Integrating Performance Evaluation and Formal Specification

J.-P. Hubaux”
hubaux @tcom.epfl.ch

J. Martins*

martins @tcom.epfl.ch

Abstract

We propose a methodology that intends to reuse formal
specification effort to build a performance modeling. The
methodology starts abstracting the relevant features of a
real system in a formal specification. Then, we enhance
the specification with performance information (quality of
service, workload, processing design). At that point, we
map the enhanced formal representation in a performance
modeling that preserves the formal properties. Thereupon,
we implement this modeling in a performance evaluation
environment. We develop the methodology for the SDL
and Estelle standardized formal techniques. Ultimately, we
illustrate the methodology by an example: the Transport
Control Protocol (TCP). Finally, we simulate the
achieved executable, varying evaluation conditions.

1. Introduction

The situation of telecommunications systems is rapidly
evolving towards a state characterized by the presence of
multitude of services integrated in a single network
structure. In order to ease their integration, it is important
to provide unambiguous descriptions of the organization,
of the functionality, and of the relationships existing
among services. Since it is not possible to completely
foresee the situation of services in the future, descriptions
should be modular, so that the task of adding new services
to existing environments is simplified. Formal description
techniques are languages designed to handle such
descriptions. Their goal is to produce unambiguous and
correct specifications, understanding and modeling the
system and the domain within which it operates.

On the other hand, the throughput of physical networks
is constantly growing, reaching the order of Gbit/s. In the
meantime, services needing high throughput are being
designed (e.g., multimedia systems), creating a need for
flexible, high performance communications systems. An
important feature of new high speed services is their
increased need for guarantees. Thus, the use of powerful
performance modeling techniques becomes of prime
importance. Their goal is to obtain some notion of how

T. Saydam*
saydam@udel.edu

S. Znaty"

znaty @tcom.epfl.ch

the system will perform under a given set of conditions.
They facilitate analysis of proposals for new services or
technology since they are more tractable and less
expensive than field trials for evaluating alternatives.
Performance evaluation theorists have long been using
system specifications to make a heuristic model of the
system and then analyzing the model. When system
specifications exist, the question arises whether a more
direct path to performance analysis can be found. Our
scope is to provide a methodology that consistently
integrates formal specification and performance evaluation.
Our methodology appeal consists of benefiting of the
rigorous mathematical basis from a formal method (that
produce high integrity systems) to build a performance
modeling, saving time and avoiding functional errors.
Much effort has been invested during the last decade in
the area of integrating performance modeling and formal
specification. In [2], authors suggest how time and
branching probability might be added to some standardized
formal languages. In [3, 9], authors develop models
combining Estelle and queueing networks. In [1, 6],
methods for the integration of SDL and queueing networks
are proposed. A combined formal description/performance
evaluation model is implemented by means of interacting
processes. Other interesting papers are [4, 5, 7, 8, 9, 11].

2. The Methodology

The purpose of a formal specification is to make sure
that the information transfer between the producer of the
specification and the user is smooth and unambiguous.
Processing validation ensures that the model is error free
and can then be used to elaborate implementations using
an automatic code generation tool. A problem is that
many of the bottlenecks and impediments to smooth data
flow do with design issues not directly dealt in the system
specification. Thus, a formal specification should be
enhanced with the relevant performance information. It is
essential to conserve the original semantics, and extend
the semantics and syntax for new concepts.

As formal specification techniques are not intended for
execution, we need to translate the extended formal model
into a performance modeling adapting the ideal conditions

* Swiss Federal Institute of Technology, TCOM Laboratory, Telecommunications Services Group, DE-TCOM-GST, EPFL, CH-1015 Lausanne

* University of Delaware, Newark, DE-19716, USA

0-7803-3250-4/96$5.00©1996 IEEE

of the formal model to operating conditions (time kernel,

scheduling). Nevertheless, this remains an abstract model

that needs further refinement to reach an implementation.
Our methodology (Figure 1) is decomposed as follows:

s*define system requirements,

“*formalize functional requirements,

srenhance formal specifications with relevant information,

“*translate an specifications into a performance modeling,

«*implement and simulate the performance modeling,

“evaluate simulation results and optimize the system.

SYSTEM
REQUIREMENTS functional
non-functional abstraction
abstraction | ANALYSIS — formal
. [Foma wlidation | ON
functional Method 4 "")
optimization formal specification ¢ _ - formal !
» T & validation]
‘——— Extended |- v
= —————(Formal Method € design —p pESIGN TESTING
eSI8 ded fi - l information i
ormal sp ion i
\
DESIGN 1 Translation |
R ;
rf odeli
performace modeling V‘
MobEL IMPLEMENTATION
IMPLEMENTATION | !
Simulation Vl
Environment PRODUCT
simulation executable |

PERFORMANCE
EVALUATION

Figure 1: The proposed methodology.

The requirements specification defines the system
interfaces (which services, which cost, what performance)
and data (which messages, which workload) requirements.

The functional requirements formalization aims to
structure the system separately of its implementation. It
contains the information held in the system, the behavior
which the system will adopt, and the details of the
interfaces to the outside world. System logical properties
can be verified, so one can see if we are building the
model right according to the requirements. The abstract
vision of the formal specification is suited because it
provides a generic structuring that serves as basis for
many different implementations, and because it avoids the
complexity introduced when looking at details.

The extension of the formal specifications aims at
refining and integrating relevant information for
performance evaluation. It includes some design features
such as processing, and a quantitative description of the
interactions between the system and its environment.

Evaluating performance requires modeling the system,
to get an early opinion of what the system will do. Using
an extended formal specification has the advantage to
integrate a functional description and selected design
features, and thus, avoiding misleading complexity.

1804

The performance implementation provides an executable

code that mimics the behavior of the system. Executing it
would provide statistical results that after analysis bring to
an end optimization of the system. Simulations promote
identifying bottlenecks and determining critical
performance parts that require further design.
- Applying our methodology to the SDL language gives
an SDL specification that provides the structure (blocks,
processes, communication links) and the functional
description of the system. Then enhancing the formal
model with performance information supplies an Extended
SDL specification, that contains the SDL specification
and adds the customer’s quality of service requirements and
workload, and the processing design. Translating the
extended formal specification into a performance modeling
requires replacing each SDL process by a performance
process and determining which performance experiments
to conduct. Then, the performance modeling is
implemented on a performance evaluation tool (e.g.,
OPNET). Finally, the performance simulation is executed
and its results are analyzed. When the system fails to
fulfill a given quality of service, we should identify the
system bottlenecks and optimize them.

3. Extending SDL Formal Specifications

The goal of a formal specification is to develop a model
of what the system will do, including meaningful
information from real-world perspective and presenting an
external view of the system. It abstracts details in order to
give an overview of the system, to postpone design
decisions, and to allow all valid implementations. System
properties can be verified through validation and testing:
“#testing checks that the external behaviour of a given
implementation is equivalent to its formal specification.
“»validation checks that a formal specification is logically
consistent.

3.1. The SDL Language

The basic idea of SDL [12] is to describe a system as
communicating processes. A process is an extended finite
state machine, that is either processing data or if no data
are available for processing, is dormant in a state. The
state defines what actions a process is allowed to take,
which events it expects to happen, and how it will
respond to those events. The processing (transition)
performed depends solely on the state in which the
machine was last dormant, on the data that become
available and on the local conditions. Several items of data
may become available during the machine processing, and
a queue is associated with the machine to pile up the data.
Communication is performed asynchronously, by way of
connection paths. Blocks communicate by way of

channels, though processes can communicate with each
other inside a block by way of signal-routes.

3.2. The Extended SDL

SDL is composed of abstract communication links and
extended finite state machines, while a real-system is
composed of physical components and networks. Thus, an
SDL representation contains some differences with respect
to the real systems. Some differences concern the nature of
the components, and some the functioning. Thus, we need
to define extensions to SDL that restrict the scope of these
differences. We have defined our extension in a way that
the SDL-92 standard is a subset of the Extended SDL.

Modeling time: A basic assumption in SDL is that the

system is fast enough to process the offered load. In a real- |

system this assumption is not true since each signal
transfer and each processing takes some time. To map the
SDL model, the real-system should be fast enough to
meet the load and response time requirements without
destroying the validity of the SDL description. Thus,
Extended SDL provides a transition concept that specifies
processing duration by means of delay clauses. The
extended execution model stipulates that all the actions
before a delay clause are executed immediately, then the
execution is suspended for the specified delay; when
completed, the automaton resumes its execution.

SDL is equipped with timers and operates upon these. A
timer stimulates a process as a function of a defined time
by placing a timer signal in the input queue of the
process. The timer execution model fails at verifying
temporal liveness (something ‘“good” will eventually
happen within a given time). The reason is that as
processes receive signals through a FIFO input queue, no
assertion can be made on the duration it takes to consume
carlier events. To prevent from it, we stamp Extended
SDL timer signals with a priority. Thus, when the timer
expires, the process receives the timer signal and starts its
service once all earlier priority signals have completed.
The time elapsed waiting for service is equal to the
addition of the delay clauses of earlier priority signals.

Describing unreliability: SDL systems may suffer
from specification errors, but the abstract representations
they provide do not suffer from physical errors. SDL
assumes that processes and communication links always
operate according to their specifications. It is not assumed
that processes will stop or that communication will
distort the content of signals. But in the real world, errors
manifest themselves as faults in operation of
communication links and processes. Hardware errors,
physical damage and noise are caused by physical
phenomena entirely outside the realm of SDL. However,

1805

their effect is handled explicitly in SDL specifications.
Besides, in SDL only the interfaces between a system and
its environment are imposed by the considered problem;
all internal structures are purely a means to express the
behaviour. Thus, an unreliable communication link can be
explicitly modeled by a channel substructure.

Modeling processing: SDL provides a model that
abstracts from design details. Though, design decisions are
important for performance evaluation. SDL provides a
processing model consisting of a single server and a single
infinite, FIFO queue. Even though this modeling captures
the nature of many processes, it does not hold for all real
processes. Extended SDL provides a more flexible model
that allows specifying processing models consisting of a
set of bounded queues and of servers,

A processing resource can be seen as customers arriving
for service, waiting for service if it is not immediate and
leaving the system after being served (Figure 2).

INPUT | QUEUEING | SERVER [OUTPUT
External workload
reccived via signal-routes To Exlcmal Process
Tnternal workload from ‘ e
other processing resources ! Tapat discipline J ‘0 processing resource
Output discipline Sorvice Delay
Numbes of buffers Number of servers
[nput pattern Buffer size Synchronization scheme Output patiem

Figure 2: Processing resource.

+ The inpur models the arrival of data to the resource.

% The queueing defines the number of distinct storage
queues. Each queue is described by its queueing discipline
(how customers are inserted and selected for service when
the queue has formed) and its buffering capacity (a limited
buffering capacity may arise with signal losses).

% The server defines the number of simultaneous service
requests that the resource is able to perform. Each server is
characterized by its service duration (time required to serve
a request). Service duration is given within the process
automata, by means of delay clauses within transitions.

« The output models the departure of data.

ENVIRONMENT

BLOCK B

Figure 3: An Extended SDL specification.

Describing workload: The performance of a system
depends on the workload it handles. SDL gives a workload
qualitative description since each interface defines a list of
valid signals. As we also need quantification, Extended
SDL enhances the specification with a set of processes,
one by environment interaction channel (Figure 3).

Describing quality of service: A customer sees the
system as a black-box to which it applies requests and
gets outputs. Each customer can quantify its satisfaction
by means of some quality of service requirements. In
performance evaluation, the QoS helps to monitor how
these metrics evolve during the system computation, and
helps to check if the system fits the required values. Thus,
Extended SDL includes them in the specification.

4. Performance Evaluation

Performance evaluation facilitates comparing alternative
designs and finding which is the best according to the
chosen criteria. Even if there are no alternatives, it helps
in determining how well the system would perform and
which improvements need to be made. To get performance
evaluation we must perform following steps (Figure 4):

problem definition !
- services - boundaries | ¢

- outcomes - objectives |
- quality standards

- constraints (economics, organization)]

v

v
workload description system alternatives
- traffic profile - topologies
- trafﬁc variance - structure |

{

performance modeling
- communication objects
- source-destination relations
- performance experiments

performance evaluation
- bottelneck identification
Y‘ - performance quantification

- |

Figure 4: Performance evaluation process.

1. Define the problem.

2. Describe the system configuration.

3. Describe the system workload.

4. Create a consistent and correct performance model.
5. Analyze the performance model.

A Formal specification provides a good functional
description and a high-level configuration of the system.
Nevertheless, performance evaluation requires a more
detailed specification. An extended formal specification
provides, therefore, the system configuration with enough
detail for performance evaluation. Besides, it provides the
workload description. Therefore, formal world covers the
steps 1 to 3 of the performance evaluation process.

The formal specification provides a good basis for
starting performance modeling. Thus, we have defined a
translation method (Figure 5) which principle is to map
each formal EFSM into a combination of an EFSM and
of a queueing network, where the EFSM models the
behavior, while the queueing network describes the
congestion of multiple requests to restricted resources.

1806

FORMAL WORLD PERFORMANCE EVALUATION
WORLD
Input sngnal‘ Input signal

set A
Formal Process
EFSM

QOutput signal
set B ¢

set A
Performance
Process
EFSM + QN

¢ Output signal
setB

Figure 5: The process mapping technique.

Determining the performance of a system requires a
careful selection of the parameters to evaluate. The
extended formal specification provides us with such a
selection through the quality of service specification.

The last step towards performance evaluation consists in
executing the performance modeling, monitoring the
quality of service parameters and determining if the
observed values respect the specified limits. If these are
not, we need to determine system bottlenecks and restart
the evaluation process after a system optimization.

Executing the performance modeling requires a suitable
performance evaluation environment. We chose to use a
commercial tool, based on EFSMs, called OPtimized
Network Engineering Tool (OPNET). Opnet is capable of
developing and simulating communication systems with
detailed behavior modeling and performance analysis.
Opnet expresses processes as a combination of state
transition machines, high level functions, and facilities of
the C programming language.

5. A Case Study - TCP

Transmission control protocol (TCP) is a transport
protocol. It provides a connection-oriented, reliable
service. Two stations using TCP must establish a TCP
connection before starting exchanging data. During the
data exchange, TCP packetizes the data into segments,
sets a time-out any time it sends data, acknowledges data
received by the other end, reorders out-of-order data,
discards duplicate data, provides end-to-end flow control,
and calculates and verifies an end-to-end checksum. TCP is
used by many popular applications: Telnet, FTP, SMTP.

TCP Process

Figure 6: TCP illustration example.

In our example we focus on the exchange of data; we do
neither consider the establishment nor the release of TCP
connections. Figure 6 shows the outline of the system.
“Data Producer” is a user generating data that should be
reliably transmitted to another user: “Data Consumer”.
through an unreliable network. Figure 7 shows the SDL
specification. Data enter the system by the channel
“to_TCP” and leave by “from_TCP”. Figure 8 shows the

extended specification in which we add the consumer’s
quality of service and workload description. Besides, we
describe the processing of each process (structure, service),
and how errors occur in the network.

TOTE e [weme T agdos] OO mme |
Ce icatiohg

) TCP RVEIVREY NG <P TP |
i)4 P e € A 4) I 4 ~—»

|
! {__Producer Network Consumer
| chaneer channel channel channct
[wTer "to_producer” “to_consumer” “from_TCP"
L L — o

Figure 7: SDL specification of the TCP example.

The “Data Producer” gives the application performance
expectations in terms of resource utilization, delay, losses
and throughput. The workload description is used to
generate data during simulations. The processing design
and service are used to simulate how processes execute.

« Processing temporal description + Transfer delay « Processing temporal description
« Processing Architecture +Lass distribution + Processing Architecture
» Error distribution 1
} ’ '
gnaln Signal-route ¥ rymor—
| Producer . tgrshrous o produces” o_consumer| [UBLINE O Consumer
. S —
rce - Callog— —pa—pe—>(TCP
- J Media J
sagnar-oe A A signal-route
“user_path” o i Network “user_path”
e | - T A o
TPy to_producer’ “lo_consumer” & “trom._TCP"
VT TR e T T signal-route A
| Y e “env”
’ (" “Dan ata
{ Producer Environment Consumer

v 3
¥ Quality of Service

« Data generation distribution
§« Data length distribution

Figure 8: Extended SDL specification of the TCP example.

@

O Traffic0.8]
07 Sl O Traffic 0.8 e Bl o
X Tnffic02

05 & - - [raffic generation follows Bernouilli distribution
- 15

‘message $ize = constant octet

B

Transier delay = constant : :
04 window size = conslant = KK octets ... R B

[detivered messages / transmitted messages}
13
kS
1

I 5.(5& T o.oélu 0‘31 ol
Figure 9: Throughput variation

=2 Timer 0.2s
- Timer 0.5
Timer 0.1s

«~—f%— Timer 0.05s

Traffic ion follows

L SRR : traffic = constant = 0.5E
| message size = constant = 100 octets |

i notwork delay = constant=001s |
iwindow size = constant = 10000 octets

Delay [seconds)

IS S

s

,,,,,,,,,,,,,,, PRI # .¢ N, 5
%% ror Probability
Figure 10: Delay variation
We have run simulations of the modeling of our TCP
example. This modeling was implemented on the tool
Opnet and obtained using our methodology. Simulation
results (Figure 9, 10 and 11) can be used to verify under
which conditions the required quality of service is fulfilled.

i ! |

Traftic ion follows i !
: traffic = 0.5 Erlang :
04 Lo message size = constant = 100octets | 4o

retransmission Timer = constant = 0.2s |
window size = constant = 10000 octets

Network delay 0.01s
»es Network delay 0.08s

5
02 |~ o] esednen Network delay 0.05s

4

£

Delay {seconds]

+es Network delay 0.005s
ees Network delay 0.001s

A I}
10° 00001 0,001 001
Zrror Probability

Figure 11: Delay variation as function of the network delay

5.1. Conclusion

We believe that modeling performance from formal
descriptions is a powerful approach because it saves time
and avoids errors. Furthermore, it combines the power of
formal techniques (validation and conformance testing)
with the power of performance evaluation.

Our contribution proposes a methodology reusing the
formal specification, enhancing it with performance
information and mapping it to a performance modeling.
Analyzing the simulation results of the performance
modeling allows optimizing the system. We are convinced
that our methodology is simple, powerful and generic.
Besides, we have no doubt that it can be automated.

References

[1] F.Bause, P.Buchholz, Protocol Analysis using a timed
version of SDL, in IFIP Formal Description Tecniques 1991.
[2] G.Bochmann, J.Vaucher, Adding performance aspects to
specification languages, in PSTV 1988.

[3] P.Dembinski; Queueing Network Model for Estelle; in
Formal Description Techniques 1993.

[4] M.Diaz, Modeling and Analysis of Communication and
Cooperation Protocol using Petri Nets based Model, in
Protocol Specification, Test and Verification 1982.

[5]1 M.Hendaz, S.Budkowski, An Enhanced Estelle Simulator

for Performance Evaluation, in Colloque Francophone sur

I’Ingénierie des Protocoles 1995.

[6] E.Heck, D.Hogrefe, B.Muller-Clostermann; Hierarchical
Performance Evaluation Based on Formally Specified
Protocols; IEEE Transaction on Computers 1991.

[7] J.Quemada, A.Azcorra, D.Frutos, A timed calculus for
LOTOS, , in IFIP Formal Description Techniques 1989.

{8] M.Sredniawa, B.Kakol, P.Gumulinski; SDL in
Performance Evaluation; in SDL Forum 1987.

[9] C.Wohlin; Performance Analysis of SDL systems from
SDL Descriptions, in SDL Forum 1991.

[10] S.Zhang, S.Chanson; An Approach to Evaluating the
Performance of Protocols based on Formal Specifications; in
International Conference on Network Protocols 1993.

[11] U.Herzog; Performance Evaluation and Formal
Description; In IEEE Conference CompEuro 1991.

[12) UIT-T,; CCITT Specification and Description Language;
Z.100, 1993.

1807

