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Abstract. In this work we consider the behavioral aspects of system modeling. In order to specify the behavior of a system, many different 
notations can be used.  Quite often different terms in these notations are related with to same element in a system implementation. In order to 
relate these terms and guarantee the consistency between different notations some standard can be used. In this work we show how the Reference 
Model for Open Distributed Processing (RM-ODP) can be used for the purpose of the mapping of terms from different behavioral notations. In 
particular, we show the correspondence between terms in UML activity diagrams, UML state diagrams and Finite State Automata by means of 
relating them with RM-ODP terms. This allows us to consider RM-ODP as a possible meta-model for behavior specifications written in UML, 
which help to insure the consistency of UML models. 
 

1 Introduction 
Behavior models play a central role in system specifications. Correctly specified behavior of a system helps to avoid 
potential problems that might be discovered during costly testing and debugging phases. One of the means to specify 
the behavior of a system is to use formal methods. “Formal1 methods are used to reveal ambiguity, incompleteness, 
and inconsistency in a system.” [Wing90]. To use formal methods is not always easy. It requires a good knowledge 
of a formal notation and an ability to correctly relate formal specification terms with an implementation (or semantic 
domain). That is why developers often use semi-formal languages while developing systems. Such specifications are 
mapped more easily with their implementations. 
J. Wing in [Wing90] defines formal specification language as a triple <Syn, Sem, Sat>, where Syn is called a 
language syntactic domain; Sem is the language semantic domain, and Sat is “satisfies relation”. Satisfies relation 
defines the relation between syntactic terms and their semantic meanings in a semantic domain (see figure 1). 
Several syntactic domains can be used to describe the same system. For example, UML can be used to describe 
structural and behavioral aspects of the system (using UML Class and Activity/State diagrams correspondingly) and 
Finite State Automata (FSA) can also be used to describe behavioral aspects (for formal verification of some 
properties). In this case several syntactic domains can describe the same element from a system implementation. In 
figure 1, for example, we can see that the system element a1 (in semantic domain) is related with the concept Action 
in all syntactic domains. 
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Figure 1 Formal methods: Relation between syntactic and semantic domains (Sat stands for satisfies relation). 

If several syntactic domains are used (formal, as well as informal), a modeler must guarantee some form of 
consistency between these syntactic domains. In order to do this, the system specification can be written according to 
some standard that can relate different terms in several syntactic domains.  
In this work we will use part 2 of the Open Distributed Processing - Reference Model RM-ODP [ISO96], which 
defines a generic syntactic domain for specifying distributed systems and explains its relation with a semantic 

                                                           
1 A method is formal if its rules for manipulation are based on form (syntax) and not on content (semantics) [Holloway95]. 
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domain. We will also use the formal model of RM-ODP written in the Alloy language2. This formal model is 
explained in [Naumenko01], where Naumenko shows the classification of RM-ODP concepts with the aid of the set 
theory and using regular predicate logic.  
In this work we will consider only the behavioral aspects of different formal and semi-formal languages. In order to 
specify the behavior of a system, many different notations (syntactic domains) can be used (like Finite State 
Automata (FSA), Labeled Transition Systems (LTS), etc).  Quite often different terms in these notations are related 
to the same element in semantic domains. In order to relate these terms, we can use the RM-ODP model. So the goal 
of this work is to show how RM-ODP can be related with some existing formal and semi-formal notations. For that 
purpose we will: 

• Identify the minimum set of modeling concept from RM-ODP for behavior modeling. We have to do it since 
RM-ODP covers many more modeling concepts necessary for the specification of behavior. 

• Define more precisely some RM-ODP behavior modeling concepts (particularly behavioral constraints and 
time). We have to do it since RM-ODP does not define all modeling concepts precisely enough to relate them 
with other existing formal notations. 

• Define a set of possible abstractions that can reduce the complexity of RM-ODP behavior specifications by 
means of hiding irrelevant details. This can bring us to other notations. We show how an RM-ODP specification 
is mapped to the specification written in other languages for behavior representation. In our work we use 
examples with UML related notations: FSA, UML State Diagram and UML Activity Diagram. 

Our work helps to relate RM-ODP with other languages for behavior modeling. This can help to spread the RM-ODP 
standard that can serve for mapping different formal notations. Our work also helps in the understanding of semantic 
meanings of formal methods since it defines a set of basic modeling concepts needed for the behavior modeling.  
The structure of the paper is the following. In section 2 we start with the analysis of RM-DOP modeling concepts 
used in behavior specifications. In section 3 we give precise definitions for constraints of sequentiality and non-
determinism. In section 4 we propose the definition for the Under-Specified Action that can be used to simplify RM-
OPD models. In section 5 we show examples of specifications with Under Specified Actions and we show how to 
relate RM-ODP models with FSA and UML State/Activity Diagrams. We finish this work with the conclusions in 
section 6. 
 
 

2 RM-ODP as framework for the behavior modeling 
In this section we consider the minimum set of modeling concepts necessary for behavior specification. There are a 
number of approaches for specifying the behavior of distributed systems coming from people with different 
background and considering different aspects of behavior. “However, they can almost all be described in terms of a 
single formal model. In this model we represent a concurrent system as a triple consisting of a set of states, a set of 
action and a set of behavior” [Lamport90]. Each behavior is modeled as a finite or infinite sequence of 
interchangeable states and actions. To describe this sequence there are mainly two dual approaches. According to 
[Broy91] they are: 

1. “Modeling systems by describing their set of actions and their behaviors”. 
2. “Modeling systems by describing their state spaces and their possible sequences of state changes”. 

“These views are dual in the sense that an action can be understood to define state changes, and state occurring in 
state changes occurring in state sequences can be understood as abstract representations of actions” [Broy91]. Here 
in this work we will consider both of these approaches as abstraction of the more general approach based on RM-
ODP. We consider the Alloy formal definition of this approach that expresses the duality of two mentioned 
approaches.  
 

2.1 Formal RM-ODP syntax made in Alloy 
As we said above will use the formalism of the RM-ODP model, written in Alloy [Naumenko01]. We mainly use 
concepts taken from the clause 8 “Basic modeling concepts” of the RM-ODP part 2. These concepts are: behavior, 
action, time, constraints and state. According to [Naumenko01] these concepts are essentially the first-order 

                                                           
2 “Alloy is a little language for describing structural properties. It offers declaration syntax compatible with graphical object 
models, and a set-based formula syntax powerful enough to express complex constraints” [Jackson00]. See also 
http://sdg.lcs.mit.edu/alloy/. 
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propositions about model elements. We will also use some concepts (type, instance, precondition, postcondition) 
from the clause 9“Specification concepts”. Specification concepts are the higher-order propositions applied to the 
first-order propositions about the model elements. So the whole RM-ODP model is partitioned in the following way 
(basic interpretation concepts are not considered in this work): 
model RM-ODP { 
domain {ODP_Concepts} 
state { 
partition BasicInterpretationConcepts, BasicModellingConcepts, SpecificationConcepts : static ODP_Concepts 
… 
} 

Wegmann [Wegmann01] states: “Basic modeling concepts and generic Specification concepts are defined by RM-
ODP as two independent conceptual categories. Essentially, they are two qualitative dimensions that are necessary 
for defining model elements that correspond to entities from the universe of discourse (or semantic domain in our 
case)”. In our work we will mainly use concepts from “Basic modeling concepts”. They can be linked with 
“Specification concepts”. In our work we allow our readers to choose freely the appropriate specification concept 
(like type or instance, for example) for any of the basic modeling concepts. For example, the concept of action can be 
understood both as an instance and as a type (it depends on the choice of our readers).  
As we have already said, behavior is defined as a basic modeling concept (RM-ODP, part 2, clause 8.6): 
Behavior (of an object): “A collection of actions with a set of constraints on when they may occur”,  
That can be formally represented in the following way: 
// part of Alloy state declaration 
Behavior: BasicModellingConcepts 
partition Action, BehavioralConstraint: static Behavior // Behavior= set of actions+  

set of constraints 
corresponding_constraint (~constrained_action) : Action -> BehavioralConstraint // constraints are defined for 

actions 
def Behavior { 
all b: Behavior |  // for any element b from Behavior set 
 ((b in Action) &&  // (b is an Action and 

( some b.corresponding_constraint) &&  // b has a at least one constraint and 
( b.corresponding_constraint in Behavior)) ||  // this constraint is a Behavior element) or 
((b in BehavioralConstraint) &&  // (b is a Constraint && 
( some b.constrained_action) && // b has a at least one action && 
( b.constrained_action in Behavior))  // this action is a Behavior element)  

} 

The behavior definition uses two RM-ODP modeling concepts: action and constraints  

Action: “Something which happens”. 
RM-ODP does not give the precise definition of behavioral constraints. From the definition of behavior, we can only 
conclude that behavioral constraints are part of the system behavior and that they are associated with the actions (see 
the formal definition above).  
To formalize the definition of action in Alloy we have to consider two other modeling concepts. They are time and 
state. We can see how these concepts are related with the concept of action by looking at their definitions.  
The concept of time is a fundamental concept in modeling of distributed systems. Time is introduced in RM-ODP in 
the following way (RM-ODP, part 2, clause 8.10): 

“Location in time: An interval of arbitrary size in time at which action can occur.” 

// part of Alloy state declaration 
instant_begin : Action −>Time!  // each action has one time point when it starts 
instant_end : Action −>Time!  // each action has one time point when it finishes 
From the RM-ODP definition of state (see below) we can see that the concept of state is dual with the concept of 
action and these modeling concepts cannot be considered separately: 
State (of an object) (RM-ODP, part 2, clause 8.7): At a given instant in time, the condition of an object that 
determines the set of all sequences of actions in which the object can take part. 
This definition shows that state depends on time and is defined for an object for which it is specified. In this work we 
use some simplifications. Since in this paper we consider the behavior only for one object, we never make the object 
explicit on the following diagrams. 
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// part of Alloy state declaration 
state-existence: Time! -> State_! // state depends on time 

Let’s also note that “the knowledge of state does not does not necessarily allow for the prediction of the sequence of 
actions, which will actually occur”(RM-ODP, part 2, clause 8.7). In order to specify the sequence of action we have 
to use behavioral constraints. Now using already defined concepts of Time and State we can give a formal Alloy 
definition of Action: 
def Action{ 
  all a: Action  // for each action a  

 | a.instant_end =! a.instant_end &&  // (the beginning =! the end) && 
   (a.instant_begin.state_existance !=  // (the state before the action is not equal to 
 a.instant_end.state_existance)  &&  //    the state after action) && 
   (a.participating_object in a.participant) //(there exists at least one associated object) 
}  
Using above presented basic modeling concepts allows us to describe the model of a behavior. In the next subsection 
we show an example of such behavior model. 

2.2 The example of an RM-ODP model 

The following example of a model corresponding to the formal RM-ODP syntax (see figure 2) is built with the Alloy 
Constraint Analyzer3. This example is a result of a semantic analysis of the formal behavior meta-model that is 
presented in the previous subsection. The Alloy Constraint Analyzer checks the consistency of the meta-model, 
generates sample configuration and visualizes it. This configuration is a valid phrase in the RM-ODP-Alloy syntax. 
It shows set of actions {B1, B2}, set of states {S2, S3, S4, S5}, set of constraints {B0}, set of time events {T0, T1, 
T2, T3} and relations between model elements. We can see that each action has time events corresponding to the 
beginning and to the end of the action and that each time event is associated with a corresponding state of the system. 
This allows us to conclude that the RM-ODP-Alloy syntax shown above is correct. 

 
Figure 2 Example of a model build with Alloy Constraint Analyzer.  

Further in our work we use similar examples based on formal RM-ODP syntax. In order to simplify reading of such 
diagrams and make them more compact we use a different notation. We will use ovals to represent actions, rounded 
rectangular to represent states. To represent time events we use small gray circles and to represent behavioral 
                                                           
3 See http://sdg.lcs.mit.edu/alloy/ 
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constraints we use stars. In our work we call diagrams built using this notation RM-ODP diagrams. Figure 3 shows 
an example of such diagram. 
 

S1

t1 t2 t3 t4

C1 C2

t5 t6

S2 S6S3 S4 S5

A1 A1 A1

 
Figure 3 RM-ODP diagram. 

As we can see the “pure” RM-ODP model is precise but quite bulky (it contains too many details) even if the 
behavior to be modeled is quite small. Fortunately, we can use a number of abstractions and simplifications to reduce 
the complexity of the model. Using simplifications can bring us to compact behavior models. Further in our work we 
show some simplifications that can bring us to some existing modeling techniques: FSM, State-charts and Activity-
charts. Particularly, we show how we can simplify the modeling of time, behavioral constraints and actions.  
 
 

3 Definition of time and behavioral constraints 
Before considering possible simplifications of the RM-ODP model, we will define behavioral constraints more 
precisely. “Behavioral constraints may include for example: sequentiality, non-determinism, concurrency, real time” 
(RM-ODP, part 2, clause 8.6). In this work we consider constraints of sequentiality and non-determinism. The 
concept of constraints of sequentiality is related with the concept of time. Thus we start this section with the 
definition of time and then we return to the definition of behavioral constraints. 

3.1 Time 

Let’s consider the role of time in system design. Time is fundamental in our universe. It plays two following 
important roles in system design: 

• It serves for the purpose of synchronization. It allows for the synchronization of actions inside and between 
processes, the synchronization of a system with system users, the synchronization of user requirements with an 
actual performance of a system. 

• It defines a sequence of events. It allows for the defining of the sequences of actions.  

To fulfill the first goal, we have to be able to measure time intervals. However, Henri Poincaré shows in 
[Poincaré83] that a precise clock that can be used for time measurement does not exist in practice but only in theory. 
So the measurement of the time is always approximate. In this case we should not choose the most precise clocks, 
but ones that explain the investigated phenomena in the best way. “Simultaneity of two events or their sequentiality, 
equality of two durations should be defined in the way that the formulation of the physical laws is the easiest” 
[Poincaré83]. According to this idea we can choose different models of clocks. For example, for the actions 
synchronization, internal computer clocks can be used and, for the synchronization of user requirements, common 
clocks can be used that measures time in seconds, minutes and hours. The first role where the time can be measured 
in some relative units typically is not specified in formal behavior models. It is used in the modeling of non-
functional requirements, which is a separate topic for research.  

In our work we consider only the second role of time in system specifications. According to Poincaré we can build 
some special kind of clock that can be used for specifying sequences of actions. RM-ODP confirms this idea by 
saying that “a location in space or time is defined relative to some suitable coordinate system” (RM_ODP, part 2, 
clause 8.10).  The time coordinate system defines a clock used for system modeling. In this work we consider a time 
coordinate system as a set of time events. Each event can be used to specify the beginning or end of an action. A time 
coordinate system must have the following fundamental properties: 
 
• Time is always increasing. This means that time cannot have cycles. 
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• Time is always relative. Any time moment is defined in relation other time moments (next, previous or not 
related). This corresponds to the partial order defined for the set of time events. 

 
We use the following formalization of time in Alloy: time is defined as a set of time events  (Time). Time event has 
to be defined in relation with some other time events (partial order): 

// part of Alloy state declaration  
nextTE: Time -> Time // defines the closest following time events for any time events 

We will also use the followingTE relation to define the set of the following time events or transitive closure for the 
time event t over the nextTE relation: 

// part of Alloy state declaration  
followingTE: Time ->Time // defines all possible following time events 

Using followingTE we can define the following invariant that defines the transitive closure and guarantees that time 
event sequences do not have loops: 

 
inv TImeInvariant {   

all t |   // For all time events t  
     ((no t.nextTE)->(no t.followingTE)) &&  // if t does not have nextTE it also does not have followingTE 
     ((some t.nextTE && no t.nextTE.followingTE) // if t has the nextTE that does not have any followingTE 

 ->(t.followingTE=t.nextTE )) && //   then followingTE for t includes only nextTE for this t 
     ((some t.nextTE && some t.nextTE.followingTE)  // if t has the nextTE that has some followingTE 

->(t.followingTE=t.nextTE.followingTE + t.nextTE )) && //   then followingTE includes nextTE for t and followingTE for nextTE 
     (t not in t.followingTE) // time does not have loops 

} 
 
This definition of time we will use in the next section when we will describe sequential constraints. 
 

3.2 Behavioral constraints 

Both approaches for behavior specification mentioned in section 2 (using the set of actions or the sequences of state 
changes) represent behavioral constraints implicitly. Quite often we can infer them from behavior representation, like 
behavior automata. For example, figure 4.b shows a specification that has constraints of sequentiality and non-
determinism. We can infer that the system is specified using constraints of non-determinism by looking at state S1 
that has a non-deterministic choice between two action a. 
 

S1
S2

S3

a

b

  

S1
S2

S3

a

a

 
(a) (b) 

Figure 4  FSA, specification of the sequential system using: a - sequential deterministic constraints; b - sequential non-
deterministic constraints. 

We base our approach on RM-ODP, where behavioral constraints are represented explicitly (“Behaviour (of an 
object): A collection of actions with a set of constraints on when they may occur” [RM-ODP]). “The definition of 
Behavior should link a set of actions with the corresponding constraints” [AN]. In the following subsection we 
consider precise definition of constraints of sequentiality and non-determinism.  
 

Constraints of sequentiality 

We start with the analysis of constraints of sequentiality. Each constraint of sequentiality should have the following 
properties: 
• It is defined between two or more actions.  
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• Sequentiality has to guarantee that one action is finished before the next one starts. Since RM-ODP uses the 
notion of time intervals4 it means that we have to guarantee that one time interval follows the other one: 
 

def SeqConstraints { 
all sc: SeqConstraints | // for all SeqConstraints sc 

 some a1, a2: Action | (a1 != a2) &&  // there are two different actions a1, a2 
    (a1 in sc.constrained_action) && (a2 in sc.constrained_action) &&  // sc is defined between a1 and a2 
    ( (a2.instant_begin in a1.instant_end.followingTE) ||   // a1 is before a2 or 

(a1.instant_begin in a2.instant_end.followingTE) ) // a2 is before a1 
} 
 
From this definition we can see that the concept of constraints of sequentiality is tightly related with the concept of 
time. Constraints of sequentiality should be consistent with the partial order defined in the set of time events. If this 
partial order is given, sequential constraints can be derived. And vice versa, if we have been given sequential 
constraints, the partial order in the set of time events can be derived. This allows us to use an abstraction of time 
while keeping the sequences of actions. We will consider this in detail in the next section. An example of sequence 
of actions is shown in the following picture: 

 

C1 C2

S1

t1 t2

S2 S3

t3 t4

S4 S5

t5 t6

S6

a1 a2 a3

 
Figure 5 RM-ODP diagram: Sequence of Actions with sequentiality constraints. 

Given that in figure 5, C1 and C2 are sequential constraints, we can conclude that the partial order on the set of time 
events is: t1->t2->t3->t4->t5->t6. 

Constraints of non-determinism 

In order to formalize constraints of non-determinism we considered the following definition given in [Broy91]: “A 
system is called non-deterministic if it is likely to have shown number of different behavior, where the choice of the 
behavior cannot be influenced by its environment”. This means that constraints of non-determinism should be 
defined between a minimum of three actions. The first action should precede the two following actions and these 
actions should be internal (see figure 6). 

C3a1
a2

a3

 
Figure 6 RM-ODP diagram: Example constraints of non-determinism 

We can write this in Alloy in the following way: 
def NonDetermConstraints { 
all ndc: NonDetermConstraints | // for all NonDetermConstraints 

 some a1: Action | // there is action a1 
 some a2,a3: InternalAction | (a2 != a3)&&(a2 != a3)&& (a2 != a3) && // there are two different internal actions a2, a3 

    (a1 in ndc.constrained_action) && // sc is defined between a1  
    (a2 in ndc.constrained_action) &&  // and a2 
    (a3 in ndc.constrained_action) &&  // and a3 
    (a2.instant_begin in a1.instant_end.followingTE) &&    // a1 is before a2 or 

(a3.instant_begin in a1.instant_end.followingTE) // a1 is before a3 
} 

Let’s not that, since the choice of the behavior should not be influenced by environment, actions a2 and a3 has to be 
internal5 actions (not interactions).  Otherwise the choice between actions would be the choice of environment. 

                                                           
4 Location in time: “An interval of arbitrary size in time at which an action can occur” [RM-ODP]. 
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4 Possible simplifications and where their can result 
As we have seen in section 2, it is difficult to understand even a simple RM-ODP model due to its size. In order to 
simplify RM-ODP models we can use a set of abstractions that can be done by means of hiding details irrelevant to 
the purpose of modeling.  In this section we will consider such a possible simplification, particularly the abstraction 
of time and a set of simplifications for action representation. We will also pay attention to some important 
information that can be lost during abstraction. 
 

4.1 Under Specified Actions 
Developers often do not use concrete time information and keep only constraints of sequentiality. Sometimes the 
presence of time information makes modeling correct, however “the incorporation of concrete timing properties 
leads to a considerable loss of abstractness” [Broy91]. For example, if several actions perform the same functionality 
with the only difference that they are defined for different time intervals. In that case we can define some predicate 
that will characterize this collection of actions. Since we have to define a predicate applied to modeling concepts, we 
have to use specification concepts (see section 2). Among specification concepts we can use pre- and post-
conditions6 in order to define a collection of actions with the same functionality. Using pre- and post-conditions we 
can define a type “Under-Specified Action ” (USA). This type can be defined with the following predicate:  
Under-Specified Action (USA): “USA specifies actions with the same pre- and post-conditions”. 
Using this type we can avoid specifying concrete timing properties, but in this case we have to slightly modify our 
model. We have seen that the concept of state is defined for each time event (see section 2). Since we make an 
abstraction of time, we have to relate the concept of state directly with the concept of action. We can do that because 
each action has only one instant_begin and one instant_end. Instead of defining a state related with instant_begin and 
one instant_end as it was done above we would define pre-state and post-state for each action: 

// part of Alloy state declaration  
prestate: Action! -> State_! // each action has one pre-state 
poststate: Action! -> State_! // each action had one post-state 

Let’s suppose that in figure 5 actions A1 and A3 have the same pre- and post-conditions: pre-cond1 and post-cond1. 
In that case they will have the same type of USA: type1 (see figure 7): 

C1' C2'

S1 S2 S3 S4 S5 S6

pre-cond 1 post-cond 1 pre-cond 2 post-cond 2 pre-cond 1 post-cond 1

type1 type2 type1
Speification

concepts

Modeling
concepts

USA1
<<usa>>

USA2
<<usa>>

USA3
<<usa>>

 
Figure 7  RM-ODP diagram: Behavior specification using Under-Specified Actions: Action structure. 

Let’s note that we have extended notation used for RM-ODP diagrams before. We included the symbol of pre-and 
post-conditions (vertical line crossing the association from an action to a state) and symbols of the beginning and the 
end of the action sequences. In order to make actions generic and independent of constraints of sequentiality, we 
keep only unidirectional links between action and constraints. It means that the sequence of actions is fully specified 
by constraints of sequentiality (assuming that pre-conditions are met). Lets also note, that in previous sections we left 
some freedom to the user to map basic modeling concepts with the specification concepts (with either instances or 

                                                                                                                                                                                            
5 “The set of actions associated with an object is partitioned into internal actions and interactions. An internal 
action always takes place without the participation of the environment of the object. An interaction takes place with 
the participation of the environment of the object.” (RM-ODP, part 2, clause 8.3) 
6 RM-ODP gives the following definition for pre- and post-conditions (clauses 9.23 and 9.24): 

Precondition: A predicate that a specification requires to be true for an action to occur. 
Postcondition: A predicate that a specification requires to be true immediately after the occurrence of an action. 
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types, for example). But Under-Specified Action can be mapped only with type, since it uses the predicate to define 
the collection of actions. Here we fix our choice for actions to be types in models of behavior.   

Behavior modeling with parameters 

The next simplification we consider is the modeling of actions using parameters. UML defines parameters in the 
following way: 
Parameter [OMG99] “is an unbound variable that can be changed, passed, or returned. Parameters are used in the 
specification of operations, messages and events, templates, etc. In the meta-model, a Parameter is a declaration of 
an argument to be passed to, or returned from, an Operation, a Signal, etc.” 
Let’s see what parameter means in RM-ODP terms. Figure 8 shows a set of actions {a0, … aN} with a similar post-
conditions (the difference is in the values assigned to the variable S). These post-conditions differ only in the value 
that is assigned to the state variable S. In the same way we have defined an Under-Specified Action type before, we 
can define a new Under-Specified Action type: 

Under-Specified Action with parameters (USA): USA with parameters specifies a collection actions with the same 
pre-conditions and with post-conditions that differ only in values assigned to system variables. 

...
a(par), par∈{0...N}

<<usa>>
S=X S=par

S=X

S=0

S=1

S=N

a0

a1

aN

 
Figure 8 RM-ODP diagram: Action modeling with parameters 

The action a(par), par∈{0...N} in figure 8 is the Under-Specified Action that characterize the set of actions {a0, … 
aN}. 
 
 

4.2 Abstraction of the state information 

In the previous subsection we have defined a type that characterizes the set of actions with the same pre- and post-
conditions. Let’s note that pre-conditions were defined on pre-states and post-conditions were defined on post-states 
of actions. If we continue our analysis we can see that there are many actions with different pre- and post-conditions 
(and pre- and post-states correspondingly) but still having very similar functionalities. We can see it if we look at the 
difference between pre- and post-states. Figure 9, for example shows that the post-conditions of both actions A1 and 
A2 specify the increment of state variable “a” by 1. This similarity allows us to extend the meaning of the under-
specified action with the following predicate:  
Under-Specified Action with the abstraction of states (USA): USA with the abstraction of pre- and post-states 
specifies actions with post-conditions that can be expressed as a proposition applied to the action pre- and post-
states. 

S1
a=1
b=0

S2
a=2
c=5

S3
a=3
b=10

S4
a=4
c=0

pre-cond 1
a=1

post-cond 1
a=2

pre-cond 2
a=3

post-cond 2
a=4

type1 type2Specification concepts

Modeling concepts

>>

S
<<USS>>

a=int
b=int

S'
<<USS>>

a=int
c=int

pre-cond 3
a = 1 ^  2

post-cond 3
a = a' + 1

type3state
type

state
type

A1
<<usa>> A2

<<usa>>

A3
<<usa>>

 
Figure 9 RM-ODP diagram: abstraction of the state information 

Let’s note, that in this case pre- and post-states of the under-specified action A3 become under-specified states 
(USS).  
Under-Specified State (USS): An under-specified pre-/post-state characterizes a collection of states for the 
corresponding under-specified action.  
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State S, for example, characterizes a collection of states {S1, S3}. Strictly saying we have to specify state S with 
a={1, 3}. But typically developers use another simplification: “a:int”. This defines the type of the state variable. 
Using such simplifications we can see that such under-specified states would be the same for all actions and can be 
shown separately in the UML class diagram, for example.  
 
 

5 Examples of specifications with Under-Specified Actions 
In this section we show how to apply simplifications from the previous sections to an example of a behavior. Such 
simplifications can bring us to different existing notations for specifying system behavior. Here we show examples 
of UML Activity and State diagrams and with the Finite State Automata (FSA). 
 
We start with the example (see figure 10) that specifies an object behavior with nine actions. Five of them are 
internal actions (they take place without the participation of the environment) and four of them are interactions (they 
take place with the participation of the environment of the object). Names of internal actions start with “a” and 
names of interactions start with “e”. 

wait for
e1_1

t1 t2 t3 t4

C1 C2

t5 t6

S=0

t7' t8'

C3

t7

t8

t10 t9t14 t13 t12 t11

C7 C6 C5 C4

S=1

t16 t15

t16 a3_2 e2
received C1- Begin of end of the

time intervals - Actions - State - Constraints

initial state

final state

final state

e1_1
received

wait fot
e2

e2_1
received

wait for
e1_2

e1_2
received

wait for
e2_2

e2_2
received

e1_1

a3_2

a1_1 e2_1

a3_1

a2_1

e1_2a1_2e2_2

 
Figure 10 RM-ODP diagram: an example of a behavior. 

The example also shows the system states before (pre-states) and after each action (post-states), constraints and time 
events. You can see that a post-state after each action is the same as a pre-state for the next action. However, in 
general, these pre- and post-states should be different, since some other concurrent process can change the state of a 
system between two actions. Here we suppose that in our system there are no concurrent processes and thus there is 
no other processes that can change the state of the system between two consecutive actions. Let’s also note here that 
actions a1_1 and a1_2; e1_1 and e1_2; e2_1 and e2_2 are similar. They perform the same functionality and the only 
difference between them is in the instant_begin and instant_end time points. Actions a3_1 and a3_2 also perform the 
same functionality not specified here, with the slight difference that a3_1 makes state variable S equal to 0, while 
a3_2 makes this variable equal to 1. Actions a3_1 and a3_2 also have different instant_begin and instant_end time 
points. 
 
First, if we make an abstraction of time and state information in the example shown in figure 10, we get the 
following graphical representation: 
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C1' C2'

C3'

C7'

C4'

e1
<<usa>>

a3_2
<<usa>>

a1
<<usa>>

e2
<<usa>>

a3_1
<<usa>>

a2
<<usa>>  

Figure 11 RM-ODP diagram: simplification of the example using time abstraction and hiding pre- and post-conditions. 

Here actions a1, a2, e1 and e2 are Under-Specified Actions that characterize the following collections of action from 
figure 10: {1_1;a1_2}, {e1_1;e1_2},  {e2_1;e2_2}. Let’s also note that constraints also become under-specified 
constraints in exactly the same way as actions. For example, the constraints C1’ characterize the set of constraints 
{C1, C5} from figure 3. Now we can transform this behavior model into the Finite State Automata. It is transformed 
in the following way: any action becomes arc in FSM, constraints of sequentiality become states. Let’s note that that 
just constraints of sequentiality become state in FSM but not pre- or post states. The fact is that some other 
concurrent process can change the state of a system between two actions. That means that pre-state of an action and 
post-state of consecutive action should be different. But constraints of sequentiality in RM-ODP define exactly the 
same meaning as states in FSA: their show all consecutive actions. 

Here we have also to pay attention to the transforming of constraints of non-determinism. In order to express them in 
FSA we have to model action e2 twice. It shows that the system makes the internal choice between the two 
“branches” of behavior without being influenced by its environment. For a better illustration we also show the 
behavior model for the system environment. Interaction of object with its environment can be represented as a 
reaction between the following pairs of actions and their complements {e1,e1} {e2,e2}. 

e1 a1

e2

a3_2

e1

e2

S1 S2

S3S4
a3_1

a2

e1 e2

e1
S1' S2'

S5

e2

e2
__

__ __

__

 
 (a) (b) 
Figure 12 FSM specification of the system (a) and its environment (b). 

The further simplification (using modeling of actions with parameters) of our example from the figure 10 leads us to 
the behavior model shown in figure 13, where the post-conditions for action a3(p) is S = p. Let’s note, that in all 
behavior models we considered above, interactions and internal actions are modeled using the same notation (the 
sign of oval). This allows us to define communications between systems as a reaction between an interaction a and 
its complement a  [Milner99]. But UML uses slightly different notation that can also reduce the complexity of UML 
state and activity diagrams. The concept of interaction in RM-ODP corresponds to the concept of event in UML and 
the concept of internal action corresponds to the concept of action in UML: 
“An event is something done to the object; an action is something that the object does” [Stevens00]. 
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Event in UML is considered as an action trigger and modeled in the way it is shown on in figures 14 and 15. 

C1 C2

C3C4

a1
<<usa>>

e2e1

a2 a3(p∈{0,1})
 

Figure 13 RM-ODP diagram: Simplification of the model 
using actions with parameters  

 

a1

a2

a3(p)[e1]

[e2]

[e2]

[e1]

 
Figure 14 UML activity diagram. 

 

s1

s2

e1/a1

e2/a2

e2/a3(p)

e1/a2

 
Figure 15 UML state diagram 

 
 

6 Conclusion 
In this work we analyzed the correspondence of RM-ODP models with the UML related behavior models by means 
of mapping corresponding concepts in their syntactic domains using abstraction of temporal and state information. 
We have seen that RM-ODP can serve as a mediator that explains the semantics of this mapping between different 
languages for behavior modeling. A behavior modeling case tool, that can specify different levels of abstraction and 
insure the consistency between these levels, can be built based on this work.  

This work continues the work done by Naumenko [Naumenko01] that formalizes RM-ODP.  The main contribution 
of this work is the precise definition of constraints of sequentiality and non-deterministic constraints and the 
definition of Under-Specified Actions and States that we propose to use in order to map modeling concepts used 
RM-ODP with concepts from other existing frameworks. 

The proposed formalism still needs elaboration, however. For example, in our work we have modeled the constraints 
of sequentiality and non-determinism. But the modeling of constraints of concurrency and relating them with 
existing RM-ODP framework would be quite a large and interesting research direction.  
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