended des-
tinations within a constant time interval. Such a network
allows the protocol participants to run the protocol in a syn-
chronous fashion. We will model this by assuming that
the protocol participants interact with each other in rounds,
where each round consists of the following two phases:

1. each participant generates some messages based on her
current state, and sends them to some other partici-
pants;

2. each participant receives the messages that were sent to
her in the current round, and performs a state transition
based on her current state and the received messages.

We adopted this approach from [6], where the same model
is used to study the properties of distributed algorithms in
a synchronous network system. It is possible to relax this
assumption, and to define protocol games for asynchronous
systems, but we must omit the details due to space limita-
tions. The interested reader is referred to [2].

3.2. Limitations on misbehavior

We want that the protocol game of an exchange protocol
models all the possible ways in which the protocol partici-
pants can misbehave within the context of the protocol. The
crucial point here is to make the difference between misbe-
havior within the context of the protocol and misbehavior in
general. Letting the protocol participants misbehave in any
way they can would lead to a game that would allow inter-
actions that have nothing to do with the protocol being stud-
ied. Therefore, we want to limit the possible misbehavior of

the protocol participants. However, we must do so in such
a way that we do not lose generality. Essentially, the limita-
tion that we impose on protocol participants is that they can
send only messages that are compatible with the protocol.
We make this more precise in the following paragraph.

We consider an exchange protocol to be a descrip-
tion � of a distributed computation that consists of a set
f�1; �2; : : :g of descriptions of local computations. For
brevity, we call these descriptions of local computations
programs. Each program �k is meant to be executed by
a protocol participant. Typically, each �k contains instruc-
tions to wait for messages that satisfy certain conditions.
When such an instruction is reached, the local computation
can proceed only if a message that satisfies the required con-
ditions is provided (or a timeout occurs). We call a message
m compatible with �k if the local computation described
by �k can reach a state in which a message is expected
and m would be accepted. Let us denote the set of mes-
sages that are compatible with �k by M�k . Then, the set of
messages that are compatible with the protocol is defined as
M� = [kM�k .

Apart from requiring the protocol participants to send
messages that are compatible with the protocol, we do not
impose further limitations on their behavior. In particular,
we allow the protocol participants to quit the protocol at
any time, or to wait for some time without any activity. Fur-
thermore, the protocol participants can send any messages
(compatible with the protocol) that they are able to compute
in a given state. This also means that the protocol partici-
pants may alter the prescribed order of the protocol mes-
sages (if this is not prevented deliberately by the design of
the protocol).

3.3. Players

We model each protocol participant (i.e., the two main
parties and the trusted third party if there is any) as a player.
In addition, we model the communication network as a
player too. Therefore, the player set P of the protocol game
is defined as P = fp1; p2; p3;netg, where p1 and p2 repre-
sent the two main parties of the protocol, p3 stands for the
trusted third party, and net denotes the network. If the pro-
tocol does not use a trusted third party, then p3 is omitted.
We denote the set P n fnetg by P 0.

3.4. Information sets

Each player i 2 P has a local state �i(q) that repre-
sents all the information that i has obtained after the ac-
tion sequence q. If for two action sequences q and q 0,
�i(q) = �i(q

0), then q and q0 are indistinguishable to i.
Therefore, two action sequences q and q 0 belong to the same

3

information set of i iff it is i’s turn to move after both q and
q0, and �i(q) = �i(q

0).
We define two types of events: send and receive events.

The send event snd(m; j) is generated for player i 2 P 0

when she submits a message m 2 M� with intended desti-
nation j 2 P 0 to the network, and the receive event rcv(m)
is generated for player i 2 P 0 when the network delivers a
message m 2 M� to i. We denote the set of all events by
E.

The local state �i(q) of player i 2 P 0 after action se-
quence q is defined as a tuple h�i(q); Hi(q); ri(q)i, where

� �i(q) 2 ftrue; falseg is a boolean, which is true iff
player i is still active after action sequence q (i.e., she
did not quit the protocol);

� Hi(q) � E � N is player i’s local history after ac-
tion sequence q, which contains the events that were
generated for i together with the round number of their
generation;

� ri(q) 2 N is a non-negative integer that represents the
round number for player i after action sequence q.

Initially, �i(�) = true, Hi(�) = ;, and ri(�) = 1 for every
player i 2 P 0.

The local state �net(q) of the network consists of a set
Mnet(q) � M� � P 0 � P 0 which contains those mes-
sages together with their source and intended destination
that were submitted to the network and have not been de-
livered yet. We call Mnet(q) the network buffer. Initially,
Mnet(�) = ;.

3.5. Available actions

In order to determine the set of actions available for a
player i 2 P 0 after an action sequence q, we first tag each
message m 2 M� with a vector (�mi (�i(q)))i2P 0 of con-
ditions. Each �mi (�i(q)) is a logical formula that describes
the condition that must be satisfied by the local state �i(q)
of player i in order for i to be able to send message m af-
ter action sequence q. Our intention is to use these condi-
tions to capture the assumptions about cryptographic prim-
itives at an abstract level. For instance, it is often assumed
that a valid digital signature �i(m) of player i on message
m can only be generated by i. This means that a message
m0 2M� that contains �i(m) can be sent by a player j 6= i

iff j received a message that contained �i(m) earlier. This
condition can be expressed by an appropriate logical for-
mula for every j 6= i.

Now, let us consider an action sequence q, after which
player i 2 P 0 has to move. There are two special actions,
called idlei and quiti, which are always available for i after
q. In addition to these special actions, player i can choose a
send action of the form sendi(M), where M is a subset of

the set Mi(�i(q)) of messages that i is able to send in her
current local state.

Formally, we define Mi(�i(q)) as

Mi(�i(q)) = f(m; j) : m 2M�; �
m
i (�i(q)) = true;

j 2 P 0 n figg

The setAi(�i(q)) of available actions of player i 2 P 0 after
action sequence q is then defined as

Ai(�i(q)) = fidlei; quitig [

fsendi(M) :M �Mi(�i(q))g

Note that sendi(;) 2 Ai(�i(q)). By convention,
sendi(;) = idlei.

Let us consider now an action sequence q, after which
the network has to move. Since the network is assumed to
be reliable, it should deliver every message that was sub-
mitted to it in the current round. This means that there is
only one action, called delivernet , that is available for the
network after q, which means the delivery of all messages
in the network buffer. Thus,

Anet (�net (q)) = fdelivernetg

The above defined actions change the local states of the
players as follows:

� If a player i 2 P 0 performs the action idlei, then the
state of every player j 2 P remains the same as before.

� If a player i 2 P 0 performs the action quiti, then the
activity flag of i is set to false. The state of every other
player j 2 P n fig remains the same as before.

� If a player i 2 P 0 performs an action sendi(M) such
that M 6= ;, then the messages in M are inserted in
the network buffer, and the corresponding send events
are generated for i. The state of every other player
j 2 P n fi;netg remains the same as before.

� If the network performs the action delivernet , then for
every message in the network buffer, the appropriate
receive event is generated for the intended destination
of the message if it is still active. Then, every mes-
sage is removed from the network buffer, and the round
number of every active player is increased by one.

3.6. Order of moves

The game is played in repeated rounds, where each
round consists of the following two phases: (1) each ac-
tive player in P 0 moves, one after the other, in order; (2) the
network moves. The game is finished when every player
in P 0 becomes inactive. Together with the definition of the

4

p1 p2
p1 u�p1 u+p1
p2 u+p2 u�p2

Table 1. The values that the items to be ex-
changed are worth to the protocol parties

available actions (see previous subsection), the above de-
fined order of moves determines the set of possible action
sequences and the player function. For a precise definition,
the reader is referred to [2].

3.7. Payoffs

Now, we describe how the payoffs are determined. Let
us consider the two main parties p1 and p2 of the protocol,
and the items p1 and p2 that they want to exchange. We
denote the values that p1 is worth to p1 and p2 by u�p1 and
u+p2 , respectively. Similarly, the values that p2 is worth to
p1 and p2 are denoted by u+p1 and u�p2 , respectively (see also
Table 1).

Intuitively, u+i and u�i can be thought of as a potential
gain and a potential loss of player i 2 fp1; p2g in the game.
In practice, it may be difficult to quantify u+i and u�i . How-
ever, our approach does not depend on the exact values; we
require only that u+i > u�i for both i 2 fp1; p2g, which
we consider to be a necessary condition for the exchange to
take place at all. In addition, we will assume that u�i > 0.

The payoff yi(q) for player i 2 fp1; p2g assigned to the
terminal action sequence q is defined as yi(q) = y+i (q) �
y�i (q). We call y+i (q) the gain and y�i (q) the loss of player
i, and define them as follows:

y+i (q) =

�
u+i if �+i (q) = true
0 otherwise

and

y�i (q) =

�
u�i if ��i (q) = true
0 otherwise

where �+i (q) and ��i (q) are logical formulae. The exact
form of �+i (q) and ��i (q) depends on the particular ex-
change protocol being modeled, but the idea is that �+

i (q) =
true iff i gains access to j (j 6= i), and ��i (q) = true iff
i loses control over i in q. A typical example would be
�+i (q) = (9r : (rcv(m); r) 2 Hi(q)), where we assume
that m is the only message in M� that contains j .

Note that according to our model, the payoff y i(q) of
player i can take only four possible values: u+i , u+i � u�i ,
0, and�u�i for every terminal action sequence q of the pro-
tocol game.

Since we are only interested in the payoffs of p1 and p2
(i.e., the players that represent the main parties), we define
the payoff of every other player in P n fp1; p2g to be 0 for
every terminal action sequence of the protocol game.

3.8. Protocol vs. protocol game

Although the protocol game is constructed from the de-
scription of the protocol, it represents more than the proto-
col itself, because it also encodes the possible misbehavior
of the parties, which is not specified in the protocol (at least
not explicitly). Recall that a protocol is considered here
to be a set of programs � = f�1; �2; : : :g. Each program
�i must specify for the protocol participant that executes it
what to do in any conceivable situation. In this sense, a pro-
gram is very similar to a strategy. Therefore, we model the
protocol itself as a set of strategies (one strategy for each
program) in the protocol game. We will denote the strategy
that corresponds to �i by s�i .

4. Formal definition of rational exchange

Informally, a two-party rational exchange protocol is an
exchange protocol in which both main parties are motivated
to behave correctly and to follow the protocol faithfully. If
one of the parties deviates from the protocol, then she may
bring the other, correctly behaving party in a disadvanta-
geous situation, but she cannot gain any advantages by the
misbehavior. This is very similar to the concept of Nash
equilibrium in games. This inspired us to give a formal def-
inition of rational exchange in terms of a Nash equilibrium
in the protocol game.

Before going further, we need to introduce the concept
of restricted games. Let us consider an extensive game G,
and let us divide the player set P into two disjoint subsets
Pfree and P�x . Furthermore, let us fix a strategy sj 2 Sj
for each j 2 P�x , and let us denote the vector (sj)j2P�x

of fixed strategies by �s�x . The restricted game Gj�s�x is the
extensive game that is obtained from G by restricting each
j 2 P�x to follow the fixed strategy sj .

Note that in Gj�s�x , only the players in Pfree can have
several strategies; the players in P�x are bound to the fixed
strategies in �s�x . This means that the outcome of Gj�s�x

solely depends on what strategies are followed by the play-
ers in Pfree . In other words, the players in Pfix become
pseudo players, which are present, but do not have any in-
fluence on the outcome of the game.

For any player i 2 Pfree and for any strategy si 2 Si
of player i, let sij�s�x denote the strategy that si induces in
the restricted game Gj�s�x . In addition, let us denote the
resulting outcome in Gj�s�x when the players in Pfree fol-
low the strategies in the strategy profile (sij�s�x)i2Pfree

by
oj�s�x ((sij�s�x)i2Pfree

).

5

As we said before, we want to define the concept of ratio-
nal exchange in terms of a Nash equilibrium in the protocol
game. Indeed, we define it in terms of a Nash equilibrium
in a restricted protocol game. To be more precise, we con-
sider the restricted protocol game that we obtain from the
protocol game by restricting the trusted third party (if there
is any) to follow its program faithfully (i.e., to behave cor-
rectly), and we require that the strategies that correspond to
the programs of the main parties form a Nash equilibrium
in this restricted protocol game. In addition, we require that
no other Nash equilibrium be strongly preferable for any of
the main parties in the restricted game. This ensures that
the main parties have indeed no interest in deviating from
the faithful execution of their programs.

Besides rationality, we also define two other properties
called gain closed property and safe back out property that
we will use later. The gain closed property requires that
if a party A gains access to the item of the other party B,
then B loses control over the same item. The safe back
out property requires that if a party abandons the exchange
right at the beginning without doing anything else, then she
will not lose control over her item (i.e., it is safe to back
out of the exchange). All the protocols that we are aware
of satisfy these properties; nevertheless, we need to define
them for technical reasons.

Now, we are ready to present the formal definitions:

Definition 1 (Properties of Exchange Protocols) Let us
consider a two-party exchange protocol � = f�1; �2; �3g,
where �1 and �2 are the programs for the main parties,
and �3 is the program for the trusted third party (if there
is any). Furthermore, let us consider the protocol game
G� of � constructed according to the framework described
in Section 3. Let us denote the strategy of player pk that
represents �k within G� by s�pk (k 2 f1; 2; 3g), the single
strategy of the network by s�net , and the strategy vector
(s�p3 ; s

�
net) by �s.

� Rationality: � is said to be rational iff

– (s�p1j�s; s
�
p2j�s

) is a Nash equilibrium in the re-
stricted protocol game G�j�s; and

– both p1 and p2 prefer the outcome of
(s�p1j�s; s

�
p2j�s

) to the outcome of any other
Nash equilibrium in G�j�s.

� Gain closed property: � is said to be gain closed iff for
every terminal action sequence q of G�j�s we have that
y+p1(q) > 0 implies y�p2(q) > 0 and y+p2(q) > 0 implies
y�p1(q) > 0.

� Safe back out property: Let Q0 = f(ak)wk=1 2 Qj�s :
pj�s((ak)

w
k=1) = p1; @v < w : pj�s((ak)

v
k=1) = p1g,

and let s0
p1j�s

be the strategy of p1 that assigns quitp1
to every action sequence in Q0. Similarly, let Q00 =

f(ak)wk=1 2 Qj�s : pj�s((ak)
w
k=1) = p2; @v < w :

pj�s((ak)
v
k=1) = p2g, and let s0p2j�s be the strategy of p2

that assigns quitp2 to every action sequence in Q00. �
satisfies the safe back out property iff

– for every strategy sp1j�s of p1, y�p2(q) = 0, where
q = oj�s(sp1j�s; s

0
p2j�s

); and

– for every strategy sp2j�s of p2, y�p1(q) = 0, where
q = oj�s(s

0
p1j�s

; sp2j�s).

5. Analysis of the Syverson protocol

In this section, we analyze the rational exchange protocol
proposed by Syverson in [9] using our protocol game model
and our formal definition of rationality. The Syverson pro-
tocol is illustrated in Figure 1, where A and B denote the
two protocol participants; k�1A and k�1B denote their private
keys; itemA and itemB denote the items that they want to
exchange2; dscA denotes the descriptions of itemA; and k
denotes a randomly chosen secret key. In addition, enc is a
symmetric-key encryption function that takes as input a key
� and a message �, and outputs the encryption of � with
�; sig is a signature generation function that takes a private
key ��1i and a message �, and returns a digital signature on
� generated with ��1i ; and w is a temporarily secret com-
mitment function.

The idea of temporarily secret commitment is similar to
that of commitment. The difference is that the secrecy of the
commitment is breakable within acceptable bounds on time
(computation). More precisely, if w is a temporarily secret
commitment function, then given w(x), one can determine
the bit string x in time t, where t lies between acceptable
lower and upper bounds. For details on how to implement
such a function, the reader is referred to [9].

In the first step of the protocol,A generates a random se-
cret key k; encrypts itemA with k; computes the temporar-
ily secret commitment w(k); generates a digital signature
on the description dscA of itemA, the encryption of itemA,
and the commitment w(k); and sends message m1 to B.

When B receives m1, she verifies the digital signature
and the description dscA of the expected item. If B is satis-
fied, then she sends message m2 to A. m2 contains itemB ,
the received message m1, and a digital signature of B on
these elements.

When A receives m2, she verifies the digital signature,
checks if the received message contains m1, and checks if
the received item matches the expectations. If she is satis-
fied, then she sends the key k to B in message m3, which
also contains the received message m2 and the digital sig-
nature of A on the message content.

2We took the liberty to replace Payment in the original protocol de-
scription with itemB in our description. This change makes the protocol
more general, and it has no effect on the properties of the protocol.

6

A! B : m1 = (dscA; enc(k; itemA); w(k); sig(k
�1
A ; (dscA; enc(k; itemA); w(k))))

B ! A : m2 = (itemB ; m1; sig(k
�1
B ; (itemB ;m1)))

A! B : m3 = (k; m2; sig(k
�1
A ; (k;m2)))

Figure 1. Syverson’s rational exchange protocol

When B receives m3, she verifies the digital signature,
and checks if the received message contains m2. Then, B
decrypts the encrypted item in m1 (also received as part of
m3) with the key received in m3.

5.1. Observations

WhenB receivesm1, she has something that either turns
out to be what she wants or evidence that A cheated, which
can be used against A in a dispute. At this point, B might
try to break the commitment w(k) in order to obtain k and
then itemA. However, this requires time. If itemA does not
lose its value in time, and the inconvenience of the delay
(and the computation) is not an issue for B, then break-
ing the commitment is indeed the best strategy for B. The
Syverson protocol should not be used in this case. So it is
assumed that itemA has a diminishing value in time (e.g., it
could be a short term investment advice), and that it is prac-
tically worth nothing by the time at which B can break the
commitment [9]. Therefore, B is interested in continuing
the protocol by sending m2 to A.

When A receivesm2, she might not send m3 at all or for
a long time. If A does not lose anything until B gets access
to itemA, then this is indeed a good strategy forA. If this is
the case, then the Syverson protocol should not be used. So
it is assumed that A loses control over itemA by sending it
to B in m1, even if she sends it only in an encrypted form 3.
In this case, A does not gain anything by not sending m 3 to
B promptly.

Note, however, that A may send some garbage instead of
the encrypted item in m1. A deterrent against this is that the
commitment can be broken anyhow, which means that the
misbehavior ofA can be discovered byB. In addition, since
m1 is signed by A, it can be used against A in a dispute. If
some punishment (the value of which greatly exceeds the
value of the exchanged items) for the misbehavior can be
enforced, then it is not in the interest of A to cheat. Note
that this punishment could be enforced externally (e.g., by
law enforcement).

3Recall that the commitment can be broken, and so the item can be
decrypted in a limited amount of time anyhow.

5.2. The set of compatible messages

In order to define the set of messages that are compati-
ble with the protocol, we must first introduce some further
notation:

� the public keys of A and B are denoted by kA and kB ,
respectively;

� vfy is a signature verification function that takes a pub-
lic key �i, a message �, and a signature �, and returns
true if � is a valid signature on m that can be verified
with �i, otherwise it returns false;

� dscB denotes the description of itemB ;

� �t is a function that takes an item and an item de-
scription � as inputs, and returns true if � matches ,
otherwise it returns false; and

� dec denotes the decryption function that belongs to
enc, which takes a key � and a ciphertext ", and re-
turns the decryption of " with �.

Next, we reconstruct the programs of the protocol partic-
ipants:

�A =
1. compute " = enc(k; itemA)
2. compute ! = w(k)
3. compute � = sig(k�1A ; (dscA; "; !))
4. send (dscA; "; !; �) to B
5. wait until timeout or

a message m = (; �; �0) arrives such that
- � = (dscA; "; !; �)
- �t(; dscB) = true
- vfy(kB ; (; �); �0) = true

6. if timeout then go to step 9
7. compute � 00 = sig(k�1A ; (k;m))
8. send (k;m; �00) to B
9. exit

�B =
1. wait until timeout or

a message m = (�; "; !; �) arrives such that
- � = dscA

7

- vfy(kA; (�; "; !); �) = true
2. if timeout then go to step 6
3. compute � 0 = sig(k�1B ; (itemB ;m))
4. send (itemB ;m; �

0) to A
5. wait until timeout or

a message m0 = (�; �; �00) arrives such that
- � = (itemB ;m; �

0)
- �t(dec(�; "); dscA) = true
- vfy(kA; (�; �); �00) = true

6. exit

Once the programs of the protocol participants are given,
we can easily determine the set of compatible messages:

M� =M1 [M2 [M3

where

M1 = f(�; "; !; �) : � = dscA,
vfy(kA; (�; "; !); �) = trueg

M2 = f(; �; �) : � 2M1,
�t(; dscB) = true,
vfy(kB ; (; �); �) = trueg

M3 = f(�; ; �; "; !; �; �0; �00) :
(; �; "; !; �; �0) 2M2,
�t(dec(�; "); dscA) = true,
vfy(kA; (�; ; �; "; !; �; �

0); �00) = trueg

5.3. The protocol game

Once the set M� of compatible messages is determined,
we can construct the protocol game G� of the protocol by
applying the framework of Section 3. The player set of
the protocol game is P = fA;B;netg, where A and B

represents the main parties, and net represents the network
via which the protocol participants communicate with each
other. We assume that the network is reliable. The infor-
mation partition of each player i 2 P is determined by i’s
local state �i(q). In order to determine the available actions
of the players in P 0 = P nfnetg, we must tag each message
m 2 M� with a vector (�mi (�i(q)))i2P 0 of logical formu-
lae, where each formula �mi (�i(q)) describes the condition
that must be satisfied in order for i to be able to send mes-
sage m in the information set represented by the local state
�i(q). For the Syverson protocol, these vectors of logical
formulae are the following:

� Since B cannot generate valid digital signatures of
A, B can send a message m 2 M1 only if she re-
ceived m or a message that contained m earlier. In
addition, we assume that A cannot generate a fake

item, different from itemA, that matches the descrip-
tion dscA of itemA. Similarly, we assume that A
cannot randomly generate a ciphertext ", and a key
� or a commitment ! = w(�) such that dec(�; ")
matches dscA. In other words, if for some message
m = (�; "; !; �) 2 M1, �t(dec(w�1(!); "); dscA) =
true and dec(w�1(!); ") 6= itemA, then A can send
m only if she receivedm or a message that contains m
earlier.

Formally, for any m = (�; "; !; �) 2M1:

– if �t(dec(w�1(!); "); dscA) = false or
dec(w�1(!); ") = itemA:

�mA (�A(q)) = (�A(q) = true)
�mB (�B(q)) = (�B(q) = true) ^ '1(B;m; q)

– otherwise (i.e., if �t(dec(w�1(!); "); dscA) =
true and dec(w�1(!); ") 6= itemA):

�mA (�A(q)) = (�A(q) = true) ^ '1(A;m; q)
�mB (�B(q)) = (�B(q) = true) ^ '1(B;m; q)

where '1 is defined in Figure 2.

� Since A cannot generate valid digital signatures of B,
A can send a message m 2 M2 only if she received
m or a message that contains m earlier. For similar
reasons, B can send a message m = (; �; �) 2 M2

only if she received � 2 M1 or a message that con-
tains � earlier. In addition, we assume that B can-
not generate a fake item, different from itemB , that
matches the description dscB of itemB . This means
that if 6= itemB , then B can send m only if she
received or a message that contains earlier.

Formally, for any m = (; �; �) 2M2:

– if = itemB :

�mA (�A(q)) = (�A(q) = true) ^ '2(A;m; q)
�mB (�B(q)) = (�B(q) = true) ^ '1(B; �; q)

– if 6= itemB :

�mA (�A(q)) = (�A(q) = true) ^ '2(A;m; q)
�mB (�B(q)) = (�B(q) = true) ^

'1(B; �; q) ^ '0(; q)

where '2 and '0 are defined in Figure 2.

� Since B cannot generate valid digital signatures of A,
B can send a message m 2 M3 only if she received
m earlier (there cannot be another message that con-
tains m in this case). For similar reasons, A can send
a message m = (�; �; �) 2 M3 only if she received
� 2 M2 or a message that contains � earlier. Note,

8

'1(~x; ~m; ~q) = ((9r < r~x(~q) : (rcv(~m); r) 2 H~x(~q)) _
(9r < r~x(~q);m

0 = (0; ~m;�0) 2M2 : (rcv(m0); r) 2 H~x(~q)) _
(9r < r~x(~q);m

0 = (�0; 0; ~m;�0; �00) 2M3 : (rcv(m0); r) 2 H~x(~q)))

'2(~x; ~m; ~q) = ((9r < r~x(~q) : (rcv(~m); r) 2 H~x(~q)) _
(9r < r~x(~q);m

0 = (�0; ~m;�0) 2M3 : (rcv(m0); r) 2 H~x(~q)))

'3(~x; ~m; ~q) = (9r < r~x(~q) : (rcv(~m); r) 2 H~x(~q))

'0(~; ~q) = ((9r < rB(~q);m
0 = (~; �0; �0) 2M2 : (rcv(m0); r) 2 HB(~q)) _

(9r < rB(~q);m
0 = (�0; ~; �0; �0; �00) 2M3 : (rcv(m0); r) 2 HB(~q)))

Figure 2.

however, that in general, receiving � is not sufficient
for A to be able to send m = (�; �; �), because if the
ciphertext " within � was not computed byA using the
key � (e.g., if A generated " randomly), then A may
not be able to guess �. Nevertheless, since our proofs
will rely only on the fact that A must receive � be-
fore sending m = (�; �; �), we generously give A the
power to guess �, and we consider that receiving � is
also sufficient for A to be able to send m = (�; �; �).

Formally, for any m = (�; �; �) 2M3:

�mA (�A(q)) = (�A(q) = true) ^ '2(A; �; q)
�mB (�B(q)) = (�B(q) = true) ^ '3(B;m; q)

where '3 is defined in Figure 2.

The above logical formulae allow us to complete the con-
struction of the protocol game. Before determining the pay-
offs and describing the strategies that correspond to the pro-
grams of the protocol participants, we can already make a
few simple statements:

Lemma 1 If (snd(m;B); r) 2 HA(q) for some message
m = (�; �; �) 2 M3, round number r 2 N, and ac-
tion sequence q 2 Q, then there exists r 0 < r such that
(rcv(�); r0) 2 HA(q).

Lemma 2 If (snd(m;A); r) 2 HB(q) for some message
m = (; �; �) 2 M2, round number r 2 N, and ac-
tion sequence q 2 Q, then there exists r 0 < r such that
(rcv(�); r0) 2 HB(q).

Lemma 3 Let m be a message in M3. There is no round
number r < 3 and action sequence q 2 Q such that
(rcv(m); r) 2 HB(q).

Lemma 4 Let m = (�; "; !; �) be a message in
M1 such that �t(dec(w�1(!); "); dscA) = true and
dec(w�1(!); ") 6= itemA. There is no player i 2 P 0,
round number r 2 N, and action sequence q 2 Q such
that (rcv(m); r) 2 Hi(q).

Lemma 5 Let m = (; �; �) be a message in M2 such that
 6= itemB . There is no player i 2 P 0, round number
r 2 N, and action sequence q 2 Q such that (rcv(m); r) 2
Hi(q).

Lemma 1 states that if A sends a message m =
(�; �; �) 2 M3 in round r in q, then she must receive
� in an earlier round r 0 < r in q. Similarly, Lemma 2
states that if B sends a message m = (; �; �) 2 M2 in
round r in q, then she must receive � in an earlier round
r0 < r in q. Lemma 3 is a corollary of the first two lem-
mas that states that B cannot receive a message m 2 M3

before round 3. Finally, Lemma 4 states that no player can
ever receive a message m = (�; "; !; �) 2 M1 such that
�t(dec(w�1(!); "); dscA) = true and dec(w�1(!); ") 6=
itemA, and Lemma 5 states that no player can ever receive
a message m = (; �; �) 2 M2 such that 6= itemB . The
proofs of these lemmas are rather straightforward, and can
be found in [2].

5.4. Strategies

Based on the programs of the protocol participants de-
scribed in Subsection 5.2, we can construct the strategies
that correspond to the correct behavior of the parties:

Strategy s�A

� If �A(q) = true and rA(q) = 1, then perform the
action sendA(f(m1; B)g), where m1 is as defined in
Figure 1.

9

� If �A(q) = true and rA(q) = 2, then perform the
action idleA.

� If �A(q) = true and rA(q) = 3, then let M be the
set of those messages m = (; �; �) 2 M2 for which
� = m1 and there exists a round number r < 3 such
that (rcv(m); r) 2 HA(q).

– If M = ;, then perform the action quitA.

– If M 6= ;, then choose the smallest mes-
sage m from M according to some order-
ing of the messages (e.g., the lexical order-
ing of bit strings), and perform the action
sendA(f((k;m; sig(k�1A ; (k;m))); B)g).

� If �A(q) = true and rA(q) = 4, then perform the
action quitA.

5.4.1 Strategy s�B

� If �B(q) = true and rB(q) = 1, then perform the
action idleB .

� If �B(q) = true and rB(q) = 2, then let M be the
set of those messages m 2M1 for which there exists a
round number r < 2 such that (rcv(m); r) 2 HB(q).

– If M = ;, then perform the action quitB .

– If M 6= ;, then choose the smallest mes-
sage m from M according to some ordering
of the messages (e.g., the lexical order-
ing of bit strings), and perform the action
sendB(f((itemB ;m; sig(k

�1
B ; (itemB ;m)));

A)g)

� If �B(q) = true and rB(q) = 3, then perform the
action idleB .

� If �B(q) = true and rB(q) = 4, then perform the
action quitB .

5.5. Payoffs

We must slightly modify the payoff framework intro-
duced in Subsection 3.7, in order to take into account that
the value of itemA diminishes in time. We also have to con-
sider the potential punishment for A if she sends garbage in
the first message of the protocol. Taking these into consid-
eration, we define the payoffs of the players as follows.

Let us consider a terminal action sequence q in the proto-
col game. The payoff of A in q is yA(q) = y+A(q)� y�A(q),
where y+A(q) is the gain and y�A(q) is the loss of A in
q. Furthermore, the loss of A is defined as y�A(q) =
y�A(q) + y��A (q), where y�A(q) is the loss that stems from
losing control over itemA, and y��A (q) is the loss that stems

from the punishment. The payoff of B in q is yB(q) =
y+B(q) � y�B(q), where y+B(q) is the gain and y�B(q) is the
loss of B in q.

We denote the values that itemA and itemB are worth
to A by u�A and u+A, respectively. Similarly, we denote the
value that itemB is worth to B by u�B. The diminishing
value of itemA forB is modeled as a function u+B(r), which
decreases as the round number r increases (see part (a) of
Figure 4). We assume that there exists a round number R
such that u+B(r) = 0 for every r � R, and that breaking
a commitment requires more than R rounds. Finally, the
value of the punishment is denoted by F . We assume that
F is much greater than u+A, u+A > u�A > 0, and u+B(3) >
u�B > 0 (see also part (b) of Figure 4).

The gain of A is u+A if A receives a message in M2 that
contains itemB , otherwise it is 0. The value of y�A(q) is u�A
if A sends a message in M1 that contains itemA (in an en-
crypted form), or if A sends a message in M3 that contains
itemA (in an encrypted form), otherwise it is 0. In addition,
the punishment y��A (q) of A is F if she sends an incorrect
message in M1 that, after breaking the commitment and de-
crypting the ciphertext in the message, yields an item that
does not match the description dscA; otherwise the punish-
ment is 0.

The gain of B is u+B(r) if B receives a message in M3

in round r that contains itemA and no such message is re-
ceived before round r. Note that receiving only a message
in M1 yields no gain for B, because we assume that by the
time at which the commitment can be broken, itemA loses
its value for B. The loss of B is u�B if B sends a message
in M2 that contains itemB , otherwise it is 0.

The formal definitions are given below:

y+A(q) =

�
u+A if �+A(q) = true
0 otherwise

y�A(q) =

�
u�A if ��A(q) = true
0 otherwise

y��A (q) =

�
F if ���A (q) = true
0 otherwise

y+B(q) =

8>>>><
>>>>:

u+B(1) if �+B(q; 1) = true
u+B(2) if �+B(q; 2) = true
: : :

u+B(R � 1) if �+B(q; R� 1) = true
0 otherwise

y�B(q) =

�
u�B if ��B(q) = true
0 otherwise

where �+A, ��A, ���A , �+B , and ��B are defined in Figure 3.
Note that, by definition, �+B(q; r) = true holds for exactly
one r, so y+B(q) is well defined.

10

�+A(q) = (9r 2 N;m = (; �; �) 2M2 :
(= itemB) ^ ((rcv(m); r) 2 HA(q)))

��A(q) = (9r 2 N;m = (�; "; !; �) 2M1 :
(dec(w�1(!); ") = itemA) ^ ((snd(m;B); r) 2 HA(q))) _

(9r 2 N;m = (�; ; �; "; !; �; �0; �00) 2M3 :
(dec(�; ") = itemA) ^ ((snd(m;B); r) 2 HA(q)))

���A (q) = (9r 2 N;m = (�; "; !; �) 2M1 :
(�t(dec(w�1(!); "); dscA) = false) ^ ((snd(m;B); r) 2 HA(q)))

�+B(q; r) = (9m = (�; ; �; "; !; �; �0; �00) 2M3 :
(dec(�; ") = itemA) ^ ((rcv(m); r) 2 HB(q))) ^

(@r0 < r;m = (�; ; �; "; !; �; �0; �00) 2M3 :
(dec(�; ") = itemA) ^ ((rcv(m); r0) 2 HB(q)))

��B(q) = (9r 2 N;m = (; �; �) 2M2 :
(= itemB) ^ ((snd(m;A); r) 2 HB(q)))

Figure 3.

5.6. Proof of rationality

Our proof of rationality relies on the fact that the Syver-
son protocol is closed for gains and it satisfies the safe back
out property:

Lemma 6 (Gain closed property) The Syverson protocol
is closed for gains.

Lemma 7 (Safe back out property) The Syverson proto-
col satisfies the safe back out property.

The proofs of these lemmas are rather straightforward, and
can be found in [2].

In order to prove that the Syverson protocol is rational,
we have to prove that the strategies s�A and s�B , which cor-
respond to the correct behavior of the parties, form a Nash
equilibrium in the protocol game that we have constructed
in Subsections 5.3 and 5.5. In addition, we also have to
prove that no other Nash equilibrium is strongly preferable
for any of the parties.

Lemma 8 The strategy profile (s�Aj�s; s
�
Bj�s) is a Nash equi-

librium in the restricted protocol game G�j�s, where �s =
(s�net).

Proof: We have to prove that (i) s�Aj�s is the best response to
s�Bj�s, and (ii) s�Bj�s is the best response to s�Aj�s.

(i) Suppose that there is a strategy s0
Aj�s for A such that

the payoff of A is higher if she plays s 0Aj�s than if she plays

s�Aj�s against s�Bj�s. This means that yA(q0) > yA(q
�), where

q� = oj�s(s
�
Aj�s; s

�
Bj�s) and q0 = oj�s(s

0
Aj�s; s

�
Bj�s). It is easy to

verify that yA(q�) = u+A � u�A. Thus, yA(q0) > yA(q
�) is

possible only if y+A(q
0) = u+A, y�A(q

0) = 0, and y��A (q0) = 0.
From y+A(q

0) = u+A, it follows that A received a message
m = (; �; "; !; �; �0) 2 M2 in q0 such that = itemB .
This means that B sent m in q0. It follows from Lemma 2
thatB can sendm only if it received (�; "; !; �) 2M1 from
A earlier. Thus, A sent (�; "; !; �) 2 M1. Since y��A (q0) =
0, �t(dec(w�1(!); "); dscA) must be true. Furthermore,
from Lemma 4, we get that dec(w�1(!); ") = itemA. This
means that y�A(q

0) cannot be 0.
(ii) Suppose that there is a strategy s0

Bj�s for B such that
the payoff of B is higher if she plays s 0Bj�s than if she plays
s�Bj�s against s�Aj�s. This means that yB(q0) > yB(q

�), where
q� = oj�s(s

�
Aj�s; s

�
Bj�s) and q0 = oj�s(s

�
Aj�s; s

0
Bj�s). It is easy to

verify that yB(q�) = u+B(3) � u�B . Let r0 be the smallest
round number such that u+B(r0) � u+B(3)�u�B (see part (b)
of Figure 4). Then, yB(q0) > yB(q

�) is possible only in two
cases: (a) y+B(q

0) = u+B(r), where r < r0, and y�B(q
0) = 0,

or (b) y+B(q
0) = u+B(r), where r < 3. However, case (b)

can never occur, because of Lemma 3. Therefore, we have
to consider only case (a).

From y+B(q
0) = u+B(r), it follows that B received a

message m = (�; ; �; "; !; �; �0; �00) 2 M3 such that
dec(�; ") = itemA in round r in q 0. This means that A
sent m in q0. It follows from Lemma 1 that A can send m
only if it received (; �; "; !; �; � 0) 2 M2 from B earlier.

11

B
+u (r)

rR

(a)

B
+u (r)

rR3

B
_

u

r0

(b)

Figure 4. The diminishing value of itemA for B is represented by a decreasing function u+B(r). We
assume that there exists a round number R such that u+B(r) = 0 for every r � R, and that breaking a
commitment requires more than R rounds. We also assume that u+B(3) > u�B > 0. Finally, we define
r0 as the smallest round number such that u+B(r0) � u+B(3)� u�B.

Thus, B sent (; �; "; !; �; �0) 2 M2. From Lemma 5, we
get that = itemB . This means that y�B(q

0) cannot be 0. 2

Lemma 9 Both A and B prefer (s�Aj�s; s
�
Bj�s) to any other

Nash equilibrium in G�j�s, where �s = (s�net).

Proof: Let us suppose that there exists a Nash equilibrium
(s0
Aj�s; s

0
Bj�s) in G�j�s(L) such that yA(q0) > yA(q

�) = u+A�

u�A, where q0 = oj�s(s
0
Aj�s; s

0
Bj�s) and q� = oj�s(s

�
Aj�s; s

�
Bj�s).

This is possible only if y+A(q
0) = u+A and y�A(q

0) =
y��A (q0) = 0. Since the protocol is closed for gains,
y+A(q

0) = u+A > 0 implies y�B(q
0) > 0, and y�A(q

0) = 0
implies y+B(q

0) = 0. Therefore, ifA follows s0Aj�s andB fol-

lows s0Bj�s, then B’s payoff is yB(q0) = y+B(q
0)� y�B(q

0) <
0. Note, however, that because of the safe back out prop-
erty, if B quits at the beginning of the game without do-
ing anything else, then her payoff cannot be negative, what-
ever strategy is followed by A. This means that s 0Bj�s is not
the best response to s0Aj�s, and thus, (s0Aj�s; s

0
Bj�s) cannot be a

Nash equilibrium.
Now let us suppose that there exists a Nash equilibrium

(s0Aj�s; s
0
Bj�s) in G�j�s(L) such that yB(q0) > yB(q

�) =

u+B(3) � u�B . This is possible only in two cases: (a) if
y+p2(q

0) = u+B(r), where r < r0 (see part (b) of Figure 4),
and y�B(q

0) = 0, or (b) if y+B(q
0) = u+B(r), where r < 3.

However, case (b) can never occur, because of Lemma 3.
Case (a) can be proven to be impossible using the same
technique as in the first part of this proof.2

From Lemma 8 and Lemma 9, we obtain the main result
of this paper:

Proposition 1 (Rationality) The Syverson protocol is ra-
tional.

6. Replacing the reliable network with an un-
reliable one

In the previous section, we proved that Syverson’s ex-
change protocol [9] is rational. However, the proof has been
carried out in a model where the network is assumed to be
reliable. What if we relax this assumption and allow an un-
reliable network (i.e., if we assume that there are no bounds
on message delivery delays)?

In order to answer this question, our model should be
extended with the notion of unreliable network. This can
easily be done by giving choices to the network. More pre-
cisely, instead of defining the set of available actions for the
network as a singleton fdelivernetg, which means that at
the end of each round the network delivers every message
that is in the network buffer, we can define the set of avail-
able actions for the network as

Anet (�net (q)) = fdelivernet (M) :M �Mnet(q)g

which means that the network can deliver any subset of the
messages that are currently in the network buffer. Thus, de-
pending on the strategy followed by the network, some mes-
sages would not be delivered immediately, but they could
stay in the network buffer for some time, even forever.

Note that giving choices to the network to delay the de-
livery of some messages as described above leads to a more
general but still synchronous model, since each player’s lo-
cal state still contains the same current round number. It is

12

possible to define a fully asynchronous model (see [2]), but
we do not need it in the following discussion.

On the other hand, we need to extend the definition of
rationality, since we must take into account that now the
network has several strategies. An easy way to do this is
to allow that the strategy vector �s with which the proto-
col game is restricted can contain any possible strategy of
the network, and to require that the conditions of rational-
ity are satisfied in every possible restricted protocol game
G�j�s, where �s = (s�p3 ; snet), and snet ranges over all the
possible strategies of the network.

Let us examine if the Syverson protocol satisfies this ex-
tended definition of rationality. Let us assume that both
players follow the strategy that corresponds to the correct
execution of the protocol. Furthermore, let us assume that
each of these strategies has some fixed timeout parameters,
which specify the number of rounds that a given player
waits for a given message. Now, the network may follow
a strategy in which m3 is delayed, so that B finally time-
outs and quits the protocol. This means that there exists a
strategy vector �s, and thus a restricted protocol game G�j�s,
such that y+B(q

�) = 0 and y�B(q
�) = u�B (since m2 has been

sent), where q� = oj�s(s
�
Aj�s; s

�
Bj�s). Note that the total payoff

of B in q� is negative, so B would be better off if she did
not participate in the exchange at all. In other words, s�Bj�s
is not the best response to s�Aj�s in G�j�s, and so (s�Aj�s; s

�
Bj�s)

cannot be a Nash equilibrium in G�j�s. This means that the
protocol is not rational.

7. Conclusion

In this paper, we have reminded the principles of our for-
mal model for exchange protocols, which is based on game
theory. By applying this model, we have then provided a
thorough analysis of a rational exchange protocol proposed
by Syverson. We have proved that the Syverson protocol
is rational in our model assuming that the communication
between the protocol parties is reliable. However, as we
have seen, if this assumption is relaxed, then the rationality
property is lost.

Our approach makes it possible to examine any protocol
of similar kind, and to prove that it satisfies (or not) specific
properties. As it is quite intuitive, our formalism can be
learnt in a matter of days. We believe that this proposal is a
significant step towards a systematic method for developing
error-free exchange protocols.

References

[1] L. Buttyán. Removing the financial incentive to cheat in mi-
cropayment schemes. IEE Electronics Letters, 36(2), January
2000.

[2] L. Buttyán. Building Blocks for Secure Services: Authenti-
cated Key Transport and Rational Exchange Protocols. PhD
thesis, Swiss Federal Institute of Technology – Lausanne,
2001.

[3] L. Buttyán and J.-P. Hubaux. Rational exchange – a formal
model based on game theory. In Proceedings of the 2nd In-
ternational Workshop on Electronic Commerce (WELCOM),
November 2001.

[4] J.-P. Hubaux, T. Gross, J.-Y. Le Boudec, and M. Vetterli.
Towards self-organized mobile ad hoc networks: The Ter-
minodes Project. IEEE Communications Magazine, January
2001.

[5] M. Jakobsson. Ripping coins for a fair exchange. In Advances
in Cryptology – EUROCRYPT’95, pages 220–230, 1995.

[6] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[7] M. Osborne and A. Rubinstein, editors. A Course in Game

Theory. MIT Press, 1994.
[8] T. Sandholm. Unenforced e-commerce transactions. IEEE

Internet Computing, 1(6):47–54, November-December 1997.
[9] P. Syverson. Weakly secret bit commitment: Applications

to lotteries and fair exchange. In Proceedings of the IEEE
Computer Security Foundations Workshop, pages 2–13, 1998.

13

