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Stochastinalysisof SomeExpedited~orwarding
Networks

Milan Vojnovi¢ andJean-YesLe Boudec

Abstract— We consider stochastic guarantees for net-
works with aggregatescheduling, in particular, Expedited
Forwarding (EF). Our approachis basedon the assumption
that a node can be abstractedby a sewice curve,and the in-
put flows are regulatedindividually at the network ingress.
Both of theseassumptionsare inline with the curr ent defini-
tion of EF [1], [2]. We derive boundsto the complementary
distrib utions of the backlog, delay through a single node,
and the end-to-enddelay. We alsogive a bound on the loss-
ratio. Our analysisis exactunder the given assumptions.
Our resultsshould help us to understand the performance
of networks with aggregatescheduling,and provide the ba-
sisfor dimensioningsuchnetworks.

Keywords— Expedited Forwarding, diffserv, Aggregate
Scheduling,Statistical Multiplexing, StochasticQoS,Service
Curve, Packet ScaleRate Guarantee,Queueing,LossRatio

I. INTRODUCTION

XPEDITED FORNARDING (EF)is a perhop be-
havior (PHB) of the differentiatedserviceqdiffserv)
Internef[1], [2]. With theEF PHB,individualflows(called
“micro-flows”, or “inputs” in this paper)areshapedepa-
rately at network accessfrom thereon, they aresenedin
anaggrgatemanner Our objectiveis to derive probabilis-
tic guaranteetor EF network underthefollowing assump-
tions.
Our approachs basedon assumptiorthatthe EF PHB
canbeabstractedby a servicecurve.
(Al) We supposea nodeoffersto theaggregateof all EF
traffic a servicecurwe 8, thatis

A*(t) > A(s) + B(t — s), forsome s <t, (1)

where A*(t) is the outputdatafrom thenodeon [0, ¢] and
A(t) isthedatawhichis acceptedor service(i.e. notlost)
attheinputof thenodeduring|0, ¢] [3], [4], [5].
Themostrecentdefinitionof EF PHB (Def. IV.1in [6]
or DEF_1 in [1]), referredto asPacket ScaleRate Guar
anteg(PSRG),mpliestheservicecurve property whereg
hastheform 3(t) = c(t — e)™ (thisis calledarate-lateng
servicecurve, with ratec andlatengy e). A specialcase
of PSRGis a schedulethatgivesa staticnon-preemptie
priority to EF traffic over non-EFtraffic; heretherateis
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the sener rate andthe lateny is the servicetime of the
maximum-lengthnon-EF paclet. In SectionlV, we use
anothempropertyof PSRG,hamely thefactthatdelaycan
beboundedrom backlog.

(A2) We supposehatthe EF traffic inputs(micro-flows)
atthe network ingresspointsaremutuallyindependent.
This assumptions alsomadein otherwork [7]. Notethat
we make noindependencassumptioror flowsinsidethe
network.

(A3) We supposezachEF input (micro-flow) at the net-
work ingresgointis regulatedthatisto say for agivenin-
puts thereexists awide-senséncreasingunction«; such
that

AVt) — AV(s) < ay(t — s), forany s < t,

whereA!(t) is the dataobsered on [0, ¢] of theinputi at
the network ingresspoint.

In general,we derve our resultsfor arbitrary arrival
curves,and,in particular we studythe leaky-bucket regu-
latedinputs;a;(t) = pit + o;.

(A4) We supposeE[A?(t) — AV(s)] < pi(t — s), for ary
s < t,where
(1)

= lim &
pl_tﬁoo t

Indeed, the assumption(A4) is implied for the input
flows with stationaryandergodic incrementq8], [9], but
notviceversa Thus,(A4) is awealer assumption.Note
thatwe allow for the input flows with non-stationaryin-
crementsaslong as (A4) is verified. However, for some
of ourresultswe needstationaryergodicincrementf the
inputsto ensurecertainlimits exist; we explicitly indicate
whensuchanassumptions needed.

We now explain the organizationof the paperandhigh-
light our main findings. We discussthe stateof the art
in Sectionll. In Sectionlll we give the theoreticalfoun-
dationsof our work; the resultsgivenin this sectionare
of generalinterestfor statisticalmultiplexing of regulated
inputs to a multiplexer that offers a servicecurwve to the
aggr@ateinput. Our prior work [9] givesus a catalogof
probabilisticboundsto the backlogfor the latter system.
In Sectionlll-A we go a stepfurtherandgive a boundon
thebacklogthataccommodatelseterogeneousliyegulated
inputs (Theorem1), and which performsbetterthanthe
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boundsof Theorems4 and5 in [9]. Moreover, in Theo-
rem2, for a specialcaseof leaky-bucket regulatedinputs,
we give threeboundgo thecomplementarglistribution of
the backlog. A remarkabldeatureof the threeboundsis
thatthey arefunctionsof someaggreateparametersf the
leaky-bucket regulators.

In orderto derive a probabilisticbound on the delay
of a paclet througha nodewe needan upperboundon
the complementangdistribution of the backlogas seenat
pacletarrival epochslin Sectionlll-B we find aninequal-
ity betweerthecomplementarglistribution of the backlog
seenat arrival epochsandthe steady-stateomplementary
distribution of the backlog(asseenat a randomlychosen
point). In fact, we prove a more generalresultin Theo-
rem3, andthenspecializeheresultto the complementary
distribution in Corollary 1.

When evaluating the performanceof statistical mul-
tiplexing, a common performancemetric studiedis the
probabilitythatthebuffer is above a givenlevel. However,
a performancemetric of practicalrelevanceis the lossra-
tio, which is a fraction of the datalost over a long time
intenal. In Theorem4 (Sectionlll-C) we give an exact
upperboundon thelossrateandlossratio in termsof the
complementaryistribution of the backlogprocessa de-
terministicboundon the lossratio [10], [11], andthe ag-
gregatearrival curve. We study the mary small sources
asymptoticregimein Sectionlll-D; we identify the dom-
inant probability and BahaduwRao asymptoticboundsof
our exactboundin Theoreml, andalsodiscusghetypical
time scaleto overflow for leaky-bucket regulatedinputs.

In SectionlV we apply our findingsto EF. We shawv
how to obtain a probabilisticdelay bound, basedon the
delay-from-backlogoundsof PSRGnodes.Thenwe ap-
ply a majorizationby freshtraffic in orderto find bounds
atary nodeinsidethe network. Lastly, we explain differ-
ent approacheshoth exact and approximateto compute
an upperboundon the complementargistribution of the
end-to-enddelaythrougha sequencef nodes.

SectionV studiesour analyticalresultsthroughnumer
ical computations.We concludethe paperin SectionVI.
Proofsof thetheoremsaredeferredto Appendix.

One approachto study EF is to derive deterministic
bounds;this is pursuedby Charry andLe Boudecin [12]
and Bennett,Benson,Charry, Courtng, and Le Boudec
in [6]. A worst-caséboundon the delayjitter in [12], for
leaky-bucket regulatedEF input flows, is sup-linearin the
maximumhop count,andit explodesat a certainutiliza-
tion that may be ratherlow. Thus, the deterministicap-
proachgives us hard QoS guaranteeshat may be quite

RELATED WORK

pessimisticestimateof the performance.This leadsus to
seekfor probabilisticguarantees.

An alternatve probabilistic approachis proposedby
Bonald,Proutere,andRoberts[7]. Their approachrelies
on two main assumptionsFirst, the EF traffic at the net-
work ingressis betterthan Poissonmeaningthat the vir-
tual waiting time distribution for the EF input traffic to a
singlenodeis stochasticallysmallerthanif theinputis re-
placedwith a Poissonprocesswith the sameintensity as
theoriginal input. Secondijt usesa conjecturethatthejit-
ter is negligible, which would ensure|f the EF traffic is
betterthanPoissoratthe network ingressjt remainssoas
the EF traffic passeghrougha sequencef nodesin the
network. A remarkablepropertyof the betterthan Pois-
sonapproachs thatit is parsimoniousn the parameters
neededo characterizahe input traffic — it requiresonly
theintensityof theinput. However, it is not clearwhether
the EF traffic would be betterthan Poisson.andwhether
the negligible jitter conjecturewould be verified. Our ap-
proachdoesnot make suchassumptionsandour analysis
is exactunderour setof assumptionsin addition,[7] as-
sumesthat a node offers a static non-preemptie priority
for EF traffic over non-EFtraffic. Our resultsare valid
for anodethatoffersa servicecurve, andthusaccommo-
datethe static priority system,but also other systemsas
discussecearlier

In our prior work [9] we derie probabilisticboundsto
the backlogfor a network elementthat offers a service
curveto theaggrgateof independentegulatedflows. The
catalogof theboundgyiventhereconsistf two setsof the
bounds.Thefirst setof boundsis derived uponthevirtual
sgyregation of the backlogto individual input flows, and
thenobservinghatsuchvirtual backlogsarewith bounded
supportwe appliedHoeffding’s inequalitieq13] to obtain
closed-formboundsfor both homogeneouslynd hetero-
geneouslyegulatedinputs. It turnsout thatthe boundfor
homogeneouslyegulatedinputs generalizeghe result of
Kesidisand Konstantopoulo$14], which is for a work-
conservingconstantservicerate sener. The secondset
of boundsis derived uponan approachoriginally dueto
Chang,Song,andChiu[8] for awork-conservingonstant
serviceratesener. Ourextensionisto asuperadditive ser
vice curve. Moreover, we derive boundsthathold exactly
in continuoudime andimprove upontheboundin [8]. We
alsogivetwo closed-formbounddor heterogeneousheg-
ulatedinputs. In the presentpaper we usethe secondset
of boundssinceit is shavn thatthe boundsof the second
setexhibit superiortightnessthanthe boundsof the first
set[9], [8].
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1. THEORETICAL FOUNDATIONS

We introducesomemore notation. For the input ag-
gregate A(t), consistingof I flows, we write A(t)
Ele A;(t). Also, the aggrgatearrival curwe is denoted
asa(t) = Zle «;(t), andtheupperboundon theaggre-
gatesustainableateasp = Zlep,-. Lastly, \,(t) :=
ptl{t > 0}.

In Lemmal [9], for 8 superadditve, we shav that
Q(t) < Q(t), for ary t, where

Qt) = sup {A(t) - As) - Bt - 5)}.

t—7<s5<t

= 2
wherer = inf{u > 0|a(u) < B(u)}.

We saythatg is superadditive if 8(t+s) > B(t)+5(s),
for all t,s > 0. Many servicecurves are superadditive,
but notall. A sufiicient conditionis that g8 is corvex; in
particular the rate-lateng servicecurwe is superadditive,
thus this additionalassumptionis not restrictive for our
applicationto EF.

Note that 7 is the intersectionof the aggr@atearrival
curve a andthe servicecurve 8. Intuitively, think of 7
as an upperboundon the busy period. This is formally
correctif 3 is astrict servicecurve 3 (the servicecurve 3
is strictif in additionto (1) the backlogQ(s) = 0, for s
givenin (1)).

For two functionsf, g, definev(f, g) = sup,~o{f(u)—
g(u)}. For example,v(a, B) is the requiredbuffer sizeto
ensurdoss-freeoperation.

We useQ(+) definedabove to obtainanupperboundto
the complementarylistribution of Q(-), andthusanupper
boundto thecomplementaryistribution of Q(-).

A. AnlImprovedBoundon Badklog

Theoeml: Consideranodethatoffersa superadditive
servicecurnve . Then,under(Al)-(A4), for ary t, it holds

P(Q(t) > b) <P(Q(t) > b) <
2((b+B(sk)—psk+1)T)>

K1 3)
< Zk:o exp <_ (i aise+1)?)A(4 Ef=1v(ai7)‘pi)2)) ’

foracy K e N andany0 =sg <s1 <---<sg =T7.
Proof: AppendixA. |
The bound (3) and our other boundsin [9] satisfy
the economyof scale a notion originally introducedby
Botvich andDuffield [15]. It meanghatif we scaleb and
B asO(I), thenthe probability to overflov decaysexpo-
nentially with 7. We also notethat with fixed aggregate
arrival curve, the boundin (3) is tightestfor all the inputs
having identicalarrival curves o;(t) = a(t)/I. We call
thistheeconomyof equality it tells usthatwe getthebest
performancef the input flows all have the samearrival
curve constraint.

Next we give threeboundsto the probability to over-
flow for leaky-bucket regulatednputs. Theboundsequire
someaggregate knowledg aboutthe leaky-buckets. As
such,they merit is whenthe knowvledge aboutthe input
aggr@ateto anodeis limited, or if theperflow stateis not
allowed, whichis inline with diffservphilosophy

Theoem2: (ThreeBoundsto the Backlogfor Leaky-
Bucket RegulatedInputs) Considera node that offers a
superadditive servicecurve g, fed with leaky-bucket reg-
ulatedinputs; a;(t) = p;it + o;. Then,under(Al)-(A4),
for ary ¢, it holds

P(Q(t) > b) < P(Q(t) > b) <
(a)

K—1 _ 2((b+8(sK)—psr+1)™)?
(f) Zk:O exp ( (i (pisks1+o)2)NA Y], ‘7:'2))
K1 _ 2((b+B(s1)—psr+1)T)?
S 2o ©XP ( (Vi pEskrr+V/Ein 0F)? A4 Tl of)

2((b+6(s) —psat1)t)? >
(psrs1tV/ Tl 02)2A(a I, 02) )7

o ew (-
4)

forany K e Nandany0=spg <s1 <---<sg =T1.
Proof: AppendixB. |
Let? = [p1,...,pr] and @ = [o1,...,07] bethevec-
torsof the sustainableatesandburstinesgparametersie-

spectvely. Considerthe following aggrgateparameters:
(P1) Zfﬂ p; —theaggr@atesustainableate,

(P2) Y°1_, o? ~ thesecondnomentof @,

(P3) 21, p? ~ thesecondnomentof 7,

(P4) S>1_, pio; ~ thecorrelationof 7 and @

Then,it isreadilyseerthattheboundsn (4) requirethat
weknow upperboundgo: (a) (P1)-(P4)(b) (P1)-(P3)and
(c) (P1)-(P2).It isaremarkablgropertythatthebound(c)
in (4) needsonly two aggregateparametersnamely (P1)
and(P2). An issueof theinterestis how muchwe loosein
termsof tightnessaswe know fewer aggrgateparameters.
We explorethis numericallyin SectionV.

B. BoundontheBadklog at Arrival Epods

In the previous sectionwe considerthe steady-state
complementaryistribution of the backlog. This may be
empirically interpretedas a fraction of time the backlog
is abore a given level (time average). Here we consider
the complementargistribution of the backlogasseenby
the paclet arrivals, which may be empirically interpreted
as a fraction of the arrival datathat encounterthe back-
log abore a givenlevel (Palm average).We denotethis as
P4 for the arrival processA (E4 is the expectationwith
respecto P4).

Theoem3: Considera nodethatoffersa servicecurve
B. Definefl = supy o 2L sypposeheinput A
is with stationaryincrementsandintensityp < ﬂ Then,
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for ary measurabléunctiony : Ry — R,

o]l |Q>

E4[(Q(0)] < ~E[(Q(0))]. (5)

Proof: AppendixC. |
Take (x) = 1 00)(x) in (5), thenwe directly obtain
thefollowing corollary
Corollary 1: Underthe assumption®f the theoremiit
holds

A

PA(Q(0) > b) < %P(Q(O) > b).

Remarkl: Konstantopoulosand Last [16] study a
work-conservingconstantserviceratesener. They prove
equalityin (5) for ary measurabléunctiony : Ry — R.

Remark2: Thecorollarytellsusthatfor themajorizing
process)), the complementarylistribution of the backlog
at arrival epochsis lessthanor equalto the steady-state
complementarylistribution of the backlog,timestheratio
of themaximumslopeof 8 on |0, 7] andtheintensityof the
arrival procesg. Fortherate-lateng servicecurve 8(s) =
c(s — e)*, it readsasP4 (Q(0) > b) < <P(Q(0) > b).

Note that the resultin Corollary 1 is establishedor a
majorizing process(:) to the backlogQ(-). As such,it
enablesisto state:

el |Q>

PA(Q(0) > b) < =P(Q(0) > b).

C. BoundontheLossRatio

Insofar, we considerupperboundsto the complemen-
tary distribution of the backlogprocessHowever, in prac-
tice, thereal performancemetric of the interestis theloss
ratio (afractionof datalostoveralongtimeintenal). For-
mally, let L(¢) bethe datalostin [0, ¢], thenthe lossratio
is definedasi = lim; .o, L(t)/A(t). The next theorem
givesus an exact boundon the lossratio in termsof the
complementarylistribution of the backlog. Thus, having
identifiedan upperboundon the complementarylistribu-
tion of thebacklog,thenext theoremenablesisto directly
obtainanupperboundonthelossratio.

Theoem4: Considera nodethatoffersa servicecurwe
B andfinite buffer capacityB. Let Q*(-) bethebacklogof
a virtual systemidenticalto the original system,but with
abuffer sizesufficientto ensureno lossesLet(t) = 1 —

B(s 25) . Then,anupperboundonthelossrateis

infsgt
BIL(t) — L(t - 1] < [FHO O RQ* (1) > 2)dz
©)
I(D)a()PQ" (1) > B).

Moreover, for ergodic inputswith stationaryincrements,
andtheintensityof the aggregateinput p, anupperbound

IA

onthelossratiois

[ <1 BHOW po=(0) > 2)dz

il

()
’<1>“<1>1P>(Q (0) > B).
Proof: AppendlxD |
Remarlk3: A similar expressiorto (6) wasobtainedby
Likhanosr andMazumdaif17] for awork-conservingon-
stantserviceratesystemn theregime of themary sources
asymptotics.Our resultshavs us that the boundson the
lossrate andlossratio hold exactly (not only asymptot-
ically). Moreover, we show it holdsfor a servicecurve
network element,which encompassea work-conserving
constantservicerate system,andthusit is moregeneral.
Lastly, for regulatedinput flows, we improve theboundon
thelossrateby tighteningthe upperboundaryof the inte-
gralin (6) from +oo to B + [(1)a(1). It canbe readily
shawn that[(t)a(t) < v(e,8) — B, for all ¢ > 0, and
thus the boundsin (6) and (7) are betterthanif we use
v(a, B) — B in placeof [(1)a(1).

Examplel: Consider leaky-bucket regulated inputs
Ozi(t) = pit + o; with Zle pi = p and Z{:l g; = 0.
Supposehe rate-lateng servicecurve 3(t) = c(t —e)™.

Then,
R 1-
I(t) = { 1

wherev(a, 8) = pe + o.

Indeed(t) is a harddeterministicooundto the lossra-
tio overary intenal of lengtht [11], [10]. It is evidentthat
(8) is overly conserative with respecto (7).

t<e
t>e,

_B_
pt+o?

B (8)
v(a,8)’

D. Many SmallSoucesAsymptotics

In the precedingsectionsand [9], the boundswe de-
rivedareexact Theboundshold exactly for any settingof
the parametersandin particular the boundsarevalid for
ary numberof theinput flows. In this sectionwe consider
asymptoticcounterpart$o theboundggivenearlier In par
ticular, we studythe mary smallsourcesasymptotics-the
buffer sizeandcapacityscaleasO(I), wherethe number
of theinputflows I tendsto infinity.

We will seethatin the asymptoticregime our bounds
admita simplerform. Onereasorto studythe asymptotic
resultsis to gaininsighthow theboundsbehae, in partic-
ular, whatis the mostlikely way thebacklogbuild up.

We have

P(Q(0) > b) < 5y P(A(0) = A(—sk41) > b+ flse)
< S YPA) — A(—si) > b+ B(sk) — alsksr — sx))
sz? “UB(A(0) — A(=s1) > b+ Alsi) — a(d)),

(9)
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forary K e N andary 0 = s9 < 81 < -+ < sg =,
whered = maxyeqo,1,... k—13{8k+1 — Sk }. We notethat
the first inequality is from [9], andthe secondand third
inequalitiesareevidentby definitionof a.

Supposeéhe k-th summatiortermin thelastinequality
of (9) is boundedwith e~9(5x) for somepositive-valued
function g. Suppose) = s < 51 < -+- < sK =T
is suchthatthereexistsa uniquek* € {0,1,.. -1}
ande > 0 suchthatg(sg-) + Ie < g(si), for aII ke
{0,1,..., K — 1|k # k*}.

Then,for the mary smallsourcesscalingg(-)
and

~ O(I),

P(Q(0) > b) < e~ (14+0(e7')),  (10)

asI — oo, wheres* € [0,7] suchthat g(s*) =
infse[o A19(s). Note that (10) doesnot require s* to be
uniqueon [0, 7]; however, the partition0 = sp < 51 <
--- < sg = 7 needto ensurea unique minimum of
{9(s0),9(s1),---,9(sk—1)}. If s*isuniqueon|0, 7], then
it may be interpretedasthe typical time scale(e.g. [17],
[8]) to overflow agivenlevel of the buffer.
We readilyidentify thefunctiong for our boundin (3)

2((b+8(s) —ps—al@)*)?
(Cimt @i(9)?) A (4 12 v(ai, Ap,)?)

Likewise,onemayderie themary smallsourcesasymp-
toticsfor our otherboundsin [9].

Note that (10) holdsfor ary K € N. We cantake a
uniform partition of [0, 7] suchthatd = 7/K, andthen
let K — oo. This allows usto replacea(d) in (11) with
lims o a(d). For aright-handcontinuousa at 0, we re-
placea(d) with «(0); if, in addition,«(0) = 0, theterm
a(6) in (11) vanishesThetermindeedvanishedor peak-
rateconstrainedggrgateinput. In thefurthernotationwe
keepa(d), but theabove obserationshold.

In the particularcaseof a nodethatoffersarate-lateng
servicecurwe, fed with leaky-bucket regulatedinputs, we
canshawv thats* is unique,andit is equalto

g(s) = (11)

s*=(uAT.AT) Ve, (12)

where

b—ce—a(d) I L 1 2
c—p D=1 Pi0i = 3 e O
I o b—ce—a(d) I 2
Zi:1 pPi0i — c—p Zi:1 Pi

u = 5

for b < b*, otherwisesetu = , for b > b*, and

= f),

i1 Pigi
Z£:1 pz?

Zz lpz Ez 1 z
(Zz 1 Pi0i)?

Te =

107

a=0.5 (1 _/1=0.998)
0=0.6 (0.665) ©

-
07 0=0.7 (0.428)

a=0.8 (0.25)

s*(b) (sec)

0=0.9 (0.111)

0L a=0.1,...0.4

10°

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
bv(a,B)

Fig. 1. Thetypicaltime-scaleto overflow versusthe buffer size
b. Thesetupusis asfollows: the inputsarehomogeneous,
I =100, MTU=1500Bytes,c = 150 Mbps,e=MTU /¢, and
o1 = 5 MTU. Thenumberin the bracketsdenotes. A T as
afractionof 7.

and

I
1= p’l 7
SRV

Zz 1 pz

We notethat 7, is a valueof s in (11) at which, in the
minimumoperationthefirst termbecomedargerthanthe
seconderm. Ontheotherhand,b* is a cut-off buffer size
atwhich thetypical time scaleto overflow turnsfrom one
valueto another In Fig. 1 we shav numericalvaluesfor
s* versusthe buffer sizeb, for oneparticularexample.For
the utilization largerthan0.5, we obsere that s* is equal
to e for b < b* andthenit is equalto 7. A 7 for b > b*.

We comparewith theboundsof Theoremgt and5in [9]
for leaky-bucket regulatedinputs:

b+B(sk)—psrr1)H)?
(B1) Ek 0 eXp( ((2:—1;51((;)%:)-1’?013)2) )

b =(c—p)

Sk )—pPS +)2
(B2) X1y exp <_((b+/3(2k2)¥=p1 ;;1) :

Similar but differentboundsthan(B1) and(B2) areob-
tained by majorization(9), which amountsto replacing
sk+1 With s andadding—a(d) termwithin (-)*. It can
be shawvn thatfor the former bound,s* = e for b < b*,
ands* = 7 for b > b*. For the latter bound,we have
s* = e. Thus,with the formerbound,for the buffer sizes
largerthanb*, the typical time scaleto overflov becomes
7, which may bequitelarge,in particulay for high utiliza-
tion. Ourbound(3) lesserthelattereffect sincethetypical
time scaleto overflow for b > b* is reducedo 7. A 7.

We readily obtainBahadwRao[18] bound,asl — oo,

P(Q(0) > b) A — A7),

4ArA(s*) (13)
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where

2((b+ B(s*) — ps* — a(9))*)?
Pims i(s%)?

For identicallydistributedinputs(in ourcasefor theho-
mogeneouslyegulatedinputs) Likhanosr and Mazumdar
[17] (Proposition2.1) shaw that (13) is an exact asymp-
totics up to a multiplicative constantl + O(1/I). Their
resultis undertwo assumptions(1) s* is unique,and(2)
liminf; ,oo A(t)/Int > 0. It canbe shavn thatin our
case(1) holds,and (2) is not neededgiven that we have
a finite summationin (9). On the otherhand,for hetero-
geneouslyregulatedinputs,one may usethe centrallimit
approximationasdiscussedn [19] (Section5.4). Indeed,
the pre-factorin (13) scalesas1/+/T, whichwasobsered
alsoelsavhere,e.g. by Montgomeryandde Veciang20].
We comebackto the BahadwRao boundin SectionV,
wherewe give a numericalexampleto demonstraténow
muchwe improve with the BahaduwRaopre-factor

A(s*) = —

V. APPLICATION TO EF
A. Delay-flom-Bad&log for a PSRGNode

In generalfor anarbitrarynode,we cannotdirectly de-
duceaboundonthe complementargistribution of thede-
lay from the complementanydistribution of the backlog.
However, this is possibleif the node can be abstracted
with PSRG,asis the casefor the proposeddefinition of
EF. Indeed,a delay-from-backlogoundfor PSRGnodes
is givenin [6] for FIFO nodesandit is provenin [21] that
it holdswithoutthe FIFO assumption.

Propositionl: ForaPSRGnodewith ratec andlatengy
e, it holds

P(d(0) > u) < P4(Q(0) > c(u —e)), foru > e, (14)

whered(0) is adelayincurredby an arbitrarypaclet that
arrivesattime 0.

Proof: By Theoreml in [6] and Theoremlll.1 in
[21], thedelayfor apacletarriving attimet is boundedoy
Q(t)/c + e; thensimply usethis point-wisemajorization
to obtain(14). |

Thus, combining(14) with Corollary 1 andary upper
boundon the steady-stateomplementandistribution to
thebacklog(e.qg.,(3) or (4)), we obtainanupperboundon
the complementarylistribution of the delay

B. Majorizationby thefreshtraffic

Our boundsin [9] and (3), and typically the bounds
found elsavhere,arebasedon the assumptiorthatthein-
put flows aremutually independentThus,we cannotap-
ply the boundsdirectly, becauset is not realisticto sup-

posethe input flows to ary nodein the network are mu-
tually independentthe flows may get correlatedas they
sharecommonupstreanmodes.However, it is reasonable
to supposehatthe input flows at the network ingressare
mutually independenfour assumptior{A2) in Sectionl).
We supposehat the delayjitter incurredat the upstream
nodesto a given nodeis boundedby A. Sucha bound
indeedexists with finite buffer sizes;usethe delay-from-
backlog[6], [21] to obtainA = (h—1) max{B, /c,+en},
whereh is the maximumhop count, B,, is the buffer size,
¢, theservicerate,ande, thelateny of thenoden. Then,
we majorizeincrementf theinput flows to a givennode
by thefreshtraffic atthenetwork ingress

Ai(t) — Ai(s) < AY(t) — A)(s — A).

Originally, such a majorizationis suggestedy Chang,
Chiu, and Song[8]. In particular for our boundsin (3)

and(4) this amountdgo replacesy 1 with sgr1 + A. We
discussin the next sectionhow we can obtain a tighter
boundon the delayjitter incurredat the upstreanrnodes
to agivennodein computinga probabilisticboundon the
end-to-enddelay It is our work in progressto investi-
gatewhetherour boundscanbe applieddirectly for some
non-independenhput flows. We notethatwe caneasily
generalizeour boundsto non-independenrihput flows by
using Holder’s inequalityin our applicationof Chernof-

Hoeffding’s bounds. Then, it canbe shavn that all our
boundsto the backlogremainthe same,but with the ex-

ponentdividedwith I; this precludeghe statisticalmulti-

plexing gain.

C. DelayThrougha Sequencef Nodes

Let d,, be the delay of an arbitrary paclet throughthe
noden. Supposedhe paclet traversesh nodes.Thus,the
end-to-enddelayincurredby the pacletis

d=di+de+---+dp. (15)

In SectionlV-A we shov how to derive an upperbound
F,(u) to P(d,, > u). Thenext issueis to obtainanupper
boundonP(d > u), whichwe denoteasG(u).

Ourfirst approachygivesus G(u) thatholdsexactly,

G(u) = Fu(7) (16)
n=1
This is readily shavn by notingd < hmax{di,...,ds},

andthen

P(d >u) <P(max{di,...,dy} > 1)
< IP)(Une{l h}{d > h})
< Y-

1 P(dn > §) < Yy Fal(3).
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As (16) is derived by summingup h timesthe maximum
delayalongthe route, it may yield a conserative bound
on the end-to-enddelay Clearly (16) is sup-linearin the
hopcounth.

Our secondapproactholdsfor associatedd;, . .., dp }.
Thesequencéd,, ..., d,} isassociate22], Sec.4.3.1)
if, in particular for all non-decreasingnappingsf, :
RY — R, B[[Ih_, fa(da)] > TTh_; Elfn(dy)]. Obvi-
ously for mutuallyindependentiy, . .., d;, the sequence
{di,...,d,} is associated. The sequence(d, ..., d,}
is said to be an independentersionof {di,...,d,} if
di,...,d, aremutuallyindependentandd,, andd,, have
thesamedistributionforalln = 1, ..., h. It canbeshavn
P(max{dy,...,dp} > u) < P(max{dy,...,dy} > u),
which givesusa product-formbound

h
G(w) =1- [[0 - F(3)). (17)
n=1
Indeed,
P(max{dy,...,ds} >7)=1- P(max{dy,...,dp} < %)
=1- P(ﬂne{L:,,h}{dn < %})

=1-[['_, P(d. < 2).

Notein (17), G(u) = F_| Fo(2), with Fp (%) < 1
foralln = 1,...,h. Thus,in this casewe do not expect
(17) to besubstantiallysuperiorthan(16).

Our third approachs anapproximatiorthatmaygive a
tighter boundon the end-to-enddelay It is basedon as-
sumingthe delaysincurredat differenthopsareindepen-
dent. Suchan assumptioris alsomadein [7]. Then, by
(15),theend-to-endlelayis a h-fold corvolution of F} (u)
to Fh(u)

As discussedn SectionlV-B, for the majorizationby
the freshtraffic, F,,(u) is alsofunctionof A, a boundon
the delayjitter incurredat the upstreanmodesto the node
n. Fromthedelay-from-backlodgound[6], [21], we know
thatwe canuseA = (h — 1) maxyeq1,. a}{ 2= + en},
whereB,, is thebuffer size,c,, theservicerate,ande,, the
lateny at the noden. An improvementmay be achiezed
by afurtherapproximationLet G(u, A) be G(u) in (16),
with the upperboundon the upstreamdelay jitter equal
to A. Then, giventhereis a unique A, > 0 suchthat
G(A¢, A¢) = ¢, for somesmall0 < e < 1, we obtainan
upperboundon the delayijitter at the upstrearmodesthat
doesnot hold with probability 1, but with a high probabil-
ity.

The latter approachusesa uniform boundon the delay
jitter incurredattheupstreammodedo ary nodein thenet-
work. An alternatve approachgoesasfollows. We again

supposehedelaysincurredat differentnodesareindepen-
dent. But, we take asan upperboundon the delay jitter

incurredat the upstreanrmodesto the noden as A, given
thatd, + - - - +d,—1 = A. Thiseffectively amountgo that
di,...,d; aremadedependentiueto our majorizationby

thefreshtraffic. This givesusthefollowing recursionfor

theupperboundonP(d; +- - - +d,, > u), whichwedenote
asGp(u),

Gl) = /O " B — g, 9)dGE_ (4) + G (),

whereG¢(-) =1 — Gy(-), andP(d,, > u —yldy +--- +
dn—1 =y) < Fu(u —y,y).

Lastly, if onepreferssimplicity over tightnessfor log-
concae F,(u), foralln = 1,...,n, onemay usean ex-
ponentialupperboundon F,,(u), n = 1,...,n, andthen
G(u) is simply h-Erlangcomplementarylistribution.

A detailedevaluationof the tightnessof boundsto the
complementarydistribution of the end-to-enddelay pre-
sentedn this sectionis left for furtherstudy

V. NUMERICAL RESULTS

We comparenumericallythe boundsgivenin (4). We
considertwo traffic classesgachconsistingof I; = 50
flows, j = 1,2. Classj flows are (p;,0;) leaky-bucket
regulated. The servicecurwe is the rate-lateng with ¢ =
150 Mbpsande =MTU/¢, whereMTU=1500Bytes. We
also comparewith the bounds(B1) and (B2) given in
Sectionlll-D. The boundsare computedasthe infimum
over uniform partition of [0, 7], thus sy = k7/K, for
k=0,...,K.

In Fig. 2 (two uppergraphs)we shav thebounddor the
homogeneousase( and @ non-correlated)jn Fig. 2
(two lower graphs)we shav the boundsfor the heteroge-
neouscase(7 and@ positively correlated) We make the
following obserations. First, (B1) is betterthan (B2) in
mostof the casesgxceptfor high utilization. The bound
(a)in (4) is very closeto the bound(B1) for low to mod-
erateutilization. For high utilization, (a) in (4) fixesthe
deviation of (B1). Secondbounds(b) and(a) in (4) are
closeto eachotherin all the cases.Third, bound(c) in (4)
is fairly closeto thebound(a) in (4) for low utilization. As
the utilization increases(c) in (4) mavesgraduallyfrom
(B1) to (B2). Forth, thedeviation of (B2) for high utiliza-
tion is indeedstrongerfor positively correlatedp and o
and Iargerzjf:1 o2. Last, but not least,(B1) and(a)-(b)
in (4) areinsensitve to the utilization (i.e. ') for low to
moderateutilization.

Our earlier numerical results indicate that with the
bounds(B1), (B2), and(a)-(b)in (4) we have insensitvity



Fig. 2.

P(Q(0)>b)
5,

03 0.4

05 06
biv(a.p)

P(Q(0)>b)
5,

a = 0.2 (hom)

03 0.4

05 06
biv(a.p)

a = 0.8 (hom)

P(Q(0)>b)
5,

3

03 0.4

05 06
biv(a.p)

a = 0.2 (het)

p2 = 0.8ac/(1/2), oy

e =MTU/ec.

03 0.4

05 06
biv(a.B)

a = 0.8 (het)

Boundswith input aggreyate of two traffic classes.
Classj consistsof I/2 (p;,0;) leaky-bucket regulatedin-
puts. The two uppergraphsare for homogeneouslyegu-
latedinputsp; = p/I, 0; = 5 MTU. Thetwo lower graphs
arefor heterogeneoushegulatednputsp; = 0.2ac/(1/2),
= 2 MTU, o2 = 8 MTU. Other
parameterare setasc = 150 Mbps, MTU=1500 Bytes,
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Fig.3. Bound(a)in (4) and(B1) versugshehomogeneousoun-
terpartto (B1) (Theorem3 in [6]). The circles shav the
bound(a)in (4); thesolidline is for (B1); thedashedine is
for thehomogeneousounterparto (B1).

with respecto 7 for low to moderatautilization. Asymp-
totic analysigells usthatthetypicaltime scaleto overflon
is asmallfractionof 7 in thosecasesandthus,in thede-
nominatorof the exponentsin (B1), (B2), and(a)-(b) in
(4), amajorimpactis attributedto the burstinesgparame-
ters,i.e. Y1, o7

Next, we confrontour bound(B1) to its counterparte-
rived underthe assumptiorthatthe input flows arehomo-
geneouslyegulated(TheorenBin [9]). In Fig. 3, weshav
theboundg(B1), (a)in (4), andthe homogeneousounter
partto (B1) versushe normalizedbuffer size.We obsere
that for low utilization (B1) and (a) in (4) are consera-
tive with respecto the homogeneousounterparbf (B1).
However, for high utilization the discrepang betweerthe
bound(a) in (4) andthehomogeneousounterparto (B1)
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Fig. 4. Exact(thick solid line), dominantprobability (thin solid
line), andBahadurRao(dashedine) boundgo thebacklog;
thehomogeneousasewith p; = ac/I, 0; = 5 MTU, I =
100, ¢ = 150 Mbps,MTU=1500Bytes,e =MTU /c.

becomesmaller;theboundgyetfairly closeto eachother
andeven, for very high utilization, (a) in (4) outperforms
thehomogeneousounterparto (B1). It is alsonotevorthy
that,contraryto (B1), theboundderivedupontheassump-
tion that the input flows are homogeneouslyegulatedis
notinsensitve with respecto 7 for low to moderateuti-
lization.

In Fig. 4, we shav our exactbound(a) in (4), its dom-
inant probability andthe BahadwRao improvementfor
the setupgiven in the captionof the figure. We obsere
thatBahadwRaoimprovementis moderateijt is aboutan
orderof magnitudeuniformly over the buffer size.

We compareour boundsto the backlogwith Betterthan
Poissonbound[7] in Fig. 5. We fix the aggrgatearrival

1=100 a=02

3) @

P(Q(0)>b)
5

v
07 Fdhom the dotted curve is for /DI

2 025 03
biv(a,B)

a=0.2

a=05

P(Q(0)>b)
5

a=08

P(Q(0)>b)
5

0 005 01 015 02 025 03 035 04 045 05
biv(a,)

a=10.8

Fig. 5. A comparisorwith Betterthan Poissonapproach.The
inputflows arehomogeneouslyegulated.We fix theaggre-
gatearrival curveto a(t) = pt+o with p = acando = 500
MTU; ¢ = 150 Mbps, e = 0, MTU=1500 Bytes. The
thick linesarefor I = 500; thethin linesarefor I = 100.
Our bound(a) in (3) is shavn as solid line; its homoge-
neouscounterpar{Theoren3in [9]) asdashedine; andthe
asymptoticexpansionfor M/D/1 [7] asdottedline.

cune to «aft) pt + o with p = ac ando = 500
MTU. We shawv theresultsfor threedifferentutilizations
a = 0.2,0.5,0.8, and for the number of input flows
I = 100,500. Seethe captionof Fig. 5 for the setupof
otherparametersAs pointedoutin Section3, our bounds
admit the economyof scale,thus aswe scalethe buffer
sizeandthe servicerateas O(I), the boundon the back-
log decaysexponentiallywith 7. Equialently we fix the
buffer size, servicerate, and o, but scalea; asO(1/1).
Ontheotherhand,theBetterthanPoissorboundis invari-
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antwith respecto the numberof input flows; it depends
solelyon p. Theresultsin Fig. 5 confirmthatour bounds
decaywith 1. We obsere thatfor I = 500, which corre-
spondsto o; = 1 MTU, our boundderived uponassum-
ing the inputs are homogeneouslyegulated(Theorem3

[9]), is fairly closeto the BetterthanPoissonbound. For

I = 100, which correspondso o; = 5 MTU, our bounds
give amorepessimistiestimatehanthe BetterthanPois-
son. This leadsusto concludethatwith burstyinputflows

theBetterthanPoissorapproachmaygive over-optimistic

estimateof the performance.

V1. CONCLUSION

We proposea framework to derive probabilisticguaran-
teesfor networks with aggregate scheduling,e.g. expe-
dited forwarding. Our approachis basedon assumption
thata nodecanbe abstractedvith a servicecurve, which
is verified with the currentdefinition of EF [1], [2]. A
remarkabldeatureof our approachs thatthe boundswe
obtainare exact, they arevalid for ary settingof the pa-
rametersandin particularfor ary numberof theinputs.
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APPENDIX

|. PROOF OF THEOREM 1
FromLemmaz2 [9], it holds

K-1
P(Q(t) > 1) < ) P(A(t) — A(t—sk4+1) > b+0(sk)), (18)
k=0
forary K e Nandany0 =sp < g1 <--- < s =T.
Next, by Hoefding’s inequality for non-uniformly
boundedandomvariablesd) < A;(t) — Ai(s) < ai(t—s),
for ary s < t (A3), we obtainP(A(t) — A(t — sky1) >
b+ B(sk)) <
) ; (19)

< exp <_2<<b + B(sk) = pos)*)?

Sy @i(skr1)?
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wherein the nominatorof the exponentwe use(A4).
On the other hand, in [9] (Inequality (14)) we shawv

P(A(t) — A(t — sg41) > b+ B(sk)) <
o [ — ((0+ B(sk) — psk+1)h)? . 20
=P < 221 1 V(@i Ap;)? > 0

Finally, indeed the minimum of (19) and(20) is anup-
perboundonP(A(t) — A(t — sg41) > b+ B(sk)). Using
this minimumin (18) completeghe proof.

Il. PROOF OF THEOREM 2

Thefirst inequalityin (4) is a corollary of Theoreml
for leaky-bucket regulatedinputs. Thesecondnequalityis
obtainedby upperboundingthefirst termin the minimum
operationin (4) (a) asfollows

Zlel(ﬂiskﬂ +04)? = ,
=2 i1 Pister 2 Zz—l Pi%iSk+1 + Zz—l o}

I .

S ZiZl pfsi+l + 2\/21 1 pz \/Zz 1 l 8k+1 + Ez 1 z
[ I /

=/ 2iz1 Pi Sk41 + Zi:l z')27

wheretheinequationis by Cauchy-Schartz's inequality
The last inequality in (4) is by a trivial bound
ST, p? < p?. This completeshe proof of the theorem.

Let A* = A® 8. A® A is calledthe min-plusconvolu-
tion of A andg, definedoy (A ® B3)(t) = inf,eo q{A(t -
u) + B(u)}. By [8], [9], the infimum is obtainedfor
u € [0, 7], thus the majorizing processQ(t) definedin
Equation(2) satisfiesQ(t) = A(t) — A*(t).

We now stateandprove a preparatorjemma,andthen
continuewith the proof of thetheorem.

Lemmal: We have

PROOF OF THEOREM 3

Ar(t+u) - A*(t) < ub
Proof: Definey(u) = uf1{u > 0}. It follows from
thedefinitionof g8 that,forall 0 < s < ¢:

Bt —s) +(s) 2 B),

thus

oY 2P
It follows that
A =A0B<AR(B®Y)=(408)0y=4"®Y.
Comingbackto the definitionof ® we find that

A*(t+u) < A*(t) + up.

For awide-senséncreasingneasurabléunctiony such
thaty' = ¢

t
P(Q(0) ~9(QO) = [ QNG @
whereQ(ds) = A(ds) — A*(ds).
It follows from thelemmathat
/ P(Q A* ds) <ﬁ/ P(Q(s))ds. (22)

Combining(21) with (22) we obtain

/ H(O(5)) A(ds) — B /0 0(G(s)ds

Take the expectatiomat bothsidesto obtain

0 < ptEa¢'(Q(0))] — AL (Q(0))],

wherethePalm expectationis by Campbellsformula[22].
Replacingy’ with 1) we prove (5).

e(Q(t))

IV. PROOF OF THEOREM 4

By the servicecurwe property thereexists s < t such
thatA*(t) > A'(s)+B(t—s), whered'(s) = A(s)—L(s).
Note L(t) — L(t — 1) = (L(t) — L(t — 1))1g—p- For
s =1, A'(s) + B(t —s) > A'(t), andthusQ(t) = 0.
Sincewe areinterestedn theevents{Q(¢) = B}, we are
allowedto only considers < ¢. Then

L) - Lt—1) =
=A(t) - A*(t) - Q(t) — L(t -1)
< A(t) — A(s) — Bt — s) — Q(t) + L(s) —
< A(t) — A(s) — Bt — 5) — Q(1).

L(t—1)

(23)

> u + B), foru > 0, andthen

I(1)a(1)
FL() — Lt —1)] < /0 P(Q™(t) > u + B)du,

wheretheupperboundaryin theintegralis thedeterminis-
tic upperboundonthelostdataL(s)— L(0) < A(s)i(s) <

a(s)i(s), forary s > 0; (-) isthegeneralizedChuangand
Changs bound[11], [10].

Theboundto thelossratio (7) is immediatelyobtained
by observing = E[L(t) — L(t — 1)]/E[A(t) — A(t — 1)],
andby definitionp = E[A(t) — A(t — 1)]. Thiscompletes
the proof of thetheorem.



