
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2001; 13:385–420 (DOI: 10.1002/cpe.571)

Object Systems

Modeling and testing
object-oriented distributed
systems with linear-time
temporal logic

F. Dietrich∗,†, X. Logean‡ and J.-P. Hubaux

Institute for Computer Communications and Applications (ICA), Swiss Federal Institute of Technology,
CH-1015 Lausanne, Switzerland

SUMMARY

We present a framework for constructing formal models of object-oriented distributed systems and a
property language to express behavioral constraints in such models. Most of the existing models have their
origin in specific mathematical notations and/or concepts. In contrast, we have developed our model such
that it accounts for a large set of phenomena associated with industrial implementations of object-oriented
distributed systems. The model that we propose, while closer to industrial concerns and practice, still has
the powerful features of formal approaches. It also offers the possibility to automatically check at service
run-time that the final service implementation has not violated and is not violating properties expressed at
the abstraction level of our model. In our model, which relies on event-based behavioral abstraction, we
use linear-time temporal logic as the underlying formalism for the specification of properties. We introduce
two novel operators which are especially useful for object-oriented systems and which provide a number
of advantages over the well-known temporal logic operators. A recent decision of one of our industrial
partners to adopt our proposal into one of their development platforms can be seen as a strong evidence of
the relevance of our work and as a promising step towards a better understanding between the academic
formal methods community and industry. Copyright 2001 John Wiley & Sons, Ltd.

KEY WORDS: formal model; event-based behavioral abstraction; temporal logic

1. INTRODUCTION

Object-oriented programming has become increasingly popular due to the advantages in software
development and maintenance productivity and it is beneficial at the level of software specification and

∗Correspondence to: F. Dietrich, Sony Corp., Home Network Company, Broadband Business Center, Shinagawa Intercity C,
2-15-3 Konan Minato-ku, Tokyo, 108-6201, Japan.
†E-mail: falk@sslab.sony.co.jp
‡Now with Cap Gemini Ernst & Young Suisse SA, Telecom, Media & Networks, Place Chauderon 18, CH-1000 Lausanne,
Switzerland.

Received 8 May 1998
Copyright 2001 John Wiley & Sons, Ltd. Revised 16 June 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

386 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

design. At the same time, Linear-time Temporal Logic (LTL) [1], has proven to be an expressive and
natural language for the specification and validation of concurrent systems. This has become evident
over the past decades and is well-documented in the literature.

Even though object-orientation is a well-researched domain which has long made its way into
industrial software development, research on temporal logic in object-oriented frameworks is only now
maturing into a usable science. Recent research has led to a few proposals establishing a link between
time, (e.g. temporal logic) and object-orientation. Proposals were made in different domains such as
object-oriented database systems [2], information systems [3], object-oriented real-time systems [4],
and object-oriented distributed applications [5].

Although various temporal models have been proposed for the analysis of the requirements of
object-oriented systems [3,6–11] there is no similar amount of theoretical work for the design- and
implementation phase. While the requirements analysis deals with the question ‘what is a system
supposed to do?’, the design stage is concerned with how it is to be implemented.

The major contributions of this paper are a formal model and a property language that are useful
for the development of object-oriented distributed systems. Since the relevance of any formal model
to the actual running of the program is only as good as the degree of faithfulness to which the model
represents real executions of the program [12], we have developed our model so that it accounts for
a large set of phenomena associated with industrial systems. In our model, which relies on event-
based behavioral abstraction, we use linear-time temporal logic as the underlying formalism for the
specification of properties. As our model is defined at an abstraction level that faithfully represents
real execution of implemented programs, it is possible to automatically check at run-time that the final
implementation§ has not violated and is not violating the formally specified properties expressed in our
model.

See Figure 1 for an illustration of our approach. A software engineer formally specifies properties,
i.e. behavioral constraints that the service should satisfy. These properties are expressed in the formal
model that we introduce in Section 3. The formal model is constructed by a software engineer, although
it may be feasible to generate it automatically from existing system specifications such as CORBA IDL
(Interface Definition Language). Properties can be derived from the requirements and informal design
specifications. Even though expressed at the abstraction level of our model, they can be checked on
the final implementation in a straightforward manner, as we will show in Section 4 and Section 5.
The properties are fed to a tool that we have developed called MOTEL. It automatically translates
the ‘model properties’ to ‘implementation properties’ and checks whether the implemented system is
violating the properties expressed on our model.

This paper is structured as follows. In Section 2 we give an overview about our approach and
discuss the goals and constraints that have been taken into account when developing the model and the
property language. Our formal model for object-oriented distributed systems is introduced in Section 3.
We define a set of observable events that is appropriate to model industrial-strength object-oriented
distributed systems. We point out an expressive handicap in LTL for the specification of object systems
and introduce two novel operators to overcome this handicap. The practical relevance and applicability

§With the term ‘final implementation’ we refer to the implementation that will finally be deployed in the network, e.g. a
CORBA/C++ implementation and explicitly exclude implementations based on formal description techniques like LOTOS and
SDL.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 387

� � � � � � � � � � � � � � 	

� � � � � � � � � 	 � �
 � � � � � � � � � � �

� � � � � � � � � 	 � � � � � � � � � �

� � � �
 � � � � � � � 	 � � � � � � � �

� � � � � � � ! � 	 � " � � � # " � �
� � � � � 	 � � � � � � � � � � " � 	 � � ! �
 �
� � � � � � � � � � � �

$ � 	 � �
� � # � ! � � � � � 	
� � 	 � � ! � � � � � �

 # �
 � � � � " � �
� � � � � � � �
! � � � � � � � � 	

� � � � � � � � � 	 � � � � � " � � �
� � � � � � � � � � � � � �
! � � � � � � � � 	 � � 	 � � # � �
�

 � � � � � � � # � � " � � � �
� � � � � � � � � � � �

$ � " � % � � � � � � � � � � �

�

�

�

�
�

�

$ � " � % � � � � � � � � � � �
" � � � � � � � 	 � �
 � " � � 	
� � � � � � � � � 	

� � � � � � � � � 	 � � � �
 � ! � � � � � � � � � � �
� 	 � � � � � �

� � � � � � � � � 	 � � � �
� & � � � 	 	 � � � � �
" � � � � � � � � �
� " � � # � � 	 � � ! �
 �

�

�

�
�

� � � � � � � � � ' � � �

� � 	 � � � � � � � �

Figure 1. Framework.

of our model are illustrated in Section 4. In Section 5 we briefly describe a tool that supports our model.
Section 6 reviews related work and positions our proposal with respect to other past and ongoing
research. Finally, our conclusions and an outlook for on-going and future work are presented.

2. MOTIVATION

In this section we discuss the motivation and the constraints that have been taken into consideration
when designing our model, designing the property language and developing the corresponding tools.
With our industrial partners we agreed on the following five points. By respecting these constraints we
were able to remove many of the barriers towards the adoption of formal techniques in the industry.

1. The use of formal techniques should, as much as possible, contribute to the quality of the actual
implementation; proving the correctness of highly abstract models is not desirable.

2. The time-consuming development of large formal specifications should be avoided. Formal
techniques should be usable as add-ons in the normal development process—if desired, they
can be gradually introduced. Also, the approach should scale well.

3. Any approach should be applicable to object-oriented distributed systems as they are developed
in the industry today such that the investment made into the development of the model and tools
is amortized.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

388 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

4. The proposal has to fit in an engineering environment (e.g. proving theorems is not acceptable)
and the training necessary for use of our approach has to be reduced to the minimum.

5. There should be adequate tool support.

As a response to the first goal, our model has been defined at an abstraction level that is close to
the implemented system and it offers a faithful representation of today’s industrial implementations
of object-oriented distributed systems. Properties expressed in our model, are checked on the final
implementation.

In considering the second goal, our approach places the focus on the formal specification of an
arbitrary number of behavioral constraints that the system under development should have. The number
of behavioral constraints can be adjusted to the needs: it is possible to concentrate on a limited number
of properties that are assumed to be important, it is also possible not to specify any properties. In such
a case, the typical development process is not changed.

With regard to the third goal, we express behavioral constraints independently of a specific
implementation language by requiring only a set of predefined observable events. The idea of
event-based behavioral abstraction has been successfully used elsewhere (e.g. for testing [13] and
debugging [14]), and is especially useful for accommodating heterogeneous platforms and multi-
language programming environments. For applying our model, we provide a set of predefined events
that is appropriate for industrial-strength object-oriented systems. The events we use in our model
can be mapped in a straight-forward manner to events as they occur during the execution of the final
implementation. This set of events has been determined by collaborating with several industrial players
and by taking into account the trade-offs between flexibility and complexity of the model and the
property language. Properties are to be expressed by using these predefined events. The abstraction
level we achieve in our proposal through event-based system modeling makes linking our model to a
number of development platforms and implementation languages straightforward.

As for the fourth goal, the manual use of formal techniques is restricted to the formal specification
of the properties that the service under construction should satisfy. When formally specifying the
properties, the property specifier is guided by a tool that allows him to assemble the different events and
to temporally relate the events to each other. For the establishment of a temporal relationship between
the events we advocate the use of LTL. By using LTL for the specification of behavior, we can benefit
from the well-known solutions for constructing test oracles. The generation of test oracles is done
automatically by the provided tool.

Towards the fifth goal, we have developed MOTEL (MOnitoring and TEsting tooL). MOTEL
encapsulates formal methods concepts and provides guidance and support for the specification of the
properties. The properties specified with MOTEL are then constantly checked while the final service
implementation is observed at run-time and, if a property is violated by the service, an error message
is given to the user. A detailed description of MOTEL can be found in [15] and [16].

3. A FORMAL MODEL FOR OODS

In this section we will define, step by step, our model for object-oriented distributed systems (OODS)
and identify the observable events that are useful for the specification of behavioral properties. Figure 2
shows how the definitions introduced in this section are related to each other.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 389

Figure 2. Definition dependencies.

3.1. Classes and objects

According to common terminology, objects are abstractions of real-world entities. Each object has a
unique object identifier which is assigned automatically by the system upon object creation and remains
immutable for the whole life of the object. An object has a set of operations and attributes. The effect
of an operation can depend on the operation arguments and the state of the object.

The state of an object serves as a local memory that is shared by the operations on it and can be
characterized by the cumulative effect of its experience. In our approach, the object state is determined
by the history of observable events on the object. A few words about the notion of observable event are
in order. The local activity of an entity (e.g. a process or an object) can be described as a set of local
events which can be partitioned into two subsets: (i) the set of internal events and (ii) the set of external
(observable) events. The notion of an observable event can be seen as a screen filtering out all events
that are irrelevant at the given level of abstraction. In this paper, we consider observable events at four
different levels: the object-, thread-, process- and system level. The classification of observable events
into these four groups is mainly intended to facilitate the presentation. In the following we will just use
the term ‘event’ when referring to an observable event. An event occurs instantaneously and is atomic.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

390 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

We assume a set of class names, denoted CN. This set is constant, e.g. no new class names appear
over the lifetime of the system.

Definition 1. (Value types) The finite set of value types VT contains the types integer, real, character,
bool, string and all the class names cn from the set of class names CN:

VT = {integer, real, character, bool, string} ∪ CN

These value types have the usual meaning. By considering the set of class names as a subset of value
types VT, we allow objects to keep references to other objects as attributes and we allow to pass object
references as parameters. In order to simplify the presentation we do not consider structured value
types such as sets, lists and records in this paper.

Definition 2. (Legal type values) For each of the value types there exists a set of values denoted as
dom(VT).

The set of legal values for the value types integer, real, character, bool and string is defined as usual.
For instance, the domain of the value type bool is the set {true, false}. The set of legal type values for
value types cn ∈ CN is the set of object identifiers OID.

Definition 3. (Class signature) A class signature is a triple (cn, Sattr, Smeth) where

• cn ∈ CN is the class name.
• The set of attributes, Sattr, contains an element for each attribute of the class. Each element

in this set describes an attribute as a triple (a name, a char, a type); a name is the name of
the attribute, a char is the attribute characteristic and a type is the attribute type. An attribute
characteristic is an element of the set {readonly, readwrite} that indicates whether the attribute is
read-only, or both readable and writable. The set of attribute types equals the set of value types.

• The set of methods Smeth contains an element for each method of the class. Each element in this
set is a pair (m name,m sign); m name is the name of the method, m sign is the signature of the
method expressed as a list of parameter characteristics, parameter types and parameter names.
The parameter characteristic is an element of the set {in, out, inout} that indicates whether the
parameter is read, written, or read and written by objects of this class. The set of parameter types
equals the set of value types.

Class signatures are assumed to be immutable over time, e.g. an attribute of type bool cannot be
changed to type integer.

Example 1. We describe a class signature printer with two attributes (called ‘status’ and ‘counter’) and
two methods (named ‘submit’ and ‘cancel’). The attribute with the name ‘status’ has the characteristic
readwrite, i.e. can be written and read, and is of type bool. The operation ‘submit’ has two parameters,
called ‘txt’ and ‘id’ of type string and integer respectively. While the ‘txt’ parameter is an in-parameter,
i.e. is passed to the operation when invoked, the ‘id’ parameter is an out-parameter, i.e. set when the
operation returns.

cn=printer
Sattr={(status,readwrite,bool),(counter,readwrite,integer)}
Smeth={(submit,((in,string,txt),(out,integer,id))),

(cancel,((in,integer,id)))}

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 391

� (�)

* (+ � � , � � � � � �

* - + � � , � � � � � �

*) + � � , � � � � �

* . + � � , � � � � �

Figure 3. Object events.

To simplify the modeling of behavior, attributes are mapped to one or two operations, read a to read
the value of the attribute a and write a to write the value of attribute a. An attribute a maps to a
single operation read a if it is characterized as readonly, otherwise it maps to two operations. These
operations constitute the only possibility to read and write the values of attributes.

Definition 4. (Operation request) An operation request is a quadruple (src, tgt, oper, prm list) where

• src ∈ OID is the object identifier for the source object, i.e. the object that requests the execution
of an operation on another object;

• tgt ∈ OID is the object identifier for the target object, i.e. the object that executes the operation;
• oper is the name of the called operation;
• prm list is a list of parameter values of the operation where each item has to be in the domain of

its corresponding parameter type.

The execution of an operation (as seen at the object level) involves four events; each of these four
events describes a different stage during the execution.

Definition 5. (Object event) An event at the object level is represented as a pair (o type, op req) where

• o type is an element of the set of object event types OET = {o outReq, o inReq, o outRep,
o inRep}.

— An event of type o outReq occurs at the instant when an object has finished sending a
request to execute an operation on another object.

— An event of type o inReq occurs at the instant when an object has just started executing an
operation as requested by another object.

— An event of type o outRep occurs at the instant when the object has completed processing
the request. At this event, the underlying architecture starts transferring the result back to
the object that requested the execution of the operation.

— An event of type o inRep occurs at the instant when the calling object has completely
received the reply for the execution of an operation from the called object.

• op req is an operation request (see Definition 4).

These four events are illustrated in Figure 3. The numbers in this figure indicate the order in which
these events occur during the execution of the operation offered by object o2 and invoked by object o1.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

392 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

In this paper we shall not consider one-way operations (notifications), i.e. operations that do not
return any result to the calling object and that therefore do not block the client object. However, our
model is easy to adapt to account for notifications by extending the class signature so that it can
identify operations as being one-way. One-way operations would obviously not comprise o outRep-
and o inRep-events.

Definition 6. (Event occurrence) An event occurrence is an instance of an event.

An event occurrence at the object level is therefore an instance of an object event. We assume that
each event occurrence can be distinguished from other event occurrences of the same event. This can
be done by using a unique event occurrence identifier. However, an event occurrence identifier is not
part of the event’s tuple notation. Distinct event occurrences can obviously have the same event tuple.

Example 2. Consider two objects o1 and o2. Object o2 offers an operation sqrt (calculating the square
root) which is called by object o1. Operation sqrt has two parameters of type integer, the first is an in-
parameter while the second is an out-parameter. Assuming that object o2 does not call other operations
on other objects during the execution of the operation, the events at these two objects could be as
follows:

at object o1
1. (o outReq, (o1, o2, sqrt, (16, ∗)))
4. (o inRep, (o1, o2, sqrt, (∗, 4)))

at object o2
2. (o inReq, (o1, o2, sqrt, (16, ∗)))
3. (o outRep, (o1, o2, sqrt, (∗, 4)))

Throughout this paper we use ‘∗’ to denote that a value is unrestricted or irrelevant. In the above
example, the value of the out-parameter of the operation is obviously irrelevant for the two events
o outReq and o inReq, while the value of the input parameter is irrelevant for the two other events.

Furthermore, in some cases we might not be interested in specifying the source object of an operation
request, either because it is irrelevant from which object the request is coming or because the request
does not come from another object but from the system’s environment. For example, if an object o
receives an operation request from another object and we do not need to explicitly identify the object
that has sent the request nor do we need to specify the parameters of the request, then this event can be
specified as

(o inReq, (∗, o, oper, ∗))
Let us briefly recall some basic concepts: let S be a countable set and let R be a binary relation over

S. Let R∗ be the reflexive–transitive closure of the relation R. The relation R is reduced if for each
(e1, e2) ∈ R, (e1, e2) /∈ (R\(e1, e2))

∗. The relation R, representing the temporal relationships between
event occurrences, is a partial order if R is reflexive, transitive and antisymmetric. The relation R is a
causal order if R is antisymmetric and reduced. We use ≺ to denote a causal order, and ≤ to denote the
corresponding partial order, i.e. its reflexive-transitive closure. Let e1 and e2 be two event occurrences.
If e1 ≤ e2 or e2 ≤ e1, then e1 and e2 are said to be (causally) dependent. If neither e1 ≤ e2 nor e2 ≤ e1,
then e1 and e2 are said to be concurrent, written e1 ‖ e2. A partial order ≤ is a total order if for every
two elements e1 and e2, either e2 ≤ e1 or e1 ≤ e2.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 393

Definition 7. (Object behavior) The object behavior O Behav is expressed as a structure
〈OEO,O BehavR〉 where

• OEO is a set of event occurrences, and
• O BehavR ⊆ OEO × OEO is a partial order on the set of event occurrences.

In the case that at most one operation is executed on an object at a given time, object behavior can be
described with a total order of event occurrences.

Definition 8. (Object) An object 〈OID,O Behav〉 is a pair (oid, o behav) where

• oid ∈ OID is the object identifier of the object, and
• o behav ∈ O Behav is the object’s behavior.

We introduce a function γ : OID → CN, returning the class name for a given oid; for each oid ∈ OID,
γ (oid) is the class name cn for the class that the object with the identifier oid is instantiated from.

The definition of an object does not explicitly specify the attributes nor does it explicitly specify the
value of the attributes. Note that the attributes can be derived from the class signature and the values of
the attributes can be derived from the object behavior.

Example 3. Consider the printer class signature from Example 1. In the following we describe an
object of this class. The operation write status has been invoked twice on the object leading to
four event occurrences at this object. The object is described by its oid = oidp1 and its behavior
behp1 = (Ep1,Rp1) where Ep1 = {e1, e2, e3, e4}, Rp1 = {(e1, e2), (e1, e3), (e1, e4), (e2, e3), (e2, e4),

(e3, e4)} and the event occurrences e1 . . . e4 are as follows:

e1 = (o inReq, (∗, oidp1,write status, (true))), 1

e2 = (o outRep, (∗, oidp1,write status, (∗))), 2

e3 = (o inReq, (∗, oidp1,write status, (false))), 3

e4 = (o outRep, (∗, oidp1,write status, (∗))), 4

Definition 9. (Object class behavior) The object class behavior c behavcn is the set of possible
behaviors of objects whose class name equals cn, i.e.

c behavcn =
⋃

o behavi with γ (i) = cn

Definition 10. (Object class) An object class o cls is a pair (c sign, c behav) where

• c sign is the class signature, and
• c behav is the object class behavior.

Objects can be dynamically created and deleted. We elaborate on the construction and deletion of
objects below. However, it can already be noted that the creation and deletion of objects is not
observable at the object level. This is motivated by the fact that an object cannot observe its own birth
or death just as a new-born child cannot observe his/her own birth. This observation has to happen at a
higher abstraction level; in our model, object creation and deletion can be observed at the process level
(see Section 3.3).

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

394 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

3.2. Property specification with LTL

For the specification of behavioral constraints we advocate the use of LTL. In several (industrial)
projects like [17,19] and [20], temporal logic has been successfully used for the specification of
behavioral constraints that should be satisfied by some executable specification. We feel that LTL
especially with its well-understood theoretical foundations has the potential to serve as a suitable
vehicle for expressing behavioral properties. Temporal logic has also been integrated in commercial
tools, for example by Siemens [21] and Time-Rover [22].

LTL formulae are interpreted over an infinite sequence of states σ = s0, s1, Given a state
sequence σ and a temporal formula p, (σ, j) |= p denotes that p holds at position j ≥ 0 in σ .

In this paper we restrict ourselves to the use of the following future temporal operators: ✷ (always),
✸ (eventually) and U (Until) which are defined as follows:

• (σ, j) |= ✷p ⇐⇒ ∀k ≥ j, (σ, k) |= p;
• (σ, j) |= ✸p ⇐⇒ ∃k ≥ j, (σ, k) |= p; and finally
• (σ, j) |= pUq ⇐⇒ ∃k ≥ j, (σ, k) |= q and ∀i, j ≤ i < k, (σ, i) |= p

In this paper we will use the notation �e to denote that an event e just happened, i.e. (σ, j) |= �e iff
event e just happened. A formal definition of �e as well as our definition of state can be found in [23].

Let us now consider a few temporal logic expressions. We start with a simple temporal relationship.
Let o be an object that offers two operations, named use and activate. A property that we might want
to specify is that we have to call the activate operation before we can call the use operation. More
generally, this property simply requires one event to happen before another event; the two events
referring to the same object. To formally express this property, we must first find a formal representation
for each of those two events. Let us require that the activate operation has to complete execution
by the time that the use operation takes place. The invocation of the use operation is characterized
by the event (o inReq, (∗, o, use, ∗)) while the termination of the activate operation is specified as
(o outRep, (∗, o, activate, ∗)). The formal representation of the property would then look like

¬ � (o inReq, (∗, o, use, ∗)) U � (o outRep, (∗, o, activate, ∗))
Frequently one wishes to express properties referring to intervals. Let us consider the case

where something must happen in an interval, e.g. in the interval between the invocation of an
operation op1 on object o1, (o inReq, (∗, o1, op1, ∗)), and the termination of the same operation
(o outRep, (∗, o1, op1, ∗)), object o1 directly calls operation op2 on another object o2. This property
could be represented as

✷(� (o inReq, (∗, o1, op1, ∗)) →
¬ � (o outRep, (∗, o1, op1, ∗)) U

� (o outReq, (o1, o2, op2, ∗)))
Let us examine the problem of properties referring to attributes and look at two examples: (1) The
value of attribute a is never equal to 0. (2) Whenever we invoke operation op on object o, the value of
attribute a (at object o) must be equal to zero. With our approach, those properties have to be translated
into a form that is based on events. Remember that, for the modeling of behavior, attributes are mapped
to operations.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 395

2o1
(1) (2)

o

Figure 4. Two events.

Let us first look at property (1) which can be translated into an ‘event-based property’ stating that
there is never an event setting the attribute to zero:

✷(¬ � (o inReq, (∗, o,write a, (0))))

However, expressing property (2) is already more complex and requires a reference to three events: the
setting of the attribute to zero, the setting of the attribute to any other value and the invocation of the
operation op. These three events are abbreviated as follows:

e1 = (o outRep, (∗, o,write a, (0)))

e2 = (o outRep, (∗, o,write a, (�= 0)))

e3 = (o inReq, (∗, o, op, ∗))
Then, property (2) could be expressed as:

✷(�e2 → ¬ � e3 U � e1) ∨
(✷(¬ � e2) ∧ ¬ � e3 U � e1)

This property is comprised of two parts connected by logical or. Informally, the first part says that
each time that a is set to non-zero, the operation op will not be invoked unless a has been reset to zero
beforehand. The second refers to the case where a is never set to non-zero and requires that operation
op is not invoked before the attribute has been set to zero.

So far, the considered sample properties have mostly referred to single objects. Let us now look
deeper at properties which relate events on different objects.

Figure 4 depicts two objects o1 and o2. Object o1 offers an operation op1 whereas object o2
implements operation op2. We formally specify that, whenever we invoke operation op1 on o1,
operation op2 will be invoked on o2 as a result. Object o1 does not necessarily invoke op2 directly.
In Figure 4 this is depicted by the three objects in the cloud between o1 and o2 which represent an
arbitrary structure between those two objects. The actual path leading from the invocation of op1 to the
invocation of op2 is irrelevant at this point.

To express that op2 on o2 will always be called as a result of the operation invocation op1 on o1 one
might, using temporal logic and the syntax described earlier, unwisely specify

✷(�(o inReq, (∗, o1, op1, ∗)) → ✸ � (o inReq, (∗, o2, op2, ∗)))

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

396 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

but this formula inaccurately reflects our intent for the property; it provides no guarantee that the second
event is procedurally related to the first event. The following formula shows an improvement by its use
of the Until operator U .

✷(� (o inReq, (∗, o1, op1, ∗)) →
¬ � (o outRep, (∗, o1, op1, ∗)) U

� (o outRep, (∗, o2, op2, ∗)))
Although this last formula specifies that event (o inReq, (∗, o2, op2, ∗)) must happen in the interval
between the instant that o1 receives the operation request for op1 and the instant that o1 returns the
result for op1, it still does not guarantee that the operation request at object o2 is procedurally related
to the operation invocation on o1.

As we are considering a concurrent system, we have to deal with several control flows. There can be
many objects in the system, invoking operation op2 on object o2 and an observed invocation might not
be procedurally related to event (o inReq, (∗, o1, op1, ∗)).

In Figure 5 we illustrate the same problem on a different example and from a different perspective.
(Objects o1 and o2 in Figure 4 are not the same as objects o1 and o2 in Figure 5). This figure depicts
the events (denoted as circles) in a system (represented by three objects o1, o2 and o3) that interacts
with two users (u1 and u2). The events that are procedurally caused by the operation invoked by user
u1 reside on the dotted lines while the events procedurally caused by the operation invoked by user u2
reside on the dashed lines. Let us require that each time user u1 invokes an operation on object o2 this
operation invocation will trigger an operation invocation on object o3 (which is not the case in Figure 5).
The two relevant events are highlighted in the figure by means of filled circles. Even though there is
an operation invocation on object o3 in the interval between the operation request and the termination
of the operation, this operation invocation is not procedurally related to the operation invoked by user
u1. However, those two events are causally related, i.e. ordered by Lamport’s happened-before relation
[24].

None of the currently existing approaches that allows specifying temporal logic-based properties for
object systems, pays attention to procedural dependencies. However, many of the interesting properties
in object systems involve procedural dependencies rather than simple temporal or causal relationships.
Obviously, the establishment of a partial order between two states is not sufficient to determine whether
or not the two states are procedurally dependent.

Procedural dependencies (PDs) cannot be directly expressed in LTL but are highly relevant in real
systems. Thus, in order to render temporal logic useful in such frameworks, we need to extend it with
operators to express procedural dependencies.

For the rest of Section 3.1 we impose the restriction that each object can only process one operation
at a given time. Let us first informally explain what exactly we mean by procedural dependencies. For
illustration we will use Figure 6 which depicts three objects. Object o1 invokes an operation on object
o2 which, in order to satisfy the request, requires invoking two operations on object o3.

Our formal definition of procedural dependencies introduced later will be based on the following
intuitive points.

1. An event occurrence e is procedurally dependent on an o outReq-event occurrence, if e is
necessary to successfully complete the execution of the operation the o outReq-event occurrence
refers to.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 397

3u u o o o21 1 2

Figure 5. Two procedurally unrelated operations.

In Figure 6, a, d and f are event occurrences of o outReq-events. To successfully complete the
operation event occurrence a refers to, we need to have event occurrences c, d, i, . . . , g, h, b.
To successfully complete the operation event occurrence d refers to, we need to have event
occurrences i, j and e. However, event occurrence k is procedurally independent of d since k is
not necessary to complete the operation d refers to.

2. Procedural dependencies should be transitive, i.e. if event occurrence e3 is procedurally
dependent on event occurrence e2 and e2 is procedurally dependent on event occurrence e1,
then e3 is procedurally dependent on e1.

3. An o outRep-event occurrence is procedurally dependent on the corresponding o inReq-event
occurrence.
In Figure 6, h is procedurally dependent on c, j is procedurally dependent on i, and l is
procedurally dependent on k.

4. Receive-event occurrences, i.e. event occurrences indicating either an o inReq- or an o inRep-
event, are procedurally dependent on their corresponding send-event occurrences, i.e. events
indicating either an o outReq- or an o outRep-event.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

398 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

3
o

1

a

b

c

d

i

e

j

f

k

g

h

l

o
2

o

Figure 6. Procedural dependency.

In Figure 6, event occurrence c is procedurally dependent on a, i is procedurally dependent on
d etc.

We introduce two relations, a direct procedural dependency (DPD) relation R� and a (general) PD
relation R�. The DPD relation R� is a binary relation over a set of event occurrences E. Let e1 and e2
be event occurrences from E. Then (e1, e2) ∈ R� indicates that e2 is directly procedurally dependent
on (directly procedurally caused by) e1. Each event occurrence e2 is directly procedurally dependent
on at most one other event occurrence e1 but an event occurrence e1 can directly cause more than one
event occurrences. To determine whether two event occurrences are (directly or indirectly) procedurally
dependent, it suffices to generate the transitive closure of the direct procedural relation which we will
denote with R�. If (e1, e2) ∈ R�, then e1 is said to procedurally cause event occurrence e2 and e2 is
said to be procedurally dependent on (procedurally caused by) e1.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 399

Example 4. The direct procedural dependency relation R� for the example depicted in Figure 6 is as
follows:

R� for Figure 6

a b c d e f g h i j k l

a 1
b
c 1 1 1
d 1
e
f 1
g
h 1
i 1
j 1
k 1
l 1

Indeed, the transitive closure of R� leads us the procedural dependencies for all event occurrences
such that the intuitive points discussed earlier are satisfied:

R� for Figure 6

a b c d e f g h i j k l

a 1 1 1 1 1 1 1 1 1 1 1
b
c 1 1 1 1 1 1 1 1 1 1
d 1 1 1
e
f 1 1 1
g
h 1
i 1 1
j 1
k 1 1
l 1

In the following we formally introduce two new operators � and � which can be used to specify
procedural dependencies and which put the DPD- and the PD-relation on a formal basis. Let e1 and
e2 be events. Then �e1 � �e2 (reads ‘e1 procedurally causes e2 directly’) and �e1 � �e2 (reads ‘e1
procedurally causes e2’) are formulae.

For the definition of the direct PD operator, we distinguish four cases which are described below.
Let o1, o2 and o3 be objects and op2 and op3 operations offered by objects o2 and o3 respectively. Just
as the temporal operators from LTL, the two new operators are interpreted over the state sequence σ .

1. (σ, i) |= �e1 � �e2 if

• e1 = (o outReq, (o1, o2, op2, ∗)),
• e2 = (o inReq, (o1, o2, op2, ∗)), and
• (σ, i) |= �e1 → (∃j > i such that (σ, j) |= �e2 and �k, i < k < j, (σ, k) |= �e1).

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

400 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

From a procedural point of view, an o outReq-event for a given operation request directly causes
an o inReq-event for that operation request. In Figure 6, a � c, d � i and f � k.

2. (σ, i) |= �e1 � �e2 if

• e1 = (o inReq, (o1, o2, op2, ∗)),
• e2 = (o outRep, (o1, o2, op2, ∗)), and
• (σ, i) |= �e1 → (∃j > i, (σ, j) |= �e2 and �k, i < k < j, (σ, k) |= �e1).

An o inReq-event procedurally causes the response to the operation request. In Figure 6, c � h,
i � j and k � l.

3. (σ, i) |= �e1 � �e2 if

• e1 = (o outRep, (o1, o2, op2, ∗)),
• e2 = (o inRep, (o1, o2, op2, ∗)), and
• (σ, i) |= �e1 → (∃j > i such that (σ, j) |= �e2 and �k, i < k < j, (σ, k) |= �e1).

The sending of a reply procedurally causes the arrival of the reply. In Figure 6, h � b, j � e and
l � g.

4. (σ, i) |= �e1 � �e2 if

• e1 = (o inReq, (o1, o2, op2, ∗)),
• e2 = (o outReq, (o2, o3, op3, ∗)), and
• ((σ, i) |= �e1 → (∃j > i, (σ, j) |= �e2 and �k, i < k < j, (σ, k) |= �(o outRep, (o1,

o2, op2, ∗))).
An o inReq-event is the only event that can directly cause more than one event. As a result
of an operation invocation represented by the o inReq-event, we will have an o outRep-event
indicating the completion of the operation (see 2nd point), but it could also be necessary that
we need to invoke other operations on other objects before completing the operation. Then,
the o inReq-event procedurally causes the o outReq-events for the necessary operations. For
Figure 6, the DPD relations covered by the fourth item are c � d and c � f .

Definition 11. (DPD operator �) (σ, i) |= �e1 � �e2 iff any of the four above-listed formulae
evaluates to true.

Definition 12. (PD operator �)

(σ, i) |= �e1 � �e2 iff

((σ, i) |= �e1 � �e2)

or

((σ, i) |= �e1 and ∃j > i, (σ, j) |= �e2, and

∃z. � e1 � z and z � �e2)

Example 5. Let us review Figure 4. We are now able to specify that each operation invocation on object
o1 procedurally causes the operation invocation on object o2. Let op1 and op2 be operations offered by
objects o1 and o2 respectively. The property can then be expressed as:

✷(�(o inReq, (∗, o1, op1, ∗)) � �(o inReq, (∗, o2, op2, ∗)))

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 401

Please note that this formula does not put any restriction on which object actually invokes operation
op2. Object o1 may directly invoke op2 on o2, but there could also be an arbitrary number of
intermediate objects, which are involved in the execution of the operation originally invoked on o1.

3.3. Threads and processes

Distributed applications are often implemented using some kind of client/server model. For some
servers it may be satisfactory to accept one request at a time and to process each request to completion
before accepting the next. However, it is often necessary to process a number of requests in parallel.
Multi-threaded servers are commonly used in practice to achieve this. Parallelism may be possible
because a set of clients can concurrently use different objects in the same server process, or because
some of the objects in the server process can be used concurrently by a number of clients.

In this paper, we consider only multi-threaded servers but not multi-threaded clients, i.e. operation
calls are always assumed to block the client.

Definition 13. (Process signature) A process signature is a triple (pn, t min, t max), where

• pn ∈ PN is the process name for that process;
• t min ∈ N is the number of threads that are attributed to the process when the process is created

and which do not get deleted over process lifetime;
• t max ∈ N+ specifies the upper limit of threads supported in the process.

In practice, the number of possible thread configurations is enormous. In our model, we are therefore
focusing on a selected subset of these possibilities. For the sake of simplicity we assume that incoming
operation requests are processed according to the FIFO policy. The thread configuration is specified by
attributing values to t min and t max.

We assume that an incoming request is assigned to an arbitrary thread in the given process if a
thread is available (not busy). If no thread is available but the maximum number of threads does not
yet exist, we create a new thread dynamically, assign it to the request and delete it when the request has
been processed to completion. A request is queued if the number of threads in the process has already
reached t max.

Let us quickly illustrate the above ideas by discussing a few thread configurations. Consider the
example of a simple threading model where a thread is created automatically for each incoming
operation/attribute request and deleted when the request has been processed to completion. Such a
thread configuration is described by setting t min to zero and t max to ∞.

A single-threaded process, i.e. a process which can only process one request at a time can be
described by setting both t min and t max to one.

Let us finally consider the specification of a particularly relevant thread configuration, namely that of
a thread pool. Such a configuration is frequently being applied in real-time systems where the dynamic
creation of threads has to be avoided due to the time-consuming character of such creations. In such a
case, both t min and t max should be set to n where n is the number of threads forming the thread pool.

Before an operation request is assigned to a thread, it arrives at the corresponding process. The
arrival of an operation request at a process is characterized by an event. There can be a significant delay
between the arrival of the request at the process and moment the object starts executing the requested
operation (e.g. if the request has to be queued). Due to this delay it is necessary to differentiate between

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

402 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

the event denoting the arrival of an operation request at a process (p inReq) and the event denoting that
an object starts executing the operation (o inReq).

Definition 14. (Operation request arrival) An event denoting the arrival of an operation request at a
process is a pair (p inReq, op req) where

• The event type p inReq indicates the arrival of an operation request at a process.
• op req is an operation request.

Definition 15. (Thread/object life cycle event) A thread/object life cycle event is a pair (p type lc, id)
where

• p type lc is an element of the set {p newO, p delO, p newT, p delT} indicating the type of the
event.

— An event of type p newO occurs at the instant when the creation of an object has just taken
place.

— An event of type p delO occurs at the instant when an object has just been deleted.
— An event of type p newT occurs at the instant when the creation of a thread has just taken

place.
— An event of type p delT occurs at the instant when a thread has just been deleted.

• id ∈ OID ∪ TID is the object or thread identifier for the object/thread that has been created or
deleted.

Example 6. Let us consider a property referring to all objects of a given class. The activate-operation
has to complete execution before we are allowed to invoke the use-operation:

✷((� (p newO, oid) ∧ γ (oid) = cn) →
¬ � (o inReq, (∗, oid, use, ∗)) U

� (o outRep, (∗, oid, activate, ∗)))
In a system where an object can be dynamically created, other objects have to be able to obtain a
reference to the newly created object at run-time. An object reference is requested by specifying a
process name and/or an object class name. An object reference request is characterized as an event.

Definition 16. (Object reference request event) An object reference request event is a 6-tuple
(p reqRef , tid, cn, pn, n,m) where

• p reqRef indicates that an object reference is requested,
• tid ∈ TID is the thread identifier for the thread requesting the object reference,
• cn ∈ CN specifies the class name for the class the requested object is derived from,
• pn ∈ PN indicates the process name the object should reside in, and
• n ∈ N and m ∈ N are used to identify specific objects.

An object reference request returns an object identifier based on the provided class name and/or process
name. For each cn ∈ CN, pn ∈ PN and n,m ∈ N , it returns the object reference to the nth object of
class cn in the mth instantiation of the process with process name pn.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 403

Example 7. The event of getting a reference to an arbitrary object of the class with class name cn
without putting any constraint on the process in which the object is to be found, can be described as:

(p reqRef , tid, cn, ∗, ∗, ∗)
Definition 17. (Object reference receive event) An object reference receive event is a triple (p recRef ,
tid, oid) where

• p recRef identifies the event as an object reference receive event,
• tid ∈ TID is the thread identifier for the thread receiving the object reference, and
• oid ∈ OID is the object reference returned.

We do not define what happens when an object reference to an non-existing object is requested. It is,
for example, imaginable that the system automatically instantiates a given process if there is currently
no instance of this process running and we request an object reference to an object in such a process.

Definition 18. (Process event) A process event is an operation request arrival event, a thread/object life
cycle event, an object reference request event or an object reference receive event.

Definition 19. (Thread event) An event at the thread level is a triple (t type, tid, op req) where

• t type ∈ TET is an element of the set of thread event types TET = {t assT , t relT , t outReq,
t outRep, t inRep} indicating the event type.

— An event of type t assT occurs at the instant when an operation request has just been
assigned to a thread.

— An event of type t relT occurs at the instant when a thread has processed an operation
request to completion.

— An event of type t outReq occurs at the instant when, during the execution of an operation
request, a request to invoke another operation on another object has been sent.

— An event of type t outRep occurs at the instant when a thread has completed the execution
of an operation, i.e. when the underlying infrastructure starts sending the result back to the
calling object.

— An event of type t inRep occurs at the instant when the response for a previous t outReq
has just arrived and the thread continues to execute the original operation.

• tid is the thread identifier for the thread at which the event happens.
• op req is an operation request.

Definition 20. (Thread behavior) The thread behavior T Behav is a structure 〈TEO,T BehavR〉 where

• TEO is a set of thread event occurrences, and
• T BehavR ⊆ TEO × TEO is a total order on the set of event occurrences.

Definition 21. (Thread) A thread is a pair (tid, t behav) where

• tid ∈ TID is the thread identifier, and
• t behav is the thread behavior.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

404 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

Each thread has a unique thread identifier tid and each thread belongs to exactly one process.

Example 8. Let o1 and o2 be objects, op2 an operation offered by o2 and let t be a thread which resides
together with o2 in the same process with process identifier p. Object o1 invokes operation op2 on o2.
We look at the events for t and p during the execution of the operation. First, the operation request
arrives at p (1) and is assigned to t (2). Then, the thread returns the result (3) and is finally released (4):

1. (p inReq, (o1, o2, op2, ∗))
2. (t assT, t, (o1, o2, op2, ∗))
3. (t outRep, t, (o1, o2, op2, ∗))
4. (t relT, t, (o1, o2, op2, ∗)).

Similar to [25] we refer to the number of event occurrences of event e by writing #[e] which is defined
as follows.

Definition 22. (Number of event occurrences)

#[e](σ,n) =

0 if n = 0

#[e](σ,n−1) if n > 0 ∧ (σ, n) � �e

#[e](σ,n−1) + 1 if n > 0 ∧ (σ, n) � �e

Example 9. Using temporal logic and the events introduced so far we can specify reliable
communication, i.e. the fact that no messages will get lost. This can be formally expressed with the
following two formulae, referring to the operation requests and replies respectively:

✷✸(#[�(p inReq, (o1, o2, op2, ∗))] = #[�(t outReq, ∗, (o1, o2, op2, ∗))])
✷✸(#[�(t inRep, ∗, (o1, o2, op2, ∗))] = #[�(t outRep, ∗, (o1, o2, op2, ∗))])

To express that no messages (operation requests and replies) are artificially introduced into the system,
i.e. each received message has previously been sent, we can specify:

✷(#[�(t outReq, ∗, (o1, o2, op2, ∗))] ≥ #[�(p inReq, (o1, o2, op2, ∗))])
✷(#[�(t outRep, ∗, (o1, o2, op2, ∗))] ≥ #[�(t inRep, ∗, (o1, o2, op2, ∗))])

Example 10. Let us consider an operation invocation. We assume two objects: o1 in process p1 and o2
in process p2, object o1 calling operation op on object o2. Object o1 has the reference to the remote
object. The server process (p2) creates a thread for each incoming request which is deleted after the
execution. The operation invocation yields the events as listed in Table I.

The three dots indicate that the object could call other operations on other objects in order to
successfully complete the operation. Please note that the events are not necessarily totally ordered
and the order given in the table shows just one possible order.

Definition 23. (Process behavior) The behavior of a process P Behav is a structure 〈PEO,P BehavR〉
where

• PEO is the set of process event occurrences which comprises all event occurrences for this
process and the event occurrences for all objects and threads in this process, and

• P BehavR ⊆ PEO × PEO is a partial order on the set of event occurrences.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 405

Table I. Example.

At Event

1 o1 (o outReq, (o1, o2, op, ∗))
2 t1 (t outReq, t1, (o1, o2, op, ∗))
3 p2 (p inReq, (o1, o2, op, ∗))
4 p2 (p newT, t2)
5 t2 (t assT, t2, (o1, o2, op, ∗))
6 o2 (o inReq, (o1, o2, op, ∗))

. . .
7 o2 (o outRep, (o1, o2, op, ∗))
8 t2 (t outRep, t2, (o1, o2, op, ∗))
9 t2 (t relT, t2, (o1, o2, op, ∗))

10 p2 (p delT, t2)
11 t1 (t inRep, t1, (o1, o2, op, ∗))
12 o1 (o inRep, (o1, o2, op, ∗))

Definition 24. (Process) A process is a pair (pid, p behav) where

• pid ∈ PID is the process identifier, and
• p behav is the process behavior.

Each process has a unique process identifier pid. We introduce a function θ : TID → PID returning
the process identifier for a thread with the thread identifier tid; for each tid ∈ TID, θ(tid) is the process
identifier pid for the process that the thread with the identifier tid belongs to. Furthermore, we introduce
a function µ : PID → PN returning the process name for a given process identifier pid; for each
pid ∈ PID, µ(pid) is the corresponding process name pn.

Each process is comprised of a set of objects and a set of threads. These two sets can change over
time. The elements of these sets can be derived from the behavior of the process.

The lifetime of threads and objects is limited to the lifetime of their corresponding process, i.e. the
deletion of a process implies the deletion of all threads and objects contained in this process.

Definition 25. (Program behavior) The program behavior m behavpn is the set of possible behaviors of
processes whose process name equals pn, i.e.

m behavpn =
⋃

p behavi with µ(i) = pn

Definition 26. (Program) A program p prg is a pair (p sign, p behav) where

• p sign is the process signature, and
• m behav is the program behavior.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

406 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

3.4. OODS

Similar to the object-, thread- and process level we will now define the events at the system level. At
the system level we have four events denoting the registration and deregistration of objects and the
creation and deletion of processes.

A server process is normally implemented so that it initializes itself and creates an initial set of
objects. These objects are not ready to accept operation requests unless the initialization process has
been completed. When an object is ready to accept operation requests, it can be registered to the
system, thereby making it possible for other objects to invoke operations on it. The registration (and
deregistration) of an object is characterized by an event.

Definition 27. (Object (de-)registration event) An object registration (deregistration) event is a pair
(s RT, oid) where

• s RT is an element of the set {s oReg, s oDereg} denoting an object registration or deregistration
event respectively.

• oid is the object identifier of the object being registered or deregistered.

Definition 28. (Valid/invalid object reference) An object reference is valid at a given instant, if and
only if the referenced object exists at that instant and it is registered, otherwise the object reference is
invalid.

In a system where objects can be dynamically deleted, an object reference may become invalid when
the referenced object is deleted.

Definition 29. (Process life-cycle event) A process life-cycle event is a pair (s type, pid) where

• s type is an element of the set SET = {s newP, s delP} indicating the event type.

— An event of type s newP occurs at the instant when the creation of a process has just taken
place.

— An event of type s delP occurs at the instant when the deletion of a process has just taken
place.

• pid is the process identifier for the process getting created or deleted.

Definition 30. (System event) A system event is either an object registration or deregistration event or
a process life-cycle event.

Definition 31. (System behavior) The system behavior S Behav is a structure 〈SEO, S BehavR〉 where

• SEO is the set of system event occurrences which comprises all event occurrences for the system,
its threads, processes and objects, and

• S BehavR ⊆ SEO × SEO is a partial order on the set of event occurrences.

Finally, we are ready to give a formal definition of an object-oriented distributed system (OODS):

Definition 32. (OODS) An object-oriented distributed system (OODS) can be represented by a model
M = 〈O Cls,P Prg, S Behav〉 which is given by the following components:

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 407

Table II. Event summary.

Name Description

o outReq outgoing operation request
o inReq incoming operation request
o outRep outgoing operation reply
o inRep incoming operation reply
p inReq incoming operation request
p newO object creation
p delO object deletion
p newT thread creation
p delT thread deletion
p reqRef request for an object reference
p recRef receive of an object reference
t assT thread assignment
t relT thread release
t outReq outgoing operation request
t outRep outgoing operation reply
t inRep incoming operation reply
s oReg object registration
s oDereg object deregistration
s newP process creation
s delP process deletion

• O Cls: The (finite and non-empty) set of object classes.
• P Prg: The (finite and non-empty) set of programs.
• S Behav: The behavior of the system.

This definition captures the abstraction level that is useful for filling the needs of today’s industrial
software development. With the property language advocated in this paper, it is possible to express
a multitude of behavioral properties, which can later be checked at run-time. Event-based behavioral
abstraction makes the model applicable to a wide range of systems. The events we have introduced in
this paper are summarized in Table II.

3.5. A toy example

In the following we will illustrate some of the major points of our proposal on a very simple example.
An industrial case study can be found elsewhere: in [23] we show how our proposal has been used to
model the structure and behavior of a desktop video conferencing service developed by our industrial
partners.

Here, we consider a simple system (Figure 7) with two processes p1 and p2, each of them containing
a single object o1 and o2 respectively. These two objects are derived from classes Class1 and
Class2 whose class signatures are as follows:

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

408 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

� � � �
 � � � � � � � 	 � � � � � � � � � * � � � +

� (

� � �
 � 	 	 � � (� � �
 � 	 	 � �)

� (

�)

�)

Figure 7. Simple example.

cn=Class1
Sattr={}
Smeth={(set_value,(in,integer,i))}

cn=Class2
Sattr={(a1,readwrite,integer)}
Smeth={(read_a1,(out,integer,a1)),

(write_a1,(in,integer,a1))}

A user interacts with process p1 (e.g. by means of a graphical user interface). We consider the
following scenario: A user invokes operation set value on object o1. During the execution of the
operation, object o1 requests to set the value of the attribute a1 on object o2 by executing operation
write a1 on object o2.

We assume that the process signature for the two processes is as follows:

pn=process1, t_min=1, t_max=1
pn=process2, t_min=0, t_max=1

The scenario we consider leads to the events as listed in Table III. First, the user request the execution
of the operation set value. This requests arrives at the process (1). The request is assigned to thread
t1 that is available in this process (2). During the execution of the operation, object o1 needs to obtain
a reference to the remote object. It therefore requests such a reference by specifying that the object
to which it wants to get a reference has to be derived from the class with class name class2 (3). The
system returns the requested object reference (4) which, in this case, points to object o2. We can now
request the execution of the operation which leads to an t outReq event at object o1 (5) and an p inReq
event at process p2 (6). At this moment, in process p2 there is no thread that can handle the request.
The process therefore creates a thread (7) and assigns the thread to the operation request (8). Once the
operation has been processed to completion, the reply is sent back to o1 (9). At process p2, the thread
is released (10) and eventually deleted (11). When the reply for the operation arrives at t1 (12), the
operation set value can be terminated (13), and thread t1 can be released (14).

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 409

Table III. Example: overview.

Event

0 —
1 (p inReq, (∗, o1, set value, ∗))
2 (p assT, t1, (∗, o1, set value, ∗))

[(o inReq, (∗, o1, set value, ∗))]
3 (p reqRef , p1, ∗, class2, ∗, ∗)
4 (p recRef , p1, o2)
5 (t outReq, t1, (o1, o2, set value, ∗))

[(o outReq, (o1, o2, set value, ∗))]
6 (p inReq, (o1, o2, set value, ∗))
7 (p newT, t2)
8 (p assT, t2, (o1, o2, set value, ∗))

[(o inReq, (o1, o2, set value, ∗))]
9 (t outRep, t2, (o1, o2, set value, ∗))

[(o outRep, (o1, o2, set value, ∗))]
10 (t relT, t2, (o1, o2, set value, ∗))
11 (p delT, t2)
12 (t inRep, t1, (o1, o2, set value, ∗))

[(o inRep, (o1, o2, set value, ∗))]
13 (t outRep, t1, (∗, o1, set value, ∗))

[(o outRep, (∗, o1, set value, ∗))]
14 (t relT, t1, (∗, o1, set value, ∗))

4. THE MODEL AND REALITY

In the following we will look at the applicability of our model by showing how it relates to a distributed
platform in the industrial context. We establish a link between our event-based model and ‘real’
implementations and show how the events that our model is based on can be generated in a CORBA
framework, thereby answering the question: given a CORBA implementation, how can we, at system
run-time, observe and collect the information that is relevant for the checking of the formally specified
properties?

It turns out that the observation process for a large subset of our events is quite simple and does
not even imply modifications to the implementation code, thus providing a strong argument for formal
property specifications in our framework.

The Common Object Request Broker Architecture (CORBA) version 2.0 [26] from the Object
Management Group forms the basis of our platform. CORBA is a standardized architecture for object-
oriented distributed systems with transparent distribution and easy access to components. CORBA
requires that every object’s interface be expressed in the IDL. Clients see the object’s interface but
never any of the implementation details. Every invocation of a CORBA object is passed to the Object
Request Broker (ORB); even when an object in one process invokes an operation on another object in
the same process. All distribution issues like parameter transfer to the remote object, are handled by
the ORB.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

410 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

Figure 8. General framework.

An IDL specification provides a representation of the system that is independent of the
implementation language. Specifically, it provides the interface templates that the objects in the
distributed system support. There exist several well-defined and standardized mappings from IDL to
implementation languages like C++ and Java. Note that the mapping only defines the interface to be
used in the implementation language. The information given in the IDL specification is closely related
to the class signature in our model.

Consider Figure 8 for an overview about the development process of distributed applications in
the CORBA framework. The white boxes depict the normal development process of distributed
applications; the gray boxes describe the extensions related to our proposal. Normal boxes denote
some kind of specification and rounded boxes denote tools.

In the normal development process, the IDL specification of the interfaces is passed to an IDL
compiler which generates stub code and header files, which are then linked to the actual implementation
code, thereby shielding the developer of the distributed application from the difficult task of handling
distribution issues.

In addition to passing the IDL specifications to the IDL compiler, we can feed a code generator with
the IDL specifications. This code generator tool generates some generic observation and validation

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 411

� � � �
 � � � � � � � 	 � � � � � � � � � * � � � +

/ � 	 � � � � � � � �

� � � �
 �

� � �
 � 	 	 � (� � �
 � 	 	 �)

/ � 	 � � � � � � � �

� � � �
 �
� � � �
 �

� � � � � �

� � �
 � 	 	

� � � � � �

* (+

*) +

* - + * . +

* 0 +

* 1 +

Figure 9. Orbix filters.

code, which also needs to be linked to the actual implementation and forms the on-line observer and
validator part of the implementation.

When running the distributed application, we can pass the implementation and platform independent
properties to the on-line validator, which will then observe the system at run-time and report all
property violations.

A CORBA IDL specification is written at a level of abstraction that makes it particularly suitable for
providing a basis on which to express behavioral properties; the advantages of expressing properties at
the abstraction level given by IDL are appealing. A property, making reference to the items of an IDL
specification, inherits the implementation language independent character from IDL. The standardized
mapping from IDL to implementation languages enables us to automate the process of finding all the
IDL information at the implementation level. Therefore, when expressing properties at the IDL level,
we do not need to have any information about the actual implementation. How the operations are
implemented is irrelevant when expressing the properties. It is not even necessary to know the actual
implementation language.

A wide-spread CORBA-compliant platform is the Orbix implementation from IONA [18]. Using
the filter mechanism provided by this CORBA implementation, we can spy on the distributed system.
Filters allow executing additional code for each filtered event. Orbix offers two kinds of filters: process
filters and object filters. A process filter intercepts all incoming and outgoing operation requests for
a given process. When objects inside a process invoke an operation on an object in the same process,
then these invocations are also fully visible in the process filters. Object filters are executed before and
after each operation invocation on an object.

Figure 9 depicts an operation invocation between two distributed objects and enumerates the filter
operations in the order they execute. According to this figure, we have six filters which can be
mapped to our events as indicated in Table IV. Furthermore, the Orbix run-time system delivers a
few notifications as default. These notifications and their mapping to the events in our model are
summarized in Table V.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

412 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

Table IV. Mapping Orbix filters to events.

Orbix filter level Event

1 process t outReq
2 process p inReq
3 object o inReq
4 object o outRep
5 process t outRep
6 process t inRep

Table V. Mapping Orbix messages to events.

Notification Event

New connection (server ready) s newP
End of connection s delP

Many other events from our model can be mapped in a straightforward way to specific Orbix
functions. For example, in Orbix there exists a function bind() which finds a particular object and
sets up a proxy for it in the client’s address space. It is possible to specify the exact object required
or, by using default parameters, Orbix may be allowed certain degrees of freedom when choosing the
object. This function corresponds to our p reqRef - and p recRef -events.

The generation of the observation code can—in our approach—be largely ignored by the application
tester. This contrasts with [13] where traces are obtained by manually instrumenting Ada source
programs and executing it on a uniprocessor and where delay statements were inserted to introduce
different behaviors. Similarly, in [14], event-instance-generating code fragments are added manually
to the code.

A major advantage of our event-based behavior specification is that it is largely independent of the
target system and that, for many systems, event-generating code fragments can be constructed and
inserted in the original code in an automatic manner. This is basically due to a very carefully selected
set of predefined events.

5. TOOL SUPPORT

MOTEL is closely linked to the model presented in this paper. The main task of MOTEL is to check
whether the final implementation of an object-oriented distributed system has violated or is violating
the formally specified properties. MOTEL can be used to formally specify properties, to observe the
behavior of the system, and to check at run-time whether the specified properties are respected by the
final implementation.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 413

It is outside the scope of this paper to describe in detail how MOTEL works; the interested reader is
referred to [15]. The main features of MOTEL are summarized in the following.

• Specification of properties. Using the graphical interface of MOTEL, it is possible to compose
properties in two ways:

— Using patterns: the user can select a pattern and then, guided by the tool, provides detailed
information about the events involved in the property. At the current stage, MOTEL
provides support for the following patterns: invariance (✷p), response (✷(p → ✸q))
and precedence (✷(p → qUr)), which are claimed to cover the majority of properties one
would ever wish to verify [27].

— Describing properties manually: the user specifies arbitrary properties including properties
that are not covered by one of the above-mentioned patterns.

• (De)activation of properties. MOTEL manages all formally specified properties. In order to
check for property violations, selected properties can be activated at run-time. Once a property is
activated by the user, the tool automatically activates the observation mechanisms at all relevant
places in the system that are necessary for checking for violations of the given property.

• Observation of relevant events in the system. The observed events are both listed in detail in
tabular form and graphically animated in form of a time-line diagram.

• Construction of test oracles. When a specified property is activated for observation, the
corresponding test oracle will be automatically generated by the tool.

• Detection of property violations. Based on the test oracle generated by the tool and the observed
information, MOTEL will check for property violations and, if necessary, notify the user. To
reorder event notifications as they are received by the observer, a time stamping mechanism is
used.

A screen dump of MOTEL in action is given in Figure 10. LTL properties can be seen to be specified
and activated (Window entitled ‘Properties’). Events relevant to these properties can be observed
(window entitled ‘MOTEL’). Test oracles for the properties are automatically generated (displayed on
the bottom window). The observed events are analyzed and property violations are reported to the user
(window entitled ‘Property violation’). For a detailed description of MOTEL we refer the interested
reader to [28]. This paper also discusses the performance effect that MOTEL has on the system under
scrutiny.

A major advantage of our tool is that it encapsulates formal method concepts, thereby hiding these
issues from the user. A tool user does not need to know how the automata (test oracles) are created
from the specified properties. The typical user may even be unaware of their existence.

MOTEL is currently being integrated into a service design and development platform (the PERCO
Platform [29,30]) developed by Alcatel/Thomson. The development environment also includes a
model-checker, an automatic test case generator [31] and a behavior simulator. The PERCO platform is
used notably to support the development of object-oriented distributed services. The platform supports
complex applications, such as equipment supervision. Forming an essential part of the Alcatel platform,
MOTEL is used to check at run-time whether or not a number of service properties are satisfied.

MOTEL will also be used to identify the differences between the behavior obtained by simulation,
by model checking and the behavior on the PERCO runtime.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

414 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

Figure 10. MOTEL screen dump.

6. RELATED WORK

In this section, we discuss related research and elaborate on the relationship between our proposed
model and other proposals.

To make formal verification feasible it is common practice to raise the abstraction level. However,
raising the abstraction level often leads to an unfaithful representation of the actual system: the
abstracter the model, the farther away it is from the real thing itself.

The absence of any kind of sophistication or optimization in the design of algorithms and data
structures in FDT specifications, such as data packing, optimal coding, pointers, dynamic storage
allocation and interrupts already leads to a less faithful representation of industrial strength services.

Model checking is often used for verifying that a system satisfies its specification. However, model
checking requires examination of all reachable system states and therefore suffers from state space
explosion. Despite the impressive progress that has been made in the model-checking community in
the recent years, model checking is still computationally infeasible for systems which are represented
at a lower abstraction level (with a faithful representation of the real system).

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 415

Table VI. General comparison of our model.

Ref. Name Appl. O-O TL

[6] DisCo DS/A yes yes
[33] Promela DS/D no yes
[34] SPL/FTS DS/D no yes
[5] N/A DS/D yes yes
[35] N/A DB yes yes
[2] T Chimera DB yes no
[3] TROLL IS/A yes yes
[4] TRIO+ IS/A yes yes
[7] OSL IS/A yes yes
[9] Templar DS/AD no yes
[36] Rapide DS/AD yes no

Our model DS/D yes yes

Even though there are a few success stories of temporal logic in the industry, (e.g. [19] and [20]), a
survey on the use of formal methods [32] revealed that temporal logic receives only marginal attention.

Most current temporal logic-based proposals for the design stage of software development (e.g.
[34]) do not consider object-systems. The application of research stemming from protocol design
(e.g. research based on LOTOS, Estelle and Promela) to object-oriented systems is often based
on assumptions and restrictions which put these proposals beyond the reach of industrial software
development. In particular, little attention is paid to the fact that, in general, the set of objects in a
system changes over time. Similarly, in industrial systems, processes are often generated and deleted
dynamically as opposed to having an infinite lifetime. Threads, even though widely used in industrial
applications, are hardly considered in formal models.

Table VI summarizes the approaches closely related to our proposal by giving the reference, the
name of the corresponding language or model (if available) and the area of application the proposal
targets. The domains are abbreviated as follows: DS = Distributed Systems, DB = Databases,
IS = Information Systems. For distributed systems and information systems it is additionally indicated
whether the proposals focus on the requirements analysis (A) or the design stage (D) in the software
development process. The table also lists whether the approach considers object-orientation and/or
temporal logic.

Most of the basic research in the temporal logic domain does not consider object-oriented systems
and it is pointed out in [37] that the object-oriented approach, while successful in practice, finds more
scepticism than enthusiasm among theoreticians. In the past few years, however, there has been an
effort in applying temporal logic to object-oriented systems. Quite different goals and motivations
behind these proposals and the resulting different underlying assumptions, restrictions and limitations
make it difficult to compare and judge them.

Furthermore, some work in the temporal logic domain has been carried out without initially
considering object orientation, but later extending it to cover object systems. This is, for example,

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

416 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

the case for the TRIO language [38], and its object-oriented extension TRIO+ [4]. The other avenue
has been followed by the authors of the DisCo language [6], an object-oriented specification language
for reactive systems; after the definition of the language, the relationship between DisCo and temporal
logic, in this case with Lamport’s Temporal Logic of Actions (TLA) [39], has been investigated in
[40]. Similarly, the object-oriented data model Chimera has later been augmented with a temporal
extension called T Chimera [2]. Especially the extensions of existing approaches, be it an object-
oriented approach extended with temporal components or a temporal logic-based approach extended to
object-oriented systems, provide some evidence that a combination of object orientation and temporal
logic is worth investigating.

Unlike DisCo and other TLA-based approaches, we only specify externally observable behavior;
no internal states or internal transitions are used to express behavior in our model. We agree with
Lamport [41] that internal states may simplify the specification of properties and that purely temporal
specifications are often hard to understand. However, in our approach these difficulties are compensated
by a significantly simplified mapping of our model to arbitrary implementation languages.

Manna and Pnueli [34] use temporal logic for the specification of properties of reactive systems in
a framework where the simple programming language (SPL) is used as system description language
and temporal logic as property specification language. The Stanford Temporal Prover (STeP) [42],
being developed at Stanford University, is a tool to verify concurrent systems specified in SPL. Manna
and Pnueli’s approach suffers from a number of drawbacks: it can only be applied to already existing
complete programs and it generally requires a lot of detailed and tedious working in all but the simplest
cases, as pointed out in [43]. Naive attempts to extrapolate their approach to complex systems seem
doomed to fail as the system to be analyzed is described in terms of individual program instructions (in
the form of an SPL program). Furthermore, no attention is paid to object-oriented systems.

By considering only the external (observable) behavior of individual entities (like objects and
processes) we significantly raise the abstraction level. No system implementation needs to be specified
to express properties.

Holzmann [33] developed the software package SPIN that supports the formal verification of
distributed systems. SPIN can be used to trace logical design errors in distributed systems design.
To verify a design, a formal model is built using Promela, the PROcess MEta LAnguage. The language
can model dynamically expanding and shrinking systems: new processes and message channels can
be created and deleted on the fly. Correctness properties can be specified as linear temporal logic
requirements, either directly in LTL, or indirectly as Büchi automata (expressed in Promela syntax
as Never Claims). However, the Promela language lacks an object-oriented component. Similar to
SPL, Promela [33] requires a system to be specified in terms of individual program instruction before
temporal logic properties can be expressed.

The TROLL language [3] is a language for the conceptual modeling or requirements specification
phase in system development. In TROLL, properties of objects are specified using formal languages
based on temporal logic. TRIO+ [4], an object-oriented temporal logic-based language for system
specification, also focuses on the requirements specification and is therefore not able to catch the
abstraction level considered in our model. Similarly, Tuzhilin [9] describes a language called Templar
which is based on temporal logic and can be used as high-level specification language.

Gotzhein [5] describes a linear-time temporal logic for the specification of object behavior. However,
in the underlying model, objects have an infinite lifetime; Gotzhein’s logic does not permit specifying
the dynamic creation and deletion objects.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 417

Table VII. Benefits.

Ref Name Benefits Tools

[34] SPL FR, MC STeP [42]
[5] N/A (FR) –
[33] Promela MC, SI SPIN [33]
[39] TLA FR –
[7] OSL FR –
[36] Rapide SI, TE yes

Our model TE MOTEL [28]

In [35], the dynamic creation and deletion of objects is addressed by making class membership a
time varying relationship. Therefore, the problem of creating and deleting objects can be mapped to
the question, whether or not an object with a given identity exists or not.

As the work described in [35], the temporal object-oriented data model proposed in [2] is targeted at
the database domain. In this model, classes and objects can be dynamically created, objects can change
classes and migrate. However, there is only a limited overlapping between a model for database systems
and a model for object-oriented distributed applications. Some points, while relevant and possible in
object-oriented database systems (e.g. objects changing classes over time) are irrelevant in object-
oriented applications. On the other hand, modeling of object-oriented distributed systems requires
looking at certain aspects that are irrelevant in databases.

Many of the mentioned approaches cannot be easily extrapolated to complex, industrial-strength
systems. This is specifically the case for proposals in which formal reasoning is used to verify system
specifications.

In contrast, in this paper we assume that a given executable specification (including implementations
in programming languages like C++, Java, etc.) gives us the event occurrences when the system is being
executed. These event occurrences can then be checked to see whether or not they satisfy the specified
behavior constraints. This analysis does not constitute a verification of the system. However, combined
with a good test-case generation method and tool support, it can be very useful in revealing faults.

The benefits that can be derived from the formal specifications are listed in Table VII. We use
the following abbreviations: FR = Formal Reasoning, MC = Model Checking, SI = Simulation,
TE = Testing. An item in parentheses indicates a potential benefit that has not yet been explored.

7. CONCLUSIONS

The concepts and notations most formal methods are derived from, be it set theory, process algebra or
logic, are ‘absurdly different from the principles, objects and relationships about which communication
engineers are concerned. . . . The conceptual gap between application domains and mathematics must
be bridged by building mathematical models of the application domain’ [44].

Most of today’s formal methods research follows the path from theory to practice: starting with
mathematical concepts and notations like process algebra, formal methods are designed and numerous
extensions proposed. When applied, the resulting formal models are easily analyzable as they are built

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

418 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

on well-understood mathematical concepts, but the formal models often bear limited relations to the
actual implementation.

In this paper, we followed the opposite direction by proposing a framework for constructing
formal models that faithfully represent implemented services. Consequently, verification by means
of state space analysis and/or formal reasoning would probably be prohibitively complex at the level
of abstraction considered in our proposal. However, by adequately dealing with the complexity of
industrial services and by directly contributing to the quality of the final implementation, our approach
is much easier to transfer to the industry.

A key concept of our model is event-based behavioral abstraction. The idea of event-based
behavioral abstraction is especially useful for accommodating heterogeneous platforms and multi-
language programming environments. For our model, we provided a set of predefined events that
is appropriate for modeling industrial-strength object-oriented systems. The abstraction level we
achieve in our proposal through event-based system modeling makes linking our model to a number
of development platforms and implementation languages straightforward. The set of events was
determined by collaborating with several industrial players and by taking into account the trade-offs
between flexibility and complexity of the model and the property language.

We have investigated the use of LTL for the specification of behavioral constraints in our model.
Properties are to be expressed by using the predefined events and LTL. By relying on temporal logic
we benefit from the well-known solutions for constructing test oracles. Linear-time temporal logic
seems to be a powerful tool for the specification of behavioral properties but needs to be augmented.
Specifically, in an object-model, it is often desirable to express procedural dependencies rather than
simple temporal relations for which we introduced two novel operators. The use of these two operators
simplifies the specification- and testing process and renders it more efficient.

We believe there are not many arguments for the applicability and practical relevance of our approach
in the industry that are as valid as the actual application in and by industry. A recent decision of one
of our industrial partners to adopt our proposal into one of their development platforms can be seen as
strong evidence of the relevance of our work and as a promising step towards a better understanding
between the still mostly academic formal methods community and the industry.

APPENDIX. THE PROPERTY LANGUAGE

The behavioral constraints (properties) specified in this paper are based on the following syntax.
Propositions p and formulae φ of our property language are inductively defined as follows:

nb := n | #[e] | nb1 − nb2 | nb1 + nb2

pc := nb1 < nb2 | nb1 > nb2 | nb1 = nb2

p := �e | pc | � e1 � �e2 | � e1 � �e2

φ := p | ¬p | p ∧ q | p ∨ q | ✷p | ✸p | p U q

where e is an event at any level (object-, thread-, process- and system-level) as defined in this paper
and n ∈ N is a natural number.

The formulae are interpreted over an infinite state sequence σ .

• #[e], see Definition 22.
• (σ, i) |= �e iff event e just happened. A formal semantics of all events is given in [23].

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

MODELING AND TESTING OODS WITH LTL 419

• (σ, i) |= pc is defined as usual.
• (σ, i) |= e1 � e2, see Definition 11.
• (σ, i) |= e1 � e2, see Definition 12.
• ¬, ∧, ∨, ✷, ✸ and U are defined as usual.

ACKNOWLEDGEMENTS

This work has been partially supported by Swisscom and Alcatel. We would like to thank C. Delcourt and
S. Grisouard at Alcatel Alsthom Research, Marcoussis, and P.-A. Etique at Swisscom, Bern, for many interesting
discussions on industrial software development and formality. We thank H. Karamyan and F. Pont for their work
on the CORBA observer implementation and H. Tews for his comments on an earlier version of this paper. The
comments from S. Koppenhoefer and H. Cogliati significantly improved the quality of the paper.

REFERENCES

1. Manna Z, Pnueli A. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag, 1991.
2. Bertino E, Ferrari E, Guerrini G. T Chimera: A temporal object-oriented data model. Theory and Practice of Object Systems

1997; 3(2):103–125.
3. Jungclaus R, Saake G, Hartmann T, Sernadas C. TROLL—a language for object-oriented specification of information

systems. ACM Transactions on Information Systems 1996; 14(2):175–211.
4. Morzenti A, Pietro P. Object-oriented logical specification of time-critical systems. ACM Transactions on Software

Engineering and Methodology 1994; 3(1):56–98.
5. Gotzhein R. Towards a basic reference model of open distributed processing. Computer Networks and ISDN Systems 1995;

27(8):1287–1304.
6. Järvinen H-M, Kruki-Suonio R, Sakkinen M, Systä K. Object-oriented specification of reactive systems. Proceedings of

the 12th International Conference on Software Engineering. IEEE Computer Society Press: Amsterdam, 1990; 63–71.
7. Sernadas A, Sernadas C, Costa JF. Object specification logic. Journal of Logic and Computation 1995; 5(5):603–630.
8. Ehrich H-D, Hartel P. Temporal specification of information systems. Logic and Software Engineering, International

Workshop in Honor of C. S. Tang, Beijing, Pnueli A, Lin H (eds.). 1995; 43–71.
9. Tuzhilin A. Templar: A knowledge-based language for software specifications using temporal logic. ACM Transactions on

Information Systems 1995; 13(3):269–304.
10. Etique P-A. Service specification, verification and validation for the intelligent network. PhD Thesis, Swiss Federal Institute

of Technology, Lausanne, 1995.
11. Denker G, Ramos J, Caleiro C, Sernadas A. A linear temporal logic approach to objects with transactions. Proceedings

of the Sixth International Conference on Algebraic Methodology and Software Technology, AMAST’97, Johnson M (ed.).
1997.

12. Manna Z, Pnueli A. On the faithfulness of formal models. Mathematical Foundations of Computer Science (Lecture Notes
in Computer Science, vol. 520). Springer-Verlag, 1991; 28–42.

13. Dillon L, Yu Q. Oracles for checking temporal properties of concurrent systems. Proceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, vol. 19. 1994; 140–153.

14. Bates P. Debugging heterogeneous distributed systems using event-based models of behavior. ACM Transactions on
Computer Systems 1995; 13(1):1–31.

15. Logean X, Dietrich F, Koppenhoefer S. Run-time monitoring of distributed applications. Proceedings of Middleware‘98,
The Lake District, England, 1998.

16. Logean X. Run-time monitoring and on-line testing of middleware-based communication services. PhD Thesis, Swiss
Federal Institute of Technology, 2000.

17. Bouma W, Levelt W, Melisse A, Middelburg K, Verhaard L. Formalization of properties for feature interaction detection:
Experience in a real-life situation. Towards a Pan-European Telecommunication Service Infrastructure—IS&N’94 (Lecture
Notes in Computer Science, vol. 851), Kugler H-J, Mullery A, Niebert N (eds.). Springer-Verlag, 1994; 393–405.

18. IONA Technologies PLC. Orbix 2: Programming Guide, Version 2.2, 1997.
19. Holzmann G. The theory and practice of a formal method: NewCoRe. Proceedings of the IFIP World Computer Congress,

vol. I, Galton A (ed.). North-Holland, Amsterdam, 1994; 35–44.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

420 F. DIETRICH, X. LOGEAN AND J.-P. HUBAUX

20. Jagadeesan L, Puchol C, Olnhausen J. A formal approach to reactive systems software: A telecommunications application
in ESTEREL. Journal of Formal Methods in System Design 1995.

21. Steffen B, Margaria T, Claßen A, Braun V, Reitenspieß M. A constrained-oriented service creation environment. PACT’96,
2nd International Conference on Practical Application of Constraint Technology, London, 1996.

22. Time-Rover. http://www.time-rover.com
23. Dietrich F. Modelling and testing object-oriented communication services with temporal logic. PhD Thesis, Swiss Federal

Institute of Technology, Lausanne, 2000.
24. Lamport L. Time, clocks and the ordering of events in a distributed system. Communications of the ACM 1978; 21(7):558–

565.
25. Gotzhein R. Formal definition and representation of interaction points. Computer Networks and ISDN Systems 1992;

25(1):3–22.
26. OMG. CORBA 2.0 Specification, Technical Document PTC/96-03-04, Stanford University, 1996.
27. Manna Z, Pnueli A. Tools and rules for the practicing verifier. Technical Report, Stanford University, 1991.
28. Logean X. MOTEL—MOnitoring and TEsting tooL for distributed applications. Technical Report, Swiss Federal Institute

of Technology, 1998.
29. Maisonneuve J, Chabridon S, Leveillé P. The PERCO platform. ISORC’99, St. Malo, The 2nd IEEE International

Symposium on Object-oriented Real-time Distributed Computing, 1999.
30. Donnan G, Jourdan J. Software architectures, product lines and frameworks. Alcatel Telecommunications Review 1999.
31. Jézéquel J-M, Le Guennec A, Pennaneac’h F. Validating distributed software modeled with UML. Proceedings of the

UML’98 International Workshop, Muller P-A, Bézivin J (eds.). ESSAIM: Mulhouse, France, 1998; 331–340.
32. Parkin G, Austin S. Overview: Survey of formal methods in industry. Technical Report, National Physical Laboratory,

Teddington, UK, 1993.
33. Holzmann G. Design and Validation of Computer Protocols. Prentice-Hall, 1991.
34. Manna Z, Pnueli A. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, 1995.
35. Kesim F, Sergot M. A logic programming framework for modeling temporal objects. IEEE Transactions on Knowledge

and Data Engineering 1996; 8(5):724–741.
36. Luckham D. Rapide: A language and toolset for simulation of distributed systems by partial orderings of events. DIMACS

Partial Order Methods Workshop IV, Princeton University, 1996.
37. Ehrich H-D. Object specification. Technical Report Informatik-Bericht 96-07, TU-Braunschweig, Germany, 1996.
38. Ghezzi C, Mandrioli D, Morzenti A. TRIO: A logic language for executable specifications of real-time systems. Journal of

System Software 1990; 107–123.
39. Lamport L. TLA in pictures. IEEE Transactions on Software Engineering 1995; 768–775.
40. Järvinen H-M, Kurki-Suonio R. The DisCo language and temporal logic of actions. Technical Report 11, Software Systems

Laboratory, Tampere University of Technology, 1990.
41. Lamport L. A simple approach to specifying concurrent systems. Technical Report, Digital Equipment Corporation, SRC,

1988.
42. Bjørner N, Browne A, Chang E, Colón M, Kapur A, Manna Z, Sipma H, Uribe T. STeP—The Stanford Temporal Prover,

Educational Release, Version 1.1. Stanford University, 1996.
43. Galton A. Temporal logic and computer science: An overview. Temporal Logics and Their Applications, ch. 1, Galton A

(ed.). Academic Press: London, 1987; 1–52.
44. Zave P. Formal methods are research, not development. IEEE Computer 1996; 26–27.

Copyright 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2001; 13:385–420

	1 INTRODUCTION
	2 MOTIVATION
	3 A FORMAL MODEL FOR OODS
	3.1 Classes and objects
	3.2 Property specification with LTL
	3.3 Threads and processes
	3.4 OODS
	3.5 A toy example

	4 THE MODEL AND REALITY
	5 TOOL SUPPORT
	6 RELATED WORK
	7 CONCLUSIONS
	APPENDIX. THE PROPERTY LANGUAGE

