NETWORK CALCULUS

A Theory of Deterministic Queuing Systems for the Internet

JEAN-Y VES LE BOUDEC
PATRICK THIRAN

Online Version of the Book Springer Verlag - LNCS 2050

Version March 15, 2019

A Annelies
A Joana, M&lle, Audraine et Elias
A ma nere
—-JL

A mes parents
—PT

Pour éviter les grumeaux
Qui encombrent les réseaux

Il fallait, c’est compliqué,

Maitriser les seaux percés

Branle-bas dans les campus
On pourra dorénavant

Calculer plus simplement

Grace a l'algebre Min-Plus

Foin des obscures astuces
Pour estimer les délais
Et la gigue des paquets

by

Place a “Network Calculus”

—-JL

Vi

Summary of Changes

2002 Jan 14, JL Chapter 2: added a better coverage of GR nodes, in partieglavalence with service
curve. Fixed bug in Proposition 1.4.1

2002 Jan 16, JL Chapter 6: M. Andrews brought convincing proof that conjeet6.3.1 is wrong. Re-
designed Chapter 6 to account for this. Removed redundagivyelbn Section 2.4 and Chapter 6.
Added SETF to Section 2.4

2002 Feb 28, JL Bug fixes in Chapter 9

2002 July 5, JL Bug fixes in Chapter 6; changed format for a better printoutnast usual printers.

2003 June 13, JL Added concatenation properties of non-FIFO GR nodes to teh&p Major upgrade of
Chapter 7. Reorganized Chapter 7. Added new developmebiff Berv. Added properties of PSRG
for non-FIFO nodes.

2003 June 25, PTBug fixes in chapters 4 and 5.

2003 Sept 16, JLFixed bug in proof of theorem 1.7.1, proposition 3. The bug discovered and brought
to our attention by Francois Larochelle.

2004 Jan 7, JL Bug fix in Proposition 2.4.11(> ﬁ instead ofv < ﬁ)

2004, May 10, JL Typo fixed in Definition 1.2.4 (thanks to Richard Bradford)

2005, July 13 Bug fixes (thanks to Mehmet Harmanci)

2011, August 17Bug fixes (thanks to Wenchang Zhou)

2011, Dec 7Bug fixes (thanks to Abbas Eslami Kiasari)

2012, March 14 Fixed Bug in Theorem 4.4.1

2012, April 26 Fixed Typo in Section 5.4.2 (thanks to Yuri Osipov)

2019, March 14 Fixed Typos in Sections 1.4.4 and 2.4.4.

2019, March 14 Fixed a bug in Proposition 1.3.7. The service curve propisristrict only for the high
priority flow.

Contents

Introduction

| A First Course in Network Calculus

1 Network Calculus

1.1

1.2

1.3

1.4

1.5

1.6

ModelsforData Flows
1.1.1 Cumulative Functions, Discrete Time versus Contisuime Models

1.1.2 Backlogand VirtualDelay
1.1.3 Example: The Playout Buffer
Arrival CUIVES L e e
1.2.1 Definition of an Arrival Curve

1.2.2 Leaky Bucket and Generic Cell Rate Algorithm

1.2.3 Sub-additivity and Arrival Curves
1.2.4 MinimumArrival Curve e
Service CUIVES o o s e e e e e e
1.3.1 Definition of Service Curve
1.3.2 Classical Service Curve Examples
Network Calculus Basics
141 ThreeBounds
142 AretheBoundsTight?
1.4.3 Concatenation
1.4.4 Improvement of BacklogBounds
Greedy Shapers
151 Definitions
1.5.2 Input-Output Characterization of Greedy Shapers
1.5.3 Propertiesof Greedy Shapers.
Maximum Service Curve, Variable and Fixed Delay
1.6.1 Maximum Service CUIVES
1.6.2 DelayfromBacklog
1.6.3 \Variable versus FixedDelay

Xiii

viii

1.7 Handling Variable Length Packets

1.7.1
1.7.2
1.7.3
174

Effective Bandwidth and Equivalent Capacity

181

1.8.2 Equivalent Capacity
1.8.3 Example: Acceptance Region for a FIFO Multiplexer
1.9 Proof of Theorem 1.7
1.10 Bibliographic Notes
1.11 Exercises

Application to the Internet
2.1 GPS and Guaranteed Rate Nodes

2.11
2.1.2
2.1.3
2.14
2.15

The Integrated Services Model of the IETF

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6

23.1

Application to Differentiated Services

24.1
2.4.2
2.4.3
24.4

Exercises

An Example of Irregularity Introduced by Variable lggmPackets
The Packetizer
A Relation between Greedy Shaper and Packetizer
Packetized Greedy Shaper

Effective Bandwidth of a Flow

Packet Scheduling
GPS and a Practical Implementation (PGPS)
Guaranteed Rate (GR) Nodes and the Max-Plus Approach
Concatenation of GR nodes

The Guaranteed Service
The Integrated Services Model for Internet Routers.
Reservation Setup with RSVP
A Flow Setup Algorithm
Multicast Flows
Flow Setup with ATM
Schedulability
EDF Schedulers
2.3.2 SCED Schedulers [73]
2.3.3 Buffer Requirements
Differentiated Services
An Explicit Delay Bound for EF
Bounds for Aggregate Scheduling with Dampers
Static Earliest Time First (SETF)
Bibliographic Notes

CONTENTS

70

CONTENTS iX
Il Mathematical Background 101
3 Basic Min-plus and Max-plus Calculus 103
3.1 Min-plusCalculus. e e e e 103
3.1.1 Infimumand Minimum e 103
312 Dioid(RU{H00}, As4) o v oo 104
3.1.3 A Catalog of Wide-sense Increasing Functions 105
3.1.4 Pseudo-inverse of Wide-sense Increasing Functions... 108
3.1.5 Concave, Convex and Star-shaped Functions 109
3.1.6 Min-plus Convolution e 110
3.1.7 Sub-additive Functions e 116
3.1.8 Sub-additive Closure e 118
3.1.9 Min-plus Deconvolution e e 122
3.1.10 Representation of Min-plus Deconvolution by Timeehsion 125
3.1.11 Vertical and Horizontal Deviations 128
3.2 Max-plus Calculus e e 129
3.2.1 Max-plus Convolution and Deconvolution 129
3.2.2 Linearity of Min-plus Deconvolution in Max-plus Algea 129
3.3 EXercises e 130
4 Min-plus and Max-Plus System Theory 131
4.1 Min-Plus and Max-Plus Operators i i i e e 131
4.1.1 Mector Notations o 0 e e 131
4.1.2 Operators e e e e e 133
4.1.3 ACatalogofOperators e 133
4.1.4 Upper and Lower Semi-Continuous Operators « uw134
4.1.5 Isotone Operators e e e e e 135
4.1.6 Linear Operators i e e 136
4.1.7 Causal Operators e e e e 139
4.1.8 Shift-Invariant Operators e e 140
4.1.9 Idempotent Operators. o e 141
4.2 Closure of an Operator e e e e 141
4.3 Fixed Point Equation (Space Method) o 144
43.1 MainTheorem e 144
4.3.2 Examples of Application e 146
4.4 Fixed Point Equation (Time Method) 149
45 Conclusion 150

CONTENTS

X
Il A Second Course in Network Calculus 153
5 Optimal Multimedia Smoothing 155
5.1 Problem Setting e e 155
5.2 Constraints Imposed by Lossless Smoothing 156
5.3 Minimal Requirements on Delays and Playback Buffer157
5.4 Optimal Smoothing Strategies e e 158
5.4.1 Maximal Solution e 158
5.4.2 Minimal Solution e 158
5.4.3 Setof Optimal Solutions e 159
5.5 Optimal Constant Rate Smoothing0 ... 159
5.6 Optimal Smoothing versus Greedy Shaping« cuu ... 163
5.7 Comparison with Delay Equalization« 165
5.8 Lossless Smoothing over Two Networks ool oo 168
5.8.1 Minimal Requirements on the Delays and Buffer SizeJ#m Networks 169
5.8.2 Optimal Constant Rate Smoothing over Two Networks171
5.9 Bibliographic Notes e e e 172
6 Aggregate Scheduling 175
6.1 Introduction e e 175
6.2 Transformation of Arrival Curve through Aggregate Stileng 176
6.2.1 Aggregate Multiplexing in a Strict Service Curve E@™M 176
6.2.2 Aggregate Multiplexing in a FIFO Service Curve Eletmen. 177
6.2.3 Aggregate MultiplexinginaGRNode, 180
6.3 Stability and Bounds for a Network with Aggregate Scliegu. 181
6.3.1 ThelssueofStability 181
6.3.2 The Time Stopping Method ua. .. 182
6.4 Stability Results and ExplicitBounds 185
6.4.1 TheRingisStable e 185
6.4.2 Explicit Bounds for a Homogeneous ATM Network withddiy Source Rate Con-
ditions e 818
6.5 Bibliographic Notes e e e 193
6.6 EXEICISES e e 194
7 Adaptive and Packet Scale Rate Guarantees 195
7.1 Introduction e e 195
7.2 Limitations of the Service Curve and GR Node Abstraction. 195
7.3 Packet Scale Rate Guarantee e e e 196
7.3.1 Definition of Packet Scale Rate Guarantee 196

7.3.2 Practical Realization of Packet Scale Rate Guarantee 200

CONTENTS Xi

7.3.3 DelayFromBacklog e 200
7.4 Adaptive Guarantee e e e e 201
7.4.1 Definition of Adaptive Guarantee e 201
7.4.2 Properties of Adaptive Guarantees e 202
7.4.3 PSRGand Adaptive Service Curve o e 203
7.5 Concatenation of PSRGNodes e 204
7.5.1 Concatenation of FIFOPSRG Nodes 204
7.5.2 Concatenation of non FIFOPSRGNodes 205
7.6 Comparison of GRand PSRG e 208
7.7 Proofs e e e 208
7.7.1 ProofofLemma7.l e 208
7.7.2 Proofof Theorem 7.2 e e 210
7.7.3 Proofof Theorem 7.3 e 210
7.7.4 Proofof Theorem 7.4 e 211
7.75 Proofof Theorem 7.6 e 212
7.7.6 Proofof Theorem 7.7 e 213
7.7.7 Proofof Theorem 7.8 e 213
7.7.8 Proofof Theorem 7.9 e 214
7.7.9 Proofof Theorem 7.12 e e 216
7.7.10 Proof of Proposition 7.5.2 e e e 220
7.8 Bibliographic Notes e e e 220
7.9 EXEICISES o e e 220
8 Time Varying Shapers 223
8.1 Introduction e 223
8.2 TimeVarying Shapers e 223
8.3 Time Invariant Shaper with Initial Conditions 225
8.3.1 Shaper with Non-empty Initial Buffer 225
8.3.2 Leaky Bucket Shapers with Non-zero Initial Bucketélev. 225
8.4 Time Varying Leaky-Bucket Shaper, 227
8.5 Bibliographic Notes e e e 228
9 Systems with Losses 229
9.1 ARepresentation FormulaforLosses e e 229
9.1.1 LossesinaFinite Storage Elemento 229
9.1.2 LossesinaBounded DelayElement 231
9.2 Application 1: BoundonLossRate. e 232

9.3 Application 2: Bound on Losses in Complex Systems233
9.3.1 Bound on Losses by Segregation between Buffer anddpali. 233

Xii

CONTENTS
9.3.2 BoundonlLossesinaVBRShaper. wua... 235
9.4 Skohorkhod’s Reflection Problem 237

9.5 Bibliographic Notes

INTRODUCTION

WHAT THIS BOOK IS ABOUT

Network Calculus is a set of recent developments that peogl@kp insights into flow problems encountered
in networking. The foundation of network calculus lies ie timathematical theory of dioids, and in partic-
ular, the Min-Plus dioid (also called Min-Plus algebra).th\ietwork calculus, we are able to understand
some fundamental properties of integrated services nksyarindow flow control, scheduling and buffer

or delay dimensioning.

This book is organized in three parts. Part | (Chapters 1 ansl 2 self contained, first course on network
calculus. It can be used at the undergraduate level or agircenrse at the graduate level. The prerequisite
is a first undergraduate course on linear algebra and onelomws Chapter 1 provides the main set of
results for a first course: arrival curves, service curvektha powerful concatenation results are introduced,
explained and illustrated. Practical definitions such akyducket and generic cell rate algorithms are cast
in their appropriate framework, and their fundamental prtips are derived. The physical properties of
shapers are derived. Chapter 2 shows how the fundamenttisret Chapter 1 are applied to the Internet.
We explain, for example, why the Internet integrated sewimternet can abstract any router by a rate-
latency service curve. We also give a theoretical foundaticsome bounds used for differentiated services.

Part Il contains reference material that is used in vari@rsspf the book. Chapter 3 contains all first level
mathematical background. Concepts such as min-plus asiwoland sub-additive closure are exposed in
a simple way. Part | makes a number of references to Chaptaut3s still self-contained. The role of
Chapter 3 is to serve as a convenient reference for futureGlsapter 4 gives advanced min-plus algebraic
results, which concern fixed point equations that are nal us@art I.

Part Il contains advanced material; it is appropriate fgraduate course. Chapter 5 shows the application
of network calculus to the determination of optimal playbdelays in guaranteed service networks; it ex-
plains how fundamental bounds for multimedia streaminglEdetermined. Chapter 6 considers systems
with aggregate scheduling. While the bulk of network calstih this book applies to systems where sched-
ulers are used to separate flows, there are still some ititeyessults that can be derived for such systems.
Chapter 7 goes beyond the service curve definition of Chdpserd analyzes adaptive guarantees, as they
are used by the Internet differentiated services. Chap#eraB/zes time varying shapers; it is an extension
of the fundamental results in Chapter 1 that considers tleetedf changes in system parameters due to
adaptive methods. An application is to renegotiable reskservices. Lastly, Chapter 9 tackles systems
with losses. The fundamental result is a novel representati losses in flow systems. This can be used to
bound loss or congestion probabilities in complex systems.

Network calculus belongs to what is sometimes called “exaljebras” or “topical algebras”. This is a set
of mathematical results, often with high description coemjiy, that give insights into man-made systems

Xiii

Xiv INTRODUCTION

such as concurrent programs, digital circuits and, of eguremmunication networks. Petri nets fall into
this family as well. For a general discussion of this promisarea, see the overview paper [35] and the
book [28].

We hope to convince many readers that there is a whole sagelyaunexplored, fundamental relations that
can be obtained with the methods used in this book. Resuits &1 “shapers keep arrival constraints” or
“pay bursts only once”, derived in Chapter 1 have physicarpretations and are of practical importance
to network engineers.

All results here are deterministic. Beyond this book, anaaded book on network calculus would explore
the many relations between stochastic systems and thardeistic relations derived in this book. The
interested reader will certainly enjoy the pioneering wiork28] and [11]. The appendix contains an index
of the terms defined in this book.

NETWORK CALCULUS, A SYSTEM THEORY FOR COMPUTER NETWORKS

In the rest of this introduction we highlight the analogybetn network calculus and what is called “system
theory”. You may safely skip it if you are not familiar withsgm theory.

Network calculus is a theory afeterministic queuingystems found in computer networks. It can also
be viewed as thsystem theoryhat applies to computer networks. The main difference talditional
system theory, as the one that was so successfully appliddédign electronic circuits, is that here we
consider another algebra, where the operations are chasgfadlows: addition becomes computation of
the minimum, multiplication becomes addition.

Before entering the subject of the book itself, let us bridfystrate some of the analogies and differences
between min-plus system theory, as applied in this book nonconication networks, and traditional system
theory, applied to electronic circuits.

Let us begin with a very simple circuit, such as the RC celtesented in Figure 1. If the input signal is
the voltager(t) € R, then the outpuy(t) € R of this simple circuit is the convolution af by the impulse
response of this circuit, which is hek¢t) = exp(—t/RC')/RC for t > 0:

y(t) = (h®z)(t) = /0 h(t — s)a(s)ds.

Consider now a node of a communication network, which islided as a (greedy) shaper. A (greedy)
shaper is a device that forces an input fle@) to have an outpug(t) that conforms to a given set of rates
according to a traffic envelope (the shaping curve), at the expense of possibly delayirgimithe buffer.
Here the input and output ‘signals’ are cumulative flow, dadias the number of bits seen on the data flow
in time interval[0, t]. These functions are non-decreasing with tiimé>arametet can be continuous or
discrete. We will see in this book thatandy are linked by the relation

y(t) = (o @ z)(t) = {o(t —s) +x(s)}-

inf
s€R such that 0<s<¢t

This relation defines the min-plus convolution betweesndz.

Convolution in traditional system theory is both commuiatand associative, and this property allows to
easily extend the analysis from small to large scale csclibr example, the impulse response of the circuit
of Figure 2(a) is the convolution of the impulse responsesash of the elementary cells:

h(t) = (hy ® hy)(t) = /Ot ha(t — s)ha(s)ds.

XV

(@

X(f) &y(f)
— > o

(b)

Figure 1: An RC circuit (a) and a greedy shaper (b), which are two elementary linear systems in their
respective algebraic structures.

The same property applies to greedy shapers, as we will ¥8bdpter 1. The output of the second shaper
of Figure 2(b) is indeed equal iqt) = (o ® z)(t), where

o(t) = (o1 ® o9)(t) = {o1(t — s) + o2(s)} .

inf
s€R such that 0<s<¢t

This will lead us to understand the phenomenon known as “past lonly once” already mentioned earlier
in this introduction.

NN o o -

() o e T YW
-0 o o -
@

M OSNI O

| o |

Figure 2:The impulse response of the concatenation of two linear circuit is the convolution of the individual
impulse responses (a), the shaping curve of the concatenation of two shapers is the convolution of the

individual shaping curves (b).

There are thus clear analogies between “conventionaluitiand system theory, and network calculus.
There are however important differences too.

A first one is the response of a linear system to the sum of thats$n This is a very common situation, in
both electronic circuits (take the example of a linear lasgfilter used to clean a signdlt) from additive

XVi INTRODUCTION

noisen(t), as shown in Figure 3(a)), and in computer networks (takexaenple a link of a buffered node
with output link capacityC', where one flow of interest(t) is multiplexed with other background traffic
n(t), as shown in Figure 3(b)).

n(t)” LT Oy
. —_ onf('f) .
x(1) h] y(®)
@

n(t)

|

x(t)
(b)

Figure 3:The response y;.:(t) of a linear circuit to the sum of two inputs z + n is the sum of the individual
responses (a), but the response y:,:(t) of a greedy shaper to the aggregate of two input flows x + n is not
the sum of the individual responses (b).

Since the electronic circuit of Figure 3(a) is a linear systthe response to the sum of two inputs is the sum
of the individual responses to each signal. @ét) the response of the system to the pure signél, v, (¢)

the response to the nois€t), andy,(t) the response to the input signal corrupted by neigg + n(t).
Theny:(t) = y(t) + yn(t). This useful property is indeed exploited to design theroglilinear system
that will filter out noise as much as possible.

If traffic is served on the outgoing link as soon as possiblheFIFO order, the node of Figure 3(b) is
equivalent to a greedy shaper, with shaping curitg = Ct for ¢t > 0. It is therefore also a linear system,
but this time in min-plus algebra. This means that the respomthe minimum of two inputs is the minimum
of the responses of the system to each input taken separdi@hever, this also mean that the response to
the sum of two inputs is no longer the sum of the responseseo$ybtem to each input taken separately,
because now(t) +n(t) is a nonlinear operation between the two inputs) andn(t): it plays the role of a
multiplication in conventional system theory. Therefdre tinearity property does unfortunately not apply
to the aggregate(t) + n(t). As a result, little is known on the aggregate of multiplefieswvs. Chapter 6
will learn us some new results and problems that appear sinilare still open today.

In both electronics and computer networks, nonlinear systare also frequently encountered. They are
however handled quite differently in circuit theory and gtwork calculus.

Consider an elementary nonlinear circuit, such as the BJdliaen circuit with only one transistor, shown
in Figure 4(a). Electronics engineers will analyze thislm@ar circuit by first computing a static operating
point y* for the circuit, when the input* is a fixed constant voltage (this is the DC analysis). Nexy the
will linearize the nonlinear element (i.e the transistagumd the operating point, to obtain a so-called small
signal model, which a linear model of impulse respoh$g (this is the AC analysis). Now;,(t) =
x(t) — «* is a time varying function of time within a small range arouttd so thaty;;,(t) = y(t) — y*

is indeed approximately given hy;,(t) ~ (h ® x;,)(t). Such a model is shown on Figure 4(b). The
difficulty of a thorough nonlinear analysis is thus bypasigdestricting the input signal in a small range
around the operating point. This allows to use a linearizedehwhose accuracy is sufficient to evaluate
performance measures of interest, such as the gain of thifiamp

XVii

x() % y(t)
-0 l O- -O O-
@ (b)
Buf f er ed
wi ndow fl ow Net wor k
Control | er

x(1) ’ : Y0 76 yin(t)

(© (d)

Figure 4: An elementary nonlinear circuit (a) replaced by a (simplified) linear model for small signals (b),
and a nonlinear network with window flow control (c) replaced by a (worst-case) linear system (d).

In network calculus, we do not decompose inputs in a smaljgaime-varying part and another large
constant part. We do however replace nonlinear elementsésr|systems, but the latter ones are now a
lower bound of the nonlinear system. We will see such an elamvjih the notion of service curve, in
Chapter 1: a nonlinear systegit) = I1(x)(¢) is replaced by a linear system,,(t) = (8 ® x)(t), wherej
denotes this service curve. This model is such #hatt) < y(¢) for all ¢ > 0, and all possible inputs(t).
This will also allow us to compute performance measured) asdelays and backlogs in nonlinear systems.
An example is the window flow controller illustrated in Figué(c), which we will analyze in Chapter 4. A
flow z is fed via a window flow controller in a network that realizesre mapping; = II(x). The window
flow controller limits the amount of data admitted in the netivin such a way that the total amount of data
in transit in the network is always less than some positivaler (the window size). We do not know the
exact mappindI, we assume that we know one service cubvior this flow, so that we can replace the
nonlinear system of Figure 4(c) by the linear system of Fagi(d), to obtain deterministic bounds on the
end-to-end delay or the amount of data in transit.

The reader familiar with traditional circuit and systemdhewill discover many other analogies and differ-
ences between the two system theories, while reading this. Bve should insist however that no prerequi-
site in system theory is needed to discover network calasusis exposed in this book.

ACKNOWLEDGEMENT

We gratefully acknowledge the pioneering work of Chengfgh@hang and René Cruz; our discussions
with them have influenced this text. We thank Anna Charnyi&iGiordano, Olivier Verscheure, Frédéric

XViii INTRODUCTION

Worm, Jon Bennett, Kent Benson, Vicente Cholvi, William @aoey, Juan Echagué, Felix Farkas, Gérard
Hébuterne, Milan Vojnovi¢ and Zhi-Li Zhang for the fruitfcollaboration. The interaction with Rajeev
Agrawal, Matthew Andrews, Francois Baccelli, Guillaumesty and Lothar Thiele is acknowledged with
thanks. We are grateful to Holly Cogliati for helping wittetpreparation of the manuscript.

PART |

A FIRST COURSE IN NETWORK
CALCULUS

CHAPTER 1

NETWORK CALCULUS

In this chapter we introduce the basic network calculus eptscof arrival, service curves and shapers. The
application given in this chapter concerns primarily naekgowvith reservation services such as ATM or the
Internet integrated services (“Intserv”). Applicatiomsather settings are given in the following chapters.

We begin the chapter by defining cumulative functions, witiah handle both continuous and discrete time
models. We show how their use can give a first insight into qul&yuffer issues, which will be revisited
with more detail in Chapter 5. Then the concepts of Leaky Btgknd Generic Cell Rate algorithms are
described in the appropriate framework, of arrival curva& address in detail the most important arrival
curves: piecewise linear functions and stair functionsintshe stair functions, we clarify the relation
between spacing and arrival curve.

We introduce the concept of service curve as a common modaMariety of network nodes. We show that
all schedulers generally proposed for ATM or the Internétgnated services can be modeled by a family
of simple service curves called the rate-latency serviggesu Then we discover physical properties of
networks, such as “pay bursts only once” or “greedy shapsep Rrrival constraints”. We also discover that
greedy shapers are min-plus, time invariant systems. Themtnoduce the concept of maximum service
curve, which can be used to account for constant delays omfximum rates. We illustrate all along
the chapter how the results can be used for practical buifieersioning. We give practical guidelines for
handling fixed delays such as propagation delays. We alsesslthe distortions due to variability in packet
size.

1.1 MODELS FOR DATA FLOWS

1.1.1 QUMULATIVE FUNCTIONS, DISCRETE TIME VERSUS CONTINUOUS TIME MOD-
ELS

It is convenient to describe data flows by means of the cumal&inction R(t), defined as the number of
bits seen on the flow in time intervél, t]. By convention, we také?(0) = 0, unless otherwise specified.
Function R is always wide-sense increasing, that is, it belongs to faee? defined in Section 3.1.3
on Page 105. We can use a discrete or continuous time modeallsystems, there is always a minimum
granularity (bit, word, cell or packet), therefore diseréime with a finite set of values fd?(¢) could always
be assumed. However, it is often computationally simpleotwsider continuous time, with a functidiithat
may be continuous or not. R(t) is a continuous function, we say that we havituad model Otherwise,

3

4 CHAPTER 1. NETWORK CALCULUS

we take the convention that the function is either right dt-dentinuous (this makes little difference in
practice)! Figure 1.1.1 illustrates these definitions.

ConNvVENTION: Aflowis described by a wide-sense increasing funcfigh); unless otherwise specified,
in this book, we consider the following types of models:

e discrete timet € N ={0,1,2,3,...}
e fluid model:t € RT = [0, +00) andR is a continuous function
e general, continuous time model= Rt and R is a left- or right-continuous function

Sk A blts Sk A e
4K 4K 2 -
3k 3k - ’7
| Ry*
2k 2k 2
1k 1k
time
L R U U T T T T T T >
1 23 4 5 6 7 8 9 10111213 14 1 2 3 45 6 7 8 9 10111213 14
°

1 23 45 6 7 8 9 10111213 14

Figure 1.1:Examples of Input and Output functions, illustrating our terminology and convention. R; and R}
show a continuous function of continuous time (fluid model); we assume that packets arrive bit by bit, for a
duration of one time unit per packet arrival. R, and R3 show continuous time with discontinuities at packet
arrival times (times 1, 4, 8, 8.6 and 14); we assume here that packet arrivals are observed only when the
packet has been fully received; the dots represent the value at the point of discontinuity; by convention, we
assume that the function is left- or right-continuous. R3; and R} show a discrete time model; the system is
observed only at times 0,1, 2...

If we assume thaR(¢) has a derivativéld—tR = r(t) such thatRk(t) = fot r(s)ds (thus we have a fluid model),

thenr is called the rate function. Here, however, we will see thet much simpler to consider cumulative
functions such as rather than rate functions. Contrary to standard algebith, win-plus algebra we do

not need functions to have “nice” properties such as havidegrzative.

It is always possible to map a continuous time ma&lgl) to a discrete time modél(n), n € N by choosing
a time slotd and sampling by

LIt would be nice to stick to either left- or right-continuolumctions. However, depending on the model, there is nodbeste:
see Section 1.2.1 and Section 1.7

1.1. MODELS FOR DATA FLOWS 5

S(n) = R(nd) (1.1)

In general, this results in a loss of information. For theesrese mapping, we use the following convention.
A continuous time model can be derived fratn), n € N by letting?

R'(t) = S([51) (1.2)

The resulting functionk’ is always left-continuous, as we already required. Figutellillustrates this
mapping withd = 1, S = Rz andR’ = Rs.

Thanks to the mapping in Equation (1.1), any result for aioonus time model also applies to discrete
time. Unless otherwise stated, all results in this bookyappboth continuous and discrete time. Discrete
time models are generally used in the context of ATM; in castirhandling variable size packets is usually
done with a continuous time model (not necessarily fluid)teNbat handling variable size packets requires
some specific mechanisms, described in Section 1.7.

Consider now a systei$, which we view as a blackbox§ receives input data, described by its cumulative
function R(t), and delivers the data after a variable delay. Q#i(¢) the output function namely, the
cumulative function at the output of systetn SystemS might be, for example, a single buffer served at a
constant rate, a complex communication node, or even a etenpetwork. Figure 1.1.1 shows input and
output functions for a single server queue, where everygidekes exactly 3 time units to be served. With
output functionR; (fluid model) the assumption is that a packet can be servedas as a first bit has
arrived (cut-through assumption), and that a packet defadan be observed bit by bit, at a constant rate.
For example, the first packet arrives between times 1 andd?leanes between times 1 and 4. With output
function R the assumption is that a packet is served as soon as it hasutlgerceived and is considered
out of the system only when it is fully transmitted (store dodvard assumption). Here, the first packet
arrives immediately after time 1, and leaves immediatetgrafme 4. With output functior?; (discrete
time model), the first packet arrives at time 2 and leavesrs 8.

1.1.2 BACKLOG AND VIRTUAL DELAY

From the input and output functions, we derive the two follmpquantities of interest.

DerINITION 1.1 (Backlog and Delay)For a lossless system:

e Thebacklogat timet is R(t) — R*(t).
e Thevirtual delayat timet is

dit)=inf{r >0: R(t) < R*(t+ 1)}

The backlog is the amount of bits that are held inside thesgysif the system is a single buffer, it is the
gueue length. In contrast, if the system is more complexj the backlog is the number of bits “in transit”,
assuming that we can observe input and output simultaneods$le virtual delay at time is the delay

that would be experienced by a bit arriving at timi all bits received before it are served before it. In
Figure 1.1.1, the backlog, calledt), is shown as the vertical deviation between input and odtmgdtions.

The virtual delay is the horizontal deviation. If the inpuideoutput function are continuous (fluid model),
then it is easy to see th&t" (¢ + d(t)) = R(t), and thati(t) is the smallest value satisfying this equation.

In Figure 1.1.1, we see that the values of backlog and vidakly slightly differ for the three models. Thus
the delay experienced by the last bit of the first packet(l®y = 2 time units for the first subfigure; in
contrast, it is equal td(1) = 3 time units on the second subfigure. This is of course in aecmel with the

2[2] (“ceiling of ") is defined as the smallest integerz; for example[2.3] = 3 and[2] = 2

6 CHAPTER 1. NETWORK CALCULUS

different assumptions made for each of the models. Simjldre delay for the fourth packet on subfigure
21isd(8.6) = 5.4 time units, which corresponds to 2.4 units of waiting time &runits of service time. In
contrast, on the third subfigure, it is equalt®) = 6 units; the difference is the loss of accuracy resulting
from discretization.

1.1.3 BEXAMPLE : THE PLAYOUT BUFFER

Cumulative functions are a powerful tool for studying delayd buffers. In order to illustrate this, consider
the simple playout buffer problem that we describe now. @tmmsa packet switched network that carries
bits of information from a source with a constant bit ratéFigure 1.2) as is the case for example, with
circuit emulation. We take a fluid model, as illustrated igu¥e 1.2. We have a first systafh the network,
with input function R(¢t) = rt. The network imposes some variable delay, because of queaimts,
therefore the outpuR* does not have a constant rateWhat can be done to recreate a constant bit stream
? A standard mechanism is to smooth the delay variation imygopk buffer. It operates as follows. When

A

R(t) R*(t) S(1)

—» S —>» S

S
d(O) - Ad(0+) d(0+) + A

Figure 1.2:A Simple Playout Buffer Example

the first bit of data arrives, at timg (0), whered,.(0) = lim;_,0+~0 d(t) is the limit to the right of function
d3, it is stored in the buffer until a fixed timA has elapsed. Then the buffer is served at a constant rate
whenever it is not empty. This gives us a second systenwith input R* and outputS.

Let us assume that the network delay variation is bounded byl his implies that for every time, the
virtual delay (which is the real delay in that case) satisfies

—A <d(t) —d.(0) <A
Thus, since we have a fluid model, we have
r(t = do(0) — A) < R*(t) < r(t — d,(0) + A)

which is illustrated in the figure by the two lines (D1) and {Ogarallel to R(¢). The figure suggests
that, for the playout buffes’ the input functionR* is always above the straight line (D2), which means
that the playout buffer never underflows. This suggests rin tat the output functiorb(¢) is given by
S(t) =r(t—d.(0) —A).

Formally, the proof is as follows. We proceed by contraditti Assume the buffer starves at some time,
and lett; be the first time at which this happens. Clearly the playodtebus empty at timet;, thus
R*(t1) = S(t1). There is a time intervdt,, ¢, + €] during which the number of bits arriving at the playout
buffer is less thame (see Figure 1.2). Thusl(t; + €) > d,(0) + A which is not possible. Secondly, the

%It is the virtual delay for a hypothetical bit that would agijust after time). Other authors often use the notatid(+)

1.2. ARRIVAL CURVES 7

backlog in the buffer at timeis equal toR*(t) — S(¢), which is bounded by the vertical deviation between
(D1) and (D2), namely2rA.

We have thus shown that the playout buffer is able to remosealéiay variation imposed by the network.
We summarize this as follows.

ProrPoOsSITION 1.1. Consider a constant bit rate stream of rate modified by a network that imposes a
variable delay variation and no loss. The resulting flow ig piio a playout buffer, which operates by
delaying the first bit of the flow b}, and reading the flow at rate. Assume that the delay variation
imposed by the network is boundedAythen

1. the playout buffer never starves and produces a constapubat rater;
2. a buffer size 02Ar is sufficient to avoid overflow.

We study playout buffers in more details in Chapter 5, ushwegrtetwork calculus concepts further intro-
duced in this chapter.

1.2 ARRIVAL CURVES

1.2.1 DeFINITION OF AN ARRIVAL CURVE
Assume that we want to provide guarantees to data flows. &tisnes some specific support in the network,
as explained in Section 1.3; as a counterpart, we need totheitraffic sent by sources. With integrated

services networks (ATM or the integrated services intgrrbis is done by using the concept of arrival
curve, defined below.

DEFINITION 1.2 (Arrival Curve). Given a wide-sense increasing functiemefined fort > 0 we say that a
flow R is constrained by if and only if for all s < ¢:

R(t) — R(s) < a(t — s)
We say thai? has« as an arrival curve, or also thak is a-smooth.

Note that the condition is over a set of overlapping intesvat Figure 1.3 illustrates.

4 bits

bits

R(t) time

Figure 1.3:Example of Constraint by arrival curve, showing a cumulative function R(¢) constrained by the
arrival curve «(t).

8 CHAPTER 1. NETWORK CALCULUS

AFFINE ARRIVAL CURVES: For example, ifa(t) = rt, then the constraint means that, on any time
window of widthr, the number of bits for the flow is limited by-. We say in that case that the flow is peak
rate limited. This occurs if we know that the flow is arriving a link whose physical bit rate is limited by
r b/s. A flow where the only constraint is a limit on the peak iateften (improperly) called a “constant bit
rate” (CBR) flow, or “deterministic bit rate” (DBR) flow.

Having «(t) = b, with b a constant, as an arrival curve means that the maximum nuofitsés that may
ever be sent on the flow is at mdst

More generally, because of their relationship with leakgkats, we will often useffinearrival curvesy, ;,
defined byxy,,(t) = rt+0bfor ¢t > 0 and0 otherwise. Havingy, ; as an arrival curve allows a source to send
b bits at once, but not more tharb/s over the long run. Parametérandr are called the burst tolerance (in
units of data) and the rate (in units of data per time unityuFe 1.3 illustrates such a constraint.

STAIR FUNCTIONS AS ARRIVAL CURVES: In the context of ATM, we also use arrival curves of the
form kvr -, wherevr ;- is the stair functions defined by ,(¢) = [”TT} for t > 0 and0 otherwise (see
Section 3.1.3 for an illustration). Note that -(t) = vro(t + 7), thusvr, results fromur o by a time
shift to the left. ParametéfF (the “interval”) andr (the “tolerance”) are expressed in time units. In order
to understand the use of-,, consider a flow that sends packets of a fixed size, equalunit of data
(for example, an ATM flow). Assume that the packets are spagedt leastl’ time units. An example

is a constant bit rate voice encoder, which generates maglestodically during talk spurts, and is silent
otherwise. Such a flow hdsir as an arrival curve.

Assume now that the flow is multiplexed with some others. Amérway to think of this scenario is to
assume that the packets are put into a queue, together \uigh fhdws. This is typically what occurs at a
workstation, in the operating system or at the ATM adaptée Gueue imposes a variable delay; assume it
can be bounded by some value equat tame units. We will see in the rest of this chapter and in Ceaft
how we can provide such bounds. CAI(¢) the input function for the flow at the multiplexer, ai(¢) the
output function. We hav&*(s) < R(s — 1), from which we derive:

R*(t) — R*(s) < R(t) — R(s — 7) < kvro(t — s+ 1) = kvp(t — s)

Thus R* haskvr as an arrival curve. We have shown thagperiodic flow, with period’, and packets of
constant size:, that suffers a variable delay 7, haskvr - as an arrival curve The parameter is often
called the “one-point cell delay variation”, as it corresfs to a deviation from a periodic flow that can be
observed at one point.

In general, functionyr , can be used to expressnimum spacingpetween packets, as the following propo-
sition shows.

PrROPOSITION1.2 (Spacing as an arrival constrain§onsider a flow, with cumulative functid®(¢), that
generates packets of constant size equdl tfata units, with instantaneous packet arrivals. Assume tim
is discrete or time is continuous ardis left-continuous. Calt, the arrival time for thenth packet. The
following two properties are equivalent:

1. forallm,n, tysn —tm >nT — 7
2. the flow hasvr » as an arrival curve

The conditions on packet size and packet generation mearRthahas the forrmk, with n € N. The
spacing condition implies that the time interval between t@nsecutive packets is 7' — 7, between a
packet and the next but oneis2T — 7, etc.

PROOF: Assume that property 1 holds. Consider an arbitrary intessat], and calln the number of
packet arrivals in the interval. Say that these packetsamberedn + 1,...,m + n, so thats < t,,11 <

1.2. ARRIVAL CURVES 9

oo < tyan < t, from which we have

t—s> tm+n _tm—i-l

Combining with property 1, we get
t—s>n—-1)T—1

From the definition obrr it follows thatvy (¢ — s) > n. ThusR(t) — R(s) < kvr . (t — s), which shows
the first part of the proof.

Conversely, assume now that property 2 holds. If time isrdie¢ we convert the model to continuous time
using the mapping in Equation 1.2, thus we can consider teaire in the continuous time case. Consider
some arbitrary integens:, n; for all e > 0, we have, under the assumption in the proposition:

R(tmin +€) — R(tm) > (n+ 1k

thus, from the definition ofr .,
tman —tm+e>nT — 71

This is true for alle > 0, thust,,+,, — t;, > nT — 7. O

In the rest of this section we clarify the relationship begwearrival curve constraints defined by affine and
by stair functions. First we need a technical lemma, whiclamis to saying that we can always change an
arrival curve to be left-continuous.

LEMMA 1.1 (Reduction to left-continuous arrival curve§)onsider a flow?(¢) and a wide sense increasing
functiona(t), defined fort > 0. Assume thaR is either left-continuous, or right-continuous. Denotétwi

ay(t) the limit to the left ofx at ¢ (this limit exists at every point becauseis wide sense increasing); we
haveq,(t) = sup,; a(s). If a is an arrival curve forR, then so isy;.

ProOF: Assume first thatR is left-continuous. For some < t, lett, be a sequence of increasing
times converging towards with s < ¢, < t. We haveR(t,) — R(s) < a(t, —s) < o(t — s). Now
lim,,_, t o R(t) = R(t) since we assumed thatis left-continuous. Thus(t) — R(s) < a;(t — s).

If in contrast R is right-continuous, consider a sequengeconverging towards from above. We have
similarly R(t) — R(sp) < a(t—sy) < ay(t—s) andlim,,_, o R(sn) = R(s), thusR(t) — R(s) < ay(t—s)
as well. O

Based on this lemma, we can always reduce an arrival curve leftscontinuou$. Note thaty,., andvr ;

are left-continuous. Also remember that, in this book, weethe convention that cumulative functions such
asR(t) are left continuous; this is a pure convention, we might al kave chosen to consider only right-
continuous cumulative functions. In contrast, an arrivalve can always be assumed to be left-continuous,
but not right-continuous.

In some cases, there is equivalence between a constraimedély, , andvr . For example, for an ATM
flow (namely, a flow where every packet has a fixed size equahéoumit of data) a constraint, ; with

r = % andb = 1 is equivalent to sending one packet evéryime units, thus is equivalent to a constraint
by the arrival curverro. In general, we have the following result.

PrROPOSITION1.3. Consider either a left- or right- continuous floR(t),t € R™, or a discrete time flow
R(t),t € N, that generates packets of constant size equialdata units, with instantaneous packet arrivals.
For someT and, letr = % andb = k(7 + 1). Itis equivalent to say thak is constrained byy,.; or by
kvt -

4If we considera,. (t), the limit to the right of« at¢, thena < «. thusa.. is always an arrival curve, however it is not better
thana.

10 CHAPTER 1. NETWORK CALCULUS

PrROOF: Since we can map any discrete time flow to a left-continuoasticuous time flow, it is suffi-
cient to consider a left-continuous flai(t),t € R*. Also, by changing the unit of data to the size of one
packet, we can assume without loss of generality that1. Note first, that with the parameter mapping in
the proposition, we haver ; < ~,;, which shows that i, is an arrival curve forz, then so isy, ;.

Conversely, assume now thathasy, , as an arrival curve. Then for all< ¢, we haveR(t)— R(s) < rt+b,
and sinceR(t) — R(s) € N, this impliesR(t) — R(s) < |rt + b], Call a(t) the right handside in the above
equation and apply Lemma 1.1. We havgt) = [rt + b — 1| = vr - (¢). O

Note that the equivalence holds if we can assume that theepaide is constant and equal to the step size
in the constraintvr ;. In general, the two families of arrival curve do not providentical constraints. For
example, consider an ATM flow, with packets of size 1 data, uhét is constrained by an arrival curve of
the formkvr -, for somek > 1. This flow might result from the superposition of several ATlbvs. You
can convince yourself that this constraint cannot be mappecconstraint of the forny, ;. We will come
back to this example in Section 1.4.1.

1.2.2 LEAKY BUCKET AND GENERIC CELL RATE ALGORITHM

Arrival curve constraints find their origins in the concepiaaky bucket and generic cell rate algorithms,
which we describe now. We show that leaky buckets corresporaffine arrival curvesy, ;, while the
generic cell rate algorithm corresponds to stair functions. For flows of fixed size packets, such as ATM
cells, the two are thus equivalent.

DerINITION 1.3 (Leaky Bucket Controller)A Leaky Bucket Controller is a device that analyzes the data
on aflowR(t) as follows. There is a pool (bucket) of fluid of siz& he bucket is initially empty. The bucket
has a hole and leaks at a rate ofunits of fluid per second when it is not empty.

Data from the flow(¢) has to pour into the bucket an amount of fluid equal to the amofhata. Data that
would cause the bucket to overflow is declared non-confornodimerwise the data is declared conformant.

Figure 1.2.2 illustrates the definition. Fluid in the leakicket does not represent data, however, it is counted
in the same unit as data.

Data that is not able to pour fluid into the bucket is said to hen“*conformant” data. In ATM systems,
non-conformant data is either discarded, tagged with a loevity for loss (“red” cells), or can be putin a
buffer (buffered leaky bucket controller). With the Intatgd Services Internet, non-conformant data is in
principle not marked, but simply passed as best effort tréffamely, normal IP traffic).

We want now to show that a leaky bucket controller enforcearamal curve constraint equal tg.;. We
need the following lemma.

LEmMMA 1.2. Consider a buffer served at a constant rateAssume that the buffer is empty at tiheThe
input is described by the cumulative functi@it). If there is no overflow duringp, ¢], the buffer content at
timet is given by

z(t) = sup{R(t) — R(s) —r(t —s)}

s:s<t

PrROOF: The lemma can be obtained as a special case of Corollary Jp&8gmn32, however we give here
a direct proof. First note that for a#l such thats < ¢, (¢t — s)r is an upper bound on the number of bits
output in]s, t], therefore:

R(t) — R(s) —z(t) + z(s) < (t — s)r

Thus
x(t) > R(t) — R(s) + x(s) — (t — s)r > R(t) — R(s) — (t — s)r

1.2. ARRIVAL CURVES 11

Sk A bltS R(t)
__R®) . ax
R(t) 3k -
v b 2k
X(t) 1k \\x(t)
1 ‘2 ‘3 4 ‘5 ‘6 7 8 ‘9 ‘10‘11 ‘12‘13‘14§
A\

Figure 1.4:A Leaky Bucket Controller. The second part of the figure shows (in grey) the level of the bucket
x(t) for a sample input, with » = 0.4 kbits per time unit and b = 1.5 kbits. The packet arriving at time ¢t = 8.6
is not conformant, and no fluid is added to the bucket. If b would be equal to 2 kbits, then all packets would
be conformant.

which proves that(t) > supg. <, {R(t) — R(s) —r(t — s)}.
Conversely, calty the latest time at which the buffer was empty before time

to =sup{s: s < t,z(s) =0}

(If () > 0 thent is the beginning of the busy period at tire During ¢, t], the queue is never empty,
therefore it outputs bit at rate and thus

x(t) = x(to) + R(t) — R(to) — (t — to)r (1.3)

We assume thak is left-continuous (otherwise the proof is a little more gdex); thusz(ty) = 0 and thus
z(t) < supg < {R(t) — R(s) —r(t —s)}
Now the content of a leaky bucket behaves exactly like a bgteved at rate, and with capacity. Thus,
a flow R(t) is conformant if and only if the bucket conten(t) never exceeds. From Lemma 1.2, this
means that

sup{R(t) — R(s) —r(t—s)} <b

s:5<t
which is equivalent to

R(t)— R(s) <r(t—s)+b

for all s < t. We have thus shown the following.

PrRoPOSITIONL.4. Aleaky bucket controller with leak rateand bucket siz&forces a flow to be constrained
by the arrival curvey, ;, namely:

1. the flow of conformant data has, as an arrival curve,
2. if the input already has, ;, as an arrival curve, then all data is conformant.

We will see in Section 1.4.1 a simple interpretation of trekiebucket parameters, hamelyis the mini-
mum rate required to serve the flow, anig the buffer required to serve the flow at a constant rate.

Parallel to the concept of leaky bucket is the Generic CeléRdgorithm (GCRA), used with ATM.
DeFINITION 1.4 (GCRA (I, 7)). The Generic Cell Rate Algorithm (GCRA) with parametérsr) is used

with fixed size packets, called cells, and defines conforicellst as follows. It takes as input a cell arrival
timet and returnsr esul t . It has an internal (static) variable at (theoretical arrival time).

12 CHAPTER 1. NETWORK CALCULUS

e initially, tat = 0
e when a cell arrives at time, then
if (t <tat - tau)
result = NON- CONFORMANT;
el se {
tat = max (t, tat) + T;
result = CONFORVMANT;
}

Table 1.1 illustrate the definition of GCRA. It iIIustratehat% is the long term rate that can be sustained
by the flow (in cells per time unit); while is a tolerance that quantifies how early cells may arrive with
respect to an ideal spacing Bfbetween cells. We see on the first example that cells may helsa? time
units (cells arriving at times 18 to 48), however this may I@icumultated, otherwise the rate%efvvould

be exceeded (cell arriving at time 57).

arrival time 10| 18 | 28 | 38 | 48 57
tat before arrival 10| 20| 30| 40 | 50 60
result|f c| c| c| c| ¢c | ¢ | non-c

o

o

arrival time || 0 | 10 15 251 35
tat before arrival|| 0 | 10 20 20| 30
result|f c| ¢ | non-c| ¢ | C

Table 1.1:Examples for GCRA(10,2). The table gives the cell arrival times, the value of the t at internal
variable just before the cell arrival, and the result for the cell (c = conformant, non-c = non-conformant).

In general, we have the following result, which establistiesrelationship between GCRA and the stair
functionsvr ;.

ProPOsITION1.5. Consider a flow, with cumulative functidi(t), that generates packets of constant size
equal tok data units, with instantaneous packet arrivals. Assume tgiscrete or time is continuous and
R is left-continuous. The following two properties are eaiewt:

1. the flow is conformant to GCRA(r)
2. the flow hagk vr ;) as an arrival curve

ProOOF: The proof uses max-plus algebra. Assume that property Ilsh@eénote withp,, the value of
t at just after the arrival of thexth packet (or cell), and by conventigla = 0. Also call ¢, the arrival
time of thenth packet. From the definition of the GCRA we haye= max(t,, 6,—1) + T. We write this
equation for alln < n, using the notatiorv for max. The distributivity of addition with respect to gives:

On—1+T = (0n_o+2T)V (t,—1 +27T)
01+ (n—1)T = (0p+nT)V (t; +nT)

Note that(6p + nT") Vv (t1 + nT) = t; + nT becausd)y = 0 andt¢; > 0, thus the last equation can be
simplified tof; + (n — 1)T" = t; +nT. Now the iterative substitution of one equation into thevjmes one,
starting from the last one, gives

Op=tn+T)V (tn—1 +2T)V ...V (t1 +nT) (1.4)

1.2. ARRIVAL CURVES 13

Now consider thgm + n)th arrival, for somem,n € N, with m > 1. By property 1, the packet is
conformant, thus
tmin = Omgn-1—7 (1.5)

Now from Equation (1.4)¢,,1n—1 > t; + (m +n —j)T forall1 < j < m+n—1. Forj = m, we
obtain®,,+,-1 > t,, + nT. Combining this with Equation (1.5), we havg., > t,, + nT — 7. With
proposition 1.2, this shows property 2.

Conversely, assume now that property 2 holds. We show bytimduonn that thenth packet is conformant.
This is always true fon = 1. Assume it is true for alln < n. Then, with the same reasoning as above,
Equation (1.4) holds for. We rewrite it ag),, = maxi<;<n{t; +(n—j+1)T'}. Now from proposition 1.2,
tht1 > tj+(n—j+1)T'—7foralll < j < n,thust,;; > maxi<j<p{tj+(n—j+1)T}—7. Combining
the two, we find that,, ,; > 6,, — 7, thus the(n + 1)th packet is conformant. O

Note the analogy between Equation (1.4) and Lemma 1.2. thdeem proposition 1.3, for packets of
constant size, there is equivalence between arrival @intrby affine functions,. , and by stair functions
vr,-. This shows the following result.

CoROLLARY 1.1. For a flow with packets of constant size, satisfying the GARAYis equivalent to
satisfying a leaky bucket controller, with rateand burst toleranceé given by:

b:(%+1)5

r = é
T
In the formulasy is the packet size in units of data.

The corollary can also be shown by a direct equivalence dBBRA algorithm to a leaky bucket controller.

Take the ATM cell as unit of data. The results above show traain ATM cell flow, being conformant to
GCRA(I', 7) is equivalent to havingr - as an arrival curve. It is also equivalent to havipg as an arrival
curve, withr = £ andb = % + 1.

Consider a family off leaky bucket controllers (or GCRAS), with parameters,, for 1 < i < I. If we
apply all of them in parallel to the same flow, then the confamidata is data that is conformant for each
of the controllers in isolation. The flow of conformant datstas an arrival curve

o(t) = min (., p,(t)) = min (rit + b;)

It can easily be shown that the family of arrival curves trat be obtained in this way is the set of concave,
piecewise linear functions, with a finite number of piecese Will see in Section 1.5 some examples of
functions that do not belong to this family.

APPLICATION TO ATM AND THE INTERNET Leaky buckets and GCRA are used by standard bodies to
define conformant flows in Integrated Services Networks h\&iEM, a constant bit rate connection (CBR)
is defined by one GCRA (or equivalently, one leaky bucketjhwiarameter$T’, 7). T is called the ideal
cell interval, andr is called the Cell Delay Variation Tolerance (CDVT). StilittWATM, a variable bit rate
(VBR) connection is defined as one connection with an arcuale that corresponds to 2 leaky buckets
or GCRA controllers. The Integrated services frameworkhefiihternet (Intserv) uses the same family of
arrival curves, such as

a(t) = min(M + pt,rt +b) (1.6)

where M is interpreted as the maximum packet sizes the peak raté, as the burst tolearance, anés
the sustainable rate (Figure 1.5). In Intserv jargon, thupké-(p, M, r,b) is also called a T-SPEC (traffic
specification).

14 CHAPTER 1. NETWORK CALCULUS

rate p

rate r

v

Figure 1.5:Arrival curve for ATM VBR and for Intserv flows

1.2.3 SB-ADDITIVITY AND ARRIVAL CURVES

In this Section we discover the fundamental relationshigvben min-plus algebra and arrival curves. Let
us start with a motivating example.

Consider a flowR(t) € N with ¢t € N; for example the flow is an ATM cell flow, counted in cells. Tinise
discrete to simplify the discussion. Assume that we know tina flow is constrained by the arrival curve
3v10,0; for example, the flow is the superposition of 3 CBR connetiof peak raté®.1 cell per time unit
each. Assume in addition that we know that the flow arrived@tpint of observation over a link with a
physical characteristic of 1 cell per time unit. We can cadelthat the flow is also constrained by the arrival
curvewvy o. Thus, obviously, it is constrained lay = min(3v19,,v1,0). Figure 1.6 shows the functiam .

cells

cells

\\\\\\\\\1}0\\\\\\\\\\\tl\l’n\e\Sk\n?; \\\\\\\\\110\\\\\\\\\}\tl}’n\e\SI\Ot?;

Figure 1.6:The arrival curve a; = min(3v10,0,v1,0) On the left, and its sub-additive closure (“good” function)
a1 on the right. Time is discrete, lines are put for ease of reading.

Now the arrival curvey; tells us thatR(10) < 3 andR(11) < 6. However, since there can arrive at most 1
cell per time unit , we can also conclude thtl1) < R(10) + [R(11) — R(10)] < a1(10) + a;(1) = 4.

In other words, the sheer knowledge tliats constrained by, allows us to derive a better bound than
itself. This is because; is not a “good” function, in a sense that we define now.

DEFINITION 1.5. Consider a functiom in F. We say thatv is a “good” function if any one of the following
equivalent properties is satisfied

1. o is sub-additive and(0) = 0
2Z.a=a®a«

3. aa=«w

4. o = & (sub-additive closure af).

The definition uses the concepts of sub-additivity, minsptonvolution, min-plus deconvolution and sub-
additive closure, which are defined in Chapter 3. The eqeivd between the four items comes from
Corollaries 3.1 on page 120 and 3.13 on page 125. Sub-atld{item 1) means that(s+t) < a(s)+a(t).

1.2. ARRIVAL CURVES 15

If « is not sub-additive, thea(s) + «(t) may be a better bound thar{s + ¢), as is the case with; in the
example above. Item 2, 3 and 4 use the concepts of min-plu®kdion, min-plus deconvolution and sub-
additive closure, defined in Chapter 3. We know in partic(ldreorem 3.10) that the sub-additive closure
of a functiona is the largest “good” functio@ such thatv < a.. We also know thatv € Fif a € F.

The main result about arrival curves is tlaty arrival curve can be replaced by its sub-additive closure,
which is a “good” arrival curve. Figure 1.6 shows for our example above.

THEOREM 1.1 (Reduction of Arrival Curve to a Sub-Additive OneSaying that a flow is constrained by a
wide-sense increasing functienis equivalent to saying that it is constrained by the subHadgclosurea.

The proof of the theorem leads us to the heart of the conceaitrivgl curve, namely, its correspondence
with a fundamental, linear relationships in min-plus algelbvhich we will now derive.

LEmMMA 1.3. Aflow R is constrained by arrival curver ifand only if R < R ® «

PrROOF: Remember that an equation such/ast R @ a means that for all timeg R(t) < (R ® «a)(t).
The min-plus convolutiol? ® « is defined in Chapter 3, page 111; sir¢és) anda(s) are defined only for
s > 0, the definition ofR @ avis: (R ® «)(t) = infp<s<¢(R(s) + a(t —s)). ThusR < R® « is equivalent
to R(t) < R(s)+ a(t —s)forall0 < s <t. O

LEMMA 1.4. If o1 anday are arrival curves for a flowR, then so isy; ® as

ProoF: We know from Chapter 3 that; ® «a» is wide-sense increasingdf; andas are. The rest of the
proof follows immediately from Lemma 1.3 and the associgtiof ®. O

PROOF OF THEOREM Since« is an arrival curve, so i& ® «, and by iteration, so ia(™ for alln > 1.
By the definition ofdy, it is also an arrival curve. Thus sods= inf,,>¢ a

Converselya < «; thus, ifa is an arrival curve, then so is. O

ExAmMPLES We should thus restrict our choice of arrival curves to sdiftive functions. As we can
expect, the functions,.;, andvr , introduced in Section 1.2.1 are sub-additive and since traue isO
for t = 0, they are “good” functions, as we now show. Indeed, we kn@mfChapter 1 that any concave
functiona such thaiy(0) = 0 is sub-additive. This explains why the functions, are sub-additive.

Functionsur - are not concave, but they still are sub-additive. This isabee, from its very definition, the
ceiling function is sub-additive, thus

orals + 1) = [T < [T 4 (0] < 101 4+ 10 = o (s) + o (1)
Let us return to our introductory example with = min(3v;g,v1,0). As we discussedy; is not sub-
additive. From Theorem 1.1, we should thus repla¢doy its sub-additive closure;, which can be com-
puted by Equation (3.13). The computation is simplified by fisilowing remark, which follows immedi-
ately from Theorem 3.11:

LEMMA 1.5. Lety; and~, be two “good” functions. The sub-additive closuremin(vy;,~2) iSvy1 ® 7o.
We can apply the lemma t@; = 3vig90 A v1,0, SinCevr - is a “good” function. Thusy; = 3vi90 ® v1,0,
which the alert reader will enjoy computing. The result istfgd in Figure 1.6.

Finally, let us mention the following equivalence, the grobwhich is easy and left to the reader.

PROPOSITION1.6. For a given wide-sense increasing functienwith «(0) = 0, consider a source defined
by R(t) = «(t) (greedy source). The source hass an arrival curve if and only if is a “good” function.

16 CHAPTER 1. NETWORK CALCULUS

VBR ARRIVAL CURVE Now let us examine the family of arrival curves obtained bynbinations of
leaky buckets or GCRAs (concave piecewise linear funcliovée know from Chapter 3 that #f; and~s
are concave, with;(0) = ~2(0) = 0, theny; ® v2 = 71 A 2. Thus any concave piecewise linear function
a such thatx(0) = 0 is a “good” function. In particular, if we define the arrivalree for VBR connections
or Intserv flows by
a(t) =min(pt + M,rt +b) ift >0
{ a(0) =0

(see Figure 1.5) them is a “good” function.

We have seen in Lemma 1.1 that an arrival cutvean always be replaced by its limit to the leff.
We might wonder how this combines with the sub-additive wles and in particular, whether these two
operations commute (in other words, do we h&wg, = @; ?). In general, ifa is left-continuous, then
we cannot guarantee thatis also left-continuous, thus we cannot guarantee thatpleeations commute.
However, it can be shown thét); is always a “good” function, thugx); = (a);. Starting from an arrival
curve o we can therefore improve by taking the sub-additive closusg then the limit to the left. The
resulting arrival curvea); is a “good” function that is also left-continuous (a “veryagti function), and

the constraint by is equivalent to the constraint i),

Lastly, let us mention that it can easily be shown, using gnraent of uniform continuity, that if takes
only a finite set of values over any bounded time interval, iiradis left-continuous, then so s and then
we do have@); = a;. This assumption is always true in discrete time, and in roasés in practice.

1.2.4 MINIMUM ARRIVAL CURVE

Consider now a given flowk(¢), for which we would like to determine a minimal arrival curv& his
problem arises, for example, whéhis known from measurements. The following theorem saysttieat
is indeed one minimal arrival curve.

THEOREM 1.2 (Minimum Arrival Curve). Consider a flowR(t):>o. Then

e functionR @ R is an arrival curve for the flow
e for any arrival curvea that constrains the flow, we havéR © R) < «
e R© Ris a*“good” function

FunctionR © R is called theminimum arrival curveor flow R.

The minimum arrival curve uses min-plus deconvolution, rofiin Chapter 3. Figure 1.2.4 shows an
example ofR @ R for a measured functioR.

PROOF: By definition of®, we have(R @ R)(t) = sup,~o{R(t + v) — R(v)}, it follows that(R @ R)
is an arrival curve.

Now assume that someis also an arrival curve foR. From Lemma 1.3, we havB < R ® «). From
Rule 14 in Theorem 3.12 in Chapter 3, it follows tHaty R < «, which shows tha? @ R is the minimal
arrival curve forR. Lastly, R @ R is a “good” function from Rule 15 in Theorem 3.12. O

Consider a greedy source, witt(t) = «(t), wherea is a “good” function. What is the minimum arrival
curve ? Lastly, the curious reader might wonder whetligr> R is left-continuous. The answer is as
follows. Assume thaf? is either right or left-continuous. By lemma 1.1, the limotthe left(R @ R); is
also an arrival curve, and is bounded from aboveiby R. SinceR @ R is the minimum arrival curve, it
follows that(R @ R); = R © R, thusR © R is left-continuous (and is thus a “very good” function).

SAnswer: from the equivalence in Definition 1.5, the minimumival curve is« itself.

1.2. ARRIVAL CURVES 17

i

100 200 300 400

A

100 200 300 400

70+

60

50
40
30
20
10¢

70¢

60

50

40

30

20

10

10000+

8000+

6000+

4000+

2000+

100 200 300 400

Figure 1.7:Example of minimum arrival curve. Time is discrete, one time unit is 40 ms. The top figures
shows, for two similar traces, the number of packet arrivals at every time slot. Every packet is of constant
size (416 bytes). The bottom figure shows the minimum arrival curve for the first trace (top curve) and the
second trace (bottom curve). The large burst in the first trace comes earlier, therefore its minimum arrival
curve is slightly larger.

18 CHAPTER 1. NETWORK CALCULUS

In many cases, one is interested not in the absolute mininmivalacurve as presented here, but in a
minimum arrival curve within a family of arrival curves, f@xample, among al,; functions. For a
development along this line, see [61].

1.3 SRVICE CURVES

1.3.1 DEFINITION OF SERVICE CURVE

We have seen that one first principle in integrated serviedsarks is to put arrival curve constraints on
flows. In order to provide reservations, network nodes inrreneed to offer some guarantees to flows.
This is done by packet schedulers [45]. The details of pasle¢duling are abstracted using the concept
of service curve, which we introduce and study in this secti®ince the concept of service curve is more
abstract than that of arrival curve, we introduce it on sora®les.

A first, simple example of a scheduler is a Generalized Psmresharing (GPS) node [63]. We define now
a simple view of GPS; more details are given in Chapter 2. A 68t serves several flows in parallel, and
we can consider that every flow is allocated a given rate. Tiaeamtee is that during a period of duration
for which a flow has some backlog in the node, it receives aruaitnaf service at least equal o, wherer

is its allocated rate. A GPS node is a theoretical concepthwh not really implementable, because it relies
on a fluid model, while real networks use packets. We will seBeéction 2.1 on page 67 how to account
for the difference between a real implementation and GP8sider a input flonR, with output R*, that is
served in a GPS node, with allocated raté et us also assume that the node buffer is large enough so tha
overflow is not possible. We will see in this section how to poie the buffer size required to satisfy this
assumption. Lossy systems are the object of Chapter 9. Unegse assumptions, for all tiniecall ¢, the
beginning of the last busy period for the flow up to timé&rom the GPS assumption, we have

R*(t) — R*(to) = r(t —to)

Assume as usual tha& is left-continuous; at time, the backlog for the flow i$), which is expressed by
R(to) — R*(tp) = 0. Combining this with the previous equation, we obtain:

R (t) — R(to) > r(t — to)
We have thus shown that, for all time R*(¢) > info<s<;[R(s) + r(t — s)], which can be written as
R">R® Yr,0 (1-7)

Note that a limiting case of GPS node is the constant bit extees with rater, dedicated to serving a single
flow. We will study GPS in more details in Chapter 2.

Consider now a second example. Assume that the only infwmate have about a network node is that
the maximum delay for the bits of a given floiis bounded by some fixed valdg and that the bits of
the flow are served in first in, first out order. We will see ini8et1.5 that this is used with a family of
schedulers called “earliest deadline first” (EDF). We camgtate the assumption on the delay bound to
d(t) < T for all t. Now sinceR* is always wide-sense increasing, it follows from the debiniof d(t) that
R*(t+T) > R(t). Conversely, ifR*(t +T') > R(t), thend(t) < T'. In other words, our condition that the
maximum delay is bounded W is equivalent takR* (¢ + 7") > R(t) for all t. This in turn can be re-written
as

R*(s) > R(s—T)

forall s > T'. We have introduced in Chapter 3 the “impulse” functderdefined bydr (1) = 0if 0 <t < T
andor(t) = +ooif t > T'. It has the property that, for any wide-sense increasingtionz(t), defined for

1.3. SERVICE CURVES 19

t<0,(x®dr)(t)=a(t—T)if t > T and(x ® ér)(t) = x(0) otherwise. Our condition on the maximum
delay can thus be written as
R*> R®dr (1.8)

For the two examples above, there is an input-output reishiip of the same form (Equations (1.7) and
(1.8)). This suggests the definition of service curve, whashwe see in the rest of this section, is indeed
able to provide useful results.

R*
A R(t)

data P

time
| -

(R® B)(®)

time

Figure 1.8:Definition of service curve. The output R* must be above R @ 3, which is the lower envelope of
all curves ¢t — R(to) + S(t — to).

DEFINITION 1.6 (Service Curve)Consider a systerfi and a flow througlS with input and output function
R and R*. We say thatS offers to the flow aervice curves if and only if 5 is wide sense increasing,
f(0)=0andR* > R®

Figure 1.8 illustrates the definition.
The definition means thét is a wide sense increasing function, witf0) = 0, and that for alt > 0,

R*(t) > inf (R(s) + B(t — 5))

s<t

In practice, we can avoid the use of an infimuni is continuous. The following proposition is an immediate
consequence of Theorem 3.8 on Page 115.

PrRoPOSITION1.7. If § is continuous, the service curve property means that fot ale can findy < ¢
such that
R*(t) = Ri(to) + B(t — to) (1.9)

whereR;(tg) = supy,,) 1(s) is the limit to the left ofz att,. If Ris left-continuous, ther, (to) = R(to).
For a constant rate server (and also for afmct service curve), the numbeg in (1.9) can be taken as the

beginning of the busy period, for other cases, we do not kimwever, in some cases we can pick @ahat
increases with:

PrROPOSITION1.8. If the service curves is convex, then we can find some wide sense increasing fanctio
7(t) such that we can choosg = 7(¢) in (1.9).

Note that since a service curve is assumed to be wide-seasEasing,s3, being convex, is necessarily
continuous; thus we can apply Proposition 1.7.

20 CHAPTER 1. NETWORK CALCULUS

PrROOF: We give the proof whetR is left-continuous. The proof for the general case is eglgnthe
same but involves somecutting. Consider somg < ¢y and callr; a value ofty as in (1.9)) at = ¢;.
Also consider any’ < 7;. From the definition of-, we have

R*(t") + B(t1 —t') > R*(11) + B(t1 — 1)

and thus
R*(t')+ Bty —t') > R* (1) + B(t1 — 1) — B(t1 — ') + B(ta — t)

Now (3 is convex, thus for any four numbedsb, ¢, d such thatt < ¢ < b,a < d < banda+b = c+d, we
have

Bla) + B(b) = B(c) + B(d)

(the interested reader will be convinced by drawing a smglré). Applying this toa = t; — 7,b =
to — t’,c =1 —t/,d =1y —T1 gives

R*(t) + B(t2 —t') = R (1) + Bt — 1)

and the above equation holds for@lK 7;. Consider now the minimum, for a fixegd, of R*(t')+ 8(to—1t')
over allt’ < t,. The above equation shows that the minimum is reached foe som 7. O

We will see in Section 1.4 that the combination of a serviaeeguarantee with an arrival curve constraint
forms the basis for deterministic bounds used in integratagices networks. Before that, we give the
fundamental service curve examples that are used in peactic

1.3.2 Q.AsSSICAL SERVICE CURVE EXAMPLES

GUARANTEED DELAY NODE The analysis of the second example in Section 1.3.1 can Ibeasgd as
follows.

PrROPOSITION 1.9. For a lossless bit processing system, saying that the delagrfy bit is bounded by
some fixed" is equivalent to saying that the system offers to the flow\decurve equal to.

NoN PREMPTIVE PRIORITY NODE Consider a node that serves two flods; (1) and Ry (¢). The first
flow has non-preemptive priority over the second one (Figu®® This example explains the general frame-
work used when some traffic classes have priority over solmerstsuch as with the Internet differentiated
services [7]. The rate of the server is constant, equal.t€all R} (t) and R; (t) the outputs for the two
flows. Consider first the high priority flow. Fix some timand calls the beginning of the backlog period

High priority
Ry®) — > R*(t)
R () ———» rate ¢ R*. (1)

Low priority

Figure 1.9:Two priority flows (H and L) served with a preemptive head of the line (HOL) service discipline.
The high priority flow is constrained by arrival curve a.

for high priority traffic. The service for high priority careldelayed by a low priority packet that arrived

1.3. SERVICE CURVES 21

shortly befores’, but as soon as this packet is served, the server is dediwaliégh priority as long as there
is some high priority traffic to serve. Over the interyalt], the output i< (¢ — s)Thus
Ry (t) — Riy(s) > C(t —s) — 12

max

wherel% is the maximum size of a low priority packet. Now by definitiohs: R} (s) = Rp(s) thus
Ri(t) 2 Ry (s) + O(t —) = ligax

Now we have also
Ry(t) — Ru(s) = Ry (t) — R(s) >0

from which we derive
Ry (t) > Ry(s) + [C(t —s) — 1L

max] N

The functionu — [Cu — 1L,]* is called the rate-latency function with raféand Iatenc%% [75] (in
this book we note iﬁc ... » See also Figure 3.1 on page 107). Thus the high prioritidregceives this
v C

function as a service curve.

Now let us examine low priority traffic. In order to assurettihdoes not starve, we assume in such situations
that the high priority flow is constrained by an arrival curvg. Consider again some arbitrary timeCall
s’ the beginning of the server busy period (note tHaK s). At time s’, the backlogs for both flows are
empty, namelyR},(s") = Ru(s") andRj (s') = R (s"). Over the intervals’, t], the output isC'(t — s).
Thus
Rj(t) = Ri(s) = C(t = 8') — [Ry(t) — Ry ()]
Now
Ry(t) — Ry (s)) = Ry (t) — Ru(s') < Ru(t) — Ru(s') < an(t—s')
>

and obviouslyR3, (t) — R}, (s") > 0 thus

Ry(t) = R(s") = Ri(t) — R7(s') = S(t - &)

with S(u) = (Cu — ag(u))™. Thus, if S is wide-sense increasing, the low-priority flow receivesvise
curve equal to functiors. Assume further thatz; = ,.,, namely, the high priority flow is constrained
by one single leaky bucket or GCRA. In that case, the serviceecS () offered to the low-priority flow is
equal to the rate-latency functigiy 7 (t), with R = C' — r andT" = Clir.

We have thus shown the following.

ProrPoOsITION 1.10. Consider a constant bit rate server, with raf& serving two flowsH and L, with
non-preemptive priority given to flod/. Then the high priority flow is guaranteed a rate-latencyvgss

curve with rateC' and Iatencyl% wherelZ is the maximum packet size for the low priority flow.

max

If in addition the high priority flow isy, ;-smooth, with- < C, then the low priority flow is guaranteed a
rate-latency service curve with raté — r and latency>—.

This example justifies the importance of the rate-latenayise curve. We will also see in Chapter 2
(Theorem 2.2 on page 71) that all practical implementat@rSPS offer a service curve of the rate-latency

type.
STRICT SERVICE CURVE An important class of network nodes fits in the following fewwork.

DEFINITION 1.7 (Strict Service Curve)We say that systeii offers a strict service curvg to a flow if,
during any backlogged period of duratian the output of the flow is at least equal26u).

22 CHAPTER 1. NETWORK CALCULUS

A GPS node is an example of node that offers a strict serviceeaf the forms(t) = rt. Using the same
busy-period analysis as with the GPS example in the pre\deason, we can easily prove the following.

ProrPosITION1.11. If a node offers3 as a strict service curve to a flow, then it also offéras a service
curve to the flow.

The strict service curve property offers a convenient wayisdfializing the service curve concept: in that
case,(u) is the minimum amount of service guaranteed during a buspgerote however that the
concept of service curve, as defined in Definition 1.6 is memegal. A greedy shaper (Section 1.5.2) is an
example of system that offers its shaping curve as a seruine cwithout satisfying the strict service curve
property. In contrast, we will find later in the book some mxjes that hold only if a strict service curve
applies. The framework for a general discussion of strigtise curves is given in Chapter 7.

VARIABLE CAPACITY NODE Consider a network node that offers a variable service dypiaca flow.

In some cases, it is possible to model the capacity by a cuiveinction M (¢), whereM () is the total
service capacity available to the flow between tifhiesdt. For example, for an ATM system, think &1 (¢)

as the number of time slots between tindeendt that are available for sending cells of the flow. Let us also
assume that the node buffer is large enough so that overfloatipossible. The following proposition is
obvious but important in practice

PrRoPOSITION1.12. If the variable capacity satisfies a minimum guarantee ofone
M{(t) — M(s) > Bt — s) (1.10)

for some fixed functiofg and for all0 < s < ¢, thenf is a strict service curve,

Thus S5 is also a service curve for that particular flow. The concdptaviable capacity node is also a
convenient way to establish service curve properties. Rapgplication to real time systems (rather than
communication networks) see [78].

We will show in Chapter 4 that the output of the variable céyawde is given by
R(t) = inf {M(t) ~ M(s) + R(s)}
Lastly, coming back to the priority node, we have:
ProPOSITION1.13. The service curve property in Proposition 1.10 for the haglerity flow is strict.

The proof is left to the reader. It relies on the fact that tanisrate server is a shaper.

1.4 NETWORK CALCULUS BASICS

In this section we see the main simple network calculus tesdlhey are all bounds for lossless systems
with service guarantees.

1.4.1 THREE BOUNDS

The first theorem says that the backlog is bounded by thecaédeviation between the arrival and service
curves:

THEOREM 1.3 (Backlog Bound).Assume a flow, constrained by arrival curugtraverses a system that
offers a service curvg. The backlogr(t) — R*(t) for all ¢ satisfies:

R(t) = R*(t) < ssgg{a(S) — B(s)}

1.4. NETWORK CALCULUS BASICS 23

PrRoOOF: The proof is a straightforward application of the definisaf service and arrival curves:

R(t) = (1) < R() = inf [R(t —5) + B(s)

Thus

R(t) — R*(t) < Oiggt[R(t) —R(t—s)+B(s)] < Oitigt[a(S) + B(t = s)]

O

We now use the concept of horizontal deviation, defined inp@&ha3, Equation (3.21). The definition is a
little complex, but is supported by the following intuitio@all

O(s)=inf{r>0:a(s) <B(s+7)}

From Definition 1.1,§(s) is the virtual delay for a hypothetical system that wouldéhavas input and?
as output, assuming that such a system exists (in other ywasdaming thato{ <). Then,i(«,) is the
supremum of all values @¥(s). The second theorem gives a bound on delay for the generl cas

THEOREM 1.4 (Delay Bound).Assume a flow, constrained by arrival curvgtraverses a system that offers
a service curve of. The virtual delayi(t) for all ¢ satisfies:d(t) < h(«,).

PrRooF: Consider some fixed > 0; for all 7 < d(t), we have, from the definition of virtual delay,
R(t) > R*(t + 7). Now the service curve property at time- 7 implies that there is somg such that

R(t) > R(t+ 1 — so) + 5(s0)
It follows from this latter equation that+ 7 — sg < . Thus
a1 — s0) = [R(t) — R(t + 7 — s0)] > B(s0)
Thust < §(7 — so) < h(a,). This is true for allr < d(t) thusd(t) < h(a,). O

THEOREM 1.5 (Output Flow).Assume a flow, constrained by arrival curvgtraverses a system that offers
a service curve of. The output flow is constrained by the arrival cuve= o @ 3.

The theorem uses min-plus deconvolution, introduced inp@&he3, which we have already used in Theo-
rem1.2.

PrROOF: With the same notation as above, consié(t) — R*(t — s), for0 < t — s < t. Consider the
definition of the service curve, applied at time- s. Assume for a second that thef in the definition of
R ® (g is amin, that is to say, there is some> 0 such that <t — s — v and

(R B)(t—s)=R(t—s—u)+ B(u)

Thus
R*'(t—s)—R(t—s—u) > [B(u)

and thus
R*(t) — R*(t—s) < R*(t) — B(u) — R(t — s —u)

Now R*(t) < R(t), therefore
R*(t) —R*(t —s) < R(t) —R(t — s —u) — f(u) < a(s +u) — B(u)

and the latter term is bounded by @ 3)(s) by definition of the» operator.

24 CHAPTER 1. NETWORK CALCULUS

Now relax the assumption that the the in the definition of R ® 5 is amin. In this case, the proof is
essentially the same with a minor complication. ForaH 0 there is some, > 0 such thal <¢—s —u
and
(RpB)(t—s)>R(t—s—u)+ B(u) —¢
and the proof continues along the same line, leading to:
R*(t) — R*(t —s) < (a @ B)(s) + ¢

This is true for alle > 0, which proves the result. O

oLk
data a
A
+1rT
b I‘T $\OQ6‘ A %
3
b />
d=T+Db/R S
Y _ time
0 T

Figure 1.10:Computation of buffer, delay and output bounds for an input flow constrained by one leaky
bucket, served in one node offered a rate-latency service curve. If » < R, then the buffer bound is x = b+7rT,

the delay bound is d = T + % and the burstiness of the flow is increased by »7'. If » > R, the bounds are
infinite.

A SIMPLE EXAMPLE AND |INTERPRETATION OF LEAKY BUCKET Consider a flow constrained by
one leaky bucket, thus with an arrival curve of the fasm= ~, ;, served in a node with the service curve
guaranteesr . The alert reader will enjoy applying the three bounds andirigy the results shown in
Figure 1.10.

Consider in particular the cagé= 0, thus a flow constrained by one leaky bucket served at a aurnstiz
R. If R > r then the buffer required to serve the flowbjtherwise, it is infinite. This gives us a common
interpretation of the leaky bucket parametei@db: r is the minimum rate required to serve the flow, and
b is the buffer required to serve the flow at any constant »ate

EXAMPLE : VBR FLOW WITH RATE -LATENCY SERVICE CURVE Consider a VBR flow, defined by T-
SPEC(M, p,r,b). This means that the flow hagt) = min(M +pt, rt+b) as an arrival curve (Section 1.2).
Assume that the flow is served in one node that guaranteesieeseurve equal to the rate-latency function
B = Brr. This example is the standard model used in Intserv. Let ply dneorems 1.3 and 1.4. Assume
thatR > r, that is, the reserved rate is as large as the sustainablefréte flow.

From the convexity of the region betweenand 5 (Figure 1.4.1), we see that the vertical deviatior=
supg>ola(s) — B(s)] is reached for at an angular point of eitheor 5. Thus

v = max|a(T), a(0) — 5(0)]

with 0 = bp‘T]‘f. Similarly, the horizontal distance is reached an angubamtp In the figure, it is either the
distance marked ad A’ or BB’. Thus, the bound on delayis given by

d:max<%+T—9,%+T>

After some max-plus algebra, we can re-arrange these semifbllows.

1.4. NETWORK CALCULUS BASICS 25

PropoOsITION1.14 (Intserv model, buffer and delay bound€pnsider a VBR flow, with TSPEG/, p, r, b),
served in a node that guarantees to the flow a service curval éguhe rate-latency functio = g 7.
The buffer required for the flow is bounded by

b— M *
U:b+TT+<pj_T> [(p—R)+—p+7“]

The maximum delay for the flow is bounded by

M+ p - R)*

d= P T
R +
data
a(0) A’ B
B B)
M / _ time
0 0 T

Figure 1.11:Computation of buffer and delay bound for one VBR flow served in one Intserv node.

We can also apply Theorem 1.5 and find an arrival curvéor the output flow. We have™ = o @ (Agr ®
or) = (a @ Ag) @ o from the properties of) (Chapter 3). Note that

(f@or)(t) = f(t+T)

for all f (shift to the left).

The computation ofr @ \p is explained in Theorem 3.14 on Page 126: it consists in fimgetime, and
smoothing. Here, we give however a direct derivation, wlcpossible sincer is concave. Indeed, for a
concaven, definet, as

to =inf{t > 0:d/(t) < R}

whered/ is the left-derivative, and assume thgt< +oo. A concave function always has a left-derivative,
except maybe at the ends of the interval where it is definedny studying the variations of the function
u — a(t + u) — Ruwe find that(a @ Ag)(s) = a(s) if s > tg, and(a @ Ag)(s) = a(ty) + (s — to) R if

s < 1gp.

Putting the pieces all together we see that the output fameti is obtained fromx by
e replacinga on [0, o] by the linear function with slopé& that has the same value asfor ¢t = ¢,

keeping the same values @®n [t(, +oo],
e and shifting by’ to the left.

Figure 1.12 illustrates the operation. Note that the twaajgens can be performed in any order sincés
commutative. Check that the operation is equivalent to tmstruction in Theorem 3.14 on Page 126.

If we apply this to a VBR connection, we obtain the followiresult.

PrRoOPOSITION1.15 (Intserv model, output boundyVith the same assumption as in Proposition 1.14, the
output flow has an arrival curve* given by:

{ if &M < T then a*(t) = b+r(T +1)

elsé)oz*(t) = min{ t+T)pAR)+ M+ bp_TAf(p - R)*,b+r(T+t)}

26 CHAPTER 1. NETWORK CALCULUS

bits departure curve

arrival
curve

\

-T t0-T

Figure 1.12:Derivation of arrival curve for the output of a flow served in a node with rate-latency service
curve Sg.r.

AN ATM E xaMPLE Consider the example illustrated in Figure 1.13. The aggeefijow has as an arrival
curve equal to the stair functiaibvgs 4. The figure illustrates that the required buffel&ATM cells and
the maximum delay i40 time slots. We know from Corollary 1.1 that a GCRA constrainequivalent

»

T T T T T T

cells

AT T T T T 17T

time slots

I | I e e I B B B B B R
T T T T ”

20 30 40 50

(=)
—_
(=)

Figure 1.13:Computation of bounds for buffer = and delay d for an ATM example. An ATM node serves
10 ATM connections, each constrained with GCRA(25,4) (counted in time slots). The node offers to the
aggregate flow a service curve Srr with rate R = 1 cell per time slot and latency 7" = 8 time slots.
The figure shows that approximating the stair function 10vs5 4 by an affine function ~,; results into an
overestimation of the bounds.

to a leaky bucket. Thus, each of the 10 connections is conetteby an affine arrival curve, ;, with

r =4 =0.04andb = 1 + 5t = 1.16. However, if we take as an arrival curve for the aggregate ftoav
resulting affine functiori0+, 5, then we obtain a buffer bound ©f.6 and a delay bound df9.6. The affine
function overestimates the buffer and delay bounds. Reraethht the equivalence between stair function
and affine function is only for a flow where the packet size isattp the value of the step, which is clearly

not the case for an aggregate of several ATM connections.
A direct application of Theorem 1.5 shows that an arrivalveuior the output flow is given by (t) =

1.4. NETWORK CALCULUS BASICS 27

Oé(t + T) = ’U25712(7f).
In Chapter 2, we give a slight improvement to the bounds if nakthat the service curve is a strict service
curve.

1.4.2 ARE THE BOUNDS TIGHT ?

We now examine how good the three bounds are. For the backtbdelay bounds, the answer is simple:

THEOREM 1.6. Consider the backlog and delay bounds in Theorems 1.3 andA&stime that

e «is a“good” function (that is, namely, is wide-sense incrie@s sub-additive andv(0) = 0)
e [is wide-sense increasing art{0) = 0

Then the bounds are tight. More precisely, there is one daystem with input flowR(¢) and output flow
R*(t), such that the input is constrained by offering to the flow a service curvg and which achieves
both bounds.

A causal system means th&ft) < R*(t). The theorem means that the backlog bound in Theorem 1.3 is
equal tosup,~,[R(t) — R*(t)], and the delay bound in Theorem 1.3 is equahtp,~ d(t). In the above,
d(t) is the virtual delay defined in Definition 1.1.

PROOF: We build one such systerR, R* by definingR = «, R* = min(a, 8). The system is causal
becausa?* < a = R. Now consider some arbitrary timelf a(t) < 5(t) then

R¥(t) = R(t) = R(t) + 5(0)

Otherwise,
R*(t) = B(t) = R(0) + B(t)
In all cases, for alt there is some < ¢ such thatR*(t) > R(t — s) + ((s), which shows the service curve
property. O
Of course, the bounds are as tight as the arrival and senvivesare. We have seen that a source such that

R(t) = a(t) is calledgreedy Thus, the backlog and delay bounds are worst-case bouatarthachieved
for greedy sources.

In practice, the output bound is also a worst-case boundy #haigh the detailed result is somehow less
elegant.

THEOREM 1.7. Assume that

1. ais a“good” function (that is, is wide-sense increasing, sadditive andx(0) = 0)
2. «ais left-continuous

3. B is wide-sense increasing am{0) = 0

4. a@a is not bounded from above.

Then the output bound in Theorem 1.5 is tight. More precigkBre is one causal system with input flow
R(t) and output flowR*(¢), such that the input is constrained by offering to the flow a service curvg
anda* (given by Theorem 1.5) is tminimumarrival curve for R*.

We know in particular from Section 1.2 that the first threedittons are not restrictive. Let us first discuss
the meaning of the last condition. By definition of max-plesadnvolution:

(aPa)(t) = inf{a(t +5) — a(s)}

28 CHAPTER 1. NETWORK CALCULUS

One interpretation ofk@« is as follows. Consider a greedy source, Witly) = «(t); then (a@a)(t) is
the minimum number of bits arriving over an interval of dioatt. Given that the function is wide-sense
increasing, the last condition means that;_, ; .. (a@«)(t) = +oo. For example, for a VBR source with
T-SPEC(p, M, r,b) (Figure 1.5), we havéa®«)(t) = rt and the condition is satisfied. The alert reader
will easily be convinced that the condition is also true & #urival curve is a stair function.

The proof of Theorem 1.7 is a little technical and is left @& &md of this chapter.

We might wonder whether the output bountlis a “good” function. The answer is no, sina¢(0) is the
backlog bound and is positive in reasonable cases. HoweVes, sub-additive (the proof is easy and left
to the reader) thus the modified function A o* defined asy*(¢) for ¢ > 0 and0 otherwise is a “good”
function. If « is left-continuousgy A o is even a “very good” function since we know from the proof of
Theorem 1.7 that it is left-continuous.

1.4.3 CONCATENATION

So far we have considered elementary network parts. We naove ¢o the main result used in the concate-
nation of network elements.

THEOREM 1.8 (Concatenation of Nodespssume a flow traverses systefisand Ss in sequence. Assume
that S; offers a service curve gf;, i = 1,2 to the flow. Then the concatenation of the two systems offers a
service curve of; ® (3, to the flow.

ProoF: Call R; the output of node 1, which is also the input to node 2. Theisemurve property at
node 1 gives
Ry > R® B

and at node 2
RE>Ri®@P2>(RRP)®P2a=RR (L1 ® Pa)

O

EXAMPLES: Consider two nodes offering each a rate-latency serviceegtys, 7., © = 1,2, as is com-
monly assumed with Intserv. A simple computation gives

BRy, 1 @ BRy, Ty = Bmin(Ry,R2),T1+Ts

Thus concatenating Intserv nodes amounts to adding theclatmmponents and taking the minimum of
the rates.

We are now also able to give another interpretation of the-letency service curve model. We know that
Brr = (67 ® Ar)(t); thus we can view a node offering a rate-latency serviceecasithe concatenation of
a guaranteed delay node, with del&yand a constant bit rate or GPS node with rAte

PAY BURSTS ONLY ONCE The concatenation theorem allows us to understand a phemonigown
as “Pay Bursts Only Once”. Consider the concatenation ofrtaaes offering each a rate-latency service
curvefg, 1;, 1 = 1,2, as is commonly assumed with Intserv. Assume the fresh ismanstrained by, ;.
Assume that < Ry andr < Ry. We are interested in the delay bound, which we know is a voarst. Let
us compare the results obtained as follows.

1. by applying the network service curve;
2. by iterative application of the individual bounds on gveode

1.4. NETWORK CALCULUS BASICS 29

The delay bound), can be computed by applying Theorem 1.4:

b
Do = — +T,
0=px T4

with R = min;(R;) andTy =), T; as seen above.
Now apply the second method. A bound on the delay at node hisofEm 1.4):

b
D= — 4T
1=g5 ThH

The output of the first node is constraineddsy; given by :
o) =b+rx(t+T1T1)
A bound on the delay at the second buffer is:

B b—i-?“Tl

D T
2 Ry + 13
And thus)) T
+r 1
D Dy = — T
1+ D2 R1+ 7 + 1o

It is easy to see thddy, < D; + D-. In other words, the bounds obtained by considering theaglsérvice
curve are better than the bounds obtained by considerinyg buéer in isolation.
Let us continue the comparison more closely. The delay giraane node has the fonﬁ1 + T (for the

first node). The elemen;% is interpreted as the part of the delay due to the burstinesednput flow,
whereasl; is due to the delay component of the node. We seelthat D, contains twice an element of
the formRii, whereas), contains it only once. We sometimes say that “we pay burdisance”. Another

difference betwee, and D; + D5 is the element}%: it is due to the increase of burstiness imposed by
node 1. We see that this increase of burstiness does nat irgsuhn increase of the overall delay.

A corollary of Theorem 1.8 is also that the end-to-end delayriol does not depend on the order in which
nodes are concatenated.

1.4.4 IMPROVEMENT OF BACKLOG BOUNDS

We give two cases where we can slightly improve the backlamds.

THEOREM 1.9. Assume that a lossless node offerstr@ct service curves to a flow with arrival curvea.
Assume thatv(ug) < B(up) for someuy > 0. Then the duration of the busy period<su,. Furthermore,
for any timet, the backlogR(t) — R*(t) satisfies

R(t) - R*(1) < sup [R(t) = R(t —u) = B(u)] < sup [a(u) - B(u)]

u:0<u<ug u:0<u<ug

The theorem says that, for the computation of a buffer boitrisl sufficient to consider time intervals less
thanug. The idea is that the busy period duration is less than
PrRoOF: Consider a given timeat which the buffer is not empty, and calthe last time instant before

at which the buffer was empty. Then, from the strict servigese property, we have

RE(t) = R*(s) + B(t — s) = 2(s) + B(t — s)

30 CHAPTER 1. NETWORK CALCULUS

Thus the buffer sizé(t) = R(t) — R*(t) at timet satisfies
b(t) < R(t) — R(s) — Bt —s) < a(t —s) — B(t — s)

Now if t — s > ug, then there is a tim& = s + ug, with s + 1 < ¢/ < ¢ such thab(#') = 0. This contradicts
the definition ofs. Thus we can assume that s < ug. O

THEOREM 1.10. Assume that a lossless node offers a service cariea flow with sub-additive arrival
curvea. Assume thap is super-additiveand thato(ug) < B(ug) for someuy > 0. Then for any time,
the backlogR(t) — R*(t) satisfies

R(t) - R*(t) < sup [R(t) = R(t —u) = f(u)] < sup [a(u) = F(u)]

u:0<u<<ug u:0<u<ug

Note that the condition that is sub-additive is not a restriction. In contrast, the ctiadithat/ is super-
additive is a restriction. It applies in particular to rdéency service curves. The theorem does not say
anything about the duration of the busy period, which is =test with the fact we do not assume here that
the service curve is strict.

PROOF: For an arbitrary time the backlog at time satisfies

b(t) < sup [R(t) = R(t —u) = B(u)]

Fors < t definek = [t;—oﬂ ands’ = kug + s. We haves < s’ < t and
t—up < s (1.11)
Now from the super-additivity of:
R(t) — R(s) < [R(t) = R(s') — B(t — s')] + [R(s') — R(s) — B(s' — 5]
Note that for the second part we have
R(s") = R(s) — B(s' — s) < k[a(ug) — B(ug)] <0

thus
R(t) — R(s) < [R(t) — R(s") — B(t — §)]

which shows the theorem. O

1.5 GREEDY SHAPERS

1.5.1 DEFINITIONS

We have seen with the definition of the leaky bucket and of t6&R@& two examples of devices that enforce
a general arrival curve. We caiblicenwith curveo a device that counts the bits arriving on an input flow
and decides which bits conform with an arrival curvesof We call shaper with shaping curve, a bit
processing device that forces its output to havas an arrival curve. We caireedy shapeg shaper that
delays the input bits in a buffer, whenever sending a bit deidlate the constraint, but outputs them as
soon as possible.

With ATM and sometimes with Intserv, traffic sent over onermection, or flow, is policed at the network
boundary. Policing is performed in order to guarantee tlsatsido not send more than specified by the

1.5. GREEDY SHAPERS 31

contract of the connection. Traffic in excess is either dided, or marked with a low priority for loss in
the case of ATM, or passed as best effort traffic in the casateélv. In the latter case, with IPv4, there is
no marking mechanism, so it is necessary for each routegdlmpath of the flow to perform the policing
function again.

Policing devices inside the network are normally bufferéety are thus shapers. Shaping is also often
needed because the output of a buffer normally does not wardgny more with the traffic contract specified
at the input.

1.5.2 INPUT-OUTPUT CHARACTERIZATION OF GREEDY SHAPERS

The main result with greedy shapers is the following.

THEOREM1.11 (Input-Output Characterization of Greedy Shapet®nsider a greedy shaper with shaping
curveo. Assume that the shaper buffer is empty at timand that it is is large enough so that there is no
data loss. For an input flow, the outputR* is given by

R*=R®5 (1.12)

whereg is the sub-additive closure of

PROOF: Remember first that # is sub-additive and (0) = 0, thena = o. In general, we know that we
can replacer by & without changing the definition of the shaper. We thus asswiti®ut loss of generality
thate = o.

The proof of the theorem is an application of min-plus algeb¥irst, let us consider a virtual system that
would takeR as input and have an outpfitsatisfying the constraints:

S<S®o (1.13)

{ S<R
Such a system would behave as a buffer (the first equatiorttsatythe output is derived from the input) and
its output would satisfy the arrival curve constraintHowever, such a system is not necessarily a greedy
shaper; we could have for example a lazy shaper #ith = 0 for all ¢ > 0! For this system to be a greedy
shaper, it has to output the bits as soon as possible. Now thergeneral result about systems satisfying
conditions 1.13.

LEMMA 1.6 (A min-plus linear system)Assume that is a “good” function (that is, is sub-additive and
o(0) = 0). Among all functionsS(t) satisfying conditions 1.13 for some fixed funct®nthere is one that
is an upper bound for all. Itis equal tB ® o

PROOF OF THE LEMMA : The lemma is a special case of a general result in Chapter wevéo, it is
also possible to give a very simple proof, as follows.

DefineS* = R ® 0. Sinceo is a “good” function, it follows immediately tha%* is a solution to Sys-
tem (1.13). Now, letS’ be some other solution. We ha$é < R and thus

S'<Sy@o=5*

ThereforeS* is the maximal solution. O

Note that the lemma proves the existence of a maximal solutidSystem (1.13). Note also that, in the
lemma, functionk need not be wide-sense increasing.

32 CHAPTER 1. NETWORK CALCULUS

Now we can use the lemma by showing ti&t = S*. FunctionR is wide-sense increasing, thus sais
Obviously, R* is a solution of System (1.13), thug*(¢) < S*(¢) for all t. Now if there would be some
such thatR*(t) # S*(t), then this would contradict the condition that the greedgpsi attempts to send
the bits out as early as possible. O

The following corollary derives immediately.

COROLLARY 1.2 (Service Curve offered by a Greedy Shap&hnsider a greedy shaper with shaping
curveo. Assume that is sub-additive and (0) = 0. This system offers to the flow a service curve equal to
g.

fresh traffic shaper

o-smooth

b s b,
R R*

Figure 1.14:Reshaping example.

EXAMPLE : BUFFER SIZING AT A RE-SHAPER Re-shaping is often introduced because the output of
a buffer normally does not conform any more with the traffiatcact specified at the input. For example,
consider a flow with the arrival curve(t) = min(pt + M, rt + b) that traverses a sequence of nodes, which
offer a service curvgg; = Srr. A greedy shaper, with shaping curyeis placed after the sequence of
nodes (Figure 1.14). The input to the shapRrif the figure) has an arrival curve*, given by Proposi-
tion 1.15. Corollary 1.2 gives a service curve property far yjreedy shaper, thus the buff@rrequired at
the greedy shaper is the vertical distan€e™, o). After some algebra, we obtain:

if bp__r <T then b+ T'r
B={ if =M >Tandp>R then M+ =00=H 4 7p (1.14)
else M+Tp

COROLLARY 1.3 (Buffer Occupancy at a Greedy Shapetpnsider a greedy shaper with shaping cusve
Assume that is sub-additive and-(0) = 0. Call R(¢) the input function. The buffer occupaneyt) at
timet is given by

x(t) = sup {R(t) — R(s) —o(t —s)}

0<s<t

PROOF: The backlog is defined by(t) = R(t) — R*(t), whereR* is the output. We apply Theorem 1.11
and get:

z(t) = R(t) — inf {R(s)+o(t—s)} = R(t)+ sup {—R(s) —o(t —s)}

0<s<t 0<s<t
O

Note that Lemma 1.2 is a special case of this corollary.

In min-plus algebraic terms, we say that a system is linedrtiame invariant if its input-output character-
ization has the formR* = R ® g (wherej is not necessarily sub-additive). We can thus say from the
theorem that greedy shapers are min-plus linear and tinagiamt systems. There are min-plus linear and

1.5. GREEDY SHAPERS 33

time invariant system that are not greedy shapers. For dearapnode imposing aonstantdelay T is
characterized by the input-output relationship

R*=R®dr

Compare to the guaranteed delay node (namely, a node ingpasiariable delay bounded), for which
the input-output relationship is a service curve property :

R*> R® or

The rest of this Section illustrates similarly that the itiputput characterization of greedy shapé&rs=
R ® o is much stronger than the service curve property describ€brollary 1.2.

1.5.3 PROPERTIES OF GREEDY SHAPERS

Consider again Figure 1.14. We have seen in the previouosdubw we can compute the buffer size
required at the greedy shaper. Now if greedy shapers amdited along a path, then some bits may be
delayed at the shaper, thus the end-to-end delay mightaserdHowever, this is not true, as the following
results state that, from a global viewpoint, “greedy shsjgeme for free”.

THEOREM 1.12 (Re-Shaping does not increase delay or buffer reqeinesh Assume a flow, constrained
by arrival curvea, is input to networkss; and S, in sequence. Assume a greedy shaper, with carrex

is inserted betwees; and S,. Then the backlog and delay bounds given by Theorem 1.4 dosytsiem
without shaper are also valid for the system with shaper.

The conditiono > « means that re-shaping maybe only partial.

PrRoOF: Call 3; the service curve af;. The backlog bound in Theorem 1.3 is given by
v(a, f1 @0 ® B2) =v(a,0 @ P @ Pa) (1.15)

Now the last expression is the backlog bound obtained if wehmishaper immediately at the entrance of
the network. Clearly, this introduces no backlog, whichvehithat the overall backlog is not influenced by
the shaper. The same reasoning applies to the delay bound. O

If you read carefully, you should not agree with the last geaph. Indeed, there is a subtlety. The bounds in
Section 1.4 are tight, but since we are using several bowggther, there is no guarantee that the resulting
bound is tight. All we can say at this point is that the bounthpated for the system with shaper is the
same if we put the shaper in front; we still need to show thabibund for such a system is the same bound
as if there would be no shaper. This can be proven in a numheays. We give here a computational one.
The proof relies on Lemma 1.7, given below. O

LEMMA 1.7. Leta and o be “good” functions. Assume < o. Then for any functior, v(a, o ®) =
v(e, B) andh(a, 0 @ B) = h(a, B).

PrROOF: We use the reduction to min-plus deconvolution explaine8ention 3.1.11. We have:
v(a,0®B) =[ao (0@)|(0)

Now from Theorem 3.12 on Page 1282 (0 ®3) = (a«@0c)@ /3. Also, sinces > «, we havex®o < a0a.
Now o @ o« = o becausey is a “good” function, thus

a0cxp)=a0p (1.16)

34 CHAPTER 1. NETWORK CALCULUS

and finallyv(a, 0 @) = v(a, B).

Similarly 2(c, 8) = inf{d such that (a @ 8)(—d) < 0} which, combined with (1.16) proves thata, o ®

B) = h(a, B). O
Consider again Figure 1.14. Assume that the first netwonk et and the greedy shaper are placed in the
same node. Theorem 1.12 says thatttital buffer required for this combined node is the same as if there
would be no greedy shaper at the output. Thus, if you can digadisnallocate buffer space from a common
pool to the first network element and the greedy shaper, tiegreedy shaper costs no memory. However,
the greedy shaper does need some buffer space, as givendtidig(d.14). Similarly, the theorem says that
there is no penalty for the worst-case delay.

In contrast, placing a greedy shaper has an obvious benbfithiirstiness of the flow admitted in the next
network element is reduced, which also reduces the buftgrired in that element. To be more concrete,
consider the example “Pay Bursts Only Once” in Section 1.A&ume that a re-shaper is introduced at
the output of the first node. Then the input to the second nedetliie same arrival curve as the fresh
input, namely;y, , instead ofy,., .7, . The buffer required for the flow at node 2 is thies 75 instead of
b+4%]ﬁ-%]§)

The following result is another “physical” property of gdgeshapers. It says that shaping cannot be undone
by shaping.

THEOREM 1.13 (Shaping Conserves Arrival Constraint&ssume a flow with arrival curve is input to a
greedy shaper with shaping curve Assume is a “good” function. Then the output flow is still constrathe
by the original arrival curven.

PROOF:
RF=R®0c<(R®a)®o

since the conditior? < R ® « expresses that is an arrival curve. Thus
RF<R®oc®a=R"®«

O

The output of the greedy shaper has thiis(«, o) as an arrival curve. If is also a “good” function, we
know (Lemma 1.5) that the sub-additive closurexthi(a, o) isa ® o.

EXAMPLE (ATM M ULTIPLEXER): Consider an ATM switch that receives 3 ATM connections, each
constrained by GCRA(10, 0) (periodic connections). Thedwserves the connection in any work con-
serving manner and outputs them on a link with rate 1 cellipez slot. What is a good arrival curve for the
aggregate output ?

The aggregate input has an arrival cutve= 3v;9. Now the server is a greedy shaper with shaping curve
o = vy, thus it keeps arrival constraints. Thus the output is camstd by3vi9 o ® v1,0, Which is a “good”
function. We have already met this example in Figure 1.6.

1.6 MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY

1.6.1 MaxiIMUM SERVICE CURVES

If we modify the sense of the inequation in the definition afvgm curve in Section 1.3, then we obtain a
new concept, callechaximum service curyeavhich is useful to (1) account for constant delays and (2) in
some cases to establish a relationship between delay aklbtpac

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 35

DEeFINITION 1.8 (Maximum Service Curve)Consider a systen§ and a flow throughS with input and
output functionR and R*. We say thafS offers to the flow anaximum service curve if and only ify € F
andR* < R®w~y

Note that the definition is equivalent to saying thas wide-sense increasing and that
R*(t) < R(s) +(t —)
for all t and alls < ¢, or equivalently
R¥(t) = R*(s) < B(s) +~(t — s)
whereB(s) is the backlog at time. A greedy shaper with shaping curweofferso both as a service curve

and a maximum service curve.

In general, the concept of maximum service curve is not agepgohas the concept of service curve. How-
ever, as we see below, it can be useful to account for maxinates and for constant propagation delays.
We also see in Chapter 6 that it allows us to find good boundadgregate multiplexing.

The following propositions give two special cases of inserd heir proof is easy and left to the reader.

ProrPoOsITION1.16 (Minimum Delay).A lossless node offers a maximum service curve equat tband
only if it imposes a minimum virtual delay equalto

PropPoOsSITION1.17 (Arrival Constraint on Output)Assume the output of a lossless node is constrained by
some arrival curver. Then the node offers as a maximum service curve.

Like minimum service curves, maximum Service curves candneatenated:

THEOREM 1.14 (Concatenation of Nodeshssume a flow traverses systefh@andSs, in sequence. Assume
thatS; offers a maximum service curvenfi = 1, 2 to the flow. Then the concatenation of the two systems
offers a service curve of; ® v» to the flow.

PROOF: The proof mimics the proof of Theorem 1.8 O

APPLICATION : Consider a node with a maximum output rate equal &md with internal propagation
delay equal tdl". It follows from Theorem 1.14 and the two previous proposisi that this node offers to
any flow a maximum service curve equal to the rate-latencgtfon 3. 7(t) = [c(t — T)]*.

Maximum service curves do not allow us to derive as strongltesas (ordinary) service curves. However,
they can be used to reduce the output bound and, in some t@asésain a minimum delay bound. Indeed,
we have the following two results.

THEOREM 1.15 (Output Flow, generalization of Theorem 1.5Assume a flow, constrained by arrival
curveq, traverses a system that offers a service cyhand a maximum service curye The output flow is
constrained by the arrival curve* = (a ® v) © S.

PrROOF: Instead of a computational proof as with Theorem 1.5, itrigodér at this stage to use min-plus
algebra. CallR and R* the input and output functions, and consid&r » R*, the minimum arrival curve
for R*. We haveR* < R® yandR* > R ® (3, thus

R OR* < (R®7v) 0 (R®p)

36 CHAPTER 1. NETWORK CALCULUS

From Rule 12 in Chapter 3, Theorem 3.12, applied te R ® v, g = R andh = 3, we derive
RFoR <{(R®vy)oR}2p
Now from the commutativity of and from Rule 13 in Theorem 3.12:
{(Rev)oRt={(yoR)o R} <{y® (RO R)}

Thus
RoR <{yo(RoR)}oB<(y®@a)0p

O

THEOREM 1.16 (Minimum Delay Bound).Assume a flow, constrained by arrival curue traverses a
system that offers a maximum service curve.oAssume that(D) = 0. The virtual delayd(t) satisfies
d(t) > D for all ¢.

PrROOF: We haveR*(t) < R(t — D) + v(D) thusR*(t) < R(t — D) O
Note that the output bound is improved by the knowledge oftagimum service curve since in general we
expecta ® to be less tham. In contrast, the minimum delay bound gives some new inftomanly in

the cases where there is a latency part in the maximum seswige, which is the case for the first example
(Minimum Delay), but not in general for the second examplgi@@l Constraint on Output).

NUMERICAL EXAMPLE: Consider again the example illustrated in Figure 1.13. lsefitst apply
Theorem 1.5 and compute an arrival cunggfor the output. The details are as follows. We have

043 = 10v95.4 © P18 = 10vV95 4 © (A1 ®dg)
Now from Rule 15 in Chapter 3, we have
018 = (102125,4 @ 58) QM

Now (10v2s 4 @ dg)(t) = 10v254(t + 8) = 10v95 12(t), and a straightforward application of the definition
of @ shows that finallyx; = vas 12.

Assume now that we have more information about the node,raidve can model is as nodg defined as
the concatenation of two schedulers and a fixed delay ele(Ranire 1.15). Each scheduler offers to the
aggregate flow a service curyi, 7, with rate Ry = 1 cell per time slot and latency, = 2 time slots.
The delay element is a link with maximum rate equall toell per time slot, and a fixed propagation and
transmission delay equal fiatime slots. The delay element is thus the combination of adyrshaper with
shaping curve\;(t) = t and a fixed delay elemenj. We can verify that the concatenation of the three
elements in node 1 offers a service curve equahto® A\ ® 64 ® B1 2 = B1,8. Now, from the delay element
allows us to say that, in addition, the node also offers taatjgregate flow amaximum service curvequal
to 51,4. We can apply Theorem 1.15 and derive from that the outputristcained by the arrival curve;
given by

a] = (a® P14) 0 Pig

The computation is similar to that of; and involves the computation @0v25 4 ® A, which is similar to
the example illustrated in Figure 1.6. Finally, we have:

i (t) = (10v25.4 @ A1)(t +4)

Figure 1.15 shows that] is a better bound than the arrival curag that we would obtain if we did not
know the maximum service curve property.

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 37

ff

Node S[i delay =4

())
OL;’ [31,2 :| Bl,z

--

Node Sz§ delay =4
: maximum rate = 1 -
o 2
> B Bz :| >

cells

oa=10u 54

TT T T T T T T 1T T T T 1T 11 o711 1™
=
o

/!

time slots
I T T | L } I } N I } I } | } L \=
0 10 20 30 40 50
A: cells
L ag* =101 55 15 (D)
[o #(t) = (10 U 5 4 ® A))(t+4)
[+ a*(t) = (10 u 55 § ® A))(t)
L time slots
A | } A | } Y I } Y I } I | } L \#
10 20 30 40 50

Figure 1.15:Use of maximum service curve to improve output bound. The figure is for the same example
as Figure 1.15. Top: nodes S; and Ss, two possible implementations of a system offering the overall service
curve 3 g. Middle: arrival curve « and overall service curve 3; s. Bottom: constraint for the output. «f (top
curve, thick, plain line) is obtained with the only knowledge that the service curve is 51 s. o] (middle curve,
thick, dashed line) is obtained assuming the system is S;. «; (bottom curve, thin, plain line) is obtained
assuming the system is S,.

38 CHAPTER 1. NETWORK CALCULUS

Assume next that we change the order of the delay elementda &b and place it as the last element of
the node. CallS, the resulting node. Then the conclusion of the previousgaph remains, since the
bounds are insensitive to the order, due to the commutatfitnin-plus convolution. Thus the output of
systemS, also hasy] as an arrival curve. However, in that case, we can also mbdel¢lay element as
the combination of a shaper, with shaping cuie(corresponding to a fixed rate dfcell per time slot),
followed by a fixed delay element, with constant delay eqodltime slots. The input to the shaper has an
arrival curve equal ter © 14, Wherea = 10vo5 4 is the fresh arrival curve. Thus, from the properties of
shapers, the output of the shaper is constrained by

Oé; = (Oé @ ,8174) ® A = 107}2578 ® A1

Since the fixed delay component does not alter the flow, theubwlf systemS,; hasas as an arrival curve.
Figure 1.15 shows that} is a better bound tham].

This fact is true in general: whenever a network element aambdeled as a shaper, then this model
provides stronger bounds than the maximum service.

1.6.2 DELAY FROM BACKLOG

In general it is not possible to bound delay from backlog wlith framework of service curves, except in
one particular but important case.

THEOREM1.17. Assume a lossless node offers to a flow a minimum service gand a maximum service
curve~y, such thats(t) = y(t — v). Let f be the max-plus deconvolutiom@~, that is,

F(t) = infly(s +1) = v(s)]
Then the backlod3 () and the virtual delayi(t) satisfy

fld(t) —v) < B(t)

If in addition v is super-additive, then

pld(t)) < B(t)

PROOF: Fix somet > 0; we havel(t) = inf E; where the seE; is defined by
E,={s>0:R*(t+s) > R(t)}
SinceR* and R are wide-sense increasingj; is an interval. Thus
d(t) =sup{s >0: R*(t+s) < R(t)}

We assume thak and R* are left-continuous. It follows that

R*(t+d(t)) < R(t)
For some arbitrary, we can find some such that

R*(t+d(t)) > R(s)+ B(t —s+d(t)) —€

Now from the maximum service curve property

R*(t) — R(s) < ~(t —s)

1.6. MAXIMUM SERVICE CURVE, VARIABLE AND FIXED DELAY 39

Combining the three gives

B(t) = R(t) — R*(t) =2 B(t —s +d(t)) —v(t —s) —e=7(t —s+d(t) —v) —y(t —5) — €

B() > infy(d(t) = v+ w) = 7(w) (117)

From the definition off, the latter term igf (d(t) — v). Finally, if v is super-additive, theno~ = ~ O
We can apply the theorem to a practical case:

COROLLARY 1.4. Assume a lossless node offers to a flow a minimum service gurvg, , and a maximum
service curvey = 3, ,+, withv’ < v. The backlogB(t) and the virtual delayi(t) satisfy
B(t)

d(t) < —=2
(t) < " +

PrRoOOF: We apply the theorem and note thais super-additive, because it is convex. O

1.6.3 \ARIABLE VERSUS FIXED DELAY

Some network elements impose fixed delays (propagationrandmission), whereas some other network
elements impose variable delays (queueing). In a numbeases; it is important to evaluate separately the
total delay and the variable part of the delay. The totalyd&ortant, for example, for determining
throughput and response time; the variable part is impbftandimensioning playout buffers (see Sec-
tion 1.1.3 for a simple example, and chapter 5 for a more géwkscussion). We have seen at the end of
end of Section 1.5.2 that a node imposing a constant delapeamdeled as a min-plus linear system. Be-
yond this, the concept of maximum service curve is a tooldting apart variable delay from fixed delay,
as follows.

Consider a network, made of a series of network elemgnts I, each element being the combination of a
fixed delayd; and a variable delay. Assume the variable delay compongarsd service curvg;. A fixed
delay component offei;, both as a service curve and as a maximum service curve. Defing; ®...Q 6,
the network offers as end-to-end service cutve 64, +q4,, and as end-to-end maximum service curve
dd, +...+d;- Assume the input flow is constrained by some arrival curvgom Theorems 1.4 and 1.16, the
end-to-delayd(t) satisfies

di+...+dr < d(t) < h(a,ﬁ & 5d1+...+d1)

By simple inspectionh(«, 8 ® d4,+..+d,) = di + ... + dr + h(«, B), thus the end-to-end delay satisfies
0<d(t) —[dy + ... + df] < h(a, B)

In the formula,d; + ... 4+ d; is the fixed part of the delay, arid«,) is the variable part. Thus, for the
computation of the variable part of the delay, we can simghpore fixed delay components.

Similarly, an arrival curve constraint for the output is

o = (Oé ® 5d1+---+d1) @ (5 ® 5d1+---+d1) =a0f

thus the fixed delay can be ignored for the computation of thput bound.

For the determination of backlog, the alert reader canyebsitonvinced that fixed delays cannot be ignored.
In summary:

40 CHAPTER 1. NETWORK CALCULUS

PropPOsITION1.18. 1. For the computation of backlog and fixed delay bounds, fixadriable delay
are modeled by introducing; functions in the service curves. As a consequence of the gtativity
of ®, such delays can be inserted in any order along a sequenaogfef$, without altering the delay
bounds.
2. For the computation of variable delay bounds, or for an\al constraint on the output, fixed delays
can be ignored.

1.7 HANDLING VARIABLE LENGTH PACKETS

All results in this chapter apply directly to ATM systemsingsdiscrete time models. In contrast, for variable
length packets (as is usually the case with IP services)ke te additional subtleties, which we now study
in detail. The main parts in this section is the definition qfeeketizer, and a study of its effect on delay,
burstiness and backlog bounds. We also revisit the noti@haer in a variable length context. For the rest
of this section, time is continuous.

Throughout the section, we will consider some wide senseeasing sequences of packet arrival times
T; > 0. We assume that for allthe set{i : 7; < ¢} is finite.

1.7.1 AN EXAMPLE OF IRREGULARITY INTRODUCED BY VARIABLE LENGTH PACKETS

The problem comes from the fact that real packet switchirsesys normally output entire packets, rather
than a continuous data flow. Consider the example illustrateFigure 1.16. It shows the output of a
constant bit rate trunk, with rate that receives as input a sequence of packets, of diffeiseg.sCalll;, T;

the size (in bits) and the arrival epoch for tltle packet; = 1,2, The input function is

R(t) =Y Lil{r<y (1.18)

In the formula, we used the indicator functidnexprywhich is equal td if expris true, and) otherwise.

We assume, as is usual in most systems, that we observe dinty ackets delivered by the trunk. This is
shown asR’(t) in the figure, which results from the bit-by-bit outpBt by a packetization operation. The
bit-by-bit outputR* is well understood; we know from Section 1.5 tligt = R ® A,.. However, what is the
effect of packetization ? Do the results in Sections 1.4 aBdstlll hold ?

L, +1L+1 R'(T)

K:>(PL) 11+12 ‘

T T, Ts

A

L L

v

Figure 1.16:A real, variable length packet trunk of constant bit rate, viewed as the concatenation of a
greedy shaper and a packetizer. The input is R(¢), the output of the greedy shaper is R*(t), the final output
is the output of the packetizer is R’(t).

1.7. HANDLING VARIABLE LENGTH PACKETS 41

Certainly, we should expect some modifications. For exantpiebit-by-bit outputR* in the figure is the
output of a greedy shaper with curve, thus it has)\. as an arrival curve, but this is certainly not true
for R'. Worse, we know that a greedy shaper keeps arrival contsrditus if R is o-smooth for somer,
then so isR*. However, this is not true foR’. Consider the following example (which is originally from
[34]). Assume that(t) = lnax + rt With r < ¢. Assume that the input flow?(¢) sends a first packet
of sizel; = I attimeT; = 0, and a second packet of sizeat time1, = 172 Thus the flowR is
indeedo-smooth. The departure time for the first packef’fs= lm% Assume that the second packets
small, specifically/s < Zlnax; then the two packets are sent back-to-back and thus thetdegpéime for
the second packet 5, = 77 + % Now the spacing’ — 77 is less thanﬂ%, thus the second packet is not
conformant, in other words?’ is noto-smooth. Note that this example is not possible if all paclkee the
same size.

We will see in this section that this example is quite genepalcketizing variable length packets does
introduce some additional irregularities. However, we @&k to quantify them, and we will see that the
irregularities are small (but may be larger than the order mdicket length). Most results are extracted from
[50]

1.7.2 THE PACKETIZER

We first need a few definitions.

DEFINITION 1.9 (cumulative packet lengthsp sequencd. of cumulative packet lengths is a wide sense
increasing sequenad.(0) = 0, L(1), L(2), ...) such that

lmax = sup{L(n + 1) - L(n)}
is finite
In this chapter, we interpret(n) — L(n — 1) as the length of theth packet. We now introduce a new
building block, which was introduced in [11].

DEFINITION 1.10 (FunctionP” [11]). Consider a sequence of cumulative packet lengtisgth L(0) = 0.
For any real number, define

PH(z) = Sgg{L(n)l{L(n)Sx}} (1.19)

Figure 1.17 illustrates the definition. Intuitiveli(z) is the largest cumulative packet length that is entirely
contained inc. FunctionP* is right-continuous; if? is right-continuous, then so B (R(t)). For example,
if all packets have unit length, thei(n) = n and forz > 0: PX(x) = |z]. An equivalent characterization
of PLis

PE(z) = L(n) <= L(n) <z < L(n+ 1) (1.20)
DEFINITION 1.11 (Packetizer [31, 67, 19, 11]onsider a sequenck of cumulative packet lengths. An
L-packetizer is the system that transforms the inR(#) into PZ(R(t)).

For the example in Figure 1.16, we hakt) = P (R*(t)) and the system can thus be interpreted as the
concatenation of a greedy shaper and a packetizer.

The following equation follows immediately:
T — lmax < PL(ac) <z (1.21)

DEFINITION 1.12. We say that a flowR(t) is L-packetized ifP*(R(t)) = R(t) for all ¢.

42 CHAPTER 1. NETWORK CALCULUS

P(x)

A
L(5)
L(4) L((3 j

L(2)
L(1)

> x
L(1) L(2) L(3)L(4) L(5)

Figure 1.17:Definition of function P~.

The following properties are easily proven and left to thedes.

e (The packetizer is isotone) if < y then PX(x) < PL(y) forall z,y € R.

o (Pl isidempotent)yP(PE(z)) = PE(z) forallz € R

e (Optimality of Packetizer) We can characterize a packeiize similar way as we did for a greedy
shaper in Section 1.5. Among all flows$t) such that

(1.22)

x is L-packetized
<R

there is one that upper-bounds all, and iP&(R(t)).
The proof for this last item mimics that of Lemma 1.6; it relen the property thaP” is idempotent.

We now study the effect of packetizers on the three boundsdfdn Section 1.4. We first introduce a
definition.

DEeFINITION 1.13 (Per-packet delay)Consider a system with- packetized input and output. Cal}, 7!
the arrival and departure time for thi¢gh packet. Assume there is no packet loss. The per-packat el
sup; (T} — T3)

Our main result in this section is the following theoremystrated in Figure 1.18.

THEOREM 1.18 (Impact of packetizer)Consider a systenbit-by-bit system with L-packetized inpuf?
and bit-by-bit outputR*, which is thenL-packetized to produce a final packetized outfit We call
combined systerthe system that magg into ?’. Assume both systems are first-in-first-out and lossless.

1. Theper-packet delajor the combined system is the maximum virtual delay for tlbybbit system.
2. Call B* the maximum backlog for the bit-by-bit system @idhe maximum backlog for the combined
system. We have
B* < B' < B" + lmax

3. Assume that the bit-by-bit system offers to the flow a memiservice curve and a minimum service
curve 3. The combined system offers to the flow a maximum service gwand a minimum service
curve/3’ given by

1.7. HANDLING VARIABLE LENGTH PACKETS 43

4. If some flowS(t) hasa(t) as an arrival curve, themP”(S(t)) hasa(t) + lmax1g~0} @s an arrival
curve.

The proof of the theorem is given later in this section. Befave discuss the implications. Item 1 says that

Combined System

R(t) R'(t)

pwL)

Bit-by-bit system

Figure 1.18:The scenario and notation in Theorem 1.18.

appending a packetizer to a node does not increase the mtigtat this node. However, as we see later,
packetization does increase the end-to-end delay.

Consider again the example in Section 1.7.1. A simple lodkeafigure shows that the backlog (or required
buffer) is increased by the packetization, as indicateddan 2. Item 4 tells us that the final outpiit has
d'(t) = o(t) + lmax1t=0 @s an arrival curve, which is consistent with our observaiibSection 1.7.1 that
R’ is noto-smooth, even thougR* is. We will see in Section 1.7.4 that there is a stronger teisutelation
with the concept of “packetized greedy shaper”.

Iltem 3 is the most important practical result in this sectitirshows that packetizing weakens the service
curve guarantee by one maximum packet length. For exanfiplsystem offers a rate-latency service curve
with rate R, then appending a packetizer to the system has the effenti@dsing the latency dy}%.

Consider also the example in Figure 1.16. The combinatidheofrunk and the packetizer can be modeled
as a system offering

e a minimum service curvéc Imax
- - ’ c
e a maximum Service curvs,

PROOF OF THEOREM 1.18

1. For some such thatl; <t < T;;; we haveR(t) = L(i) and thus
sup d(t) = d(T;)
tE[Ti,TZ‘+1)
now
d(T;) =T - T;

)

Combining the two shows that
supd(t) = sup(T} — T;)
t %

2. The proof is a direct consequence of (1.21).

44 CHAPTER 1. NETWORK CALCULUS

3. The result on maximum service curyéollows immediately from (1.21). Consider now the minimum
service curve property.
Fix some timef and defingy by T, <t < Tj,41. Forl < i < iy and forZ;_; < s < 17 we have
R(s) = R(T;-1) andg is wide-sense increasing, thus

inf_(R(s) + B(t — 8)) = R(Ti_1) + B,(t —) = Ri(T3) + B,(t — T})

T;—1<s<T;

whereg, [resp. R;] is the limit of 5 to the right [resp. of® to the left]. Similarly
inf (R(s)+ B(t—s)) = R(t)

SG[TZ'O Jt]

sincef(0) = 0. Thus (case 1) either there is soin€ i such tha{ R ® 8)(t) = Ri|(T;) + B, (t — T3)
or (case 2) R ® B)(t) = R(t).
Consider case 1. By hypothesigi(t) > (R ® 3)(t), thus

R'(t) 2 R*(t) = lmax = Ri(T3) + Br(t — Ti) — lnax
On the other handi*(t) > R;(T;) = R(T;—1) andR is L-packetized, thus
R'(t) > Ri(T;)
Combining the two shows that

R,(t) max [Rl(T’Z)» Rl (le) + ﬁr(t - le) - lmax]

Rl(Tz) + max [ﬁr(t - Tz) - lmax> O]
= R(T;) + B(t — Tj)

Now fix some arbitrary > 0. By definition of the limit to the right, we can find somes (7;_1,T;)
such thats(t — s) < B,(t — T;) + €. Now R(s) = R;(T;) thus
R(t) = R(s) + Bt —s) —e 2 (R® B)(t) — ¢

This is true for alle > 0 thusR'(t) > (R ® (’)(t), which proves that the service curve property holds
for case 1. The proof for case 2 is immediate.
4. The proof is a direct consequence of (1.21).

v

EXAMPLE : CONCATENATION OF GPSNODES Consider the concatenation of the theoretical GPS node,
with guaranteed rat® (see Section 1.3.1 on Page 18) and/apacketizer. Assume this system receives
a flow of variable length packets. This models a theoreticalenthat would work as a GPS node but is
constrained to deliver entire packets. This is not veryisga) and we will see in Chapter 2 more realistic
implementations of GPS, but this example is sufficient tdarpne important effect of packetizers.

By applying Theorem 1.18, we find that this node offers a latieacy service curvg, ,... Now con-

catenatem such identical nodes, as illustrated in Figure 1.19. Theterghd service gurve is the rate
latency-function3g with
lmax
T =
"R
We see on this example that the additional latency introdibbyeone packetizer is indeed of the order of one
packet length; however, this effect is multiplied by the fn@mof hops.

For the computation of the end-to-end delay bound, we netakéointo account Theorem 1.18, which tells
us that we can forget the last packetizer. Thus, a bound oiceadd delay is obtained by considering that
the end-to-end path offers a service curve equal to thedgtkmction S 7, with

lmax
TO = (m — 1) R

1.7. HANDLING VARIABLE LENGTH PACKETS 45

Rate R, latency (m - 1) |,.../R

LfL, . T+T, . T+T, =i 4

Figure 1.19:The concatenation of several GPS fluid nodes with packetized outputs

For example, if the original input flow is constrained by oealy bucket of rate and bucket pool of size
b, then an end-to-end delay bound is

b+ (m — 1)lnax

R

The alert reader will easily show that this bound is a worsedaound. This illustrates that we should be
careful in interpreting Theorem 1.18. It is only at the lagplthat the packetizer implies no delay increase.
The interpretation is as follows. Packetization delaysfitts¢ bits in a packet, which delays the processing
at downstream nodes. This effect is captured in (1.23). timsary:

(1.23)

REMARK 1.1. Packetizers do not increase the maximum delay at the node\iiey are appended. How-
ever, they generally increase the end-to-end delay.

We will see in Chapter 2 that many practical schedulers cambéeled as the concatenation of a node
offering a service curve guarantee and a packetizer, andilvgive a practical generalization of (1.23).

1.7.3 A RELATION BETWEEN GREEDY SHAPER AND PACKETIZER

We have seen previously that appending a packetizer to dystmper weakens the arrival curve property
of the output. There is however a case where this is not trugs dase is important for the results in
Section 1.7.4, but also has practical applications of ita.dwigure 1.20 illustrates the theorem.

y

—»(P-) (o) (Pt)
R,(t) R(T) R*(t) RO (¥)

Figure 1.20:Theorem 1.19 says that R(") is o-smooth.

THEOREM 1.19. Consider a sequenck of cumulative packet lengths and c&l}, the L-packetizer. Con-
sider a “good” functiono and assume that

{ There is a sub-additive functiar, and a numberf > [, such that

o(t) = oo(t) + U140 (1.24)

Call C, the greedy shaper with shaping curveFor any input, the output of the composittd?y, o C, o Py,
is o-smooth.

®We use the notatiof®;, o C, to denote the composition of the two operators, Withapplied first; see Section 4.1.3.

46 CHAPTER 1. NETWORK CALCULUS

In practical terms, the theorem is used as follows. Considdr-packetized flow, pass it through a greedy
shaper with shaping curve and packetize the output; then the resultismooth (assuming thatsatisfies
condition in (1.24) in the theorem).

Note that in general the output 6f o Py, is not L-packetized, even if satisfies the condition in the theorem
(finding a counter-example is simple and is left to the reddeher enjoyment). Similarly, if the input to
Pr, o C, is not L-packetized, then the output is netsmooth, in general.

The theorem could also be rephrased by saying that, undditiconin (1.24)
ProC,oPr=C,0ProlCso0Pr

since the two above operators always produce the same output

DiscussioN OF CONDITION IN (1.24) Condition (1.24) is satisfied in practice df is concave and
0r(0) > lmax, Whereo,.(0) = inf;~o o(t) is the limit to the right ofc at0. This occurs for example if the
shaping curve is defined by the conjunction of leaky buckatsyith bucket size at least as large as the
maximum packet size.

This also sheds some light on the example in Figure 1.16:rbtdgm occurs because the shaping cuwwe
does not satisfy the condition.

The alert reader will ask herself whether a sufficient caorifor (1.24) to hold is that is sub-additive and
0,(0) > lmax. Unfortunately, the answer is no. Consider for example tag unctiono = l,.cvr. We
haveo, (0) = lax but if we try to rewrites into o (t) = oo(t)+11;~0 we must havé = lmax andog(t) = 0
for t € (0,77]; if we impose that is sub-additive, the latter implies, = 0 which is not compatible with
(1.24)!

PROOF OF THEOREM 1.19: We use the notation in Figure 1.20. We want to show Bfat is o-smooth.
We haveR* = R ® o. Consider now some arbitragyand¢ with s < ¢. From the definition of min-plus
convolution, for alle > 0, there is some < s such that

(R®o)(s) > R(u) +o(s—u)—¢ (1.25)

Now consider the se of ¢ > 0 such that we can find one < s satisfying the above equation. Two cases
are possible: either is an accumulation point fak® (case 1) , or not (case 2).

Consider case 1; there is a sequefge s,), with s,, < s,

lim ¢,=0
n——+o0o

and
(R®@o)(s) = R(sn) +0(s — sn) — €n

Now sinces,, < t:
(R®0o)(t) < R(sp) +o(t—sy)

Combining the two:
(Reo)(t)—(R®o)(s) <o(t—s,) —o(s —sp) + €
Nowt — s, > 0 ands — s,, > 0 thus

ot —sp) —o(s—sp) =00t —sp) —oo(s —spn)

"The same conclusion unfortunately also holds if we replabessiditive by “star-shaped” (Section 3.1).
8namely, there is a sequence of element& iwhich converges t0

1.7. HANDLING VARIABLE LENGTH PACKETS a7

We have assumed tha is sub-additive. Now > s thus
oot — sn) —o0(s — sp) < oot — s)
we have thus shown that, for ail
(R®o)(t) = (R@o)(s) < oot —s) +en

and thus
(R®0o)(t) — (R®o)(s) < oot —s)

Now from (1.21), it follows that
RW(#) — RM(s) < 0ot — 8) + lmax < (t — 5)

which ends the proof for case 1.

Now consider case 2. There is somesuch that forl0 < e < ¢y, we have to take, = s in (1.25). This
implies that

(R®0)(s) = R(s)
Now R is L-packetized by hypothesis. Thus
RW(s) = PY((R @ 0)(s)) = PY(R(s)) = R(s) = (R 7)(s)

thus
RW(t) — RW(s) = PH(R®o)(t) — (R 0)(s)

(R o)) — (R®a)(s)

VAN

now R ® o hasco as an arrival curve thus
RW(t) — RW(s) < o(t — s)

which ends the proof for case 2. O

EXAMPLE : BUFFERED LEAKY BUCKET CONTROLLER BASED ON VIRTUAL FINISH TIMES The-
orem 1.19 gives us a practical implementation for a packetdahaper. Consider that we want to build a
device that ensures that a packet flow satisfies some corpgiaeewise linear arrival curve (and is of course
L- packetized). We can realize such a device as the conciateradta buffered leaky bucket controller
operating bit-by-bit and a packetizer. We compute the dutme for the last bit of a packet (= finish time)
under the bit-by-bit leaky bucket controller, and reledmedntire packet instantly at this finish time. If each
bucket pool is at least as large as the maximum packet sineTiheorem 1.19 tells us that the final output
satisfies the leaky bucket constraints.

COUNTER-EXAMPLE If we consider non-concave arrival curves, then we can finéramal curvec
that does satisfyr(t) > lnax for ¢ > 0 but that does not satisfy (1.24). In such a case, the cooclusi
of Theorem 1.19 may not hold in general. Figure 1.21 showsxample where the outpuR!) is not
o-smooth, whermr is a stair function.

48 CHAPTER 1. NETWORK CALCULUS

- 100 R *
75
50
o5
R(1)
| | | % >
1 2 3 4 5 ¢

Figure 1.21:A counter example for Theorem 1.19. A burst of 10 packets of size equal to 10 data units
arrive attime ¢t = 0, and o = 25v,. The greedy shaper emits 25 data units at times 0 and 1, which forces the
packetizer to create a burst of 3 packets at time 1, and thus R(!) is not o-smooth.

1.7.4 RCKETIZED GREEDY SHAPER

We can come back to the questions raised by the example img=igi6 and give a more fundamental
look at the issue of packetized shaping. Instead of syrgimgsthe concatenation of a greedy shaper and a
packetizer as we did earlier, we define the following, cdesiswith Section 1.5.

DEeFINITION 1.14. [Packetized Greedy Shaper] Consider an input sequenceadgps, represented by the
function R(¢) as in (1.18). CallL the cumulative packet lengths. We gaéicketized shapewith shaping
curveo, a system that forces its output to hawvas an arrival curveand bel-packetized. We caflacketized
greedy shapea packetized shaper that delays the input packets in a buffemever sending a packet would
violate the constraint, but outputs them as soon as possible.

EXAMPLE : BUFFERED LEAKY BUCKET CONTROLLER BASED ON BUCKET REPLENISHMENT The
caser(t) = ming,—1,.. v (V.6 (t) €GN be implemented by a controller that observes a set fifiid buck-
ets, where thenth bucket is of sizé,,, and leaks at a constant ratg. Every bucket receiveg units of
fluid when packet is releasedlf is the size of packef). A packet is released as soon as the level of fluid
in bucketm allows it, that is, has gone down beldwy, — [;, for all m. We say that now we have defined
a buffered leaky bucket controller based on “bucket replamient”. It is clear that the output hasas an
arrival curve, isL-packetized and sends the packets as early as possibleitThpiements the packetized
greedy shaper. Note that this implementation differs frobetuffered leaky bucket controller based on vir-
tual finish times introduced in Section 1.7.3. In the lattiering a period where, say, bucketonly is full,
fragments of a packet are virtually released at raiebucketm remains full, and the (virtual) fragments
are then re-assembled in the packetizer; in the former, ifckdt becomes full, the controller waits until it
empties by at least the size of the current packet. Thus wecexpat the level of fluid in both systems is not
the same, the former being an upper bound. We will see hovie@wrollary 1.5 that both implementations
are equivalent.

In this example, if a bucket size is less than the maximum gtagike, then it is never possible to output a
packet: all packets remain stuck in the packet buffer, aaathput isR(¢) = 0. In general, we can say that

1.7. HANDLING VARIABLE LENGTH PACKETS 49

PropPOSITION 1.19. If 0,.(0) < Inax then the the packetized greedy shaper blocks all packetsviar
(namely,R(t) = 0). Thus in this section, we assume thét) > I,,,. for t > 0.

Thus, for practical cases, we have to assume that the activedo has a discontinuity at the origin at least
as large as one maximum packet size.

How does the packetized greedy shaper compare with the temat®@n of a greedy shaper with shap-
ing curveo and a packetizer ? We know from the example in Figure 1.16ttllebutput has’'(t) =

o(t) + lmax 11>0 @s an arrival curve, but net Now, does the concatenation implement a packetized greedy
shaper with shaping curwe ? Before giving a general answer, we study a fairly generasequence of
Theorem 1.19.

THEOREM 1.20 (Realization of packetized Greedy Shap&udnsider a sequenck of cumulative packet
lengths and a “good” functiorr. Assume that satisfies the condition in (1.24). Consider only inputs that
are L packetized. Then the packetized greedy shapes fand L can be realized as the concatenation of
the greedy shaper with shaping cuwveand theL-packetizer.

Packetized
Greedy Shaper

(L) and ©

v T v T

Figure 1.22: The packetized greedy shaper can be realized as a (bit-by-bit fluid shaper followed by a
packetizer, assuming (1.24) holds. In practice, this means that we can realize packetized greedy shaping
by computing finish times in the virtual fluid system and release packets at their finish times.

(P-)

\ 4
Y

\ 4

(o)

PrRoOOF: Call R(t) the packetized input; the output of the bit-by-bit greedgysr followed by a packe-
tizeris R (t) = PY(R ® o)(t)). Call R(t) the output of the packetized greedy shaper. We ffave R
thusR ® 0 < R ® o and thus

PYR®o) < P*(R®o0)

But R is o-smooth, thusk ® o = R, and isL-packetized, thu®’ (R ® ¢) = R. Thus the former inequality
can be rewritten a® < R(). Conversely, from Theorem 1.1&(!) is alsos-smooth and-packetized.
The definition of the packetized greedy shaper implies fhat R(!) (for a formal proof, see Lemma 1.8)
thus finallyR = R(W. O

We have seen that the condition in the theorem is satisfiedriticplar if o is concave and,.(0) > lyax,
for example if the shaping curve is defined by the conjunatibleaky buckets, all with bucket size at least
as large as the maximum packet size. This shows the following

COROLLARY 1.5. For L-packetized inputs, the implementations of buffered Ibakket controllers based
on bucket replenishment and virtual finish times are eqeival

If we relax (1.24) then the construction of the packetizeskdgy shaper is more complex:

50 CHAPTER 1. NETWORK CALCULUS

THEOREM 1.21 (I/O characterisation of packetized greedy shapé&snsider a packetized greedy shaper
with shaping curver and cumulative packet lengfh Assume that is a “good” function. The outpufR(¢)
of the packetized greedy shaper is given by

R = inf {R<1>, R® R®), } (1.26)
with RD () = PL((0 ® R)(t)) and R™(t) = PL((o @ RO~V)(t)) fori > 2.
Figure 1.23 illustrates the theorem, and shows the iteratinstruction of the output on one example. Note
that this example is for a shaping function that does nosfyaflL.24). Indeed, otherwise, we know from
Theorem 1.20 that the iteration stops at the first step, namRet= R() in that case. We can also check for
example that i = A, (thus the condition in Proposition 1.19 is satisfied) thenrgssult of (1.26) i9).

‘3 4 5

v

R()

R(3)

===
—>
v

}
R
——inf} - R® i

R = R@®

Figure 1.23:Representation of the output of the packetized greedy shaper (left) and example of output
(right). The data are the same as with Figure 1.21.

PrROOF: The proof is a direct application of Lemma 1.8 (which itsalfain application of the general
method in Section 4.3 on Page 144). O

LeEmMMA 1.8. Consider a sequenceé of cumulative packet lengths and a “good” functien Among all
flowsz(t) such that

<R
x is L-packetized (2.27)
x haso as an arrival curve

there is one flowR(¢) that upper-bounds all. It is given by (1.26).

ProOF: The lemma is a direct application of Theorem 4.9, as expthineSection 4.3.2. However, in
order to make this chapter self-contained, we give an at®e direct proof, which is quite short.

1.7. HANDLING VARIABLE LENGTH PACKETS 51

If 2 is a solution, then it is straightforward to show by induntiani thatz(t) < R®(t) and thusr < R.
The difficult part is now to show thak is indeed a solution. We need to show that the three condifion
(1.27) hold. Firstly,R(") < R(t) and by induction ori, R®) < R for all i; thusR < R.

Secondly, consider some fixed R(")(t) is L-packetized for alli > 1. Let L(ng) := RM(t). Since
RO (t) < RW(t), RY(t) is in the set

This set is finite, thusR(t), which is the infimum of elements in this set, has to be one eftfk) for
k < ng. This shows thafz(¢) is L-packetized, and this is true for any time

Thirdly, we have, for all

R(t) < V(1) = PH((0 @ RY)(1)) < (0 ® RV)(1)
thus
R <inf(o@ R™)
Now convolution by a fixed function is upper-semi-continspwhich means that
inf (o @ RN =0®R
This is a general result in Chapter 4 for any min-plus oper#o elementary proof is as follows.

inf; (o ® RW)(t) = infsepo.,ien [0(s) + RO(t — s)]
= infeepy {infieN [(0(3) + RO (¢ — 3)]}
= infoepo {o(s) + infien [RO(t —)]}
= infse[()_,t] [O‘(S) + R(t - S)]

(c @ R)(t)
Thus
R <o® E,
which shows the third condition. Note thAtis wide-sense increasing. O

DOES A PACKETIZED GREEDY SHAPER KEEP ARRIVAL CONSTRAINTS ? Figure 1.24 shows a counter-
example, namely, a variable length packet flow that hast®stitial arrival curve constraint after traversing
a packetized greedy shaper.

However, if arrival curves are defined by leaky buckets, westspositive result.

THEOREM 1.22 (Conservation of concave arrival constraint8ssume arl-packetized flow with arrival
curveq is input to a packetized greedy shaper with cumulative gdekgthZ and shaping curve. Assume
that « and o are concave with,.(0) > . @ando,-(0) > lax. Then the output flow is still constrained by
the original arrival curvea.

PROOF: Sinceos satisfies (1.24), it follows from Theorem 1.20 tiiat= P*(c® R). Now R is a-smooth
thus it is not modified by a bit-by-bit greedy shaper with shgurvea, thusR = o ® R. Combining the
two and using the associativity of givesR = PY[(oc ® a) ® R]. From our hypothesis; ® a = min(c,)
(see Theorem 3.6 on Page 112) and thasa satisfies (1.24). Thus, by Theorem 1.I8is o ® a-smooth,
and thush-smooth. O

52 CHAPTER 1. NETWORK CALCULUS

0 1 2 3 4 5

N
R 4 4 *

v

v

v

Figure 1.24:The input flow is shown above; it consists of 3 packets of size 10 data units and one of size
5 data units, spaced by one time unit. It is a-smooth with o = 10v; . The bottom flow is the output of the
packetized greedy shaper with ¢ = 25v3 . The output has a burst of 15 data units packets at time 3. It is
o-smooth but not a-smooth.

SERIES DECOMPOSITION OF SHAPERS

THEOREM 1.23. Consider a tandem af/ packetized greedy shapers in series; assume that the ghapin
curvec™ of themth shaper is concave with"(0) > I,,.x. For L-packetized inputs, the tandem is equiva-
lent to the packetized greedy shaper with shaping carvemin,, o™

PROOF: We do the proof fofM = 2 as it extends without difficulty to larger values bf. Call R(t) the
packetized input?’(t) the output of the tandem of shapers, a@) the output of the packetized greedy
shaper with input(¢).

Firstly, by Theorem 1.20
R = P[o* ® PL(c' ® R)]

Now ¢™ > ¢ for all m thus
R > Pllo @ P*(0 ® R)]

Again by Theorem 1.20, we have = P“(c ® R). MoreoverR is L-packetized and-smooth, thus
R = PE(R)andR = o ® R. Thus finally

R >R (1.28)

Secondly,R’ is L-packetized and by Theorem 1.22, itismooth. Thus the tandem is a packetized (possibly
non greedy) shaper. Sinde(t) is the output of the packetized greedy shaper, we must Rive R.
Combining with (1.28) ends the proof. O

It follows that a shaper with shaping curw€t) = min,,—1 . (rmt+0by,), Wwhereb,, > [, for all m, can
be implemented by a tandem &f individual leaky buckets, in any order. Furthermore, bydlary 1.5,
every individual leaky bucket may independently be basteebn virtual finish times or on bucket replen-
ishment.

If the condition in the theorem is not satisfied, then the amion may not hold. Indeed, for the example
in Figure 1.24, the tandem of packetized greedy shapersanittesa ando does not have an-smooth
output, therefore it cannot be equivalent to the packetigeddy shaper with curv@in(a, o).

Unfortunately, the other shaper properties seen in Sedtidrdo not generally hold. For shaping curves
that satisfy (1.24), and when a packetized greedy shapetragluced, we need to compute the end-to-end
service curve by applying Theorem 1.18.

1.8. EFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY 53

1.8 LOSSLESSEFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY

1.8.1 EFECTIVE BANDWIDTH OF A FLOW

We can apply the results in this chapter to define a functioa ftdw called the effective bandwidth. This
function characterizes the bit rate required for a given.fldare precisely, consider a flow with cumulative
function R; for a fixed, but arbitrary delayp, we define theeffective bandwidthp (R) of the flow as the bit
rate required to serve the flow in a work conserving mannéh avvirtual delay< D.
ProPOSITION1.20. The effective bandwidth of a flow is given by

R(t) — R(s)

R) = S A— 1.29
eD() Osgl;zt t—s+ D ()

For an arrival curvex we define the effective bandwid#y, («) as the effective bandwidth of the greedy
flow R = «. By a simple manipulation of Equation 1.29, the followingres.

ProrPosITION1.21. The effective bandwidth of a “good” arrival curve is given by

ep(a) = sup a(s) (1.30)

The alert reader will check that the effective bandwidth doav R is also the effective bandwidth of its
minimum arrival curvekR @ R. For example, for a flow with T-SPE®, M, r, b), the effective bandwidth is
the maximum of- and the slopes of lineg 4y) and(Q A,) in Figure 1.25; it is thus equal to:

M D-4
_ - 1— P 1.31
€D maX{D7T7p< bp__]‘::[—l—D>} ()
Assumex is sub-additive. We define the sustainable ratasm = liminf,_, af) and the peak rate by
A .
arrival curve
200
100
b
50
Ml A
0 > 20
Q 005 01 02 05 1 2

Figure 1.25:Computation of Effective Bandwidth for a VBR flow (left); example for » = 20 packets/second,
M = 10 packets, p = 200 packets per second and b = 26 packets (right).

a(s)

p = supg~g ——~. Thenm < ep(a) < pforall D. Moreover, ifa is concave, thetimp_, | ep (o) = m.If
«ais differentiablee(D) is the slope of the tangent to the arrival curve, drawn froetitime axis at = —D
(Figure 1.26). It follows also directly from the definition {1.29) that

€D(Z ;) < Z ep(o) (1.32)

In other words, the effective bandwidth for an aggregate floless than or equal to the sum of effective
bandwidths. If the flows have alilentical arrival curves, then the aggregate effective bandwidtimsply

I x ep(a1). Itis this latter relation that is the origin of the term “edtive bandwidth”. The difference
> .en(a;) —ep(d, y) is a buffering gain; it tells us how much capacity is saved haring a buffer
between the flows.

54 CHAPTER 1. NETWORK CALCULUS

. sl ope = effective . sl ope = equi val ent
bi ts, bandwi dt h bi ts, capacity
arrival arrival
curve curve
B /]
tinme

Figure 1.26:Effective Bandwidth for a delay constraint D and Equivalent Capacity for a buffer size B

1.8.2 EQUIVALENT CAPACITY

Similar results hold if we replace delay constraints by #ouirement that a fixed buffer size is not exceeded.
Indeed, the queue with constant r&fe guarantees a maximum backlog Bf (in bits) for a flow R if
C > fp(R), with
R(t) — R(s)— B
fi(R) = sup TG (1.33)
0<s<t — S

Similarly, for a “good” functiona, we have:

fi(a) = sup a(s)— B
s>0 S

(1.34)

We call fp(«) the equivalent capacityby analogy to [48]. Similar to effective bandwidth, the egient
capacity of a heterogeneous mix of flows is less than or equtde sum of equivalent capacities of the
flows, provided that the buffers are also added up; in othedsygz (o) < >, fB, (), Wwitha = > o
andB =), B;. Figure 1.26 gives a graphical interpretation.

For example, for a flow with T-SPEG, M, r,b), using the same method as above, we find the following
equivalent capacity:

1.35
else r + 7(;;—7«1))(1)”—[3)* ()

if B < M then + oo
fB =

An immediate computation shows th&{(~, ;) = r. In other words, if we allocate to a flow, constrained by
an affine functiony, ;, a capacity equal to its sustainable rat¢hen a buffer equal to its burst toleraricis
sufficient to ensure loss-free operation.

Consider now a mixture of Intserv flows (or VBR connectiongjh T-SPECs /;, p;, r;, b;). If we allocate

to this aggregate of flows the sum of their sustainable faies;, then the buffer requirement is the sum of
the burst tolerances , b;, regardless of other parameters such as peak rate. Cdyyérgeation 1.35 also
illustrates that there is no point allocating more buffenrtihe burst tolerance: 8 > b, then the equivalent
capacity is stillr.

The above has illustrated that it is possible to reduce theimed buffer or delay by allocating a rate larger
than the sustainable rate. In Section 2.2, we described hiewnay be done with a protocol such as RSVP.

Note that formulas (1.29) or (1.33), or both, can be usedtimate the capacity required for a flow, based
on a measured arrival curve. We can view them as low-passsfitethe flow functionrR.

1.8. EFFECTIVE BANDWIDTH AND EQUIVALENT CAPACITY 55

1.8.3 BEXAMPLE : ACCEPTANCE REGION FOR A FIFO M ULTIPLEXER

Consider a node multiplexing; flows of type 1 andh, flows of type 2, where every flow is defined by a
T-SPEC(p;, M;,r;,b;). The node has a constant output rateWe wonder how many flows the node can
accept.

If the only condition for flow acceptance is that the delaydlbflows is bounded by some value, then the
set of acceptable values @1, ns) is defined by

eD(n1a1 + 712042) <C

We can use the same convexity arguments as for the derivattitormula (1.31), applied to the function
niay + naas. Defined; = I;‘ij and assumé; < 6,. The result is:

%

n1 Mi+no Mo
D 9
n1 Mi+naMa+(n1p1+nap2)61
bl

ep(niag + noan) = max

61+D
n1bi+na Ma+(nir1+n2p2)02
O2+D)

niry + Naro

The set of feasiblén,ny) derives directly from the previous equation; it is the congart shown in
Figure 1.27. The alert reader will enjoy performing the catagion of the equivalent capacity for the case
where the acceptance condition bears on a bufferBize

L] pi | M | on [b | 6
1 | 20’000 packets/s 1 packet| 500 packets/s 26 packets| 1.3 ms
2 | 5’000 packets/s| 1 packet| 500 packets/s 251 packety 55.5 ms

Figure 1.27: Acceptance region for a mix of type 1 and type 2 flows. Maximum delay D = zz. The
parameters for types 1 and 2 are shown in the table, together with the resulting values of 6;.

Coming back to equation 1.32, we can state in more generabttrat the effective bandwidth is a convex
function of functiona, namely:

ep(acy + (1 —a)ag) < aep(ar) + (1 —a)ep(az)

for all a € [0, 1]. The same is true for the equivalent capacity function.

Consider now a call acceptance criterion based solely oray d®und, or based on a maximum buffer
constraint, or both. Consider further that there Atgpes of connections, and define the acceptance region
A as the set of value&ny,...,n;) that satisfy the call acceptance criterion, wheres the number of
connections of clasé& From the convexity of the effective bandwidth and equintleapacity functions,

it follows that the acceptance regiohis convex In chapter 9 we compare this to acceptance regions for
systems with some positive loss probability.

SUSTAINABLE RATE ALLOCATION If we are interested only in course results, then we can eden
the previous solution and take into account only the susitdénrate of the connection mix. The aggregate
flow is constrained (among others) bys) = b+ rs, with b = >, n;b; andr = . n;r;. Theorem 1.3
shows that the maximum aggregate buffer occupancy is baubgé as long ax” > r. In other words,
allocating the sustainable rate guarantees a loss-fremtape as long as the total buffer is equal to the
burstiness.

56 CHAPTER 1. NETWORK CALCULUS

In a more general setting, assume an aggregate flow Basminimum arrival curve, and assume that some
parameters andb are such that

lim a(s)—rs—b=0
s—+00

so that the sustainable ratavith burstiness is a tight bound. It can easily be shown that if we allocate a
rateC' = r, then the maximum buffer occupancybis

Consider now multiplexing a number of VBR connections. Iflndfer is available, then it is necessary
for a loss-free operation to allocate the sum of the pealsrdtecontrast, using a buffer of sizanakes it
possible to allocate only the sustainable rate. This is wigatall thebuffering gain namely, the gain on
the peak rate obtained by adding some buffer. The bufferaig gopmes at the expense of increased delay,
as can easily be seen from Theorem 1.4.

1.9 PrROOF OF THEOREM 1.7

Step 1. Consider a fixed time, and assume, in this step, that there is some tignthat achieves the
supremum in the definition af ©® 5. We construct some input and output functidR@nd R* such that
R is constrained by, the systen{R, R*) is causal, and*(ty) = (R* @ R*)(ty). R andR* are given by

(Figure 1.28)
data Q
R /b

R*

— > time
0 u, u,+t,

Figure 1.28:Step 1 of the proof of Theorem 1.7: a system that attains the output bound at one value ¢.

R(t) = alt) if t < uo +t
R(t) = a(ug + to) if t > ug +to
R*(t) = inf[a(t), B(t)] if t < ug + to
R*(t) = R(t) if ¢t > ug+to

It is easy to see, as in the proof of Theorem 1.6 tRhand R* are wide-sense increasing, that < R and
that 3 is a service curve for the flow. Now

R (ug + to) — R (uo) = aug +to) — R (uo) > a(ug +to) — Bluo) = o (to)

STeEP 2: Consider now a sequence of timgst, ..., t,, ... (not necessarily increasing). Assume, in this
step, that for alk there is a value:,, that achieves the supremum in the definitior{@f> 3)(t,,). We prove
that there are some functiofisand R* such that® is constrained by, the systen{R, R*) is causal, hag

as a service curve, and (t,,) = (R* @ R*)(t,,) foralln > 0.

We build R and R* by induction on a set of increasing intervélls so}, [0, s1],..., [0, s,].... The induction
property is that the system restricted to time intef0ak,, | is causal, has as an arrival curve for the input,
has as a service curve, and satisfiegt;) = (R* @ R*)(t;) for i < n.

The first interval is defined by, = ug + to; R and R* are built on[0, so] as in step 1 above. Clearly,
the induction property is true for = 0. Assume we have built the system on interjéals,,|. Define now

1.9. PROOF OF THEOREM 1.7 57

Sna1 = Sp + Up + tn + 0na1. We chose, 1 such that
a(s+ 0p+1) — a(s) > R(sy) forall s >0 (1.36)
This is possible from the last condition in the Theorem. Tysem is defined ofs,,, s,,+1] by (Figure 1.29)

R(t) = R*(t) = R(sy) for s, <t < s, + dpt1

R(t) = R(sp) + a(t — sy — 0py1) for s, + 0pa1 <t < Spy1

R*(t) = R(sp) + (a AB)(t — 85 — Ipt1) for s, + dp1 <t < Spy1
R*(sn+1) = R(sn+1)

We show now that the arrival curve constraint is satisfiedtlier system defined o, s,,+1]. Consider

o

A
data R p
=
o /
B
o /
B
/ O oWt e % v . b
0 Uy Sp=Uptt, S 2 time

Figure 1.29:Step 2 of the proof of Theorem 1.7: a system that attains the output bound for all values ¢,
n €N,

R(t)— R(v) for t andv in [0, s,,41]. If both¢ < s, andv < s, or if botht > s, andv > s,, then the arrival
curve property holds from our construction and the inducpooperty. We can thus assume that s,, and

v < s,. Clearly, we can even assume that s, + J,.1, otherwise the property is trivially true. Let us
rewritet = s, + d,+1 + s. We have, from our construction:

R(t) — R(v) = R(sp + 0pt1 +8) — R(v) = R(sn) + a(s) — R(v) < R(sp) + a(s)
Now from Equation (1.36), we have:
R(sp) + a(s) < a(s+ 0pt1) < als+ 0ps1 + $p — v) = at — v)

which shows the arrival curve property.

Using the same arguments as in step 1, it is simple to showtliragystem is causal, hg@isas a service
curve, and that

R (upt1 +tny1) — B (uns1) = o (tnt1)
which ends the proof that the induction property is also fane: + 1.

STeEP 3: Consider, as in step 2, a sequence of times, ..., t,, ... (N0t necessarily increasing). We now
extend the result in step 2 to the case where the supremune ideffimition ofa* = (a @ 5)(t,) is not
necessarily attained. Assume first thétt,,) is finite for all». For alln and allm € N* there is some,y, ,,
such that

(1.37)

a(tn + um,n) - B(umm) > a*(tn) — %

58 CHAPTER 1. NETWORK CALCULUS

Now the set of all coupleémn,n) is enumerable. Consider some numbering(i), N(i)), i € N for that
set. Using the same construction as in step 2, we can builshdyction oni a sequence of increasing
intervals|0, s;] and a systeniR, R*) that is causal, has as an arrival curve for the input, h&sas a service
curve, and such that

1

R*(si) = R*(si — tn) > @ (tngy) — 70
Now consider an arbitrary, but fixed By applying the previous equations to auch thatV (i) = n, we
obtain

(R* @ R*)(tN) 2> SUD; such that N(i)=n {Oé* (tN(z)) - ML(Z)}

. 1
= aof (tn) — lIle‘ such that N(i)=n M ()

Now the set of allﬁ(i) for i such thatV (i) = n is N*, thus

1
inf =0
4 such tﬁgt N(i)=n { M(Z) }

and thus(R* @ R*)(t,,) = a*(t,), which ends the proof of step 3 in the case whet€,,) is finite for all
n.

A similar reasoning can be useddf (t,) is infinite for somet,,. In that case replace Equation (1.37) by
a(tn + um,n) - B(um,n) > m.

STEP 4. Now we conclude the proof. If time is discrete, then step Jgsahe theorem. Otherwise we
use a density argument. The set of nonnegative rational etgfiy” is enumerable; we can thus apply step
3 to the sequence of all elements®f, and obtain systert, R*), with

(R*© R*)(q) = a*(q) forall g € QT

FunctionR* is right-continuous, thus, from the discussion at the entheforem 1.2, it follows thakR* @ R*
is left-continuous. We now show that is also left-continuous. For all> 0 we have:

sup o (s) = sup {a(s +v) — B(v)} = sup{supla(s +v) — B(v)]}
s<t (s,v) such that s<t and v>0 v>0 s<t
Now

supa(s +v) = a(t +v)
s<t

because is left-continuous. Thus

sup o’ (s) = i;lg{a(t +v) =B} =’ ()

which shows that is left-continuous.

Back to the main argument of step 4, consider some arbitrary0. The setQ* is dense in the set of
nonnegative real numbers, thus there is a sequence ofahtiombersy, € QT, with n € N, such that
Gn < tandlim,,_, - q, = t. From the left-continuity oR* @ R* anda™ we have:

(R"o R*)(t) = lim (R*©@ R")(g,) = lim a*(gq,) = a™(t)

n——+00 n—-+00

1.10. BIBLIOGRAPHIC NOTES 59

1.10 BBLIOGRAPHIC NOTES

Network calculus as has been applied to dimensioning ATMchws in [60]. A practical algorithm for
the determination of the minimum arrival curve for ATM systés described in [61]. It uses the burstiness
function of a flow, defined in [57] as follows. For amy B(r) is the minimumb such that the flow is
7rp-smooth, and is thus the required buffer if the flow is serveal eonstant rate. Note thatB(r) is the
Legendre transform of the minimum arrival curweof the flow, namely,B(r) = sup,~q(o(t) — rt) [61]
gives a fast algorithm for computing(r). Interestingly, the concept is applied also to the distiisuof
symbols in a text.

In [78], the concepts of arrival and service curve are useang@yze real time processing systems. It is

shown that the service curve for a variable capacity nodd beusuper-additive, and conversely, any super-
additive function is a service curve for a variable capanitge. Compare to greedy shapers, which have a
sub-additive service curve. This shows that, except fostont bit rate trunks, a greedy shaper cannot be
modeled as a variable capacity node, and conversely.

In [9], the authors consider a crossbar switch, andsgglithe rate assigned to the traffic from input port
to output portj. Assume thad . r; ; < 1 for all j andzj r;; < 1forall 7. Using properties of doubly-
stochastic matrices (such @s ;) is), they give a simple scheduling algorithm that guarantiat the flow
from port: to port j is allocated a variable capacity satisfyingC; ;(t) — C; j(s) > r;;(t — s) — s; ; for
somes; ; defined by the algorithm. Thus, the node offers a serviceecaqual to the rate-latency function
BTZ"]',SZ"J"

A dual approach to account for variable length packets dhiced in [11]. It consists in replacing the
definition of arrival curve (ow-smoothness) by the concept gfegularity. Consider a flow of variable
length packets, with cumulative packet lenditand callT; the arrival epoch for théth packet. The flow
is said to beg-regular if T'(j) — T'(i) > g(L(j) — L(7)) for all packet numbers < j. A theory is then
developed with concepts similar to the greedy shaper. Tdmytuses max-plus convolution instead of min-

plus convolution. Theb,) regulator originally introduced by Cruz [21] is a shaperhisttheory, whose

. . . (;p—b)"‘ .
output isg-regular, withg(xz) = =~ . This theory does not exactly correspond to the usual cdrafep
leaky bucket controllers. More specifically, there is notexact correspondence between the set of flows
that areg-regular on one hand, and that aresmooth on the other. We explain why with an example.
Consider the set of flows that ageregular, withg(z) = <. The minimum arrival curve we can put on this
set of flows iso(t) = rt + lmax [11]. But conversely, if a flow ig-smooth, we cannot guarantee that it is
g-regular. Indeed, the following sequence of packets is a fl@t/iso-smooth but noy-regular: the flow

has a short packet (length < I,,.x) at time7; = 0, followed by a packet of maximum siZg ., at time

(-’L'_lmax) +
T

Ty = 171 In fact, if a flow iso-smooth, then it ig/-regular, withg’ (x) =
The strict service curve in Definition 1.7 is called “strorggrvice curve in [47].

1.11 EXERCISES

Exercisel.1. Compute the maximum buffer sixefor a system that is initially empty, and where the input
function isR(t) = fot r(s)ds, for the following cases.

1. if (t) = a (constant)

2. one on-off connection with peak rate 1 Mb/s, on period 1 s#periodr seconds, and trunk bit rate
¢ = 0.5 Mb/s.

3. ifr(t) = ¢ + esinwt, with trunk bit ratec > 0.

EXERCISE1.2. You have a fixed buffer of si2g, that receives a data input(t). Determine the output rate
c that is required to avoid buffer overflow given that the huidnitially empty.

60 CHAPTER 1. NETWORK CALCULUS

EXercIsel.3. 1. For a flow with constant bit rate, give some possible arrival curves.

2. Consider a flow with an arrival curve given by(t) = B, whereB is constant. What does this mean
for the flow ?

EXERCISE 1.4. We say that a flow i§P, B) constrained if it hasyp g as an arrival curve.

1. Atrunk system has a buffer size®fand a trunk bitrate ofP. Fill in the dots: (1) there is no loss if
the input is(., .) constrained (2) the output {s, .) constrained.

2. A(P, B) constrained flow is fed into an infinite buffer served at a rafte. What is the maximum
delay ?

EXERCISEL.5 (On-Off flows). 1. Assume a data flow is periodical, with peri@d and satisfies the
following: r(t) = pfor 0 <t < Ty, andr(t) =0for ITp <t < T.

(a) Draw R(t) = fg r(s)ds
(b) Find an arrival curve for the flow. Find the minimum arrh@urve for the flow.
(c) Find the minimungr, b) such that the flow i¢r, b) constrained.

2. A traffic flow uses a link with bitrat® (bits/s). Data is sent as packets of variable length. The flow
is controlled by a leaky buckét, b). What is the maximum packet size ? What is the minimum time
interval between packets of maximum size ?

Application: P =2 Mb/s, r = 0.2 Mb/s; what is the required btiteleranceb if the packet length is 2
Kbytes ? What is then the minimum spacing between packets ?

EXERCISE 1.6. Consider the following alternative definition of the GCRA:

DEeFINITION 1.15. The GCRAT,) is a controller that takes as input a cell arrival tinteand returns
resul t. It has internal (static) variableX (bucket level) andLCT (last conformance time).

e initially, X = 0andLCT = 0
e when a cell arrives at time, then
if (X-t + LCT > tau)
result = NON- CONFORMANT;

el se {
X=mx (X-t + LCT, 0) + T,
LCT =t;
result = CONFORMANT;
}

Show that the two definitions of GCRA are equivalent.

Exercisel.7. 1. Forthe following flows and a GCRA(10, 2), give the confarn@ad non-conformant
cells. Times are in cell slots at the link rate. Draw the leakigket behaviour assuming instantaneous
cell arrivals.

(@ 0, 10, 18, 28, 38
(b) 0, 10, 15, 25, 35
(c) 0,10, 18, 26, 36
(d) 0,10, 11, 18, 28
2. What is the maximum number of cells that can flow back to béitk GCRA(T, CDVT) (maximum
“clump” size) ?

EXERCISEL1.8. 1. Forthe following flows and a GCRA(100, 500), give the conémt and non-conformant
cells. Times are in cell slots at the link rate.

1.11. EXERCISES 61

(@ 0,100, 110, 12, 130, 140, 150, 160, 170, 180, 1000, 1010

(b) 0,100, 130, 160, 190, 220, 250, 280, 310, 1000, 1030

(c) 0, 10, 20, 300, 310, 320, 600, 610, 620, 800, 810, 820,,10000, 1020, 1200, 1210, 1220,
1400, 1410, 1420, 1600, 1610, 1620

2. Assume that a cell flow has a minimum spacing time units between cell emission timesg the
minimum time between the beginnings of two cell transmiisyidVhat is the maximum burst size for
GCRA(',) ? What is the minimum time between bursts of maximum size ?

3. Assume that a cell flow has a minimum spacing between ¢ellsroe units, and a minimum spacing
between bursts daf;. What is the maximum burst size ?

EXERCISE1.9. For a CBR connection, here are some values from an ATM operato

peak cell rate (cells/s) 100 1000 10000 100000
CDVT (m croseconds) 2900 1200 400 135

1. What are the€ P, B) parameters in b/s and bits for each case ? How dBe®mpare tor ?

2. If a connection requires a peak cell rate of 1000 cells mErosd and a cell delay variation of 1400
microseconds, what can be done ?

3. Assume the operator allocates the peak rate to every ctiopneat one buffer. What is the amount
of buffer required to assure absence of loss ? Numericaliégipbn for each of the following cases,
where a numbelV of identical connections with peak cell rateis multiplexed.

case 1 2 3 4
nb of connnecti ons 3000 300 30 3
peak cell rate (c/s) 100 1000 10000 100000

EXERCISE1.10. The two questions in this problem are independent.

1. An ATM source is constrained by GCRAE 30 slots,7 = 60 slots), where time is counted in slots.
One slot is the time it takes to transmit one cell on the linke $ource sends cells according to the
following algorithm.

e In afirst phase, cells are sent at timgg) = 0, ¢(2) = 15, t(3) = 30,...,t(n) = 15(n — 1)
as long as all cells are conformant. In other words, the numbis the largest integer such that
all cells sent at times(i) = 15(i — 1), i < n are conformant. The sending of celkat timet(n)
ends the first phase.

e Then the source enters the second phase. The subsequentictlls sent at the earliest time
after ¢(n) at which a conformant cell can be sent, and the same is regdateever. In other
words, callt(k) the sending time for celt, with £ > n; we have thent(k) is the earliest time
after¢(k — 1) at which a conformant cell can be sent.

How many cells were sent by the source in time intejyal51] ?

2. A network node can be modeled as a single buffer with a @onstitput ratec (in cells per second).
It receives! ATM connections labeled . .., /. Each ATM connection has a peak cell rat€in cells
per second) and a cell delay variation tolerangg(in seconds) fol < i < I. The total input rate
into the buffer is at least as large @le p; (Which is equivalent to saying that it is unlimited). What
is the buffer size (in cells) required for a loss-free opEnat?

EXERcCISE1.11. In this problem, time is counted in slots. One slot is the tarato transmit one ATM cell
on the link.

62 CHAPTER 1. NETWORK CALCULUS

1. An ATM source5; is constrained by GCRA(= 50 slots, 7 = 500 slots), The source sends cells
according to the following algorithm.

¢ In a first phase, cells are sent at timgg) = 0, ¢(2) = 10, ¢(3) = 20,...,¢t(n) = 10(n — 1)
as long as all cells are conformant. In other words, the numbis the largest integer such that
all cells sent at times(:) = 10(i — 1), i < n are conformant. The sending of celat timet(n)
ends the first phase.

e Then the source enters the second phase. The subsequentictlls sent at the earliest time
after ¢(n) at which a conformant cell can be sent, and the same is regdateever. In other
words, callt(k) the sending time for celt, with £ > n; we have thent(k) is the earliest time
aftert(k — 1) at which a conformant cell can be sent.

How many cells were sent by the source in time intejval01] ?

2. An ATM source, is constrained bypothGCRA({" = 10 slots,r = 2 slots) and GCRAI = 50 slots,
7 = 500 slots). The source starts at tinie and has an infinite supply of cells to send. The source
sends its cells as soon as it is permitted by the combinatitheoGCRAs. We calln) the time at
which the source sends th¢h cell, with¢(1) = 0. What is the value of(15) ?

EXERCISE 1.12. Consider a flowR(t) receiving a minimum service curve guaranfeeAssume that

e [is concave and wide-sense increasing
e theinfin R ® (§is amin

For all ¢, call 7(¢) a number such that
(R B)(t) = R(7(t)) + B(t = 7(t))
Show that it is possible to choosesuch that ift; < ¢5 thent(t;) < 7(t2).

ExeErcISEL1.13. 1. Find the maximum backlog and maximum delay for an ATM CBRemiion with
peak rateP and cell delay variationr, assuming the service curved&) = r(t — Tp)*
2. Find the maximum backlog and maximum delay for an ATM VBRemiion with peak raté, cell
delay variationr, sustainable cell ratéd/ and burst tolerance (in seconds), assuming the service
curve isc(t) = r(t — Tp) ™

EXERCISE1.14. Show the following statements:

1. Consider g P, B) constrained flow, served at a rate> P. The output is als¢P, B) constrained.
2. Assume() has a bounded right-handside derivative. Then the outpua ftow constrained by:(),
served in a buffer at a constant rate> sup,~(a’(t), is also constrained by().

EXERCISEL1.15. 1. Find the the arrival curve constraining the output for aiM\ CBR connection with
peak rateP and cell delay variation, assuming the service curved&) = r(t — Tp)™*
2. Find the arrival curve constraining the output for an ATNBR connection with peak ratg, cell
delay variationr, sustainable cell ratéd/ and burst tolerance (in seconds), assuming the service
curve isc(t) = r(t — Tp) ™

ExXERCISE 1.16. Consider the figure “Derivation of arrival curve for the outpof a flow served in a node
with rate-latency service curvér r”. What can be said if,, in the Figure is infinite, namely, i’ (¢) > r
forall ¢ ?

EXERCISE 1.17. Consider a series of guaranteed service nodes with servioeesc;(t) = r;(t — T;) ™.
What is the maximum delay through this system for a flow cainstd by(m, b) ?

ExeRcISE 1.18. A flow with T-SPEGp, M, r, b) traverses nodes 1 and 2. Nodeffers a service curve
¢i(t) = R;(t — T;)*. What buffer size is required for the flow at node 2 ?

1.11. EXERCISES 63

ExercISE 1.19. A flow with T-SPEGp, M, r, b) traverses nodes 1 and 2. Nodeffers a service curve
¢;(t) = R;(t — T;)". A shaper is placed between nodes 1 and 2. The shaper foed®thto the arrival
curvez(t) = min(Rat, bt + m).

1. What buffer size is required for the flow at the shaper ?

2. What buffer size is required at node 2 ? What value do youffihid= 75 ?

3. Compare the sum of the preceding buffer sizes to the sarevthuld be required if no re-shaping is
performed.

4. Give an arrival curve for the output of node 2.

ExERcISE 1.20. Prove the formula giving of paragraph “Buffer Sizing at a Beaper”

EXERCISE 1.21. Is Theorem “Input-Output Characterization of Greedy Shapea stronger result than
Corollary “Service Curve offered by a Greedy Shaper” ?

EXERCISEL1.22. 1. Explain what is meant by “we pay bursts only once”.
2. Give a summary in at most 15 lines of the main propertiebapars
3. Define the following concepts by using the@perator: Service Curve, Arrival Curve, Shaper
4. What is a greedy source ?

EXERCISEL1.23. 1. Show that for a constant bit rate trunk with ratethe backlog at time is given by

W(t) =sup{R(t) — R*(s) — c(t — 5)}
s<t
2. What does the formula become if we assume only that, thateanstant bit rate trunk, the node is a
scheduler offerings as a service curve ?

EXERCISE 1.24. Is it true that offering a service curv@ implies that, during any busy period of length
the amount of service received rate is at leggt) ?

EXERCISE 1.25. A flow S(t) is constrained by an arrival curve.. The flow is fed into a shaper, with
shaping curver. We assume that
a(s) = min(m + ps,b+rs)

and
o(s) = min(Ps, B + Rs)

We assume that > r, m < bandP > R.
The shaper has a fixed buffer size equakto> m. We require that the buffer never overflows.

1. Assume thaB = +o0. Find the smallest o which guarantees that there is no buffer overflow. Let
P, be this value.

2. We do not assume that = +oo any more, but we assume thatis set to the valug? computed
in the previous question. Find the val(By, Ry) of (B, R) which guarantees that there is no buffer
overflow and minimizes the cost functigqiB, R) = aB + R, whereq is a positive constant.
What is the maximum virtual delay(iP, B, R) = (Py, Bo, Ro) ?

EXERCISE 1.26. We consider a buffer of siz€ cells, served at a constant rate otells per second. We
put /V identical connections into the buffer; each of tNeconnections is constrained both by GCRA(r)
and GCRAT5, 7). What is the maximum value &f which is possible if we want to guarantee that there is
no cell loss at all ?

Give the numerical application faF;, = 0.5 ms,r; = 4.5ms, T, = 5ms, 7 = 495 ms,c = 10° cells/second,
X = 10* cells

64 CHAPTER 1. NETWORK CALCULUS

EXERCISE 1.27. We consider a flow defined by its functift), with R(¢) = the number of bits observed
since timet = 0.

1. The flow is fed into a buffer, served at a rateCall ¢(¢) the buffer content at time We do the same
assumptions as in the lecture, namely, the buffer is largaigh, and is initially empty. What is the
expression of(¢) assuming we knowk(t) ?

We assume now that, unlike what we saw in the lecture, thalihitffer content (at timeé = 0) is not
0, but some valugy > 0. What is now the expression foft) ?

2. The flow is put into a leaky bucket policer, with ratend bucket siz&é. This is a policer, not a shaper,
so nonconformant bits are discarded. We assume that theebighkarge enough, and is initially
empty. What is the condition aR which ensures that no bit is discarded by the policer (in pthe
words, that the flow is conformant) ?

We assume now that, unlike what we saw in the lecture, thalibiicketcontent (at timg = 0) is
not0, but some valué, > 0. What is now the condition oR which ensures that no bit is discarded
by the policer (in other words, that the flow is conformant) ?

ExXERCISE1.28. Consider a variable capacity network node, with capacitweu\/ (t). Show that there is
one maximum functiof*(¢) such that for all0 < s < ¢, we have

M(t) — M(s) > S*(t — 5)

Show thatS* is super-additive.

Conversely, if a functiors is super-additive, show that there is a variable capacitjwoek node, with
capacity curvelM (t), such that for all0 < s < t, we haveM (t) — M(s) > S*(t — s).

Show that, with a notable exception, a shaper cannot be radde a variable capacity node.

ExXeErRCISEL.29. 1. Consider a packetized greedy shaper with shaping cufve = rt for t > 0.
Assume that (k) = kM whereM is fixed. Assume that the input is given Byt) = 10M for
t > 0 and R(0) = 0. Compute the sequend®? (t) used in the representation of the output of the
packetized greedy shaper, foe= 1,2, 3,
2. Same question i(t) = (rt + 2M)1t > 0}.

ExeRrcise 1.30. Consider a source given by the function

R(t)=Bfort >0
R(t)=0fort <0

Thus the flow consists of an instantaneous burs? bfts.

. What is the minimum arrival curve for the flow ?

2. Assume that the flow is served in one node that offers a mninmiservice curve of the rate latency
type, with rater and latencyA. What is the maximum delay for the last bit of the flow ?

3. We assume now that the flow goes through a series of two,ndgesd s, whereN; offers to the
flow a minimum service curve of the rate latency type, witd ratand latencyA;, fori = 1, 2. What
is the the maximum delay for the last bit of the flow throughstirées of two nodes ?

4. With the same assumption as in the previous item,Rglt) the function describing the flow at the
output of nodeV; (thus at the input of nodd/5). What is the worst case minimum arrival curve for
Ry ?

5. We assume that we insert betwéénand \; a “reformatter” S. The input taS is Ry (). We call

R (t) the output ofS. ThusR (t) is now the input toV,. The function of the “reformattetS is to

delay the flowR; in order to output a flowr] that is a delayed version @t. In other words, we must

haveR) (t) = R(t — d) for somed. We assume that the reformatt8ris optimal in the sense that it
chooses the smallest possildleln the worst case, what is this optimal valuedd?

=

1.11. EXERCISES 65

6. With the same assumptions as in the previous item, whiag¢ isorst case end-to-end delay through
the series of nodes, S, N> ? Is the reformatter transparent ?

EXERCISE 1.31. Let o be a good function. Consider the concatenation of a bitibgpteedy shaper, with
curves, and anL-packetizer. Assume that0™) = 0. Consider only inputs that aré-packetized

1. Is this system a packetized shaperdd?
2. Is it a packetized shaper for+ [, ?
3. Is it a packetized greedy shaper toH- ;a5 ?

ExXERCISE 1.32. Assume that is a good function and = og + lug whereuy is the step function with a
step att = 0. Can we conclude that, is sub-additive ?

EXERCISE 1.33. Is the operator P*) upper-semi-continuous ?

EXERCISEL1.34. 1. Consider the concatenation of drpacketizer and a network element with mini-
mum service curvg and maximum service curve Can we say that the combined system offer a
minimum service curvés(t) — lmax)™ and a maximum service curvg as in the case where the
concatenation would be in the reverse order ? .

2. Consider the concatenation of a GPS node offering a guaeaX.,, an L-packetizer, and a second
GPS node offering a guarantee,. Show that the combined system offers a rate-latency secuive
with rate R = min(ry,7) and latencyy = —lmax_

max(ri,ra) "

ExERcISE 1.35. Consider a node that offers to a flof(¢) a rate-latency service curvé = S . Assume
that R(t) is L-packetized, with packet arrival times calléy, 75, ... (and is left-continuous, as usual)

Show that R ® 8)(t) = ming,¢(o4[R(T;) + B(t — T;)] (and thus, thénf is attained).

EXeErRCISEL.36. 1. Assumé¥ connections, each with peak rgtesustainable raten and burst toler-
anceb, are offered to a trunk with constant service rdteand FIFO buffer of capacityX. Find the
conditions onk for the system to be loss-free.

2. If Km = P, what is the condition oX for K connections to be accepted ?

3. What is the maximum number of connectign=f2 Mb/s,m = 0.2 Mb/s, X = 10MBytes) = 1Mbyte
andP =0.1, 1, 2 or 10 Mb/s ?

4. For afixed buffer siz&, draw the acceptance region whé&hand P are the variables.

ExXERCISE1.37. Show the formulas giving the expressions fgf R) and fp(«).

EXERCISEL1.38. 1. What is the effective bandwith for a connection with2 Mb/s, m = 0.2 Mb/s,b =
100 Kbytes whe» = 1msec, 10 msec, 100 msec, 1s ?
2. Plot the effective bandwidthas a function of the delay constraint in the general case aramection
with parameters, m, b.

EXERCISEL1.39. 1. Compute the effective bandwidth for a mix of VBR conmetio. . . , /.

2. Show how the homogeneous case can be derived from yourléorm

3. Assumék connections, each with peak rgtesustainable raten and burst tolerance, are offered
to a trunk with constant service rate and FIFO buffer of capacityX'. Find the conditions ot for
the system to be loss-free.

4. Assume that there are two classes of connections, Aljtbonnections in class, i = 1,2, offered
to a trunk with constant service rate and FIFO buffer of infinite capacit. The connections are
accepted as long as their queuing delay does not exceed sioe/Y. Draw the acceptance region,
that is, the set of K1, K) that are accepted by CAC2. Is the acceptance region convex thel
complementary of the acceptance region in the positiveaottbonvex ? Does this generalize to more
than two classes ?

66

CHAPTER 1. NETWORK CALCULUS

CHAPTER 2

APPLICATION OFNETWORK CALCULUS TO
THE INTERNET

In this chapter we apply the concepts of Chapter 1 and exptaittheoretical underpinnings of integrated
and differentiated services. Integrated services defimerkservations can be made for flows. We explain
in detail how this framework was deeply influenced by GPS.dnipular, we will see that it assumes that
every router can be modeled as a node offering a minimumcsecuirve that is a rate-latency function. We
explain how this is used in a protocol such as RSVP. We alslyzenéhe more efficient framework based
on service curve scheduling. This allows us to address implsiway the complex issue of schedulability.

We explain the concept of Guaranteed Rate node, which qumels to a service curve element, but with
some differences, because it uses a max-plus approachdratenin-plus. We analyze the relation between
the two approaches.

Differentiated services differ radically, in that resdiwas are made per class of service, rather than per
flow. We show how the bounding results in Chapter 1 can be egbjpdi find delay and backlog bounds. We
also introduce the “damper”, which is a way of enforcing a mmam service curve, and show how it can
radically reduce the delay bounds.

2.1 GPSAND GUARANTEED RATE NODES

In this section we describe GPS and its derivatives; themftire basis on which the Internet guaranteed
model was defined.

2.1.1 FACKET SCHEDULING

A guaranteed service network offers delay and throughpatapniees to flows, provided that the flows
satisfy some arrival curve constraints (Section 2.2). Tduglires that network nodes implement some form
of packet scheduling, also called service discipline. Bes&heduling is defined as the function that decides,
at every buffer inside a network node, the service order ifterént packets.

A simple form of packet scheduling is FIFO: packets are skivéhe order of arrival. The delay bound, and
the required buffer, depend on the minimum arrival curvehefaggregate flow (Section 1.8 on page 53). If
one flow sends a large amount of traffic, then the delay inesetis all flows, and packet loss may occur.

67

68 CHAPTER 2. APPLICATION TO THE INTERNET

Thus FIFO scheduling requires that arrival curve condsaim all flows be strictly enforced at all points
in the network. Also, with FIFO scheduling, the delay bouadhe same for all flows. We study FIFO
scheduling in more detail in Section 6.

An alternative [25, 45] is to use per flow queuing, in order1d grovide isolation to flows and (2) offer
different guarantees. We consider first the ideal form offlmv queuing called “Generalized Processor
Sharing” (GPS) [63], which was already mentioned in Chapter

2.1.2 GPSAND A PRACTICAL IMPLEMENTATION (PGPS)

A GPS node serves several flows in parallel, and has a totalibrate equal te b/s. A flows is allocated
a given weight, say,. Call R;(t), R} (t) the input and output functions for flowv The guarantee is that at
any timet, the service rate offered to floiis 0 is flowi has no backlog (namely, ®;(t) = R;(t)), and
otherwise is equal tg%c, whereB(t) is the set of backlogged flows at timeThus

jEB(t) d)J

t
bi
R;f(t):/ O icniends
0 S en & HEHED

In the formula, we used the indicator functi(‘bfbxpr}, which is equal td if expris true, and) otherwise.

It follows immediately that the GPS node offers to flow service curve equal to,,., with ; = z‘é’ii,. It
e

is shown in [64] that a better service curve can be obtaine@very flow if we know some arrival curve
properties for all flows; however the simple property is sigfit to understand the integrated service model.

GPS satisfies the requirement of isolating flows and progidiifferentiated guarantees. We can compute
the delay bound and buffer requirements for every flow if wevkiits arrival curve, using the results of
Chapter 1. However, a GPS node is a theoretical concepthwvidioot really implementable, because it
relies on a fluid model, and assumes that packets are injirdteisible. How can we make a practical
implementation of GPS ? One simple solution would be to usevifiual finish times as we did for the
buffered leaky bucket controller in Section 1.7.3: for gveacket we would compute its finish tirdeunder
GPS, then at timé present the packet to a multiplexer that serves packetsatta Figure 2.1 (left) shows
the finish times on an example. It also illustrates the ma@wvbeack that this method would have: at times
3 and 5, the multiplexer would be idle, whereas at time 6 it iidnave a burst of 5 packets to serve. In
particular, such a scheduler would not be work conserving.

This is what motivated researchers to find other practicgdlementations of GPS. We study here one
such implementation of GPS, called packet by packet ganedaprocessor sharing (PGPS) [63]. Other
implementations of GPS are discussed in Section 2.1.3.

PGPS emulates GPS as follows. There is one FIFO queue per Tlogv.scheduler handles packets one
at a time, until it is fully transmitted, at the system rateFor every packet, we compute the finish time
that it would have under GPS (we call this the “GPS-finishetim Then, whenever a packet is finished
transmitting, the next packet selected for transmissidh@sone with the earliest GPS-finish-time, among
all packets present. Figure 2.1 shows one example. We sgeriike the simple solution discussed earlier,
PGPS is work conserving, but does so at the expense of malibdiding a packebeforeits finish time
under GPS.

We can quantify the difference between PGPS and GPS in tlesvfoh proposition. In Section 2.1.3, we
will see how to derive a service curve property.

PropPoOsSITION2.1 ([63]). The finish time for PGPS is at most the finish time of GPS @lusherec is the
total rate andL is the maximum packet size.

2.1. GPS AND GUARANTEED RATE NODES 69

(=]

12345678910LL 5 4,0 011 234567891011

v

—w

flow 0

Yv |
2 Y !
vy - ?P Y :
; + B % + Y \ 4)
2 HER 220 NA ARNNA AR
V Arrival
v Departure

Figure 2.1:Scheduling with GPS (left) and PGPS (right). Flow 0 has weight 0.5, flows 1 to 5 have weight
0.1. All packets have the same transmission time equal to 1 time unit.

PrROOF: Call D(n) the finish time of thenth packet for the aggregate input flow under PGPS, in the
order of departure, anéln) under GPS. Calh, the number of the packet that started the busy period in
which packet: departs. Note that PGPS and GPS have the same busy penmssif sve observe only the
aggregate flows, there is no difference between PGPS and GPS.

There may be some packets that depart before packePGPS, but that nonetheless have a later departure
time under GPS. Caling > ng the largest packet number for which this occurs, if any; otise let

mo = no— 1. In this proposition, we call(m) the length in bits of packet.. Under PGPS, packet started
service atD(mg) — @ which must be earlier than the arrival times of packets- m+1, ..., n. Indeed,
otherwise, by definition of PGPS, the PGPS scheduler would Beheduled packeta = mg + 1,...,n
before packetny. Now let us observe the GPS system. Packets: mg + 1,...,n depart no later than

packetn, by definition ofm; they have arrived afteb (mg) — @ By expressing the amount of service
in the interval[D (mg) — %00 9(n)] we find thus

C

n

> lm)<ec <9(n) — D(mg) +

m=myo+1

l(mo)>

Now since packetsy, ..., n are in the same busy period, we have

Zzz:moﬂ l(m)

D(n) = D{m) + ==

{(mo)

By combining the two equations above we fitldn) < 6(n) +
case whereng > ny.

, Which shows the proposition in the

If mg = ng — 1, then all packets, ..., n depart before packet under GPS and thus the same reasoning
shows that

> I(m) < c(0(n) — to)

m=ng

wheret is the beginning of the busy period, and that

D(n) =ty + 72?”:’? o)

ThusD(n) < 6(n) in that case. O

70 CHAPTER 2. APPLICATION TO THE INTERNET

2.1.3 QUARANTEED RATE (GR) NODES AND THE MAX-PLUS APPROACH

The service curve concept defined earlier can be approachedtiie dual point of view, which consists in
studying the packet arrival and departure times insteatiefunctionsR(¢) (which count the bits arrived

up to timet). This latter approach leads to max-plus algebra (whichttrasame properties as min-plus),
is often more appropriate to account for details due to légipacket sizes, but works well only when the
service curves are of the rate-latency type. It also usehdnwmnodes cannot be assumed to be FIFO per
flow, as may be the case with DiffServ (Section 2.4).

GR also allows to show that many schedulers have the ragaetservice curve property. Indeed, a large
number of practical implementations of GPS, other than PG&R been proposed in the literature; let
us mention: virtual clock scheduling [49], packet by pacjeheralized processor sharing [63] and self-
clocked fair queuing [40](see also [30]). For a thorougtcd$sion of practical implementations of GPS,
see [81, 30]). These implementations differ in their impdeation complexity and in the bounds that can
be obtained. It is shown in [32] that all of these implemédaote fit in the following framework, called

“Guaranteed Rate”, which we define in now. We will also analipw it relates to the min-plus approach.

DEFINITION 2.1 (GR Node[32]).Consider a node that serves a flow. Packets are numbered &r ofd
arrival. Leta,, > 0,d, > 0 be the arrival and departure times. We say that a node is theamanteed rate
(GR) node for this flow, with rate and delaye, if it guarantees thatl,, < f, + e, wheref, is defined by

2.1).
{ fo=0 2.1)

fn=max{an, fn_1} + l7” foralln >1

The variablesf,, (“Guaranteed Rate Clocks”) can be interpreted as the departimes from a FIFO con-
stant rate server, with rate The parameter expresses how much the node deviates from it. Note however
thata GR node need not be FIF@ GR node is also called “Rate-Latency server”.

Example: GPS.Consider an ideal GPS scheduler, which allocates alitate Zc‘z’jb_ to some flowi. Itis a
b
GR node for flow:, with rate R; and latency= 0 (the proof is left to the reader)J

DEFINITION 2.2 (One Way Deviation of a scheduler from GP8Ye say thatS deviates from GPS hyif
for all packetn the departure time satisfies

dpn < gn+e (2.2)

whereg, is the departure time from a hypothetical GPS node that atles a rater = fd’;] to this flow
(assumed to be flow 1). ’

We interpret this definition as a comparison to a hypothe@d2S reference scheduler that would serve the
same flows.

THEOREM 2.1. If a scheduler satisfies (2.2), then it is GR with ratend latencye.

PrROOF: ¢, < f, and the rest is immediate.
O

Example: PGPS.Consider a PGPS scheduler, which allocates aRate Zc‘z’;, to some flowi. Itis a GR
YR

node for flow:, with rate R; and Iatency%, whereL is the maximum packet size (among all flows present
at the scheduler) (this follows from Proposition 2.1).

2.1. GPS AND GUARANTEED RATE NODES 71

THEOREM 2.2 (Max-Plus Representation of GRTonsider a system where packets are numbeéréd...
in order of arrival. Calla,, d, the arrival and departure times for packet and/,, the size of packet.
Define by conventiod, = 0. The system is a GR node with ratand latency if and only if for alln there
is somek € {1,...,n} such that

dn <e+ag+ (2.3)

PrROOF: The recursion (2.1) can be solved iteratively, using theesarax-plus method as in the proof of

Proposition 1.5. Define
n lj + .+,

A’.‘:a-
i =% ,

for1<j<n
Then we obtain
fn =max(A} A" ..., AT)
The rest follows immediately. O

(2.3) is the dual of the service curve definition ((1.9) oné@t), with3(t) = r(t —e)™. We now elucidate
this relationship.

THEOREM 2.3 (Equivalence with service curvefonsider a node witli.-packetized input.

1. If the node guarantees a minimum service curve equal toatiedatency functiorg = 3,.,,, and if it
is FIFO, then it is a GR node with rateand latencyv.

2. Conversely, a GR node with rateand latencye is the concatenation of a service curve element, with
service curve equal to the rate-latency functign,, and anL-packetizer. If the GR node is FIFO,
then so is the service curve element.

The proof is long and is given at the end of this section.
By applying Theorem 1.18, we obtain

COROLLARY 2.1. A GR node offers a minimum service cuﬂ;ewlmax

The service curve can be used to obtain backlog bounds.

THEOREM 2.4 (Delay Bound).For an a-smooth flow served in a (possibly non FIFO) GR node with rate
and latencye, the delay for any packet is bounded by

sup[@ —tl+e (2.4)
>0 T

PrROOF: By Theorem 2.2, for any fixed, we can find d < j < n such that

fn:(lj—i-lj_'_m—i_ln
T
The delay for packet is
dp —an < fn+e—apy
Definet = a,, — a;. By hypothesis
Li+...+1, <oat+)

wherea(t+) is the limit to the right ofx at¢. Thus

t
dn_ang_t‘FM‘Fegsup[a
T t>0 T

Now Supt>o[@ —t] = Suptzo[a(tﬂ —t]. O

T

72 CHAPTER 2. APPLICATION TO THE INTERNET

CoMMENT: Note that (2.4) is the horizontal deviation between thesariéurvea and the rate-latency
service curve with rate and latencye. Thus, for FIFO GR nodes, Theorem 2.4 follows from Theorein 2.
and the fact that the packetizer can be ignored for delay otetipns. The information in Theorem 2.4 is
that it also holds for non-FIFO nodes.

2.1.4 (CONCATENATION OF GR NODES

FIFO Nobes For GR nodes that are FIFO per flow, the concatenation rebtdired with the service
curve approach applies.

THEOREM 2.5. Specifically, the concatenation #f GR nodes (that are FIFO per flow) with rates, and
latenciese,;, is GR with rater = min,, r,,, and latencye = >, e+ 1 . L‘;’jx, whereL,.x
is the maximum packet size for the flow.

If r,, = r for all m then the extra term i&M — 1)@; it is due to packetizers.

PrRooOF: By Theorem 2.3—(2), we can decompose systénto a concatenatioty;, P;, whereS; offers
the service curve,, ., andP; is a packetizer.
Call S the concatenation

51, P1,82, Py oy Sp—1, Pn—1,Sn

By Theorem 2.3—(2)5 is FIFO and provides the service curdg.. By Theorem 2.3—(1), it is GR with rate
r and latencye. Now P,, does not affect the finish time of the last bit of every packet.

O

Note that a slight change if the proof of the theorem shows tthe theorem is also valid if we replace
€= ict. mC Tt imt 1 L}'—’fx bye=> i1 n€i+2i—a n L}'—’fx

End-to-end Delay Bound.

A bound on the end-to-end delay through a concatenation ofi@iRs is thus

Ty N, T,

M M—-1 1 o
D:va+lmaxz_+7 (25)
m=1 m=1

which is the formula in [32]. It is a generalization of (1.28) Page 45.

A Composite NodeWe analyze in detail one specific example, which often alisgsactice when mod-
elling a router. We consider a composite node, made of twopooents. The former (“variable delay
component”) imposes to packets a delay in the rdhge: — 9, dmax]- The latter is FIFO and offers to its
input the packet scale rate guarantee, with rad@d latencye. We show that, if the variable delay compo-
nent is known to be FIFO, then we have a simple result. We fivstthe following lemma, which has some
interest of its own.

LEMMA 2.1 (Variable Delay as GR)Consider a node which is known to guarantee a defay,,... The
node need not be FIFO. Call,;, the minimum packet size. For any> 0, the node is GR with latency
e = [Omax — 2] and rater.

T

PrROOF: With the standard notation in this section, the hypothesiglies thatd,, < a,, + dmay for all
n > 1. Definef, by (2.1). We havef,, > a, -+ > a, +min, thusd,, — f,, < Gmax — 2252 < [— min] T

O

2.1. GPS AND GUARANTEED RATE NODES 73

THEOREM 2.6. (Composite GR Node with FIFO Variable Delay Compone@bnsider the concatenation
of two nodes. The former imposes to packets a d€lay.... The latter is a GR node with raieand latency
e. Both nodes are FIFO. The concatenation of the two nodeshynoader, is GR with rate- and latency
¢ = e+ Omax-

PROOF: The former node is GR(, ¢’ = [0ax — lr;ﬂ#]ﬂ for anyr’ > r. By Theorem 2.5 (and the note
after it), the concatenation is GR¢ + ¢/ +). Letr’ go tocc.

O

GR NODES THAT ARE NOT FIFO PER FLOW The concatenation result is no longer true. We study in
detail the composite node.

THEOREM 2.7. Consider the concatenation of two nodes. The first impospadkets a delay in the range
[Omax — 0, 0max]. The second is FIFO and offers the guaranteed rate clockicte its input, with rate-
and latencye. The first node is not assumed to be FIFO, so the order of packetls at the second node
is not the order of packet arrivals at the first one. Assumettiafresh input is constrained by a continuous
arrival curvea(-). The concatenation of the two nodes, in this order, offeteedresh input the guaranteed
rate clock service with rate and latency

' =e+6 + O‘((S) — lmin
max r
The proof is given in the next section.
Application: For«(t) = pt + o, we find
/75 +o - lmin

' =e + 5max +

2.1.5 PRROOFs

Proof of Theorem 2.3

Part1: Consider a service curve elemehtAssume to simplify the demonstration that the input angwiut
functionsR and R* are right-continuous. Consider the virtual syststrmade of a bit-by-bit greedy shaper
with shaping curve\,., followed by a constant bit-by-bit delay element. The hitHit greedy shaper is a
constant bit rate server, with rate Thus the last bit of packet departs from it exactly at timg,, defined
by (2.1), thus the last bit of packetleavesS® atd!, = f,, + e. The output function o8° is R® = R® §,..
By hypothesis R* > R, and by the FIFO assumption, this shows that the delayismupper bounded by
the delay inS’. Thusd,, < f,, + e.

Part 2: Consider the virtual systedi whose outputS(¢) is defined by

if di—l <t< dl

then S(¢) = min{ R(t), max|L(i — 1), L(i) — r(d; —)]} (2.6)

See Figure 2.2 for an illustration. It follows immediatehat R’ (t) = PL(S(t)).
Also consider the virtual systeis’ whose output is

So(t) = (/Br,v & R)(t)

SO is the constant rate server, delayedibyDur goal is now to show that > S°.

74 CHAPTER 2. APPLICATION TO THE INTERNET

Call &) the departure time of the last bit of packeh S, (see Figure 2.2 for an example with= 2). Let
u = d? — d;. The definition of GR node means that> 0. Now sinceS is a shifted constant rate server,
we have:

if d — l;l < s < dY then S%(s) = L(i) — r(d) — s)
Alsod) | < d) — b thusS°(d? —) = L(i — 1) and
if s <d?— l;l then S%(s) < L(i — 1)
It follows that
if di_14+u<s<d then S°(s) < max[L(i — 1), L(i) — r(d? — s)] (2.7)

Consider now somec (d;_1,d;] and lets = ¢ +u. If S(t) = R(t), sinceR > S°, we then obviously have
S(t) > SY(t). Else, from (2.1)S(t) = max[L(i — 1), L(i) — r(d; — t)]. We haved? — s = d; — t and thus,
combining with (2.7), we derive tha’(s) < S(t). Now s > ¢, thus finally S°(t) < S(¢). One can also

readily see thaf is FIFO ifd;_; < d; for all 4. O
A bits R(t) R’(t)
L@3)
I S(t) \
1 L(2) SO(t)
2 3 y L(1)
A 096
L & /
v / >

a & d, d, doz

Figure 2.2:Arrival and departure functions for GR node. The virtual system output is S(t).

Proof of Theorem 2.7.

We use the same notation and convention as in the proof ofréhed.12. We can also assume that all
packet arrivals are distinct, using the same type of redncti

Fix somen > 1; due to Theorem 2.2, it is sufficient to show that there is sérmae{1, ..., n} such that

Lo + o 4+ 1,
dngeg+ak+% (2.8)

By hypothesis, there exists someuch that,; < b, and

dp < bj+e+ (2.9)

We cannot assume that< n; thus, definek as the oldest packet arrived in the interiégl, b,,], in other
words: k = inf{i > 1:b; < b; < b,}. Necessarily, we have now< n.

Any packet that arrives at the second nod@jnb,,| must have arrived at nodeafter or with packet;, and
beforeb,,. ThusB(b;,b,] < Alay, b,]. Nowb,, < a, + 6. Thus by Lemma 7.3 in this appendix:

Blbj, b,] < Alag, an) + A(an, by
S A[ak, an] + a(é) — lmin

2.2. THE INTEGRATED SERVICES MODEL OF THE IETF 75

Also, b; < b, < ay + d and by (2.9):
dy < ag+e+ 38+ a(d) + Alag, an] — lmin

which shows (2.8).

2.2 THE INTEGRATED SERVICES MODEL OF THE IETF

2.2.1 THE GUARANTEED SERVICE

The Internet supports different reservation principleaio Bervices are defined: the “guaranteed” service,
and the “ controlled load” service. They differ in that therfeer provides real guarantees, while the latter
provides only approximate guarantees. We outline thereéiffees in the rest of this section. In both cases,
the principle is based on “admission control”, which opesads follows.

e In order to receive the guaranteed or controlled load sendadlow must first perform a reservation
during a flow setup phase.

¢ A flow must confirm to an arrival curve of the forant) = min(M + pt, rt + b), which is called the
T-SPEC (see Section 1.2.2 on pagel3). The T-SPEC is dedlarit) the reservation phase.

e All routers along the path accept or reject the reservatiith the guaranteed service, routers accept
the reservation only if they are able to provide a serviceeguarantee and enough buffer for loss-
free operation. The service curve is expressed during Besvation phase, as explained below.

For the controlled load service, there is no strict definitad what accepting a reservation means.
Most likely, it means that the router has an estimation meduét says that, with good probability,
the reservation can be accepted and little loss will octre is no service curve or delay guarantee.

In the rest of this chapter we focus on the guaranteed seviowision of the controlled load service relies
on models with loss, which are discussed in Chapter 9.

2.2.2 THE INTEGRATED SERVICES MODEL FOR INTERNET ROUTERS

The reservation phase assumes that all routers can expartcharacteristics using a very simple model.
The model is based on the view that an integrated servicderrguplements a practical approximation
of GPS, such as PGPS, or more generally, a GR node. We haven shdection 2.1.3 that the service
curve offered to a flow by a router implementing GR is a rateday function, with rate? and latencyl’

connected by the relationship

C
T==—4+D 2.10
R+ ()

with C' = the maximum packet size for the flow and = % whereL is the maximum packet size in the
router across all flows, andthe total rate of the scheduler. This is the model definedridnternet node
[75].

FAcT 2.1. The Integrated Services model for a router is that the seruigrve offered to a flow is always a
rate-latency function, with parameters related by a redatof the form (2.10).

The values ofC and D depend on the specific implementation of a router, see Goyoll.1 in the case of
GR nodes. Note that a router does not necessarily implemseiteluling method that approximates GPS.
In fact, we discuss in Section 2.3 a family of schedulers ltizat many advantages above GPS. If a router
implements a method that largely differs from GPS, then wstrfind a service curve that lower-bounds
the best service curve guarantee offered by the router. nrestases, this may mean loosing important

76 CHAPTER 2. APPLICATION TO THE INTERNET

information about the router. For example, ihist possible to implement a network offering constant delay
to flows by means of a system like SCED+, discussed in SectiB,2vith the Integrated Services router
model.

2.2.3 RESERVATION SETUP WITH RSVP

Consider a flow defined by TSPEG/, p, r, b), that traverses nodds. .., N. Usually, nodes 1 and/ are
end-systems while nodesfor 1 < n < N are routers. The Integrated Services model assumes that.nod
on the path of the flow offers a rate latency service cutyer,, and further assumes thag has the form

C
T, = fn + Dy,
whereC,, andD,, are constants that depend on the characteristics of mode
The reservation is actually put in place by means of a flowsptacedure such as the resource reservation
protocol (RSVP). At the end of the procedure, naden the path has allocated to the flow a valye > r.
This is equivalent to allocating a service cupig, 1,,. From Theorem 1.8 on page 28, the end-to-end service
curve offered to the flow is the rate-latency function witter® and latencyl’ given by

R =min,—1. n R,

Let Crot = S22, C,, and Dyt = S22, D,,. We can re-write the last equation as

T = Clot + Diot — g: Sh, (2.11)
i n=1
with
Sp,=Cyp <% - Rin> (2.12)

The termS,, is called the “local slack” term at node
From Proposition 1.14 we deduce immediately:

ProrPosITION2.2. If R > r, the bound on the end-to-end delay, under the conditionsrides above is

b—M (p—R\" M+ Cyy Y
T(p_» +T+Dwt—25n (2.13)

n=1

We can now describe the reservation setup with RSVP. Soraddet flow setup with RSVP are illustrated
on Figure 2.3. It shows that two RSVP flows are involved: areaisement IPATH) flow and a reservation
(RESV) flow. We describe first the point-to-point case.

e A PATH message is sent by the source; it contains the T-SPEC of thgdtmurce T-SPEC), which
is not modified in transit, and another field, the ADSPEC, Wwhicaccumulated along the path. At
a destination, the ADSPEC field contains, among others, ahees ofCtgt, Diot used in Equation
2.13.PATHmessages do not cause any reservation to be made.

e RESV messages are sent by the destination and cause the acturghtiess to be made. They follow
the reverse path marked by PATH messages. REE8V message contains a valug,, (as part of
the so-called R-SPEC), which is a lower bound on the ratenpetexrs R,, that routers along the
path will have to reserve. The value Bf is determined by the destination based on the end-to-end
delay objectivedobj, following the procedure described below. It is normallyt changed by the
intermediate nodes.

2.2. THE INTEGRATED SERVICES MODEL OF THE IETF 77

O O -
EL Sender A RlD RZH gecelver g

1. path message — 2. path message

TSPEC= >
Zi,lgMb/s,SlZKb/s,C ”fglzﬂg?ZE;kab/S 33éﬁa;? PR
AdSpec=() ! ! 'C2K,10Mb/s,512kb/s,32K

- [i
AdSpec=(10.2kb, 0.0% dSpec=(51.2, 0.1)

4. Brequests guaranteed QoS
reservation with delay variation
0.6s; Breserves 622 kb/s

5. resv message

6. resv message sceiver =

7. resv message —
ecelver TSPEC= K,10Mb/s,512kb/ s, 24K

“Receiver TSPEC=
12K, 10Mb/s,512kb/s,R4K _
2K,10Mb/s,512kb/s,? KSPEC =(622 kb/s) SPEC =(622 kb/s)

R- SPEC =(622 kb/s)

Figure 2.3:Setup of Reservations, showing the PATH and RESV flows

Define functionf by

+ Dior

b—M (p—R\T M+,
f(R) = (p R> —i—g

R’ p—r R’

In other words,f is the function that defines the end-to-end delay boundnaisguall nodes along the path
would reserveR,, = R’. The destination computg?®’ as the smallest value r for which f(R') < dobj-

Such a value exists only D;,; < dobj-

In the figure, the destination requires a delay variatiorectibje of 600 ms, which imposes a minimum
value of R =622 kb/s. The value oR’ is sent to the next upstream node in the R-SPEC field oP&EH
message. The intermediate nodes do not know the completeséalyt andDiot, nor do they know the total
delay variation objective. Consider the simple case whiéistarmediate nodes are true PGPS schedulers.
Noden simply checks whether it is able to reserktg = R’ to the flow; this involves verifying that the
sum of reserved rates is less than the scheduler total madethat there is enough buffer available (see
below). If so, it passes the RESV message upstream, up teedtmation if all intermediate nodes accept
the reservation. If the reservation is rejected, then thliemtiscards it and normally informs the source. In
this simple case, all nodes should set their rat&to= R’ thus R = R’, and Equation (2.13) guarantees
that the end-to-end delay bound is guaranteed.

In practice, there is a small additional element (use of theksterm), due to the fact that the designers of
RSVP also wanted to support other schedulers. It works &s\®l

There is another term in the R-SPEC, called sfeck term. Its use is illustrated on Figure 2.4. In the
figure, we see that the end-to-end delay variation requinénset by the destination, is 1000 ms. In that
case, the destination reserves the minimum rate, name2yka/s. Even so, the delay variation objective
D.y; is larger than the bound,,., given by Formula (2.13). The differend@,,; — Dyq. is Written in

the slack termS and passed to the upstream node in the RESV message. Theanpsiode is not able to
compute Formula (2.13) because it does not have the valdearid-to-end parameters. However, it can
use the slack term to increase its internal delay objectimetop of what it had advertised. For example,
a guaranteed rate node may increase its value (@heorem 2.2) and thus reduce the internal resources
required to perform the reservation. The figure shows thateRlices the slack term by 100 ms. This is
equivalent to increasing thi;,; parameter byt00ms, but without modifying the advertiseB;,;.

78 CHAPTER 2. APPLICATION TO THE INTERNET

[O .
Sender A R1|] RZH FBiecelver

1. path message

— >_2. path message
TSPEC=
2K,10Mb/s,512kb/s,3 2k "der TSPEC= = ﬁé‘é? Toprea® -
SOMDIS, ' ,10Mb/s,512kb/s,3§E
AdSpec=() K,10Mb/s,512kb/s,32K

AdSpec=(10.2s/kb/s,

0.05s) AdsSpec=(51.2, 0.1)

4. Brequests guaranteed QoS
reservation with delay variation
1.0s; B reserves 512kb/s

5. resv message
“Receiver TSPEC=
,10Mb/s,512kb/s,24K
SPEC =(512kb/s , St
~0.288s)

6 6. resv message
- résv message eceiver TSPEC=

‘Seché\:\neg/TSzEgib/ | K,10Mb/s,512kb/s,2é'§<
' S, S 4R*SPEC =(512kb/s , S=

R- SPEC =(512 kb/s,
S=0.188s) 0.288s)

Figure 2.4:Use of the slack term

The delays considered here are the total (fixed plus vajiaelkays. RSVP also contains a field used for
advertising the fixed delay part, which can be used to comjpetend-to-end fixed delay. The variable part
of the delay (called delay jitter) is then obtained by sutitom.

2.2.4 A HROWwW SETUP ALGORITHM

There are many different ways for nodes to decide which paranthey should allocate. We present here
one possible algorithm. A destination computes the woist delay variation, obtained if all nodes reserve
the sustainable rate If the resulting delay variation is acceptable, then thstidation sets? = r and
the resulting slack may be used by intermediate nodes to &mrhbdelay on top of their advertised delay
variation defined by’ and D. Otherwise, the destination setsto the minimum valuer,,;,, that supports
the end-to-end delay variation objective and sets the 4tadk As a result, all nodes along the path have
to reserveRR,,;,. As in the previous cases, nodes may allocate a rate largerttie value of they pass
upstream, as a means to reduce their buffer requirement.

DEFINITION 2.3 (A Flow Setup Algorithm). e At a destination systetfy compute

Do = fT(T) +

If Doy; > Diae then assign to the flow a rat®; = r and an additional delay variation; <
Doy — Diazs €St = Doyj — Dinar — dr @and send reservation requeRy, Sy to station/ — 1.
Else Dopj < Dingy) find the minimun®R,,,;,, such thatf7(R,,n) + Igm < Dgyj — Dy, if it exists.

man

Send reservation reque&; = R,.n, S; = 0 to stationl — 1. If R,,;, does not exist, reject the
reservation or increase the delay variation objectivg,;.

e At an intermediate systeinreceive from: 4 1 a reservation reques; 1, S; 1.
If S; = 0, then perform reservation for rat®; ., and if successful, send reservation requBst=
Ri+1> S; = 0 to station: — 1.
Else (5, > 0), perform a reservation for raté; . ; with some additional delay variatio; < ;1.
if successful, send reservation requést= R;1,S; = S;11 — d; to stationi — 1.

2.3. SCHEDULABILITY 79

The algorithm ensures a constant reservation rate. It isteasheck that the end to end delay variation is
bounded byD ;.

2.2.5 MuLTICAST FLOwS

Consider now a multicast situation. A sourSesends to a number of destinations, along a multicast tree.
PATH messages are forwarded along the tree, they are duplicamgditing points; at the same points,
RESV messages are merged. Consider such a point, call itinadel assume it receives reservation requests
for the same T-SPEC but with respective paramel&ys S’,, andR , S . The node performs reservations

internally, using the semantics of algorithm 3. Then it lmmerge the reservation requests it will send to
nodei — 1. Merging uses the following rules:

R-SPEC MERGING RULES The merged reservatioR, S is given by
R = max(R', R")
S = min(S’, S")
Let us consider now a tree where algorithm 3 is applied. We teeshow that the end-to-end delay bounds

at all destinations are respected.

The rate along the path from a destination to a source camuoedse with this algorithm. Thus the mini-
mum rate along the tree towards the destination is the raed fige destination, which proves the result.

A few more features of RSVP are:

e states in nodes need to be refreshed; if they are not retteteereservation is released (“soft states”).
e routing is not coordinated with the reservation of the flow

We have so far looked only at the delay constraints. Buffguirements can be computed using the values
in Proposition 1.14.

2.2.6 HOwW SETUP WITH ATM

With ATM, there are the following differences:

e The path is determined at the flow setup time only. Differemtrections may follow different routes
depending on their requirements, and once setup, a coonedtvays uses the same path.

e With standard ATM signaling, connection setup is initiagdthe source and is confirmed by the
destination and all intermediate systems.

2.3 SCHEDULABILITY

So far, we have considered one flow in isolation and assunagdthode is able to offer some scheduling,
or service curve guarantee. In this section we address dhalgbroblem of resource allocation.

When a node performs a reservation, it is necessary to chaekher local resources are sufficient. In
general, the method for this consists in breaking the nogendoto a network of building blocks such as
schedulers, shapers, and delay elements. There are mamlsesources to account for: bit rate (called
“bandwidth”) and buffer. The main difficulty is the allocati of bit rate. Following [36], we will see in this

80 CHAPTER 2. APPLICATION TO THE INTERNET

section that allocating a rate amounts to allocating a sergurve. It is also equivalent to the concept of
schedulability.

Consider the simple case of a PGPS scheduler, with outgaiteg’t If we want to allocate rate; to flow
i, for everyi, then we can allocate to flomthe GPS weight); = 7. Assume that

Y rm<cC (2.14)

%

Then we know from Proposition 2.1 and Corollary 2.1 that g¥emw ¢ is guaranteed the rate-latency service
curve with rater; and Iatencyé. In other words, the schedulability condition for PGPS @y (2.14).
However, we will see now that a schedulability conditions aot always as simple. Note also that the
end-to-end delay depends not only on the service curveaaiddo the flow, but also on its arrival curve
constraints.

Many schedulers have been proposed, and some of them do mothié GR framework. The most gen-
eral framework in the context of guaranteed service is giwerSCED (Service Curve Earliest Deadline
first) [36],which we describe now. We give the theory for dans size packets and slotted time; some as-
pects of the general theory for variable length packets aosvk [11], some others remain to be done. We
assume without loss of generality that every packet is @& $idata unit.

2.3.1 EDF SHEDULERS

As the name indicates, SCED is based on the concept of Halleadline First (EDF) scheduler. An
EDF scheduler assigns a deadlib¢ to thenth packet of flowi, according to some method. We assume
that deadlines are wide-sense increasing within a flow. A&tyetime slot, the scheduler picks at one of
the packets with the smallest deadline among all packetsepte There is a wide variety of methods for
computing deadlines. The “delay based” schedulers [55DSet= A" + d; whereA™ is the arrival time for
the nth packet for flowi, andd; is the delay budget allocated to flawf d; is independent of, then we
have a FIFO scheduler. We will see that those are speciad chCED, which we view as a very general
method for computing deadlines.

An EDF scheduler is work conserving, that is, it cannot be ifithere is at least one packet present in the
system. A consequence of this is that packets from diffeftemts are not necessarily served in the order
of their deadlines. Consider for example a delay based stdrednd assume that flowwhas a Irage delay
budgetd;, while flow 2 has a small delay budgéi. It may be that a packet of flowarriving att; is served
before a packet of flow arriving att,, even though the deadline of packett; + d; is larger than the
deadline of packe.

We will now derive a general schedulability criterion for EBchedulers. Calk;(¢), t € N, the arrival
function for flowi. Call Z;(¢) the number of packets of flowthat have deadlines t. For example, for a
delay based schedulef;(t) = R;(t — d;). The following is a modified version of [11].

PrRoPOSITION2.3. Consider an EDF scheduler withflows and outgoing rat€'. A necessary condition
for all packets to be served within their deadlines is

I
forall s <t: » Zi(t)— Ri(s) < C(t — s) (2.15)
=1
A sufficient condition is

[Zi(t) = Ri(s)]" < C(t - s) (2.16)

]~

forall s <t:
i=1

2.3. SCHEDULABILITY 81

PrROOF: We first prove the necessary condition. CAJlthe output for flowi. Since the scheduler is
work conserving, we havg.’_| R = Ao ® (3.7_, R;). Now R} > Z; by hypothesis. Thus

1 1

N Zit) < inf C(t—s)+ Y Rils)

i=1 s€0.4] i=1

which is equivalent to (2.15)

Now we prove the sufficient condition, by contradiction. Ase that at somea packet with deadlineis
not yet served. In time sldt the packet served has a deadling, otherwise our packet would have been
chosen instead. Defing such that the time interva$, + 1, ¢] is the maximum time interval ending athat

is within a busy period and for which all packets served haeadtnes< ¢.

Now call S the set of flows that have a packet with deadlinie present in the system at some point in the
interval [sg + 1,¢]. We show that if

if i € S then R}(sg) = Ri(s0) (2.17)

that is, flow: is not backlogged at the end of time skt Indeed, ifsy + 1 is the beginning of the busy
period, then the property is true for any flow. Otherwise, w&ped by contradiction. Assume that S
and thati would have some backlog at the end of time s{pt At time s, some packet with deadline ¢
was served; thus the deadline of all packets remaining imgtieeie at the end of time sleg must have
a deadline> t. Since deadlines are assumed wide-sense increasing \&ifitomv, all deadlines of flow
packets that are in the queue at timgeor will arrive later, have deadline ¢, which contradicts thate S.

Further, it follows from the last argument thatiie S, then all packets served before ortahust have a
deadline< t. Thus
if i € S then R(t) < Z;(t)

Now since there is at least one packet with deadiinenot served at, the previous inequality is strict for
at leastoné in S. Thus
S ORi() <> Zit) (2.18)
i€S i€S
Observe that all packets servedig + 1,] must be from flows ir§. Thus

1

> (Ri(t) — Ri(s0)) = Y _(Rj(t) — Rj(s0))

=1 €S
Combining with (2.17) and (2.18) gives

1

Y (Ri(t) = Ri(s0)) < Y _(Zi(t) = Ri(s0))

i=1 1€S

Now [so + 1,] is entirely in a busy period thugle(Rg(t) — Rl(s0)) = C(t — sp); thus

I
Ct = s0) < D (Zilt) = Rils0) = D_(Zilt) = Rilso))* < D (Zilt) = Rulso))*
= = i=1
which contradicts (2.16). O

A consequence of the proposition that if a set of flows is saladade for some deadline allocation algorithm,
then it is also schedulable for any other deadline allooatiethod that produces later or equal deadlines.
Other consequences, of immediate practical importaneejramwn in the next section.

82 CHAPTER 2. APPLICATION TO THE INTERNET

2.3.2 SCED $HEDULERS [73]

Given, for alli, a functiong;, SCED defines a deadline allocation algorithm that guaesntender some
conditions, that flowi does have3; as a minimum service cur¥eRoughly speaking, SCED sef(t), the
number of packets with deadline upttdo (R; ® 3;)(t).

DEFINITION 2.4 (SCED).Call A7 the arrival time for packet. of flowi. Define functions?* by:

Rit) = _inf [Rls) + Bilt =)

With SCED, the deadline for packetof flow: is defined by
D! = (RM)"Y(n) = min{t € N: R*(t) > n}
Functiong; is called the “target service curve” for flov

FunctionR} is similar to the min-plus convolutioR; ® 3;, but the minimum is computed over all times up to
A?. This allows to compute a packet deadline as soon as thetpackes; thus SCED can be implemented
in real time. The deadline is obtained by applying the psanderse ofR}, as illustrated on Figure 2.5.

If 3; = dq,, then it is easy to see th&d' = A7 + d;, namely, SCED is the delay based scheduler in that
case. The following proposition is the main property of SCEBhows that SCED implements a deadline

Bi (1)

R, (1)

"(t)

v

An D"

Figure 2.5:Definition of SCED. Packet n of flow i arrives at time A”. Its deadline is D".

allocation method based on service curves.

PROPOSITION2.4. For the SCED scheduler, the number of packets with deadfirtes given byZ;(t) =
[(R: @ Bi)(t)]

PROOF: We drop index in this demonstration. First, we show thaft) > |(R @ £)(t)]. Letn =
[(R®B)(t)]. SinceR® 5 < R andR takes integer values, we must haR€) > n and thusA™ < ¢. Now
R™(t) > (R ® B)(t) thus

R'(t) > (R®B)(t) >n

1We use the original work in [73], which is called there “SCIBD-For simplicity, we call it SCED.

2.3. SCHEDULABILITY 83

By definition of SCED,D™ this implies thatD™ < ¢t which is equivalent td&Z(¢) > n.

Conversely, for some fixed but arbitratylet nown = Z(t). Packetn has a deadlinec ¢, which implies
that A” < ¢t and for alls € [0, A"] :

R(s)+B(t—s)>n (2.19)
Now for s € [A",t] we haveR(s) > n thusR(s) + B(t — s) > n. Thus (2.19) is true for al¥ € [0, ¢,
which means thatk @ 5)(t) > n. O

THEOREM 2.8 (Schedulability of SCED, ATM)Consider a SCED scheduler withflows, total outgoing
rate C, and target service curvg; for flow .

1. 1If
I

> Bi(t) < Ctforall t >0 (2.20)

i=1

then every packet is served before or at its deadline and/dle@wi receives| 3; | as a service curve.
2. Assume that in addition we know that every flag/constrained by an arrival curve;. If

I
> (i @ Bi)(t) < Ctforall t >0 (2.21)
=1

then the same conclusion holds

PROOF:

1. Proposition 2.4 implies thaf;(t) < R;(s)+pi(t—s) for0 < s < t. ThusZ;(t) — R;(s) < Bi(t—s).
Now 0 < B;(t — s) thus

[Z;(t) — Ri(s)]t = max[Z;(t) — R;(s),0] < B;(t —)

By hypothesiszll.rz1 Bi(t—s) < C(t — s) thus by application of Proposition 2.3, we know that every
packet is served before or at its deadline. TRs> Z; and from Proposition 2.4:

R, > Z; = |8 ® R;]

Now R; takes only integer values thiig; ® R;| = |3;] ® R;.
2. By hypothesisR; = «; ® R; thusZ; = |o; ® 8; ® R;| and we can apply the same argument, with
«o; ® fB; instead off;. O

SCHEDULABILITY OF DELAY BASED SCHEDULERS A delay based scheduler assigns a delay objective
d; to all packets of flowi. A direct application of Theorem 2.8 gives the following edhlability condition.

THEOREM 2.9 ([55]). Consider a delay based scheduler that seriv@isws, with delayi; assigned to flow
i. All packets have the same size and time is slotted. Assumeifiay;-smooth, wherey; is sub-additive.
Call C the total outgoing bit rate. Any mix of flows satisfying thassumptions is schedulable if

Zai(t — dz) § Ct

If a;(t) € N then the condition is necessary.

84 CHAPTER 2. APPLICATION TO THE INTERNET

PrROOF: A delay based scheduler is a special case of SCED, with taggeice curves; = d4,. This
shows that the condition in the theorem is sufficient. Coselgr consider the greedy flows given By(t) =
a;(t). This is possible because is assumed to be sub-additive. Fld¥ must be schedulable, thus the
output R satisfiesR(t) > «;(i —d;). Now). Ri(t) < ct, which proves that the condition must hold]

It is shown in [55] that a delay based scheduler has the lasgéedulability region among all schedulers,
given arrival curves and delay budgets for every flow. Notedwer that in a network setting, we are
interested in the end-to-end delay bound, and we know @edt#.3) that it is generally less than the sum
of per hop bounds.

The schedulability of delay based schedulers requiresathatrrival curve is known and enforced at every
node in the network. Because arrival curves are modified byar& nodes, this motivates the principle of

Rate Controlled Service Disciplines (RCSDs) [44, 82, 30jiclh implement in every node a packet shaper
followed by a delay based scheduler. The packet shapermgeasathat an arrival curve is known for every
flow. Note that such a combination is not work conserving.

Because of the "pay bursts only once” phenomenon, RCSD migiide end-to-end delay bounds that are
worse than guaranteed rate nodes. However, it is possilaeoid this by aggressively reshaping flows in
every node, which, from Theorem 2.9, allows us to set smd#adlines. If the arrival curves constraints on
all flows are defined by a single leaky bucket, then it is showjs6, 65] that one should reshape a flow to
its sustained rate at every node in order to achieve the sathtoeend delay bounds as GR nodes would.

SCHEDULABILITY OF GR NODES Consider the family of GR nodes, applied to the ATM case. We
cannot give a general schedulability condition, since #ut that a scheduler is of the GR type does not tell
us exactly how the scheduler operates. However, we shovicthany rater and delayy we can implement

a GR node with SCED.

THEOREM 2.10 (GR node as SCED, ATM case}onsider the SCED scheduler witHflows and outgoing
rate C'. Let the target service curve for floiskbe equal to the rate-latency service curve with rateand
latencyw;. If

1
ZTZ' S C
i=1

then the scheduler is a GR node for each fipwith rater; and delayy;.

PROOF: From Proposition 2.4:
Zi(t) = [(Bi @ Ar,)(t — vi)]

thus Z; is the output of the constant rate server, with rgtedelayed byv;. Now from Theorem 2.8 the
condition in the theorem guarantees tiat> Z;, thus the delay for any packet of flows bounded by the
delay of the constant rate server with rajeplusv;. O

Note the fundamental difference between rate based ang blated schedulers. For the former, schedula-
bility is a condition on the sum of the rates; it is indepertdwtihe input traffic. In contrast, for delay based
schedulers, schedulability imposes a condition on thealrcurves. Note however that in order to obtain a
delay bound, we need some arrival curves, even with delasdbsshedulers.

BETTER THAN DELAY BASED SCHEDULER A scheduler need not be either rate based or delay based.
Rate based schedulers suffer from coupling between delggtole and rate allocation: if we want a low
delay, we may be forced to allocate a large rate, which becati$heorem 2.10 will reduce the number
of flows than can be scheduled. Delay based schedulers dsidrawback, but they require that flows be

2.3. SCHEDULABILITY 85

reshaped at every hop. Now, with clever use of SCED, it isiptes$o obtain the benefits of delay based
schedulers without paying the price of implementing sheper

Assume that for every flowwe know an arrival curve; and we wish to obtain an end-to-end delay bound
d;. Then the smallest network service curve that should beatkal to the flow isy; ® 4, (the proof is
easy and left to the reader). Thus a good thing to do is to lausicheduler by allocating to floithe target
service curvey; ® dg,. The schedulability condition is the same as with a delagth@asheduler, however,
there is a significant difference: the service curve is guaed even if some flows are not conforming to
their arrival curves. More precisely, if some flows do notfoom to the arrival curve constraint, then the
service curve is still guaranteed, but the delay bound is not

This observation can be exploited to allocate service cuivea more flexible way than what is done in
Section 2.2 [20]. Assume flowuses the sequence of nodes= 1, ..., M. Every node receives a paif’
of the delay budget;, with E,ﬂv{:l d < d;. Then itis sufficient that every node implements SCED with a

target service curvg;" = dqm ® «; for flow i. The schedulability condition at node is

> ot —dl') < Ot

JE€EEm
whereFE,, is the set of flows scheduled at nogeandC,, is the outgoing rate of node. If it is satisfied,
then flow: receivesa; ® d4, as end-to-end service curve and therefore has a delay bibdoydé. The
schedulability condition is the same as if we had impleméatenodem the combination of a delay based
scheduler with delay budgéf”, and a reshaper with shaping curvg but we do not have to implement a
reshaper. In particular, the delay bound for float nodem is larger thani;”; we find again the fact that the
end-to-end delay bound is less than the sum of individuahtsu

In [73], it is explained how to allocate a service cury®s to every network element: on the path of the
flow, such that3! ® 32 ® ... = a; ® d;, in order to obtain a large schedulability set. This geriegaland
improves the schedulability region of RCSD.

EXTENSION TO VARIABLE LENGTH PACKETS We can extend the previous results to variable length
packets; we follow the ideas in [11]. The first step is to cdesia fictitious preemptive EDF scheduler

(system 1), that allocates a deadline to every bit. We defifig) as before, as the number of bits whose
deadline is< t. A preemptive EDF scheduler serves the bits present in ttersyin order of their deadlines.

It is preemptive (and fictitious) in that packets are notwaggkd entirely, but, in contrast, are likely to be

interleaved. The results in the previous sections appll mdat change to this system.

The second step is to modify system | by allocating to evetry lieadline equal to the deadline of the last
bit in the packet. Call it system II. We have//(t) = PLi(Z!(t)) where PLi is the cumulative packet
length (Section 1.7) for flow. From the remarks following Proposition 2.3, it follows thiasystem | is
schedulable, then so is system Il. System Il is made of a geeerEDF scheduler followed by a packetizer.

The third step consists in defining “packet-EDF” schedwgsiem ll1); this is derived from system Il in the
same way as PGSP is from GPS. More precisely, the packet Bidesler picks the next packet to serve
among packets present in the system with minimum deadlinen,Twhen a packet is being served, it is not
interrupted. We also say that system lll is the non-preerad@DF scheduler. Then the departure time of
any packet in system lll is bounded by its departure time stesy Il pluslm% wherel,,.x is the maximum
packet size across all flows addis the total outgoing rate. The proof is similar to PropasitR.1 and is
left to the reader (it can also be found in [11]).

We can apply the three steps above to a SCED scheduler wigtbleasize packets, called “Packet-SCED”.

DEFINITION 2.5 (Packet SCED)A PSCED schedulers is a non-premptive EDF schedulers, vdea@ines
are allocated as follows. Call} the arrival time for packet. of flow:. Define functiong?;’ by:

Ri(t) = inf (Ri(s) + Ailt — 9]

86 CHAPTER 2. APPLICATION TO THE INTERNET

With PSCED, the deadline for packef flowi is defined by
D = (R~ (Li(n)) = min{t € N: RI(t) > (Li(n))}

whereL; is the cumulative packet length for flawFunctiong; is called the “target service curve” for flow
7.

The following proposition follows from the discussion akov

PrRoPOsSITION2.5. [11] Consider a PSCED scheduler wiftflows, total outgoing raté’, and target service
curves; for flows. Call [* . the maximum packet size for flowand letl,,,, = max; *

max max*

1. 1If
I

> Bi(t) < Ctforall t >0 (2.22)
i=1
then every packet is served before or at its deadline b&a@s A bound on packet delay ig«;, 8;) +

lmﬁ. Moreove_r, ever_y_ﬂovx'/ receiveds; (t — I1,....) - lm%ﬁ asa service curve.
2. Assume that, in addition, we know that every flagvconstrained by an arrival curve;. If

1
> (i @ Bi)(t) < Ctforall t >0 (2.23)
=1

then the same conclusion holds.

Note that the first part of the conclusion means that the maiximpacket delay can be computed by assuming
that flowi would receives; (not 5; (¢ — I%,,,)) as a service curve, and addifg.

Proor: It follows from the three steps above that the PSCED schedale be broken down into a
preemptive EDF scheduler, followed by a packetizer, foddvby a delay element. The rest follows from
the properties of packetizers and Theorem 2.8.

2.3.3 BUFFER REQUIREMENTS

As we mentioned at the beginning of this section, buffer egouents have to be computed in order to
accept a reservation. The condition is simply X; < X whereX; is the buffer required by flow at this
network element, and’ is the total buffer allocated to the class of service. Thematation ofX; is based
on Theorem 1.14; it requires computing an arrival curve efrg¥low as it reaches the node. This is done
using Theorem 1.15 and the flow setup algorithm, such as imifiefi 2.3.

It is often advantageous to reshape flows at every node. dndedhe absence of reshaping, burstiness
is increased linearly in the number of hops. But we know tkeahaping to an initial constraint does not

modify the end-to-end delay bound and does not increaseutffer mequirement at the node where it is

implemented. If reshaping is implemented per flow, then tivstiness remains the same at every node.

2.4 APPLICATION TO DIFFERENTIATED SERVICES

2.4.1 DFFERENTIATED SERVICES

In addition to the reservation based services we have studi&ection 2.2, the Internet also proposes
differentiated services [7]. The major goal of differetaid services is to provide some form of better

2.4. APPLICATION TO DIFFERENTIATED SERVICES 87
service while avoiding per flow state information as is reegiby integrated services. The idea to achieve
this is based on the following principles.

e Traffic classes are defined; inside a network, all traffic hgilog to the same class is treated as one
single aggregate flow.

e At the network edge, individual flows (called “micro-flowsdje assumed to conform to some arrival
curve, as with integrated services.

mICI"OﬂOW / (pil Gi)

(py. o)) e

I SN
rate r
EF aggregate latency e,
at node m

Figure 2.6: Network Model for EF. Microflows are individually shaped and each conform to some arrival
curve. At all nodes, microflows R, to R3 are handled as one aggregate flow, with a guaranteed rate (GR)
guarantee. Upon leaving a node, the different microflows take different paths and become part of other
aggregates at other nodes.

If the aggregate flows receive appropriate service curvdhdametwork, and if the total traffic on every
aggregate flow is not too large, then we should expect somedsoon delay and loss. The condition on
microflows is key to ensuring that the total aggregate traéfinains within some arrival curve constraints.
A major difficulty however, as we will see, is to derive bouridsindividual flows from characteristics of

an aggregate.

Differentiated services is a framework that includes a neinds different services. The main two services
defined today are expedited forwarding (EF)[23, 5] and a&skforwarding (AF)[39]. The goal of EF is
to provide to an aggregate some hard delay guarantees, dodsoThe goal of AF is to separate traffic
between a small number of classes (4); inside each clasg, éwels of drop priorities are defined. One of
the AF classes could be used to provide a low delay servidenitioss, similar to EF.

In this chapter, we focus on the fundamental issue of howeagde scheduling impacts delay and through-
put guarantees. In the rest of this section, we use the nletwodel shown on Figure 2.6. Our problem is

to find bounds for end-to-end delay jitter on one hand, foklmacat all nodes on the other hand, under the
assumptions mentioned above. Delay jitter is is the diffeeebetween maximum and minimum delay; its
value determines the size of playout buffers (Section 1.1.3

2.4.2 AN ExpLICIT DELAY BOUND FOR EF

We consider EF, the low delay traffic class, as mentioned ati@e2.4.1, and find a closed form expression
for the worst case delay, which is valid in any topology, irossless network. This bound is based on a
general time stopping method explained in detail in Chatdr was obtained in [14] and [43].

ASSUMPTION AND NOTATION (See Figure 2.6)

88 CHAPTER 2. APPLICATION TO THE INTERNET

e Microflow i is constrained by the arrival curygt + o; at the network access. Inside the network, EF
microflows arenot shaped.

e Nodem acts as a Guaranteed Rate node for the entire EF aggregtiteater,,, and latency,,,. This
is true in particular if the aggregate is served as one flowHH® service curve element, with a rate-
latency service curve; but it also holds quite generallgneW nodes are non-FIFO (Section 2.1.3).
In Chapter 6, we explain that the generic node model usedeicdhtext of EF is packet scale rate
guarantee, which satisfies this assumption.
Let e be an upper bound ay,, for all m.

e h is a bound on the number of hops used by any flow. This is tygid#l or less, and is much less
than the total number of nodes in the network.

e Utilization factors: Define/,, = i > _ism Pi» Where the notation > m means that node: is on the
path of microflowi. Let » be an upper bound on al},,.

e Scaled burstiness factors: Defing = % > ism 0i- LetT be an upper bound on at,.

e L. is an upper bound on the size (in bits) of any EF packet.

THEOREM 2.11 (Closed form bound for delay and backlog [14f)» < 1 then a bound on end-to-end

delay variation for EF ish.D; with
e+ 71

T1-(h-1p
Atnodem, the buffer required for serving low delay traffic withous$éds bounded bireq = 7 D1+ Limax-

Dr

Proor: (Part1:) Assume that a finite bound exists and £athe least upper bound. The data that feeds
nodem has undergone a variable delay in the rajigéh — 1) D], thus an arrival curve for the EF aggregate
at nodem is vr,,(t + (h — 1)D) + r,,,7. By application of (2.4), the delay seen by any packet is dedn
bye+ 7+ (h—1)Dv;thusD < e + 7+ (h — 1) Dv. If the utilization factorv is less thanL-, it follows
thatD < D;.

(Part 2:) We prove that a finite bound exists, using the titopging method. For any time> 0, consider
the virtual system made of the original network, where allrses are stopped at tinie This network
satisfies the assumptions of part 1, since there is only & finimber of bits for the entire lifetime of the
network. CallD’(t) the worst case delay across all nodes for the virtual netivatéxed byt. From the
above derivation we see thaX (t) < D, for all ¢. Letting¢ tend to+oo shows that the worst case delay at
any node remains bounded By .

(Part 3:) By Corollary 2.1, the backlog is bounded by theigaltdeviation between the arrival curve
vrm(t + (h — 1)D) + r,, 7 and the service curvig,, (t — ;) — Lmax) ™, Which after some algebra gives
Breq O
The theorem can be slightly improved by avoiding to take mmaxfor v/,,,; this gives the following result
(the proof is left to the reader):

COROLLARY 2.2. If v < 1+ then a bound on end-to-end delay variation for ER8] with

“+ T
D = mi Em m
()

IMPROVED BOUND WHEN PEAK RATE IS KNOWN: A slightly improved bound can be obtained if, in
addition, we have some information about the total incontiihgate at every node. We add the following
assumptions to the previous list.

e Let C,, denote a bound on the peak rate of all incoming low delay traféiffic at nodem. If we
have no information about this peak rate, tligp = +o0o. For a router with large internal speed and

2.4. APPLICATION TO DIFFERENTIATED SERVICES 89

buffering only at the output;,, is the sum of the bit rates of all incoming links (the delay tais
better for a smalle€’,,).

e Fan-in: Letl,, be the number of incident links at node Let F' be an upper bound M Fis
the maximum time to transmit a number of EF packets that $anebusly appear on muitlple inputs.

¢ Redefiner,, := max{ Imfjax, -5 0i}. LetT be an upper bound on af),.
o Letu,, = % Note that0 < u,, < 1, u,, increases withC,,,, and if C,, = +oo, then

Uy, = 1. Callu = max,, u,,. The parametet € [0, 1] encapsulates how much we gain by knowing
the maximum incoming rates,,, (u is small for small values of’,,).

THEOREMZ2.12 (Improved Delay Bound When Peak Rate is Known [14, 433}* = min,,,{ (h_1)(cmclnrm)++rm }.
If v < v*, a bound on end-to-end delay variation for ERi®5 with

e+ur+ (1 —-u)F

Doy =
2 1—(h—1uv

PROOF: The proof is similar to the proof of Theorem 2.11. Calithe least bound, assuming it exists.

An arrival curve for the flow of EF packets arriving at nadeon some incident link is C,lnt + Limax, Where
C! is the peak rate of the link (this follows from item 4 in Thewrd.18). Thus an arrival curve for the
incoming flow of EF packets at node is C,,t + I,,, Lax. The incoming flow is thus constrained by the
T-SPEC(M, p,r,b) (see Page 13) With = I, Liyax, p = Crny T = Ty b = roy T + (B — 1) D1y,

By Proposition 1.14, it follows that

ImLmaX(l - um)

T'm

D < + (7 + (b — 1) Dvpy) uyy,

The conditionv < v* implies thatl — (b — 1)y, uyy, > 0, thus

b < Em ot Tmtim + Pofee bt
- 1 — (h—Dvmun,

The above right-hand-side is an increasing function,f due tor,,, > Ifﬂ Thus we have a bound by
replacingu,, by u:

D < €m + TmU + ImLm:;(l_u) <D
= 1= (h—Dvpu 7
The rest of the proof follows along lines similar to the prodfTheorem 2.11. O

It is also possible to derive an improved backlog bound,quBiroposition 1.14. As with Theorem 2.12, we
also have the following variant.

COROLLARY 2.3. If v < v*, a bound on end-to-end delay variation for ERii®?, with

™m

Df = mi
2 = { 1—(h—1D)vmum

em + Tonm, + -[ranax(l_u'm) }

DiscussioN: If we have no information about the peak incoming réa}e then we set’; = +oc and
Theorem 2.12 gives the same bound as Theorem 2.12. For falitesvofC,,,, the delay bound is smaller,
as illustrated by Figure 2.7.

The bound is valid only for small utilization factors; it dgdes atv > X+, which does not mean that
the worst case delay does grow to infinity [41]. In some cakesmetwork may be unbounded; in some

90 CHAPTER 2. APPLICATION TO THE INTERNET

0.5¢

0.4

0.3}

0.2¢

0. 05 0.1 0.15 0.2

Figure 2.7:The bound D (in seconds) in Theorem 2.11 versus the utilization factor v for h = 10, e = 242208,
Lyax = 1000 b, o; = 100B and p; = 32kb/s for all flows, r,, = 149.760Mb/s, and C,, = +oo (thin line) or
Cy, = 21y, (thick line).

other cases (such as the unidirectional ring, there is aveafinite bound for alb < 1. This issue is
discussed in Chapter 6, where we we find better bounds, affense of more restrictions on the routes
and the rates. Such restrictions do not fit with the diffaedatl services framework. Note also that, for
feed-forward networks, we know that there are finite boummds/f< 1. However we show now that the
conditionr < L+ is the best that can be obtained, in some sense.

PROPOSITION2.6. [4, 14] With the assumptions of Theorem 2.11; it -1, then for anyD’ > 0, there
is a network in which the worst case delay is at leRsSt

In other words, the worst case queuing delay can be madeaailyitarge; thus if we want to go beyond
Theorem 2.11, any bound for differentiated services myséne on the network topology or size, not only
on the utilization factor and the number of hops.

PrRoOOF: We build a family of networks, out of which, for any’, we can exhibit an example where the
gueuing delay is at leagd’.

The thinking behind the construction is as follows. All floarg low priority flows. We create a hierarchical
network, where at the first level of the hierarchy we choose ‘flow” for which its first packet happens
to encounter jusbne packet of every other flow whose route it intersects, whaeniéxt packet does not
encounter any queue at all. This causes the first two pack#éte chosen flow to come back-to-back after
several hops. We then construct the second level of therbigrdy taking a new flow and making sure
that its first packet encountetwo back-to-back packets of each flow whose routes it intersedisre the
two back-to-back packet bursts of all these flows come fragnotlitput of a sufficient number of networks
constructed as described at the first level of the hierardRgpeating this process recursively sufficient
number of times, for any chosen delay valllewe can create deep enough hierarchy so that the queuing
delay of the first packet of some flow encounters a queuing daetae thanD (because it encounters a large
enough back-to-back burst of packets of every other flowtcocted in the previous iteration), while the
second packet does not suffer any queuing delay at all. Wedemaribe in detail how to construct such a
hierarchical network (which is really a family of networksg)ch that utilization factor of any link does not
exceed a given factar, and no flow traverses more tharhops.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 91

Now let us describe the networks in detail. We consider alfaafinetworks with a single traffic class and
constant rate links, all with same bit raté The network is assumed to be made of infinitely fast switches
with one output buffer per link. Assume that sources areealky bucket constrained, but are served in an
aggregate manner, firstin first out. Leaky bucket conssairs implemented at the network entry; after that
point, all flows are aggregated. Without loss of generaliy,also assume that propagation delays can be set
to O; this is because we focus only on queuing delays. As ali§icagion, in this network, we also assume
that all packets have a unit size. We show that for any fixetlathitrary delay budgeD, we can build a
network of that family where the worst case queueing deldgriger thanD, while each flow traverses at
most a specified number of hops.

A network in our family is calledV (h, v, J) and has three parameters:(maximum hop count for any
flow), v (utilization factor) and/ (recursion depth). We focus on the cases wiiere 3 andﬁ <v<l1,
which implies that we can always find some integesuch that

1 kh+1

W 1kh—1

(2.24)

Network N'(h, v, J) is illustrated in Figures 2.8 and 2.9; it is a collection oémtical building blocks,
arranged in a tree structure of depth Every building block has one internal source of traffic Il
“transit traffic”), kh(h — 1) inputs (called the “building block inputs”f;h(h — 1) data sinksh — 1 internal
nodes, and one output. Each of the 1 internal nodes receives traffic frokh building block inputs plus it
receives transit traffic from the previous internal nodehwlie exception of the first one which is fed by the
internal source. After traversing one internal node, wdfiom the building block inputs dies in a data sink.
In contrast, transit traffic is fed to the next internal noeegept for the last one which feeds the building
block output (Figure 2.8). Figure 2.9 illustrates that oatwork has the structure of a complete tree, with

buffer
- %ﬁt—»
multiplexer _w_? demultiplexer
1 data
source (h-1) kh inputs
L - n

| W W
>—\> o —~\> o —~\> o 1 output

h-1 internal nodes (h-1) kh data sinks

Figure 2.8:The internal node (top) and the building block (bottom) used in our network example.

92 CHAPTER 2. APPLICATION TO THE INTERNET

depthJ. The building blocks are organized in levgls= 1, ..., J. Each of the inputs of a level building

block (j > 2) is fed by the output of one levgl— 1 building block. The inputs of level building blocks
are data sources. The output of ghe 1 building block feeds exactly one levgbuilding block input. At
level J, there is exactly one building block, thus at level- 1 there areih(h — 1) building blocks, and at
level 1 there arg(kh(h — 1))’ ~! building blocks. All data sources have the same rate X<~ and burst

level J - 2 ||||||||l%(‘II i ||||||||!|¢II m"""wlm"” 0

|||||||||‘|, f ||||||¢|‘q
/\

A-=-_

level J-1

level J

Figure 2.9:The network made of building blocks from Figure 2.8

toleranceb = 1 packet. In the rest of this section we take as a time unit Hrestnission time for one packet,
so thatC = 1. Thus any source may transmit one packet every ’“h“ time units. Note that a source
may refrain from sending packets, which is actually whaseatthe Iarge delay jitter. The utilization factor
on every link isv, and every flow uses or h hops.

Now consider the following scenario. Consider some anlyittavel 1 building block. At timet,, assume
that a packet fully arrives at each of the building block itspof level1, and at timety + 1, let a packet
fully arrive from each data source inside every levdduilding block (this is the first transit packet). The
first transit packet is delayed % — 1 time units in the first internal node. Just one time unit befbis
packet leaves the first queue, let one packet fully arriveaalh énput of the second internal node. Our first
transit packet will be delayed again by — 1 time units. If we repeat the scenario along all internal 1sode
inside the building block, we see that the first transit pagkdelayed by h — 1)(hk — 1) time units. Now
from (2.24),0 < (h—1)(hk — 1), so itis possible for the data source to send a second trzatdiet at time
(h — 1)(hk — 1). Let all sources mentioned so far be idle, except for the gionis already described. The
second transit packet will catch up to the first one, so thpuudf any levell building block is a burst of
two back-to-back packets. We can choggarbitrarily, so we have a mechanism for generating bursg of
packets.

Now we can iterate the scenario and use the same constrttiemel2. The level-2 data source sends
exactly three packets, spaced ty Since the internal node receiveg bursts of two packets originating
from level 1, a judicious choice of the level 1 starting tiratslthe first level 2 transit packet find a queue of
2hk — 1 packets in the first internal node. With the same constroc®in level 1, we end up with a total
queuing delay ofh — 1)(2hk — 1) > 2(h — 1)(hk — 1) > 26 for that packet. Now this delay is more than
260, and the first three level-2 transit packets are delayed égdme set of non-transit packets; as a result,
the second and third level-2 transit packets will evenyuzditch up to the first one and the output of a level
2 block is a burst of three packets. This procedure easilggdines to all levels up td. In particular, the
first transit packet at level has an end-to-end delay of at led#gt Since all sources become idle after some
time, we can easily create a last levietransit packet that finds an empty network and thus a zeroilggieu
delay.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 93

Thus there are two packets in netwo¥k(h, v, J), with one packet having a delay larger thaf, and the
other packet has zero delay. This establishes that a bougdearning delay, and thus on delay variation in
network A/ (h, v, J) has to be at least as large & O

2.4.3 BOUNDS FOR AGGREGATE SCHEDULING WITH DAMPERS

At the expense of some protocol complexity, the previousidsican be improved without losing the feature
of aggregate scheduling. It is even possible to avoid bouptbsions at all, using the conceptsdadgmper
Consider an EDF scheduler (for example a SCED scheduleraasuime that every packet sent on the
outgoing link carries a field with the differeneebetween its deadline and its actual emission time, if it is
positive, and) otherwise. A damper is a regulator in the next downstreane tlogt picks for the packet an
eligibility time that lies in the intervala + d — A, a + d], whereA is a constant of the damper, ands the
arrival time of the packet in the node where the damper resitiée callA the “damping tolerance”. The
packet is then withheld until its eligibility time [80, 20§ee Figure 2.10. In addition, we assume that the
damper operates in a FIFO manner; this means that the sexjokelagibility times for consecutive packets
is wide-sense increasing.

Unlike the scheduler, the damper does not exist in isolatibis associated with the next scheduler on the
path of a packet. Its effect is to forbid scheduling the pablkéore the eligibility time chosen for the packet.
Consider Figure 2.10. Scheduterworks as follows. When it has an opportunity to send a padest,at
time t, it picks a packet with the earliest deadline, among all peckhat are present in nodé and whose
eligibility date is> ¢. The timing informationd shown in the figure is carried in a packet header, either as
a link layer header information, or as an IP hop by hop heaxtension. At the end of a path, we assume
that there is no damper at the destination node.

The following proposition is obvious, but important, anajigen without proof.

PROPOSITION2.7. Consider the combinatiof of a scheduler and its associated damper. If all packets are
served by the scheduler before or at their deadlines, therovides a bound on delay variation equal4o

It is possible to letA = 0, in which case the delay is constant for all packets. A boumthe end-to-end
delay variation is then the delay bound at the last schedudegrg the combination of a scheduler and a
damper (this is called “jitter EDD” in [80]). In practice, weonsiderA > 0 for two reasons. Firstly, it is
impractical to assume that we can write the fiéhdith absolute accuracy. Secondly, having some slack in
the delay variation objective provides better performaidew priority traffic [20].

There is no complicated feasibility condition for a dames,there is for schedulers. The operation of a
damper is always possible, as long as there is enough buffer.

ProrPoOsITION2.8 (Buffer requirement for a dampetlf.all packets are served by the scheduler before or at
their deadlines, then the buffer requirement at the assedidamper is bounded by the buffer requirement
at the scheduler.

PrROOF: Call R(t) the total input to the scheduler, aft(¢) the amount of data with deadline ¢. Call
R*(t) the input to the damper, we hav& (¢) < R(t). Packets do not stay in the damper longer than until
their deadline in the scheduler, thus the outfy(t) of the damper satisfieR;(t) > R'(t). The buffer
requirement at the scheduler at timis R(t) — R/ (t); at the damper it i®*(¢t) — R1(¢t) > R(t)— R/(t). O

THEOREM2.13 (Delay and backlog bounds with damper&ke the same assumptions as in Theorem 2.11,
we assume that every scheduierthat is not an exit point is associated with a damper in thet dexvn-
stream node, with damping tolerands,,. Let A be a bound on all,,,.

If v < 1, then a bound on the end-to-end delay jitter for low delayfitras

D=e+(h-1D)A1+v)+TV

94 CHAPTER 2. APPLICATION TO THE INTERNET

Switching Fabric

Scheduler k To From Damper n Scheduler m

_other other ‘

/ router router
Router M O g Router N

O "

Scheduler / Damper' /

Departure from /| Deadline at /

I

v

+——>
d
’ | q | ‘ Packet sent
from M to N
Arrival at node N l l
a a+d-3§ a+d :

Eligibility time picked by damper /

Figure 2.10:Dampers in a differentiated services context. The model shown here assumes that routers
are made of infinitely fast switching fabrics and output schedulers. There is one logical damper for each
upstream scheduler. The damper decides when an arriving packet becomes visible in the node.

2.4. APPLICATION TO DIFFERENTIATED SERVICES 95

A bound on the queuing delay at any scheduler is
Dy =e+v[t+ (h—1)A]
The buffer required at schedulet, for serving low delay traffic without loss is bounded by
Breqg = rmDo

A bound on the buffer required at damperis the same as the buffer required at scheduter

PrROOF: The variable part of the delay between the input of a scheduléd the input of the next one is
bounded byA. Now let us examine the last scheduler, sayon the path of a packet. The delay between a
source for a flowi > m and schedulem is a constant plus a variable part bounded by- 1)A. Thus an
arrival curve for the aggregate low-delay traffic arriviriggeghedulern is

as(t) =vrp(t+7+ (h—1)A)
By applying Theorem 1.4, a delay bound at scheduiés given by
Dy =E+uv[r + (h—1)A]
A bound on end-to-end delay variation(fs — 1) A + D, which is the required formula.

The derivation of the backlog bound is similar to that in Tireen 2.11. O

The benefit of dampers is obvious: there is no explosion tdthend, it is finite (and small if\ is small)
for any utilization factor up td (see Figure 2.11). Furthermore, the bound is dominatelddyacross the
whole range of utilization factors up o A key factor in obtaining little delay variation is to havesmall
damping tolerancé\.

0.5¢

0.4

0.3}

0.2

0.2 0.4 0.6 0.8

Figure 2.11:The bound D (in seconds) in Theorem 2.13 the same parameters as Figure 2.7, for a damping
tolerance A = 5 ms per damper, and C,, = +oo (thick line). The figure also shows the two curves of
Figure 2.7, for comparison. The bound is very close to hA = 0.05s, for all utilization factors up to 1.

There is a relation between a damper and a maximum servige.ddonsider the combination of a scheduler
with minimum service curveg and its associate damper with damping toleraceCall p the fixed delay

on the link between the two. It follows immediately that tlenbination offers the maximum service curve
B ® dp—a and the minimum service curve® J,. Thus a damper may be viewed as a way to implement
maximum service curve guarantees. This is explored inldeti0].

96 CHAPTER 2. APPLICATION TO THE INTERNET

2.4.4 JATIC EARLIEST TIME FIRST (SETF)

A simpler alternative to the of dampers is proposed by Z.thay et al under the name of Static Earliest
Time First (SETF) [84].

ASSUMPTIONS We take the same assumptions as with Theorem 2.11, with lbevfiog differences.

e At network access, packets are stamped with their time @fahrr At any node, they are served
within the EF aggregate at one node in order of time stampas We assume that nodes offer a GR
guarantee to the EF aggregate, as defined by (2.1) or (213nHare packets are numbered in order
of time stamps (i.e. their order at the network access, nihighode).

THEOREM 2.14. If the time stamps have infinite precision, foralk 1, the end-to-end delay variation for
the EF aggregate is bounded by
1—(1—v)

D:(e—l—T)W

PrROOF: The proof is similar to the proof of Theorem 2.11. CAJ} the least bound, assuming it exists,
on the end-to-end delay aftérhops,k < h. Consider a tagged packet, with labeland calld,, its delay

in k£ hops. Consider the node that is thehth hop for this packet. Apply (2.3): there is some labet n
such that

ot o 1,
dnge+ak+% (2.25)

wherea,; andd; are the arrival and departure times at ned®f the packet labeled, and/; its length in
bits. Now packetg: to n must have arrived at the network access befgre- d;, and aftera,,, — Dgj—_1.
Thus

g+ ...+ 1, <alap, —apm —dg + Dp_q)

where « is an arrival curve at network access for the traffic that Wilv through nodem. We have
a(t) < ry, (vt + 7). By (2.4), the delayl,, — a,, for our tagged packet is bounded by

t—d Dy,
e + sup o Bt hl)—t =e+ 74+ v(Dp_1 —dg)
t>0 T'm

thus
dpt1 < dp +e+71+v(Dy_1 —dy)

The above inequation can be solved iteratively dgras a function ofD,,_;; then takek = h — 1 and
assume the tagged packet is one that achieves the worsk-tegedelay, thusd,_; = dj_1 which gives
an inequality forD;, _1; last, takek = h and obtain the end-to-end delay bound as desired. O

COoMMENTS: The bound is finite for all values of the utilization facter< 1, unlike the end-to-end
bound in Theorem 2.11. Note that for small values gthe two bounds are equivalent.

We have assumed here infinite precision about the arrivad stamped in every packet. In practice, the
timestamp is written with some finite precision; in that gadeang [84] finds a bound which lies between
Theorem 2.11 and Theorem 2.14 (at the limit, with null priecisthe bound is exactly Theorem 2.14).

2.5. BIBLIOGRAPHIC NOTES 97

2.5 BIBLIOGRAPHIC NOTES

The delay bound for EF in Theorem 2.12 was originally foundli4], but neglecting the.,,., term; a
formula that accounts fak,,,,, was found in [43].

Bounds that account for statistical multiplexing can benfibin [58].

2.6 EXERCISES

EXERCISE2.1. Consider a guaranteed rate scheduler, with r&end delayv, that receives a packet flow
with cumulative packet length. The (packetized) scheduler output is fed into a constamats trunk with
rate c > R and propagation delay'.

1. Find a minimum service curve for the complete system.
2. Assume the flow of packetgisb)-constrained, witth > .. Find a bound on the end-to-end delay
and delay variation.

EXERCISE2.2. Assume all nodes in a network are of the GR type with Fand latencyl’. A flow with
T-SPECa(t) = min(rt + b, M + pt) has performed a reservation with rafe across a sequence &f
nodes, withp > R. Assume no reshaping is done. What is the buffer requireat¢hehth node along the
path, forh =1,..H ?

EXERCISE 2.3. Assume all nodes in a network are made of a GR type with Raé&d latencyl’, before
which a re-shaper with shaping curve= , is inserted. A flow with T-SPEQ(t) = min(rt+b, M + pt)
has performed a reservation with rafeacross a sequence &f such nodes, with > R. What is a buffer
requirement at théth node along the path, far=1,..H ?

EXERCISE 2.4. Assume all nodes in a network are made of a shaper followed BY@ multiplexer.
Assume that flow has T-SPECqy;(t) = min(r;t + b;, M + p;t), that the shaper at every node uses the
shaping curver; = v, p, for flow:. Find the schedulability conditions for every node.

EXERCISE 2.5. A network consists of two nodes in tandem. Therernarélows of typel andns flows of
type2. Flows of typei have arrival curven;(t) = rit + b;, i = 1,2. All flows go through nodes then2.
Every node is made of a shaper followed by an EDF scheduldro#tnodes, the shaping curve for flows of
type: is somer; and the delay budget for flows of types d;. Every flow of type should have a end-to-end
delay bounded byp;. Our problem is to find good values @f andds.

1. We assume that, = «;. What are the conditions oty andd- for the end-to-end delay bounds to be
satisfied ? What is the set @1,, n9) that are schedulable ?
2. Same question if we set = \,,

EXERCISE 2.6. Consider the scheduler in Theorem 2.10. Find an efficienbritlgm for computing the
deadline of every packet.

EXERCISE2.7. Consider a SCED scheduler with target service curve for flgiven by

Bi = Yy ps @ 0a,

Find an efficient algorithm for computing the deadline ofrgyeacket.
Hint: use an interpretation as a leaky bucket.

EXERCISE 2.8. Consider the delay bound in Theorem 2.11. Take the same p8sumbut assume also
that the network is feedforward. Which better bound can yee g

98

NETWORK CALCULUS
Parts Il and Il

A Theory of Deterministic Queuing Systems for the Internet
JEAN-YVES LE BOUDEC
PATRICK THIRAN

Online Version of the Book Springer Verlag - LNCS 2050

Reformatted for improved online viewing and printing
Version March 15, 2019

99

100 CHAPTER 2. APPLICATION TO THE INTERNET

PART ||

M ATHEMATICAL BACKGROUND

101

CHAPTER 3

BASIC MIN-PLUS AND MAX-PLUS
CALCULUS

In this chapter we introduce the basic results from Min-phest are needed for the next chapters. Max-
plus algebra is dual to Min-plus algebra, with similar cqutseand results when minimum is replaced by
maximum, and infimum by supremum. As basic results of netveatkulus use more min-plus algebra

than max-plus algebra, we present here in detail the fundiaiseof min-plus calculus. We briefly discuss

the care that should be used when max and min operations ®eel iz the end of the chapter. A detailed

treatment of Min- and Max-plus algebra is provided in [28%rd1 we focus on the basic results that are
needed for the remaining of the book. Many of the resultsvbelan also be found in [11] for the discrete-

time setting.

3.1 MIN-PLUS CALCULUS

In conventional algebra, the two most common operationdements ofZ or R are their addition and their
multiplication. In fact, the set of integers or reals enddwéth these two operations verify a number of
well known axioms that define algebraic structur€®; +, x) is a commutative ring, whered®, +, x)

is a field. Here we consider another algebra, where the opesaaire changed as follows: addition be-
comes computation of the minimum, multiplication becomedgitgon. We will see that this defines another
algebraic structure, but let us first recall the notion ofimum and infimum.

3.1.1 INFIMUM AND MINIMUM

Let S be a nonempty subset &. S is bounded from below if there is a numbg&f such thats > M
for all s € S. The completeness axiom states that every nonempty sgbseR that is bounded from
below has a greatest lower bound. We will calirifimumof S, and denote it byinf S. For example
the closed and open intervdls, b] and(a,b) have the same infimum, which is Now, if S contains an
element that is smaller than all its other elements, thismefd is calledninimumof S, and is denoted by
min S. Note that the minimum of a set does not always exist. For i@, b) has no minimum since
a ¢ (a,b). On the other hand, if the minimum of a seexists, it is identical to its infimum. For example,
min[a, b] = infla, b] = a. One easily shows that every finite nonempty subs& bés a minimum. Finally,
let us mention that we will often use the notatiarto denote infimum (or, when it exists, the minimum).

103

104 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

For exampleg A b = min{a, b}. If S is empty, we adopt the convention that S = +cc.
If fis afunction fromS to R, we denote byf(S) its range:

f(S) = {t such that t = f(s) for somes € S}.

We will denote the infimum of this set by the two equivalentatioins
inf f(S) = inf{f(s)}.
seS

We will also often use the following property.

THEOREM 3.1 (“Fubini” formula for infimum). Let S be a nonempty subset&f and f be a function from
S toR. Let{S, }ren be a collection of subsets &f whose union isS. Then

inf{f(s)} = inf {slengn{f (sn)}} :
PROOF: By definition of an infimum, for any sets,,,

inf {Usn} = inf {inf S,,} .

On the other hands, sincg,S,, = S,

f(U Sn> = 150

neN neN

so that

seS

inf {f(s)} = inff(S):inff(U 3n>

— inf { inf {f(s)}}.

neN | seSy,

3.1.2 Doid (RU{+o0}, A, +)

In traditional algebra, one is used to working with the atgébstructurg(R, +, x), that is, with the set of
reals endowed with the two usual operations of addition aatfiptication. These two operations possess
a number of properties (associativity, commutativitytritisitivity, etc) that makéR, +, x) a commutative
field. As mentioned above, in min-plus algebra, the openatib‘addition’ becomes computation of the
infimum (or of the minimum if it exists), whereas the one of ltiplication’ becomes the classical operation
of addition. We will also include-oo in the set of elements on which min-operations are carri¢dsouthat
the structure of interest is nofR U {+o0}, A, +). Most axioms (but not all, as we will see later) defining
a field still apply to this structure. For example, distribat of addition with respect to multiplication in
conventional (‘Plus-times’) algebra

B3+4)x5=(3x5)+(4x5)=15+20=35

3.1. MIN-PLUS CALCULUS 105

translates in min-plus algebra as
BAL)+5=3+5)A(4+5)=8A9=28.
In fact, one easily verifies that and+ satisfy the following properties:

e (Closure of A) Foralla,b € RU {+o00},a Ab € RU {+o0}.

e (Associativity of A) For alla,b,c € RU {+o0}, (a Ab) Ac=aA (bAc).

¢ (Existence of a zero element for\) There is some e= 400 € R U {400} such that for alku €
RU{+oc},aNe=a.

e (Idempotency of A) Foralla € RU {+o0},a A a = a.

e (Commutativity of A) Foralla,b € RU{+cc},a Ab="bAa.

e (Closure of+) Foralla,b € RU {400}, a+b € RU{+o0}.

e (Associativity of +) For alla,b,c € RU {+oc}, (a+b) +c=a+ (b+c).

e (The zero element forA is absorbing for +) For alla € RU {+},a +e=e=e+a.

¢ (Existence of a neutral element for+) There is some: = 0 € R U {400} such that for alla €
RU{4+o0},a+u=0a=u+a.

o (Distributivity of + with respecttoA) Foralla,b,c € RU{+o0}, (aAb)+c=(a+c)A(b+c) =
c+ (aND).

A set endowed with operations satisfying all the above agigncalled adioid. Moreover as+ is also
commutative (for alk,b € RU {400}, a + b = b + a), the structurdR U {400}, A, +) is a commutative
dioid. All the axioms defining a dioid are therefore the saieras as the ones defining a ring, except one:
the axiom of idempotency of the ‘addition’, which in dioid=ptaces the axiom of cancellation of ‘addition’
in rings (i.e. the existence of an eleménta) that ‘added’ tou gives the zero element). We will encounter
other dioids later on in this chapter.

3.1.3 A CATALOG OF WIDE-SENSEINCREASING FUNCTIONS

A function f is wide-sense increasing if and onlyfifs) < f(¢) for all s < t. We will denote byg the

set of non-negative wide-sense increasing sequences didiog and byF denote the set of wide-sense
increasing sequences or functions such fi{a; = 0 for ¢ < 0. Parametet can be continuous or discrete:
in the latter casef = {f(t),t € Z} is called a sequence rather than a function. In the formes, oes take
the convention that the functioh= {f(¢),t € R} is left-continuous. The range of functions or sequences
of F andgG isR™ = [0, 4+o0].

Notation f + g (respectivelyf A g) denotes the point-wise sum (resp. minimum) of functigrandg:

(f+9)®) = [f(t)+9()
(FAg)t) = f&)nglt)

Notation f < (=, >)g means thaff (t) < (=, >)g(t) for all ¢.

Some examples of functions belongingZaand of particular interest are the following ones. Notafiot
denotesnax{x,0}, [x] denotes the smallest integer larger than or equal to

DEFINITION 3.1 (Peak rate functionsg).

Rt ift>0
Ar(t) = { 0 otherwise

for someR > 0 (the ‘rate’).

106 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

DEeFINITION 3.2 (Burst delay functiongyr).

or(t) =

4+oo ift>T
0 otherwise

for someT” > 0 (the ‘delay’).

DEFINITION 3.3 (Rate-latency functionSg 7).

R(t—-T) ift>T
0 otherwise

Brr(t) =Rt —T]" = {

for someR > 0 (the ‘rate’) andT" > 0 (the ‘delay’).

DEFINITION 3.4 (Affine functionsy,).

() = rt+b ift>0
M= otherwise

for somer > 0 (the ‘rate’) andb > 0 (the ‘burst’).

DEFINITION 3.5 (Step Function).

1 ift>T
or(t) = Lgsmy = { 0 otherwise

for somel” > 0.

DEFINITION 3.6 (Staircase Functionsr, ;).

C THE] ift>0
ur(t) = { 0 otherwise

for someT” > 0 (the ‘interval’) and0 < 7 < T (the ‘tolerance’).

These functions are also represented in Figure 3.1. By auntpthese basic functions, one obtains more
general piecewise linear functions belongingftoFor example, the two functions represented in Figure 3.2

are written using\ and+ from affine functions and rate-latency functions as followgh 1 > ro > ... >
rrandb; < by < ...<by

fl = Tri,b1 A Vra,ba ANR Yrrbr = 12132[{7”’@} (31)
fo = ArA{Braor + RT} N{Brar +2RT} A ...
= igg {BRr2iT +iRT} . (3.2)

We will encounter other functions later in the book, and obtather representations with the min-plus
convolution operator.

3.1. MIN-PLUS CALCULUS 107

Peak rate function Burst-delay function
A)\('():Rt 4 o ()=0fortsT
R T —wfort>T
R
t t
> >
T
Rate-latency function Affine function
t) = R[t-T1+ y)=0 fort=0
ABR:T() (-] Arb™" —tt 4 b fort> 0
R — T
b
T t t
> >
Staircase function Step function
Av_ (H)=0Qt+1)/TO Au (=1 =0 fortsT
Tt T T 1 fort>T
4__ —
3+ —_
2+ —
11— 1T
: : : > ® >
T-1 2Tt 3Tt t T t

Figure 3.1:A catalog of functions of F: Peak rate function (top left), burst-delay function (top right), rate-
latency function (center left), affine function (center right), staircase function (bottom left) and step function
(bottom right).

108 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

A fz(t)
] =3 | S
RT}--
[} | } } } i '
t T 2T3T t

Figure 3.2:Two piecewise linear functions of F as defined by (3.1) (left) and (3.2) (right).

3.1.4 PSEUDO-INVERSE OF WIDE-SENSEINCREASING FUNCTIONS

It is well known that any strictly increasing function istéfvertible. That is, if for anyt; < to, f(t1) <
f(t2), then there is a functiorf— such thatf~!(f(¢t)) = t for all . Here we consider slightly more
general functions, namely, wide-sense increasing funstiand we will see that a pseudo-inverse function
can defined as follows.

DEerFINITION 3.7 (Pseudo-inverse)Let f be a function or a sequence &t The pseudo-inverse g¢fis the
function
f~Yx) = inf {t such that f(t) > z}. (3.3)

For example, one can easily compute that the pseudo-irsvefgbae four functions of Definitions 3.1 to 3.4
are

At = Ayr
o7t = SAT
JE}T = Y1/RT
%:bl = Bijrp-

The pseudo-inverse enjoys the following properties:

THEOREM 3.2 (Properties of pseudo-inverse functionkgt f € F, z,t > 0.

e (Closure) f~! € Fand f~1(0) = 0.
e (Pseudo-inversion)Ve have that

fyze = fHx) <t (3.4)
Flay<t = ft)=a (3.5)

e (Equivalent definition)
f () = sup {t such that f(t) < x}. (3.6)

PROOF: Define subsesS, = {t such that f(t) > 2z} C R*. Then (3.3) becomeg~!(x) = infS,.
(Closure) Clearly, from (3.3)f ~!(z) = 0 for 2 < 0 (and in particularf =1 (0) = 0). Now, let0 < z; < .

3.1. MIN-PLUS CALCULUS 109

ThenS,, 2 S.,, which implies thainf S,, < infS,, and hence thaf~!(z;) < f~!(x2). Thereforef !
is wide-sense increasing. (Pseudo-inversion) Supposééatsf (t) > «. Thent € S,., and so is larger than
the infimum of S, which is f~!(z): this proves (3.4). Suppose next thfat!(z) < t. Thent > inf S,,

which implies that € S;, by definition of an infimum. This in turn yields th#(t) > z and proves (3.5).
(Equivalent definition) Define subsét, = {t such that f(t) < z} C R*. Pickt € S, andi € S,. Then

f(N) < f(t), and sincef is wide-sense increasing, it implies that ¢. This is true for anyt € S, and
i e S, hencesup S, < inf S,. AsS, US, = RT, we cannot haveup S, < inf S,. Therefore

sup S, = inf S, = f~H(x).

3.1.5 (CoNcAVE, CONVEX AND STAR-SHAPED FUNCTIONS

As an important class of functions in min-plus calculus &ed¢onvex and concave functions, it is useful to
recall some of their properties.

DEFINITION 3.8 (Convexity inR™). Letu be any real such thai < u < 1.

e SubsetS C R" is convex if and only ifix + (1 — u)y € Sforall z,y € S.

e Functionf from a subseD C R™ toR is convex if and only if (uz+(1—u)y) < uf(z)+(1—u)f(y)
forall z,y € D.

e Function f from a subseD C R" to R is concave if and only it f is convex.

For example, the rate-latency function (Fig 3.1, centdj isfconvex, the piecewise linear functigingiven
by (3.1) is concave and the piecewise linear funcifegiven by (3.2) is neither convex nor concave.

There are a number of properties that convex sets and fuisotiojoy [76]. Here are a few that will be used
in this chapter, and that are a direct consequence of Defini8.

e The convex subsets & are the intervals.
e If S andS; are two convex subsets Bf*, their sum

S=8+S8 ={se€R"|s=s;+ ssforsomes; € S; ands, € Sy}

is also convex.

e Functionf from an interval[a, b] to R is convex (resp. concave) if and onlyfifuz + (1 — u)y) <
(resp.>) uf(xz) + (1 —u)f(y) forall z,y € [a,b] and allu € [0.1].

e The pointwise maximum (resp. minimum) of any number of canfresp. concave) functions is a
convex (resp. concave) function.

o If Siis a convex subset @"*+!, n > 1, the function fromR™ to R defined by

f(z) = inf{u € R such that (z, n) € S}

IS convex.
e If fis a convex function fronR™ to R, the setS defined by

S = {(z, n) € R"" such that f(z) < u}

is convex. This set is called the epigraphfoflt implies in the particular case where= 1 that the
line segment betweefu, f(a)} and{b, f(b)} lies above the graph of the curye= f(z).

110 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

The proof of these properties is given in [76] and can beedsitluced from Definition 3.8, or even from a
simple drawing. Chang [11] introducestiar-shapedunctions, which are defined as follows.

DEerFINITION 3.9 (Star-shaped functionfunction f € F is star-shaped if and only if(¢) /¢ is wide-sense
decreasing for alk > 0.
Star-shaped enjoy the following property:

THEOREM 3.3 (Minimum of star-shaped functionsl.et f, g be two star-shaped functions. Then= f A g
is also star-shaped.

PROOF: Consider some > 0. If h(t) = f(t), then for alls > ¢, h(t)/t = f(t)/t > f(s)/s > h(s)/s.
The same argument holds of coursé(t) = g(t). Thereforeh(t)/t > h(s)/s for all s > t, which shows
thath is star-shaped. O

We will see other properties of star-shaped functions imtad sections. Let us conclude this section with
an important class of star-shaped functions.

THEOREM 3.4. Concave functions are star-shaped.

PROOF: Let f be a concave function. Then for amye [0,1] andz,y > 0, f(uz + (1 — u)y) >
uf(x) + (1 —u)f(y). Takex = t,y = 0 andu = s/t, with 0 < s < ¢. Then the previous inequality
becomesf(s) > (s/t)f(t), which shows thaf (¢)/t is a decreasing function of O

On the other hand, a star-shaped function is not necessaityncave function. We will see one such
example in Section 3.1.7.

3.1.6 MIN-PLUS CONVOLUTION

Let f(¢) be a real-valued function, which is zero for< 0. If ¢t € R, the integral of this function in the
conventional algebréR, +, x) is
t
| #eas
0

which becomes, for a sequen£g) wheret € Z,

In the min-plus algebrdR U {+o0}, A, +), where the ‘addition” isA and the ‘multiplication’ is+, an
‘integral’ of the functionf becomes therefore

inf {£(s)},

s€R such that 0<s<t
which becomes, for a sequeng€) wheret € Z,

{f(s)}-

min
s€Z such that 0<s<t

We will often adopt a shorter notation for the two previoupressions, which is

inf {f(s)},

0<s<t

with s € Z or s € R depending on the domain ¢t

3.1. MIN-PLUS CALCULUS 111

A key operation in conventional linear system theory is tbhevolution between two functions, which is

defined as
+00

<f®m@w:/ £(t— 8)g(s)ds

—00

and becomes, whefit) andg(t) are two functions that are zero fok 0,

(f @ 9)(t (/ft—s
In min-plus calculus, the operation of convolution is théunal extension of the previous definition:

DEFINITION 3.10 (Min-plus convolution).Let f and g be two functions or sequences®Bf The min-plus
convolution off andg is the function

(f@g)(t) = nf {f(t—s)+g(s)}. 3.7)

0<s<t
(Ift <0, (f®@g)(t) =0).

Example. Consider the two functions, ;, and 5z 7, with 0 < » < R, and let us compute their min-plus
convolution. Let us first compute it far< ¢ < 7.

(rp @ Br7)(t) = Oglit{%b t—s)+R[s—T]"}
= oinit{%b(t_s)+0} 7rb(0)+0:0+0:0

Now, if ¢t > T, one has

(Yrp ® BrT)(t)

_ o o -‘r
= it {ywe(t =)+ Rls — T]"}

_ _ _ - _ ot
- o<m£T{%bt s)+ Rls]}/\Tlgl}gfq{fyr,b(t s)+ R[s—T|"}

mnf{wb t—s)+R[s—T]"}
= Jnf {b+r(t—s)+O}A inf {btr(t—s)+ R(s—T)}
ANO+R(t—T)}
= {b+r(t—T)}A{b+rt—RT+ 1<I§f<t{(—r)s}}/\{R(t—T)}
= {b+rt-T)}AN{b+r(t-T)} N{R(t—-T)}
= {b+rt-T)}AN{R(t—-T)}.

The result is shown in Figure 3.3. Let us now derive some lipedyperties for the computation of min-plus
convolution.

THEOREM 3.5 (General properties of). Let f,g,h € F.

e Rule 1 (Closure ofg) (f ® g) € F.

e Rule 2 (Associativity of?) (f @ g) @ h= f ® (g ® h).

Rule 3 (The zero element fon is absorbing for®) The zero element fox belonging toF is the
functione, defined ag(t) = +oo forall t > 0 ande(t) = 0forall t < 0. One hasf ® ¢ = €.

Rule 4 (Existence of a neutral element fap) The neutral element %, asf ® dy = f.

Rule 5 (Commutativity of?) f @ g =g ® f.

Rule 6 (Distributivity of @ with respect to\) (f Ag) @ h = (f @ h) A (g @ h).

Rule 7 (Addition of a constantforany K € R", (f+ K)®¢g=(f®g) + K.

The proof of these rules is easy. We prove the two first rutesptoof of the five others are left to the reader.

112 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

A Vo Br®)

Figure 3.3:Function v, , ® Br,r When 0 < r < R.

Proor: (Rule 1) Sincef is wide-sense increasing,

f(t1—s)+g(s) < f(ta —s) +g(s)

forall 0 <t; <ty and alls € R. Therefore

. - < -

inf {f(t1 —) +g(s)} < Inf {f(t2 — 5) +g(s)}
and asf(t) = g(t) = 0 whent < 0, this inequality is equivalent to

inf {f(t1 —s)+g(s)} < inf {f(t2—s)+g(s)},

0<s<ty 0<s<ts

which shows thatf @ ¢)(t1) < (f ® g)(t2) forall 0 < ¢; < t2. (Rule 2) One has

(f@g @h)(t) = inf{ inf {f(t—s—u)+g(u)}+h(s)}

0<s<t | 0<u<t—s

= inf { inf {f(t—u’)+g(U'—S)+h(8)}}

0<s<t | s<u’<t

— inf { inf,{f(t—u’)Jrg(U’—S)Jrh(S)}}

0<u/<t | 0<s<u

—inf {f(t—u’)+0<i£1<fu, {g(u’—S)Jrh(S)}}

0<u/<t

oinf {7t =)+ (g@n)}

= (fe(geh)®).
O

Rules 1 to 6 establish a structure of a commutative dioid farA, ®), whereas Rules 6 and 7 show that
is a linear operation ofiR™, A, +). Now let us also complete these results by two additionasrthat are
helpful in the case of concave or convex functions.

THEOREM 3.6 (Properties ok for concave/convex functions)y.et f, g € F.

3.1. MIN-PLUS CALCULUS 113

e Rule 8 (Functions passing through the originlf f(0) = ¢(0) = 0thenf ® g < f A g. Moreover, if
f andg are star-shaped, thefi® g = f A g.

e Rule 9 (Convex functions)f f andg are convex therf ® ¢ is convex. In particular iff, g are convex
and piecewise linearf ® g is obtained by putting end-to-end the different linear peoff and g,
sorted by increasing slopes.

Since concave functions are star-shaped, Rule 8 also irnpiie if f, g are concave witlf (0) = ¢g(0) = 0,
thenf ®g=fAg.

PrROOF: (Rule 8) Asf(0) = ¢(0) =0,

(f@g)(t) =g(t) A inf {f{t—s)+g(s)}AF(t) < f()AgQ). (3-8)

0<s<

Suppose now that, in additiorf, and g are star-shaped. Then for any> 0 and0 < s < t f(t — s) >
(1 —s/t)f(t)andg(s) > (s/t)g(t), so that

ft—s)+g(s) = f(t) + (s/t)(g(t) — f(1)).
Now, as0 < s/t < 1, f(t) + (s/t)(g(t) — f(t)) > F(t) A g(t) so that

f(t—=s5)+9(s) = f(t) Ag(t)
for all 0 < s < t. Combining this inequality with (3.8), we obtain the dediresult. (Rule 9) The proof

uses properties of convex sets and functions listed in teequis subsection. The epigraphsfadndg are
the sets

S1 = {(s1,p1) € R? such that f(s1) < 1}
Sy = {(s2,p2) € R? such that g(s2) < 2}

Since f andg are convex, their epigraphs are also convex, and so is th&iSs= S; + So, which can be
expressed as

S = {(t,u) € R?| for some(s,) € [0,1] x [0,], f(t — 5) < p— & g(s) <&}

As S is convex, functiorh(¢) = inf{x € R such that (¢,) € S} is also convex. Now can be recast as

= inf{u € R | for somds, &) € [0,t] x [0,p], f(t —s) < pu—E&g(s) <&}
= inf{p € R | for somes € [0,¢], f(t — s) + g(s) < u}

= inf{f(t —s)+g(s),s €[0,t]}

= (fog®),

which proves thatf ® g) is convex.

If f andg are piecewise linear, one can construct theSset S; + Ss, which is the epigraph of ® g, by
putting end-to-end the different linear piecesfaindg, sorted by increasing slopes [24].

Indeed, leth’ denote the function that results from this operation, ahddeshow that’ = f ® g. Suppose

that there are a total of linear pieces frony andg, and label them fron to n according to their increasing
slopes:0 < r; < 19 < ... < r,. Figure 3.4 shows an example for= 5. LetT; denote the length of
the projection of segmeritonto the horizontal axis, fof < ¢ < n. Then the length of the projection of
segment onto the vertical axis i$;7;. Denote byS’ the epigraph of)’, which is convex, and byS’ its

114 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

A A
S.I. _r4 SZ r5
IF4T4 ______ r5T5 —
f(t-s) | a(s)

X | X|— —" — — —
rTo o ’ r3T3) r'B

, 1S 1Ty 1S

N e >
Ts Ty T, T3 Ts

r4T4 4
r3Ts3 [57575

|
|
|
raT) yd |
[
[

riTq M

Figure 3.4:Convex, piecewise linear functions f (and its epigraph S; (top left)), g (and its epigraph S- (top
right)), and f ® g (and its epigraph S = &; + S2 (bottom)).

3.1. MIN-PLUS CALCULUS 115

boundary. Pick any pointt, 4’(¢)) on this boundanpS’. We will show that it can always be obtained by
adding a poin{t — s, f(t — s)) of the boundaryS; of S; and a point(s, g(s)) of the boundary)Ss of Ss.

Let £ be the linear segment index to whi¢h //(¢)) belongs, and assume, with no loss of generality, that
this segment is a piece gf(that is,k C 9S;1). We can express/(t) as

k—1

k—1
W) =rut—> T)+ > r (3.9)
i=1

=1
Now, lets be the sum of the lengths of the horizontal projections ostgments belonging pand whose
index is less that, that is,
s = Z T;.

iCOS,1<i<k—1

Then we can compute that

k—1 k—1
t—s = t—Y T+Y Ti— > T
1=1 =1

iCOS,1<i<k—1
k—1
= yTme Yoo
i=1 iCO81,1<i<k—1
and that

fle=s) = m(t=>_T)+ Y nT

i=1 iCOS1,1<i<k—1

g(s) = Z T’ZTZ

iCHSy,1<i<k—1

The addition of the right hand sides of these two equatioesjigl toh/(t), because of (3.9), and therefore
f(t—s)+ g(s) = R'(t). This shows that any point ¢fS’ can be broken down into the sum of a point of
08, and of a point 0DS,, and hence thalS’ = 9S; + 0S,, which in turn implies thaS’ = S; + S, = S.
Thereforeh' = f ® g. O

The last rule is easy to prove, and states that isotone, namely:

THEOREM 3.7 (Isotonicity ofw). Letf, g, f',g € F.
e Rule 10 (Isotonicity)lf f < gandf' < ¢ thenf® f' <g® 4.

We will use the following theorem:

THEOREM 3.8. For f andg in F, if in addition g is continuous, then for anythere is some, such that

(f ®9)(t) = filto) + g(t — o) (3.10)

wheref(to) = supy,<4,y f(s) is the limit to the left off atto. If f is left-continuous, thetfi(to) = f(to).

PROOF: Fixt. Thereis a sequence of timés< s,, < t such that

inf (£(to) + g(t — t0)) = lim_ (F(s0) + (¢ — 50)) (3.11)

to<t

Since0 < s, < t, we can extract a sub-sequence that converges towards saoeety. We take a
notation shortcut and writém,, ... s, = to. If f is continuous, the right hand-side in 3.11 is equal

116 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

to fi(to) + g(t — to) which shows the proposition. Otherwigehas a discontinuity aty. Defined =
f(to) — fi(to). We show that we can again extract a subsequence such,that,. Indeed, if this would
not be true, we would have, > ¢, for all but a finite number of indices. Thus forn large enough we
would have

f(sn) = filto) + 0
and by continuity ofy:

gt — 5) > glt — to) —

2
thus
f(sn) + 9t —s0) > fi(to) + g(t —to) + g
Now
filto) + g(t —to) > inf (f(s) + g(t —)
thus

F(sn) +g(t = sn) = tnf (£(s) +g(t = 5)) + g

which contradicts 3.11. Thus we can assume tha¥ ¢, for n large enough and thdém,, . f(s,) =
fi1(to). O
Finally, let us mention that it will sometimes be useful tedk down a somewhat complex function into the
convolution of a number of simpler functions. For exampleserve that the rate-latency functiéa r can

be expressed as

Br,T = 0T ® AR. (3.12)

3.1.7 SUB-ADDITIVE FUNCTIONS

Another class of functions will be important in network adies are sub-additive functions, which are
defined as follows.

DEFINITION 3.11 (Sub-additive function)Let f be a function or a sequence &t. Thenf is sub-additive
ifand only if f(t + s) < f(t) + f(s) forall s,t > 0.

Note that this definition is equivalent to imposing thfa f ® f. If f(0) = 0, it is equivalent to imposing
thatf @ f = f.

We will see in the following theorem that concave functioas$ng through the origin are sub-additive. So
the piecewise linear functiofy given by (3.1), being concave and passing through the qiigygub-additive.

The set of sub-additive functions is however larger than ¢fiaconcave functions: the piecewise linear
function f5 given by (3.2) is not concave, yet one check that it verifiefiriteon 3.11 and hence is sub-
additive.

Contrary to concave and convex functions, it is not alwaydats, from a quick visual inspection of the
graph of a function, to establish whether it is sub-additverot. Consider the two function$z r + K’
andprr + K”, represented respectively on the left and right of FiguBe Although they differ only by
the constantd(’ and K, which are chosen so that< K” < RT < K’ < +oo, we will seefr 1 + K'is
sub-additive but nobr 1 + K”. Consider firstSp r + K'. If s+t < T, thens,t < T and

BR,T(S + t) + K =K <2K' = (ﬁRj(S) + K/) + (BR,T(t) + K/).

3.1. MIN-PLUS CALCULUS 117

A Br() +K A Br(t) + K

N RT
RT - o F
I >t I >
T T

Figure 3.5:Functions g r + K’ (left) and 8 1 + K" (right). The only difference between them is the value
of the constant: K" < RT < K'.

On the other hand, i + ¢t > T, then, sincex’ > RT,

Brrt+s)+ K = Rt+s—T)+K'
R(s+t—T)+ K + (K — RT)
(Rt—-T)+ K'Y+ (R(s—T)+ K")
(Brr(t) + K') 4+ (Brr(s) + K'),

A

<

which proves thapr r + K’ is sub-additive. Consider negiz + + K. Picks = T'andt > T'. Then, since
K" < RT,

Brrt+s)+K'"=
Brr(t+T)+ K"=Rt+ K"=R(t—-T)+ RT + K"
> R(t — T) + K"+ K" = (,BR;F(ZL/) + K”) + (,8R7T(S) + K”),

which proves thatr + K" is not sub-additive.
Let us list now some properties of sub-additive functions.

THEOREM 3.9 (Properties of sub-additive functiond)et f, g € F.

e (Star-shaped functions passing through the origirt) f is star-shaped withf(0) = 0, thenf is
sub-additive.

e (Sum of sub-additive functionslf f andg are sub-additive, so i6f + g).

¢ (Min-plus convolution of sub-additive functionslf f andg are sub-additive, so i§f ® g).

The first property also implies that concave functions pegstirough the origin are sub-additive. The proof
of the second property is simple and left to the reader, weepttoe two others.

PrROOF: (Star-shaped functions passing through the origin)d.et> 0 be given. Ifs ort = 0, one
clearly has thaff (s +t) = f(s) + f(t). Assume next that,t > 0. As f is star-shaped,

s
s+t

fls+1)

118 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

which sum up to givef (s) + f(t) > f(s+t). (Min-plus convolution of sub-additive functions) Lett > 0
be given. Then

(f@g)(s)+(f@g)(t)
= Ogigiés{f(s —u)+g(u)} + ok {f(t—v)+g(v)}
— OSi%l;sogfgt{f(s—u)+f(t—v)+9(u)+g(’”)}

oo B
> O%gi;soégfgt{f(sﬁ (u+v)) +g(u+wv)}

- OSUJir%szth {fs+t—(utv))+gutov)}

= (feg)t+s).
0

The minimum of any number of star-shaped (resp. concave}iturs is still a star-shaped (resp. concave)
function. If one of them passes through the origin, it is ¢fiere a sub-additive function: for example, as
already mentioned earlier, the concave piecewise lingation f; given by (3.1) is sub-additive. On the
other hand the minimum of two sub-additive functions is motyeneral, sub-additive. Take for example
the minimum between a rate latency functieg » and functionf, given by (3.2), wher?’ = 2R/3. with
R,T as defined in (3.2). Both functions are sub-additive, butaarecheck thaz r A fa is not.

The first property of the previous theorem tells us that alt-shaped functions are sub-additive. One can
check for example thatr + K’ is a star-shaped function (which is not concave), butmpr + K”.

One can also wonder if, conversely, all sub-additive funiare star-shaped. The answer is no: take again
function f> given by (3.2), which is sub-additive. It is not star-shapbdcausef(27")/2T = R/2 <
2R/3 = f(3T)/3T.

3.1.8 SUB-ADDITIVE CLOSURE

Given a functionf € F,if f(0) = 0, thenf > f ® f > 0. By repeating this operation, we will get a
sequence of functions that are each time smaller and cawéogsome limiting function that, as we will
see, is the largest sub-additive function smaller tfiaamd zero it = 0, and is called sub-additive closure
of f. The formal definition is as follows.

DEFINITION 3.12 (Sub-additive closure).et f be a function or a sequence &t Denotef (™) the function
obtained by repeatingn — 1) convolutions off with itself. By conventionf(® = §,, so thatf(!) = f,
f@ = f® f, etc. Then the sub-additive closure fofdenoted byf, is defined by

7:60/\f/\(f®f)/\(f®f®f)/\...zrilnf{f(")}. (3.13)

>0

Example. Let us compute the sub-additive closure of the two functiops + K’ andSrr + K", repre-
sented respectively on the left and right of Figure 3.5. Niogt that Rule 7 of Theorem 3.5 and Rule 9 of
Theorem 3.6 yield that for ani’ > 0,

(Brr + K)® (Brr + K) = (Brr ® BrT) + 2K = Bror + 2K.
Repeating this convolution times yields that for all integers > 1
(Brr + K)™ = Bror +nkK.
Now, if K = K’ > RT andt < nT,

5R,nT—|-nK' = nK’>(n—l)RT+K’:R(nT—T)—|—K/
> R[t—T]++K/:5R’T—|—K/,

3.1. MIN-PLUS CALCULUS 119

whereas it > nT

Brnr +nK' = R(t—nT)+nK' =R(t—T)+ (n—1)(K'—RT)+ K’
> R(t—T)+ K' = i + K

so that(Brr + K')™ > Brr + K’ for all n > 1. Therefore (3.13) becomes
Prr + K= b A inf {(5R,T + K/)(")} = A (Brr + K'),

and is shown on the left of Figure 3.6. On the other hand i K’ < RT, the infimum in the previous
equation is not reached in= 1 for everyt > 0, so that the sub-additive closure is now expressed by

W: o N\ igﬁ{(ﬁRvT _|_K”)(")} = 5o A H;fl {(BR,nT —I—TLK”)},

and is shown on the right of Figure 3.6.

4 Br,1() + K 4 Br1(t) + K”

RTH

—t—+—+— > {
T T 2T3T4

Figure 3.6:The sub-additive closure of functions Sg r+ K’ (left) and S+ K" (right), when K” < RT < K'.

Among all the sub-additive functions that are smaller tlisand that are zero ih= 0, there is one that is
an upper bound for all others; it is equalfpas established by the following theorem.

THEOREM 3.10 (Sub-additive closure).et f be a function or a sequence Bt and letf be its sub-additive
closure. Then (i)f < f, f € F and f is sub-additive. (ii) if functiory € F is sub-additive, witly(0) = 0
andg < f,theng < f.

ProoF: (i) It is obvious from Definition 3.12, thaf < f. By repeating(n — 1) times Rule 1 of
Theorem 3.5, one has that”) ¢ Fforalln > 1. As f©) = §, € Ftoo, f = inf,>o{f™} € F. Letus
show next thaff is sub-additive. For any integersm > 0, and for anys, ¢ > 0,

frmtts) = (FYe ft+s) = inf {FOt+s —u)+ f (W)}

0<
< @)+ M (s)
so that
Fle+s) = inf {[fU(+s)) = inf {f0F(E)
<

Jinf (£ + 70 (5)}
=t {(f(0) + inf () = F(0) + F6)

120 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

which shows thaff is sub-additive. (ii) Next, suppose thatc F is sub-additiveg(0) = 0 andg < f.
Suppose that for some > 1, f(® > g. Clearly, this holds fom = 0 (because;(0) = 0 implies that
g < 6 = fO)andforn = 1. Now, this assumption and the sub-additivity @fyield that for any
0<s<t f(t—s)+ f(s) > g(t—s)+ g(s) > g(t) and hence that™+1)(t) > g(t). By recursion on
n, f® > gforalln > 0, and thereforef = inf,,>o{f™} > g. O

COROLLARY 3.1 (Sub-additive closure of a sub-additive functiobpt f € F. Then the three following
statements are equivalent: (f(0) = 0 and f is sub-additive (ii)f ® f = f (i) f = f.

ProoOF: (i) = (ii) follows immediately from from Definition 3.11. (ii}= (iii): first note thatf ® f = f
implies thatf(™ = f for all » > 1. Second, note thatf ® £)(0) = f(0) + £(0), which implies that
f(0) = 0. Thereforef = inf,>o{f™} = do A f = f. (iii) = (i) follows from Theorem 3.10. O
The following theorem establishes some additional usefperties of the sub-additive closure of a func-
tion.

THEOREM 3.11 (Other properties of sub-additive closuregt f, g € F

e (Isotonicity) If f < gthenf < g.
¢ (Sub-additive closure of a minimumf A g = f
e (Sub-additive closure of a convolutionj ® g >

©9 _
f@g. 1t f(0)=g(0) =0thenf® g = f®

PROOF: (Isotonocity) Suppose that we have shown that for samel, £ > ¢ (Clearly, this holds
for n = 0 and forn = 1). Then applying Theorem 3.7 we get

fotl) — #) @ £ > g g g = g(r+D),
which implies by recursion on that f < g. (Sub-additive closure of a minimum) One easily shows,aisin

Theorem 3.5, that
(fAg® = NHAFRg)A(g@g).
Suppose that we have shown that for some 0, the expansion off A g)(") is

(f A g)(”)
) (f(”—z) ® 9(2)) A... A g(”) —

A(f0
oégin{ M}

(fA9D = (Frgre(frg)™ ={fe(frg®}r{sefrg™]

_ (n+1—k) o (k) : (n—k) o (k+1)
= Jnf {0 e it {70 et

= _inf {f("“"“)@g(’“)}A inf {f("+1_kl)®g(kl)}

0<k<n 1<k/<n+1

_ . (n+1—k) (k)
it e M)

Then

which establishes the recursion for al>> 0. Therefore
fAg = inf inf {f("_k) ® g(k)} = inf inf {f("_k) ® g(k)}

n>00<k<n k>0n>k

= inf inf {f(l) ® g(k)} — inf {mf{f 1® g(k)}

k>01>0 k>0 (>0

- mf{f®g }z?@}cgfo{g N=Fog.

3.1. MIN-PLUS CALCULUS 121

(Sub-additive closure of a convolution) Using the samemenice argument as above, one easily shows that
(f®g9)™ = fW ® g™, and hence that

R R)

> inf {f(m@g(m)}

n,m>0

_ (g{ﬂw}) ® (g@{gw}) =f®7. (3.14)

If £(0) = g(0) = 0, Rule 8 in Theorem 3.6 yields thdt® g < f A g, and therefore thaf ® ¢ < f A g.
Now we have just shown above than ¢ = f ® g, so that

feog<fog
Combining this result with (3.14), we g¢t® g = f @ 7. O

Let us conclude this section with an example illustrating effect that a difference in takingcontinuous
or discrete may have. This example is the computation ofubeaslditive closure of

2 if t>0
f(t)_{ 0 if t<0
Suppose first that € R. Then we compute that
(f@)= inf {(t—s)*+s"} =(t/2)" + (t/2)* = 17/2
as the infimum is reached in= ¢/2. By repeating this operation times, we obtain

f(")(t) _ inft{(t _ 8)2 + (f(n—l))Z(s)} =

0<s<
: 2 2 _ 42
Og;f%t{(t—s) +s7/(n—1)} =t*/n
as the infimum is reached in= ¢(1 — 1/n). Therefore
TR — o (20— T 42 e —
F(t) = mf{t"/n} = lim ¢°/n = 0.

Consequently, if € R, the sub-additive closure of functighis

f=0,
as shown on the left of Figure 3.7.
Now, if t € Z, the sequencg(t) is convex and piecewise linear, as we can always connectiffieecdt
successive point&, t?) for all t = 0,1,2,3,...: the resulting graph appears as a succession of segments
of slopes equal t92¢ + 1) (the first segment in particular has slope 1), and of prajestion the horizontal
axis having a length equal to 1, as shown on the right of Fi@ife Therefore we can apply Rule 9 of

Theorem 3.6, which yields th&t® f is obtained by doubling the length of the different lineagrsents of
f, and putting them end-to-end by increasing slopes. The/tcelexpression of the resulting sequence is

(f© 1) = goin {(t =)+ 7} = [£2/2],

Sequencg® = f® f is again convex and piecewise linear. Note the first segnanslopel, but has now
a double length. If we repeattimes this convolution, it will result in a convex, piecewinear sequence
™ (t) whose first segment has slope 1 and horizontal length

M@y =t ifo<t<n,

as shown on the right of Figure 3.7. Consequently, the sudlitieel closure of sequencg is obtained by
lettingn. — oo, and is thereforef (t) = ¢ for t > 0. Therefore, ift € Z,

f=X.

122 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

A A
() (o T
™) : 1(t)
(t) > 1 e

Figure 3.7:The sub-additive closure of f(t) = tA;(t), when ¢ € R (left) and when ¢ € Z (right).

3.1.9 MIN-PLUS DECONVOLUTION

The dual operation (in a sense that will clarified later orthefmin-plus convolution is the min-plus decon-
volution. Similar considerations as the ones of Subse@iaril can be made on the difference between a
sup and amax. NotationV stands fosup or, if it exists, formax: a V b = max{a, b}.

DEFINITION 3.13 (Min-plus deconvolution)Let f and g be two functions or sequences/®f The min-plus
deconvolution off by g is the function

(fog(t) = Sup {ft+u)—g(uw)}. (3.15)

If both f(¢) andg(t) are infinite for some, then (3.15) is not defined. Contrary to min-plus convohutio
function (f @ g)(¢) is not necessarily zero far< 0, and hence this operation is not closedfinas shown
by the following example.

Example. Consider again the two functions, andgg 7, with 0 < r» < R, and let us compute the min-plus
deconvolution ofy,.;, by Br 7. We have that

(V6 @ Br,r)()
= sup {yp(t+u) — Rlu—T]"}
u>0
= sup {yp(t+u) — Rlu—T]"} Vsup {yp(t +u) — Rlu—T]"}
0<u<T u>T
= sup {yp(t+uw)}Vsup{yp(t+u) — Ru+ RT}
0<u<T u>T
= {yp(t+T)} Vsup {yp(t+u) — Ru+ RT}. (3.16)
u>T

Let us first compute this expression fo< —7". Then~, ,(t + 7') = 0 and (3.16) becomes

(Yrp @ Br,T)(t)

= 0V sup {yp(t+u)— Ru+ RT}
T<u<l—t

V sup {y,s(t+u) — Ru+ RT}
u>—t
= 0V sup {0— Ru+ RT}V sup {b+r(t+u) — Ru+ RT}
T<u<l—t u>—t

= OVOV{b+Rt+RT} =+ R(t+T)".

3.1. MIN-PLUS CALCULUS

123

Let us next computéy, , © Srr)(t) fort > —T'. Then (3.16) becomes

(Yrp @ BrRT)(E) =

{o+r(t+T)} vsup{b+r(t+u) — Ru+ RT}

u>T

= {(b+rt+T)IV{b+rt+T)} =b+r(t+T).

The result is shown in Figure 3.8.

A Vo Br1)®

Figure 3.8:Function ~,., © Sr,r when 0 < r < R.

Let us now state some propertiesc{Other properties will be given in the next section).

THEOREM 3.12 (Properties o). Let f,g,h € F.

Proor: (Rule 11) If f < g, then for anyh € F

(foh)(t) = iglg{f(t +u) — h(u)}
(h@ f)(t) = sup {h(t +u) — f(u)}

u>0

(Rule 12) One computes that

(fogon(t) =

u>0

IN

v

Rule 11 (Isotonicity of@) If f < g,thenfoh <gohandh® f > h© g.

Rule 12 (Composition o®) (f @ g) @ h = f @ (g @ h).

Rule 13 (Composition of and®) (f ® g) @ g < f ® (9 © g).

Rule 14 (Duality betweem and®) f @ g < hifand only if f < g ® h.

Rule 15 (Self-deconvolution] f © f) is a sub-additive function of such that(f @ f)(0) = 0.

sup {9(t +u) —h(u)} = (g2 h)()

sup {A(t +u) — g(w)} = (h @ 9)(1).

sup{(f @ g)(t +u) — h(u)}

= sup {sup (70w o)~ g0)) ~ o)}

u>0 (v>0

= sup {sup {f(t+v/) —g(v' — u)} — h(u)}

u>0 | v'>u

= sup sup {f(t + ') — {Q(U/ —u) + h(“)}}

u>0v'>u

124 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

= sup sup {f(t+v/)—{9(vl—u)+h(u)}}

V' >0 0<u<o’
- fé%{f(t—l—v')—ogiil;, {g(v'—u)—l—h(u)}}
= swp {ft+) = (g@n))} =(f@(g®h)(®).

(Rule 13) One computes that

(feg og(t) = iglg{(f®g)(t+U)—g(U)}

= iglgogigﬂ {ft+u—s)+g(s) —g(u)}

= sup _uiélsflgt {fit—5")+g(s+u) —g(u)}

< sup inf {f(t—s)+g(s' +u)—g(u)}

u>00<s'<t
< 31;18 Ogilsl’fgt {f(t —)+ 312118{9(8' +v) — 9(”)}}
= it {7) slals +0) - g0}
= Jf {ft=5)+ 29} = (et

(Rule 14) Suppose first thaf © g)(s) < h(s) for all s. Take anys,v > 0. Then

Fls+v) = g(v) < sup{f(s +u) = g(u)} = (f @ 9)(s) < hs)

or equivalently,
f(s+v) <g(v) + h(s).

Lett = s 4+ v. The former inequality can be written as
f(t) < gt —s)+ h(s).

As it is verified for allt > s > 0, it is also verified in particular for the value sthat achieves the infimum
of the right-hand side of this inequality. Therefore it isiz@lent to

£ < it {o(t = 5) +h(s)} = (9@ h)(D)

for all t > 0. Suppose now that for all, f(v) < (¢ ® h)(v). Pick anyt € R. Then, sincey, h € F,

F0) £ inf {g(o—s)+h(s)} = inf {g(v —8) + h(s)} < gt — v) +h(t)

T 0<s<w

Letu =t — v, the former inequality can be written as

f(t+u) —g(u) < h(t).

As this is true for allu, it is also verified in particular for the value afthat achieves the supremum of the
left-hand side of this inequality. Therefore it is equivdléo

Sup {f(t+u) —g(u)} < h(t).

3.1. MIN-PLUS CALCULUS 125

Now if v < 0, g(u) = 0, so thatsup,,o{ f(t + u) — g(u)} = f(¢) and the former inequality is identical to

sup {f(t+u) —g(u)} < h(t)

for all t. (Rule 15) It is immediate to check that @ f)(0) = 0 and thatf © f is wide-sense increasing.
Now,

(fofs)+(fo i)
= sup {f(t+u) — fu)} + i‘;%{f(s +v) = f(v)}

= ig%{f(tJrU) — f(u)} +51>1§t{f(8+t+w) — ft+w)}

> zg%{iglg{f(tﬂw)—f(U)+f(8+t+w)—f(t+w)}}
> sg%{f(ter) — fw) + f(s+t+w) — f(t+w)}

(o f)(s+1).

O
Let us conclude this section by a special property that apjpdi self-deconvolution of sub-additive functions.

THEOREM 3.13 (Self-deconvolution of sub-additive functiond)et f € F. Thenf(0) = 0 and f is
sub-additive if and only if @ f = f.

PROOF: (=) If fis sub-additive, then for all, w > 0, f(t + u) — f(u) < f(t) and therefore for all
t >0,

(Fo) =sup{f(t+u) = fw)} < f(2).
On the other hand, if (0) = 0,

(f @ /)(t) = sup{f(t+u) — f(u)} = f(t) = £(0) = f(?).

u>0
Combining both equations, we get that . (<) Suppose now thaf @ f = f. Thenf(0) =

f=1r
(f© f)(0) =0andforanyt,u >0, f(t) = (f @ f)(t) = f(t+u) — f(u) sothatf(t) + f(u) > f(t+u),
which shows thaf is sub-additive. O

3.1.10 REPRESENTATION OF MIN-PLUS DECONVOLUTION BY TIME INVERSION

Min-plus deconvolution can be represented in the time tedkdomain by min-plus convolution, for func-
tions that have a finite lifetime. Functiop € G has a finite lifetime if there exist some finifg and
T such thatg(t) = 0if t < Ty andg(t) = g(T) for t > T. Call G the subset ofj, which contains
functions having a finite lifetime. For function € G, we use the notatiog(+oc) as a shorthand for

sup;er{g(t)} = limy— 100 g(2).

LEMmMA 3.1. Let f € F be such thalim; ,,~, f(t) = +oco. Foranyg € G, g @ fis also inG and
(9@ f)(+00) = g(+00).

126 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

PrRooF: DefineL = g(4+o0) and callT" a number such that(t) = L fort > T'. f(0) > 0 implies that
g0 f < g(+o00) = g(L). Thus
(g2 f)(t) < Lfort>T. (3.17)

Now sincelimy_, ;~ f(t) = +oo, there is som&; > T such thatf(¢) > L forallt > T7. Now lett > 27.
If w> T3, thenf(u) > L. Otherwiseu < T} thust —u >t — Ty > Ty thusg(t — u) > L. Thus in all
casesf(u) + g(t — u) > L. Thus we have shown that

(9@ f)(t) > Lfort > 2T1. (3.18)

Combining (3.17) and (3.18) shows the lemma. O

DEFINITION 3.14 (Time Inversion).For a fixedT' € [0, +oo], the inversion operato® is defined oG by:
o7(f)(g) = g(+00) — g(T — 1)

Graphically, time inversion can be obtained by a rotation&° around the poin(%, @). It is simple

to check thatb(g) is in G, that time inversion is symmetrica®(P7(g)) = g) and preserves the total
value @7(g)(+00) = g(+o0)). Lastly, for anya andT, « is an arrival curve fog if and only if « is an
arrival curve for®,(g).

THEOREM 3.14 (Representation of Deconvolution by Time Inversiogt g < G, and letT be such that
g9(T) = g(+00). Let f € F be such thatim;_, . ~, f(t) = +oc0. Then

go f=op(Pr(g) @ f) (3.19)

The theorem says thgt® f can be computed by first inverting time, then computing the-phis con-
volution betweenf, and the time-inverted function, and then inverting time again. Figure 3.9 shows a
graphical illustration.

PROOF: The proof consists in computing the right handside in Equa(B.19). Cally = ®1(g). We
have, by definition of the inversion

O (r(g) @ f) = (9 ® f) = (§® f)(+o0) = (§ @ (T — 1)
Now from Lemma 3.1 and the preservation of total value:
(9 ® f)(+00) = §(+00) = g(+00)
Thus, the right-handside in Equation (3.19) is equal to
9(+00) = (5 J)(T ~ 1) = g(+o0) = I {G(T ~t —) + f(w)
Again by definition of the inversion, it is equal to

9(+00) — Inf{g(+o0) = g(t +u) + f(u)} = sup{g(t +u) — f(u)}.

3.1. MIN-PLUS CALCU

LUS 127

/’
a(t)
(t)
' / t >
T .
g
g(m)/2
P+)
t »
T2 T !
®; OO

(P @0 1)

9(M/2

/

v

(& (P (@O) =(@0 HY

s

/

(P @0)

v

T/2

Figure 3.9:Representation of the min-plus deconvolution of g by f = ~,, by time-inversion. From top to

bottom: functions f and g,

function ®(g), function ®1(g) ® f and finally function g @ f = &7 (97 (g9) ® f).

128 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

3.1.11 \ERTICAL AND HORIZONTAL DEVIATIONS

The deconvolution operator allows to easily express twg waportant quantities in network calculus,
which are the maximal vertical and horizontal deviationsMeen the graphs of two curvgsandg of F.
The mathematical definition of these two quantities is devid.

DEeFINITION 3.15 (Vertical and horizontal deviationsl.et f and g be two functions or sequences/®f The
vertical deviationv(f, g) and horizontal deviatior(f, g) are defined as

o(f,9) = jgg{f(t) —9(t)} (3.20)
h(f,g) = sup{inf{d>0such that f(t) < g(t + d)}}. (3.21)
t>0

Figure 3.10 illustrates these two quantities on an example.

A g(t)

iy [—

> 1

Figure 3.10:The horizontal and vertical deviations between functions f and g.

Note that (3.20) can be recast as

v(f,9) = (f ©9)(0) (3.22)
whereas (3.20) is equivalent to requiring thady, g) is the smallestl > 0 such that for alk > 0, f(¢) <
g(t + d) and can therefore be recast as

h(f,g) = inf {d > 0 such that (f @ g)(—d) < 0}.

Now the horizontal deviation can be more easily computethftioee pseudo-inverse gt Indeed, Defini-
tion 3.7 yields that

g H(f(t)) = inf{A suchthat g(A) > f(t)}
= inf{d > O such that g(t +d) > f(t)} + ¢
so that (3.21) can be expressed as

h(f,g) = sup {7 (F @) —t} = (g7"(f) @ M)(0). (3.23)

We have therefore the following expression of the horiziod¢aiation betweerf andg:

PropPoOsITION3.1 (Horizontal deviation).

h(f,g) = sup {97 (f(t) —t}.

3.2. MAX-PLUS CALCULUS 129

3.2 MAX-PLUS CALCULUS

Similar definitions, leading to similar properties, can leeived if we replace the infimum (or minimum, it
is exists) by a supremum (or maximum, if it exists). We usertbtion\V for denotingsup or max. In
particular, one can show théR U {—oc}, v, +) is also a dioid, and construct a max-plus convolution and
deconvolution, which are defined as follows.

3.2.1 MAX-PLUS CONVOLUTION AND DECONVOLUTION

DEFINITION 3.16 (Max-plus convolution)Let f and g be two functions or sequences®f The max-plus
convolution off andg is the function

(f@g)(t) = sup {f(t—s)+g(s)}. (3.24)

0<s<t

(Ift <0, (f®g)(t) =0).

DEeFINITION 3.17 (Max-plus deconvolution)Let f andg be two functions or sequences/f The max-plus
deconvolution off by g is the function

(fog)t) = }g% {ft+u)—g(u)}. (3.25)

3.2.2 LINEARITY OF MIN-PLUS DECONVOLUTION IN MAX-PLUS ALGEBRA

Min-plus deconvolution is, in fact, an operation that istn in (R*, Vv, +). Indeed, one easily shows the
following property.

THEOREM 3.15 (Linearity of® in max-plus algebra)Let f, g, h € F.

e Rule 16 (Distributivity of@ with respecttov) (fVg) @h=(f @ h) V (g @ h).
e Rule 17 (Addition of a constantforany K e R*, (f+ K)o g= (f 0 g) + K.

Min-plus convolution is not, however, a linear operatior{iti*, vV, +), because in general

(fvgeh#(feh)V(igeh).

Indeed, takef = Bsr 1, g = Ag andh = Aar for someR, T > 0. Then using Rule 9, one easily computes
(see Figure 3.11) that

f®h = B3pT @ Xor = [orT
gR®h = AR® AR = AR
(fVg)®@h = (B3rTVAR)® Aar = Bopsr/a V AR
Borr VAR =(f®@h)V (9@ h).

Conversely, we have seen that min-plus convolution is atirmgeration inR™, A, +), and one easily
shows that min—plus deconvolution is not linear(i™, A, +). Finally, let us mention that one can also
replace+ by A, and show thatR U {+o00} U {—o0}, Vv, A) is also a dioid.Remark However, as we have
seen above, as soon as the three operationg and + are involved in a computation, one must be careful
before applying any distribution.

130 CHAPTER 3. BASIC MIN-PLUS AND MAX-PLUS CALCULUS

A((th)D(gDh))(t) R (Eng)Dh))(t)
2R
7L | :
i 3RT/2- /
E R
T 2T " 3T/4 3772 g

Figure 3.11:Function (f ® h) V (g ® h) (left) and (f V g) ® h (right) when f = Bsrr, g = Ag and h = Xap
for some R, T > 0.

3.3 EXERCISES

EXeErRcISE3.1. 1. Computex ® § for any functionu
2. Express the rate-latency function by meané afd A\ functions.

EXERCISE3.2. 1. ComputeX), 5; whenp; is a rate-latency function
2. Computed; @ [z with 81 (t) = R(t — T)* and Ba(t) = (rt + b)1{=0

EXercISE3.3. 1. Is® distributive with respect to thewin operator ?

CHAPTER 4

MIN-PLUS AND MAX-PLUS SYSTEM
THEORY

In Chapter 3 we have introduced the basic operations to me@functions and sequences in Min-Plus or
Max-Plus algebra. We have studied in detail the operatidesmvolution, deconvolution and sub-additive

closure. These notions form the mathematical cornerstanghich a first course of network calculus has
to be built.

In this chapter, we move one step further, and introducehiberetical tools to solve more advanced prob-
lems in network calculus developed in the second half of thekb The core object in Chapter 3 were
functions and sequences which operations could be performed. We will now placeselves at the level

of operatorsmapping an input function (or sequence) to an output funatiosequence. Max-plus system
theory is developed in detail in [28], here we focus on thelteghat are needed for the remaining chapters
of the book. As in Chapter 3, we focus here Min-Plus Systenoih&s Max-Plus System Theory follows
easily by replacing minimum by maximum, and infimum by supiem

4.1 MIN-PLUS AND MAX-PLUS OPERATORS

4.1.1 VECTOR NOTATIONS

Up to now, we have only worked with scalar operations on sdalections inF or G. In this chapter, we
will also work with vectors and matrices. The operationsextended in a straightforward manner.

Let J be afinite, positive integer. For vecto?s? € R*7, we definez A 7' as the coordinate-wise minimum
of Zandz’, and similarly for the+ operator. We writeZ” < 2’ with the meaning that; < z} for1 <j<J.

Note that the comparison so defined is not a total order, shate cannot guarantee that eithiexK 2 or
z! < Z holds. For a constarit’, we notez + K the vector defined by adding to all elements of.

We denote byG’ the set ofJ-dimensional wide-sense increasing real-valued funstionsequences of
parametet, andF” the subset of functions that are zero fot 0.

For sequences or function4t), we note similarly(Z A 7)(t) = Z(t) A ¢(t) and(Z + K)(t) = Z(t) + K
for all t > 0, and writeZ < ¢ with the meaning that(¢) < (¢) for all ¢.

For matrices4, B € Rt/ x R*7, we defined A B as the entry-wise minimum o and B. For vector
7 € Rt 7, the ‘multiplication’ of vectorz € R+ by matrix A is — remember that in min-plus algebra,

131

132 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY
multiplication is the+ operation — by
A+ Z

and has entriesiin; << (a;; + z;). Likewise, the ‘product’ of two matriced and B is denoted byd + B
and has entrieﬁlinlgjgj(aij + b]k) forl <i,k <J.

Here is an example of a ‘multiplication’ of a vector by a matwhen.J = 2

sl

and an example of a matrix ‘multiplication’ is
5 3 2 4 4 3
{1 3]*{1 0]_{3 3]'

We denote by7-“J2 the set ofJ x J matrices whose entries are functions or sequencés ahd similarly
for g7,

The min-plus convolution of a matrid € F7* by a vectorz € 7/ is the vector ofF” defined by
(A@2)(#) = inf (At)+ ()
and whoseJ coordinates are thus

win {ai; ® 2}(t) = inf min {ai;(t - s) + 2(s)}
Likewise, A ® B is defined by
(A@B)(®) = inf (At~ 5)+ B(s))

and has entriesiin; << s(a;; ® bj) for 1 < i,k < J.
|: Ar 00 :| ® |: Vr/2,b :| _ |: Ar /\’Yr/Z,b :|
o0 5T 52T 53T

|: Ar 00 :| ® |: Yr/2,6 Vb :| _ [)\r/\’Yr/2,b Ar :|)
o0 5T (52T)\r 53T /BT’,T

For example, we have

and

Finally, we will also need to extend the set of wide-senseeiasing functiong to include non decreasing
functions of two arguments. We adopt the following defimit{@ slightly different definition can be found
in [11]).

DEFINITION 4.1 (Bivariate wide-sense increasing function#)e denote by the set of bivariate functions
(or sequences) such that for all < s and anyt < ¢/

We call such functions bivariate wide-sense increasingtfans.

In the multi-dimensional case, we denoteg';){/ the set ofJ x J matrices whose entries are wide-sense
increasing bivariate functions. A matrix df(¢) F7* is a particular case of a matrbl (¢, s) € G7, with
s set to a fixed value.

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 133

4.1.2 OPERATORS

A system is an operatdid mapping an input function or sequengeonto an output function or sequence
7 = II(Z). We will always assume in this book thati; € G/, where.J is a fixed, finite, positive integer.
This means that each of thecoordinatese;(t), y;(t), 1 < j < J, is a wide-sense increasing function (or
sequence) of.

It is important to mention that Min-plus system theory agglio more general operators, takiRg to R,
where neither the input nor the output functions are requicebe wide-sense increasing. This requires
minor modifications in the definitions and properties essaleld in this chapter, see [28] for the theory
described in a more general setting. In this book, to avaédutinecessary overhead of new notations and
definitions, we decided to expose min-plus system theorgpperators taking;”’ to G”.

Most often, the only operator whose output may not b&ihis deconvolution, but all other operators we
need will takeF” to F7.

Most of the time, the dimension of the input and outpuf is- 1, and the operator takes to F. We will
speak of ascalaroperator. In this case, we will drop the arrow on the input anighut, and write; = I1(xz)
instead.

We write IT; < II, with the meaning thall, (¥) < IIy(Z) for all £, which in turn has the meaning that
IT, (Z)(t) < Ia(Z)(¢) for all ¢.

For a set of operatoiid;, indexed by in some sef, we callinf ;¢ 5 IT5 the operator defined Bynfscs I1](x(t)) =
infges[Is(x(t))]. ForS = {1, 2} we denote it witHI; A II,.

We also denote by the composition of two operators:
(Il o IIp)(Z) = I (II2(Z)).
We leave it to the alert reader to check thaft,c s I, andIl; o IT, do map functions i’ to functions in
G’.
4.1.3 A CATALOG OF OPERATORS

Let us mention a few examples of scalar operators of paatidaterest. The first two have already been
studied in detail in Chapter 3, whereas the third was inttedun Section 1.7. The fact that these operators
mapg”’ into G’ follows from Chapter 3.

DEFINITION 4.2 (Min-plus convolutiorC,,).

Co - F
- y(

]:
(1) t) = Co(2)(t) = (0 @)(t) = infocs<i {o(t — 5) +2(s)},

for somes € F.

DEeFINITION 4.3 (Min-plus deconvolutiorD,).

D, : F — @G
z(t) — y(t) =Do(x)(t) = (x @ 0)(t) = sup,>o {z(t +u) —o(u)},

for somes € F.

Note that Min-plus deconvolution produces an output thasdwt always belong 1.

134 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

DEFINITION 4.4 (PacketizatiorP;).

Pr va — F
a(t) — y(t) =Pr(x)(t) = PH(x(t) = supiey { L)1 Li)<ar) |

for some wide-sense increasing sequehddefined by Definition 1.9).
We will also need later on the following operator, whose naviliebe justified later in this chapter.
DEFINITION 4.5 (Linear idempotent operatay,).

he : F — F
2(t) = y(t) = he(x)(t) = infocs<s {o(t) — o(s) + 2(s)},

for somes € F.

The extension of the scalar operators to the vector caseaiglstforward. The vector extension of the
convolution is for instance:

DEFINITION 4.6 (Vector min-plus convolutiofy).

Cy]:J —]:J
I(t) — gt) =Cs(@)(t) = (X @D)(t) = infocs<s {5(t —) + Z(s)},

for somex € F7°.
If the (7, j)th entry ofX is 0;;, theith component ofj(¢) reads therefore

yi(t) = Og;i;t nin {oij(t —s) +25(s)}

Let us conclude with the shift operator, which we directlyraduce in the vector setting:
DEFINITION 4.7 (Shift operatoSy).

Sr + g7 = ¢’
() — yt)=Sr(@)t) =2t -1T),

for somel” € R.

Let us remark thab is the identity operatorSy (%) = 7.

4.1.4 UPER AND LOWER SEMI-CONTINUOUS OPERATORS

We now study a number of properties of min-plus linear opesat We begin with that of upper-semi
continuity.

DEFINITION 4.8 (Upper semi-continuous operatoQperatorll is upper semi-continuous if for any (finite
or infinite) set of functions or sequencgg, }, 7, € G/,

I (igf{fn}) = inf {T1(7,)} (4.1)

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 135

We can check thdt,, Cs, h, andSy are upper semi-continuous. For example dgr we check indeed that

Cs: (i%f{fn}) (t) = inf {E(t—s)+i%f{fn(s)}}

0<s<t
= Ogéitl%f {3(t —)+ Zn(s)}
= il {5 =8 7))
= inf{Cs(Z0)(t)}-

To show thatPy, is upper semi-continuous, we proceed in two stepsztet inf,{z, }. We first note that
Pr, (12f{xn}) =P (z*) < ilﬁf {Pr(zn)}

becauser* < z,, for anyn and P” is a wide-sense increasing function. We next show that tneerse
inequality also holds. We first assume that there is senwich thatz,, = z*, namely that the infimum is
actually a minimum. Then

i%f {Pr(xn)} < Pr(xm)=PrL (x*) .

We next suppose that there is no integesuch thatr,, = x*. Then for any= > 0, there is an integein
such that) < z,,, — z* < . Therefore

i%f {Pr(zn)} < Pr(xm) < Pr(x*+¢).
Since the above inequality is true for any- 0, and sinceP’ is a right-continuous function, it implies that
inf {Py(2,)} < Pr(a*) = Py (i%f{xn}> .

This concludes the proof.

On the other handD, is not upper semi-continuous, because its application tmfawould involve the
three operationsup, inf and+, which do not commute, as we have seen at the end of the psesvi@pter.

It is easy to show that ifl; andIl; are upper semi-continuous, so afe A I1; andll; o Il,.
The dual definition of upper semi-continuity is that of loveemi-continuity, which is defined as follows.

DEFINITION 4.9 (Lower semi-continuous operatoiperatorll is lower semi-continuous if for any (finite
or infinite) set of functions or sequencgs, }, &, € G”7,

1 (sup 2,) = sup {11} (4.2)

It is easy to check thab,, is lower semi-continuous, unlike other operators, exégptvhich is also lower
semi-continuous.

4.1.5 ISOTONE OPERATORS

DEFINITION 4.10 (Isotone operator)Operatorll is isotone if?; < 7 always impliedI(z;) < II(Z7).

All upper semi-continuous operators are isotone. Indded, i< 7o, thenZ, A Zo = & and sincdll is
upper semi-continuous,

H(fl) = H(fl A\ fQ) = H(fl) AN H(fg) < H(fQ)
Likewise, all lower semi-continuous operators are isotdndeed, ifz; < ¥, then®; v s = 25 and since
II is lower semi-continuous,

() < I(Z) v I(2o) = II(Z V 7o) = II(F2).

136 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

4.1.6 LINEAR OPERATORS

In classical system theory diR, +, x), a systeril is linear if its output to a linear combination of inputs
is the linear combination of the outputs to each particuiput. In other wordslI is linear if for any (finite
or infinite) set of inputg«; }, and for any constari € R,

I (Z x> = T(x)
and for any inputc and any constarit € R,

(k- z)=Fk - I(x).

The extension to min-plus system theory is straightforwartie first property being replaced by that of
upper semi-continuity, a min-plus linear operator is thasred as an upper semi-continuous operator that
has the following property (“multiplication” by a constant

DEFINITION 4.11 (Min-plus linear operator)Operatorll is min-plus linear if it is upper semi-continuous
and if for anyz € G’ and for anyk > 0,

(% + k) = I1(Z) + k. 4.3)

One can easily check thé, Csx, h, andSy are min-plus linear, unlik®, andP;,. D, is not linear because
it is not upper semi-continuous, afy is not linear because it fails to verify (4.3).

In classical linear theory, a linear system is represengeitsbmpulse responsk(t, s), which is defined as
the output of the system when the input is the Dirac functidme output of such a system can be expressed
as -

T1(z)(t) = / h(t, $)o(s)ds
Its straightforward extension in Min-plus system theorgrisvided by the following theorem [28]. To prove
this theorem in the vector case, we need first to extend trst fatay function introduced in Definition 3.2,
to allow negative values of the delay, namely, the valla

0 ift<T
5T(t)—{ o ift>T,

is now taking values ifR. We also introduce the following matri®r € G’ x G”.

DEFINITION 4.12 (Shift matrix). The shift matrix is defined by

[or(t) oo 00 0o]
oo op(t) o0
Dr(t)=1] oo oo dp(t)
| o oo or(t) |

for somel” € R.

THEOREM4.1 (Min-plus impulse response)l is a min-plus linear operator if and only if there is a unique
matrix H € G’ (called theimpulse respongesuch that for anyt € G/ and anyt € R,

H(#)(t) = inf {H{(t,s) + #(s)} (4.4)

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 137

PrROOF: If (4.4) holds, one immediately sees tHatis upper semi-continuous and verifies (4.3), and
therefore is min-plus lineail mapsG”’ to G/ becaused € G”.

Suppose next thdl is min-plus linear, and let us prove that there is a uniqueirai (¢, s) € G’ such that
(4.4) holds.

Let us first note thaD,(t) + #(s) = #(s) for anys > t. Sincez € G/, we have
inf {Dy(t) +#(s)} = mf {&(s)} = 7(2).
On the other hand, all entries &f;(¢) are infinite fors < ¢. We have therefore that
125 {Ds(t) + Z(s)} = ¢
We can combine these two expressions as
Z(t) = inf {D4(t) + Z(s)},
seR
or, dropping explicit dependence on

Z=inf {Ds +Z(s)}.
seR

Let d, ; denote thejth column of D:

IS
515
<.
|
SR ..

oo

whered; is located at thagth position in this vector. Using repeatedly the fécts min-plus linear, we get
that

(z) = H(;gﬂg{Derf(S)})
= inf {I1(D; +7(s))}

min,{
=t { i, {0(d+2,00)}
(

= int {min {10(d,) 2,0}
Defining
H(t,s) = [ﬁl(t,s) o hi(ts) .. EJ(t,s)} (4.5)

where . .
hyt,s) =11 (ds,j) (1) (4.6)

for all ¢ € R, we obtain therefore that

seR | 1<5<J 0seR

I(Z)(t) = inf { min {h;(t,s) 4+ xj(s) v = inf {H(t,s)+ T(s)}.
e d)

138 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

We still have to check thalf (¢, s) € G”. Since for any fixed;, IT (cl;j> € G/, we have that for any < ¢/

i) =T (dy) () < TE(doy) () = sl),

henceH (t,s) < H(t',s). On the other hand, i < s, one easily check thafs,j < dzj Therefore, since
ITis isotone (because it is linear and thus upper semi-canis

hy(t,s) =TI (Cﬁ,j) (t)<n (Czs’,j) (t) = hy(t, s)

and thereforeH (¢, s) < H(t,s') for anys > 5. This shows thaH (¢, s) € G”.

To prove uniqueness, suppose that there is another nfatrixG” that satisfies (4.4), and IE@- denote its
jth column. Then for any. € R and anyl < j < J, taking® = cfu,j as the input, we get from (4.6) that
forte R

— —

hi(tu) = H(Ju,j) (t) = inf {H'(t,s)+du,j(s)}

seR

— inf {z{'j(t,) +5u(s)} — inf {;?j(t,s)} = W5(t,u).

seR s<u

ThereforeH' = H. O

We will denote a general min-plus linear operator whose isgtesponse i& by L. In other words, we
have that

Lr(@)(t) = inf {H(t,s) +&(s)}.

One can compute that the impulse response correspondifigito

_f E(t-s) ifs<t
H(t’s)_{ 2(0) if s>t
to h, is
foo(t)—o(s) ifs<t
H(t’s)_{o ifs>t’
and toSr is

H(t,s) = Dp(t — s).

In fact the introduction of the shift matrix allows us to verithe shift operator as a min-plus convolution:
St =Cp, ifT > 0.

Let us now compute the impulse response of the compostiomairtin-plus linear operators.

THEOREM 4.2 (Composition of min-plus linear operatord)et £ and L+ be two min-plus linear opera-
tors. Then their compositiofi 7 o £y is also min-plus linear, and its impulse repsonse denote byH’
is given by

(HoH')(t,s) = ireluf@ {H(t,u)+ H'(u,s)} .

PROOF: The composition ;; o £+ applied to some € G is

L (L (F))(t)

inf{ (t,u —|—1nf{H'u s)—l—a:(s)}}
= mfmf{Htu + H'(u, s) + Z(s) }

= mf{lnf{Ht s) + H'(u, s) }—I—a:(s}

4.1. MIN-PLUS AND MAX-PLUS OPERATORS 139

We can therefore write
LyoLpy =Lyon

Likewise, one easily shows that
LuNLy =Lyrg .

Finally, let us mention the dual definition of a max-plus &neperator.

DEFINITION 4.13 (Max-plus linear operatorOperatorIl is max-plus linear if it is lower semi-continuous
and if for anyz € G’ and for anyk > 0,

I(Z+ k) = I1(Z) + k. 4.7)

Max-plus linear operators can also be represented by theulse response.

THEOREM4.3 (Max-plus impulse responselll is a max-plus linear operator if and only if there is a unique
matrix H € G’ (called theimpulse respongesuch that for anyt € G’ and anyt € R,

(%) (t) = ilelg {H(t,s) +Z(s)}. (4.8)

One can easily check th@at, andSy are max-plus linear, unlikéy, h, andPry..
For exampleD, (z)(t) can be written as

Dy(z)(t) = ililg{x(t +u) —o(u)} = it;lt){w(S) —o(s—1)} = igﬂg{w(S) —o(s—1)}

which has the form (4.8) iH (¢,s) = —o(s — t).

Likewise,Sr(x)(t) can be written as

Sr (@) () =4t -T) = igﬂg{f(S) —D_p(s—1)}

which has the form (4.8) it/ (¢,s) = —D_r(s — t).

4.1.7 CAUSAL OPERATORS

A system is causal if its output at tinteonly depends on its input before time

DEFINITION 4.14 (Causal operatorOperatorIl is causal if for anyt, 7 (s) = Z2(s) for all s < ¢ always
impliesII(z1)(t) = II(Z2)(t).

THEOREM 4.4 (Min-plus causal linear operatorp min-plus linear system with impulse resporges
causal ifH (t,s) = H(t,t) for s > t.

PROOF: If H(t,s) = 0for s >t and if# (s) = ¥2(s) for all s < t then sincer;, 7o € G/,

La(@)(0) = inf {(H(t,s)+71(s)}
= il {H (1) + T()} A dnf {H(1,5) + 71 (5)}
_ isét; [H(t,5) + F1(s)} A inf {H(t,8) + 71 (5)}
— inf {H(t,s) + 1(s)}

140 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

= inf {H(t,5) + T2(s)}

— iréf;{H(t,s)—k To(s)} Ainf {H (2, 1) + Z2(s)}
= f{H({) + ()} Anf {H(E, 5) + Ta(s)}
= ;Ielﬂf{{H(taS)Jr T2(s)} = Lu(T2)(t).

O

Cs, Cx, he and Py, are causalSy is causal if and only ifl" > 0. D, is not causal. Indeed if;(s) = Z2(s)
for all s < ¢, but that? (s) # Z2(s) for all s > ¢, then

Do(#1)(t) = sup{a(t+u) —o(u)}

sup {Z2(t +u) —o(u)}

- Da(fl)(t)

4.1.8 SHIFT-INVARIANT OPERATORS

A system is shift-invariant, or time-invariant, if a shiftthe input of 7" time units yields a shift of the output
of T time units too.

DEFINITION 4.15 (Shift-invariant operator)OperatorII is shift-invariant if it commutes with all shift op-
erators, i.e. if for anyr € G and for anyT" € R

(87 (7)) = Sr(II(T)).

THEOREM 4.5 (Shift-invariant min-plus linear operatorlet £ and £y be two min-plus linear, shift-
invariant operators.

(i) A min-plus linear operatot’ ;; is shift-invariant if and only if its impulse respong&¢, s) depends only
on the differencét — s).

(ii) Two min-plus linear, shift-invariant operatos; and £y commute. If they are also causal, the impulse
response of their composition is

(HoH')(t,s)= inf {H(t—s—u)+H (u)}=(H®H)({t-s).

0<u<t—s

PROOF: (i) Let h; i(t,s) andd;j(t) denote (respectively) thgh column of H (¢, s) and of Ds(¢). Note
thatds]() =S5 (doj)(). Then (4.6) yields that

Bitts) = T0(diy) () =T (Su(do)) ()
= 8 ((doy)) (1) = (W) (¢ = 5) = Byt = 5,0)
ThereforeH (t, s) can be written as a function of a single variablé¢t — s).
(ii) Because of Theorem 4.2, the impulse responsé b Ly is
(Ho H')(t,s) = ir&f {H(t,u)+ H'(u,s)}.
SinceH (t,u) = H(t —u) andH'(u, s) = H'(u — s), and setting) = u — s, the latter can be written as

(HoH')(t,s) = i%f {Ht—u)+H'u-s)} = i%f{H(t —s—v)+H'v)}.

4.2. CLOSURE OF AN OPERATOR 141

Similarly, the impulse response 8y o Ly can be written as
(H o H)(t,s) =inf {H'(t —u)+ H(u—s)} =inf {H(v) + H'(t — s —v)}

where this time we have set= ¢ — u. Both impulse responses are identical, which shows thatwbe
operators commute.

If they are causal, then their impulse response is infinité fo s and the two previous relations become

(HoH')(t,s)=(H o H)(t,s) = OiSI})fSt{H(t —s—v)+H@)}=HoH)(t-s).

O

Min-plus convolutionCy; (including of courseC, and Sr) is therefore shift-invariant. In fact, it follows
from this theorem that the only min-plus linear, causal amtt-gwariant operator is min-plus convolution.
Thereforeh, is not shift-invariant.

Min-plus deconvolution is shift-invariant, as

Do (Sr(2))(t) = iglg{ST(w)(t +u)—o(u)}t = iglg{w(t +u—T)—o(u)}
= (o)t —T)="D,(z)(t - T) = Sr (Do) (2)(2).

Finally let us mention thaPy, is not shift-invariant.

4.1.9 IDEMPOTENT OPERATORS

An idempotent operator is an operator whose composition igelf produces the same operator.

DEFINITION 4.16 (Idempotent operatorOperatorIl is idempotent if its self-compositionls i.e. if

IIoll =11

We can easily check that, andP;, are idempotent. I is sub-additive, witlw (0) = 0, thenC, o C, = C,,
which shows that in this casé, is idempotent too. The same appliestg.

4.2 CLOSURE OF AN OPERATOR

By repeatedly composing a min-plus operator with itself,altain the closure of this operator. The formal
definition is as follows.

DEFINITION 4.17 (Sub-additive closure of an operatob)et IT be a min-plus operator taking’ — G-.
Denotell(™ the operator obtained by composii(n — 1) times with itself. By conventiofl(?) = S, =
Cp,, SOIIM =TI, II® = IT o I1, etc. Then the sub-additive closurelbfdenoted by, is defined by

ﬁ:SOAHA(HoH)A(HoHoH)A...:12%{11(")}. (4.9)

In other words,
(%) = Z A TL(Z) ATI(IL(Z)) A ...
It is immediate to check thal does map functions iG” to functions inG”.

The next theorem provides the impulse response of the sitivedclosure of a min-plus linear operator. It
follows immediately from applying recursively Theorem 4.2

142 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

THEOREM 4.6 (Sub-additive closure of a linear operatofhe impulse response 6f; is

H(t,s)=inf inf {H(t,u1)+ H(ui,u2)+ ...+ H(uy,s)}. (4.10)

neN un,...,u2,u1
andZH = ﬁﬁ

For a min-plus linear, shift-invariant and causal opergtd0) becomes

H(t—s)
= érelg sgung,,l,Iglt;qulgt {H(t — ul) + H(u1 — ’LL2) + ...+ H(un — 8)}
= éggogvng...g)ggvlgt—s {Ht—s—v)+ H(vy —vy)+ ...+ H(v,)}
= inf {H™}(t - s) (4.11)
neN

whereH"™ = H@ H® ...® H (ntimes,n > 1) andH©® = S,,.
In particular, if all entriesr;;(t) of ¥(¢) are sub-additive functions, we find that

Cy =Cs.

In the scalar case, the closure of the min-plus convolutjperatorC, reduces to the min-plus convolution
of the sub-additive closure of:

Co- - CF'
If o is a “good” function (i.e., a sub-additive function witt{0) = 0), thenC, = C,.

The sub-additive closure of the idempotent operatgrand Py, are easy to compute too. Indeed, since
he(z) <z andPr(x) < z,

and
PL="Pr.

The following result is easy to prove. We write < T’ to express thalil () < II'(Z) for all # € G.
THEOREM 4.7 (Sub-additive closure of an isotone operatdf)II and II’ are two isotone operators, and
I1 < I, thenII < IT'.

Finally, let us conclude this section by computing the atesaf the minimum between two operators.

THEOREM 4.8 (Sub-additive closure dl; A II,). LetII;, II, be two isotone operators taking’ — G”.
Then

I A1l = (Hl VAN 80) o (H2 A 80) (4.12)

ProOF: (i) SinceSy is the identity operator,

I A1, = (Hl OSO) A\ (S() o) HQ)

((Hl A\ 80) o 80) N (SO o (Hg A\ 80))

((Hl A\ 80) o (H2 A\ 80)) A\ ((Hl A\ SQ) o (H2 AN S()))
(

I A Sp) o (Il A Sp).

Sincell; andIl; are isotone, so afd; A Il and(I1; A Sp) o (IIa A Sp). Consequently, Theorem 4.7 yields
that

I, A1l > (H1 VAN So) o (H1 VAN So) (4.13)

4.2. CLOSURE OF AN OPERATOR 143

(i) Combining the two inequalities

II; NSy
I, A Sy

I ATl A Sy
I ATl A Sy

AV

we get that

(H1 A 50) o (H1 AN S()) > (Hl ATy A 50) o (Hl ATly A 50) (4.14)
Let us show by induction that

((IIy ATI2) A 80)(n) - orgl}cign {(Hl A HZ)(k)} '

Clearly, the claim holds for = 0, 1. Suppose it is true up to somec N. Then

((IT; A TIo) A Sp) Y
= ((II; ATIy) A Sp) o (I A TIp) A Sp)™

— (I} ATIo) ASp) o <Or<n]33n {(Hl A H2)<k>}>

<(H1 Alp) 0 Oglgln {(Hl A H2)(k)}> A <30 o Og}gign {(Hl A H2)(k)}>

— i (k) ; (k)
L A AT} A i {0 AT

— i (k)
OSEIISIE_H {(Hl N Hg) } .

Therefore the claim holds for all € N, and

(IT; ATI5) A Sp) W
= min {(Hl A Hg)(k)} .

(((TT; ATI) A Sp) o ((TTy A TIp) A Sp))™

0<k<2n
Consequently,
(I ATl ASy) o (I ATl ASy) = gggoé%gn {(Hl A H2)<k)}
= ot {m A}
= I ATL
and combining this result with (4.13) and (4.14), we getZ4.1 O

If one of the two operators is an idempotent operator, we gaplgy the previous result a bit more. We
will use the following corollary in Chapter 9.

COROLLARY 4.1 (Sub-additive closure di; A hys). LetIl; be an isotone operator taking — F, and
let M € F. Then

IIi A hyy = (hM o Hl) o hy. (4.15)

PrROOF: Theorem 4.8 yields that

I A by = (H1 VAN SO) o hyy (4.16)

144 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

becauseéi; < Sy. The right hand side of (4.16) is the inf over all integersf
({0 A So} o hag)™
which we can expand as
{3 ASo}ohpo{II; ASp}ohpro...o{lly ASp}ohy.
Since

hMO{Hl/\SO}OhM = {hMOHthM}/\hM
({hM OH1} /\So) ohpy

_ ; (@)
= 01%1(1121{(}”\/[01_[1) }ohM,

the previous expression is equal to

min {(hM o H1)<q)} o ha.

Therefore we can rewrite the right hand side of (4.16) as

neN | 0<qg<n

(H1 /\So) e} h]\/[= inf { min {(hM OHl)(q)} e} h]\/[}

— ggg{(hM oHl)(q)} ohyr = (hay oIly) o hyy,

which establishes (4.15).
Therefore we can rewrite the right hand side of (4.16) as

- : (9)
(IIL ASp) o hpyr = égf&{o%lgn{(h]\/[oﬂl) }ohM}

= hps o inf {(hM o Hl)(q)} ohpy = hpro (hpr oIly) o hyy,
qeN

which establishes (4.15). O
The dual of super-additive closure is that of super-adelithosure, defined as follows.

DEFINITION 4.18 (Super-additive closure of an operatdrkt IT be an operator taking;’ — G”7. The
super-additive closure difl, denoted byl, is defined by

ﬂ:So\/H\/(HoH)\/(HoHoH)\/...:sup{l_[(")}. (4.17)

n>0

4.3 FXED POINT EQUATION (SPACE METHOD)

4.3.1 MAIN THEOREM

We now have the tools to solve an important problem of netveatkulus, which has some analogy with
ordinary differential equations in conventional systemoity.

The latter problem reads as follows: Iétbe an operator fro®”/ to R”, and letd € R’. What is then the
solutionZ(t) to the differential equation

dr .
=) =@ (4.18)

4.3. FIXED POINT EQUATION (SPACE METHOD) 145

with the inital condition
Z(0) = a. (4.19)

HereIl is an operator takingg/ — G”, and@ € G’. The problem is now to find the largest function
#(t) € G7, which verifies the recursive inequality

Z(t) < TI(Z)(¢) (4.20)

and the initial condition
Z(t) < a(t). (4.22)

The differences are however important: first we have inetigsinstead of equalities, and second, contrary
to (4.18), (4.20) does not describe the evolution of theettajy #(¢) with time ¢, starting from a fixed
pointd, but the successive iteration Bfon the whole trajectory(t), starting from a fixed, given function
a(t) € g’.

The following theorem provides the solution this problemder weak, technical assumptions that are almost
always met.

THEOREM 4.9 (Space method)Let IT be an upper semi-continuous operator takig — G’. For any
fixed functioni € G/, the problem

8

@ NI(T) (4.22)

<
has one maximum solution ¢/, given byz* = T1(a).

The theorem is proven in [28]. We give here a direct proof tias not have the pre-requisites in [28]. It
is based on a fixed point argument. We call the applicatiorhisftheorem “Space method”, because the
iterated variable is not time(as in the “Time method” described shortly later) but thé $euence?’ itself.
The theorem applies therefore indifferently whetherZ or ¢ € R.

PrRoOF: (i) Let us first show thatl(@) is a solution of (4.22). Consider the sequefz&} of decreasing
sequences defined by

— —

Trg = a
Tnt1 = Tn N1I(E), n > 0.
Then one checks that
T = inf{Z
nzo{ n}

is a solution to (4.22) becausg < Z, = a and becaus#l is upper-semi-continuous so that
S (i (2.Y) = inf (I(E)Y > nf (2 i) > inf (3.} — *.
M(7") = I(inf {7 }) = Inf{11(#)} > nf{an 41} > nfld} =2
Now, one easily checks that, = infy<,,<, {1 (@)}, so
7 — inf{Z,) = inf i m) (@ = i Mm@V =Ti(a
7= Inf{d,} = inf inf {IT7(a)} = mf{IT (@)} = L(a).

This also shows that* € G”.

(i) Let & be a solution of (4.22). Then < a@ and sincdl is isotone I1(#) < II(a). From (4.22)7 < II(Z),
so that? < TI(@). Suppose that for some > 1, we have shown that < 11"~ (g). Then as? < TI(Z)
and adl is isotone, it yields that < TI™ (). Therefore < inf,~o{I1 (@)} = TI(@), which shows that

2* = II(a) is the maximal solution. O
Similarly, we have the following result in Max-plus algebra

146 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

THEOREM 4.10 (Dual space method).et IT be a lower semi-continuous operator takigd — G’. For
any fixed functior € G/, the problem
7> avII(T) (4.23)

has one minimum solution, given By = I1(a).

4.3.2 EBEXAMPLES OF APPLICATION

Let us now apply this theorem to five particular examples. Vilefirst revisit the input-output charac-
terization of the greedy shaper of Section 1.5.2, and of gn@ble capacity node described at the end of
Section 1.3.2. Next we will apply it to two window flow contrptoblems (with a fixed length window).
Finally, we will revisit the variable length packet greedhaper of Section 1.7.4.

INPUT-OUTPUT CHARACTERIZATION OF GREEDY SHAPERS

Remember that a greedy shaper is a system that delays inpuin ki buffer, whenever sending a bit would
violate the constraint, but outputs them as soon as possible otherwisg.i#f the input flow, the output is
thus the maximal functiom € F satisfying the set of inequalities (1.13), which we can stea

x < RACy(z).

It is thus given byR* = C, = Cz(x) = 7 ® x. If o is a “good” function, one therefore retrieves the main
result of Theorem 1.11.

INPUT-OUTPUT CHARACTERIZATION OF VARIABLE CAPACITY NODES

The variable capacity node was introduced at the end of@ettB.2, where the variable capacity is modeled
by a cumulative functionV/(¢), whereM (t) is the total capacity available to the flow between tiraesd

t. If m(t) is the instantaneous capacity available to the flow at tinteen M (¢) is the primitive of this
function. In other words, if € R,

M(t):/o m(s)ds (4.24)

and ift € Z the integral is replaced by a sum enlf R is the input flow andz is the output flow of the
variable capacity node, then the variable capacity constiraposes that for ald < s <t

x(t) — x(s) < M(t) — M(s),
which we can recast using the idempotent operajgras
x < ha(z). (4.25)
On the other hand, the system is causal, so that
z < R. (4.26)

The output of the variable capacity node is therefore theimabsolution of system (4.25) and (4.26). Itis
thus given by
R¥(t) = hy(R)(t) = har(R)(t) = inf {M(t) = M(s)+ R(s)}

0<s<t

because the sub-additive closure of an idempotent opesatbe operator itself, as we have seen in the
previous section.

4.3. FIXED POINT EQUATION (SPACE METHOD) 147

STATIC WINDOW FLOW CONTROL —EXAMPLE 1

Let us now consider an example of a feedback system. Thismgramfound independently in [10] and
[68, 2]. A data flowa(t) is fed via a window flow controller to a network offering a seevcurves. The
window flow controller limits the amount of data admittedarihe network in such a way that the total
backlog is less than or equal ¥, wherelW > 0 (the window size) is a fixed number (Figure 4.1).

controller m
net wor k
a(t) x(t)y NS

y(t)

Figure 4.1:Static window flow control, from [10] or [68]

Call z(t) the flow admitted to the network, andt) the output. The definition of the controller means that
z(t) is the maximum solution to
(t) < a(t)
LS @27

We do not know the mapping : x — y = II(z), but we assume thal is isotone, and we assume that
y(t) > (8 ® x)(t), which can be recast as

II(z) > Cp(x). (4.28)
We also recast System (4.27) as
x <aN{ll(x)+ W}, (4.29)

and direclty apply Theorem 4.9 to derive that the maximurtsmt is

r = I1+W)(a).

Sincell is isotone, so i3I + W. Therefore, because of (4.28) and applying Theorem 4.7 etvthgt

z=(II+W)(a) > (Cs +W)(a). (4.30)

Because of Theorem 4.6,

s+ W)(a) = Casaw(a) = Coppla) = (BT W) @ a.

Combining this relationship with (4.30) we have that

y25®x25®((5+W)®a) :<ﬁ®(6+W)) (a),

which shows that the complete, closed-loop system of Figureffers to flowa a service curve [10]

Bwfcr =B (B+W). (4.31)

For example, if8 = Brr then the service curve of the closed-loop system is the iflumecepresented on
Figure 4.2. WhemRT < W, the window does not add any restriction on the service gueesoffered by
the open-loop system, as in this cagg, = 5. If RT" > W on the other hand, the service curve is smaller
than the open-loop service curve.

148 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

ABuica(®) =B(M) =R[t-T]* 4 Butca(®

T 2T3T4T
Case 1: REW Case 2: RT>W

Figure 4.2:The service curve j, ., of the closed-loop system with static window flow control, when the
service curve of the open loop system is Sr r with RT < W (left) and RT > W (right).

STATIC WINDOW FLOW CONTROL — EXAMPLE 2

Let us extend the window flow control model to account for tRestence of background traffic, which
constraints the input traffic rate at timedz/dt(t) (if t € R) or z(t) — x(t — 1) (if t € Z), to be less
that some given rate:(t). Let M (t) denote the primitive of this prescribed rate function. Tlhies rate
constraint onr becomes (4.25). Functio/ () is not known, but we assume that there is some function
~ € F such that

M(t) — M(s) > y(t — 5)

for any0 < s < ¢, which we can recast as
har > Cy. (4.32)

This is used in [47] to derive a service curve offered by theplete system to the incoming flaw which
we shall also compute now by applying Theorem 4.9.

With the additional constraint (4.25), one has to compugentlaximal solution of
z < aN{Il(z) + W} A hy(z), (4.33)

which is

= {II+ W} Ahy)(a). (4.34)

As in the previous subsection, we do not knbiabut we assume that it is isotone and thht> Cz. We
also know thaty; > C,. A first approach to get a service curve fgris to compute a lower bound of the
right hand side of (4.34) by time-invariant linear operafarhich commute as we have seen earlier in this
chapter. We get

{II+W}EAhy 2{Cs+ W} ACy =Cigiwyny,

and therefore (4.34) becomes
z > Ciprwing(a) = Cmmas (@) = {(B+ WiAv) ®a.

Because of Theorem 3.11,

{B+WEAy=B+W)®7
so that

yzBoe> (BeBrW)eT)ea

4.4. FIXED POINT EQUATION (TIME METHOD) 149

and thus a service curve for flawis

BR(B+W)®7. (4.35)

Unfortunately, this service curve can be quite useless. eikample, if for somel” > 0, ~(¢) = 0 for
0 <t <T,theny(t) = 0forall ¢t > 0, and so the service curve is zero.

A better bound is obtained by differing the lower boundinghgf by the time-invariant operatdat, after
having used the idempotency property in the computatioh@fsub-additive closure of the right hand side
of (4.34), via Corollary 4.1. Indeed, this corollary allowsto replace (4.34) by

z = ((hM o (I + W))o hM) (a).

Now we can bound; below byC,, to obtain

(haro(IT+W))ohpyr > (CyoCpyw)oCy
= Chgp+w)©Cy
= Cogzw oG

- C'y®(6®’y+W)'

We obtain a better service curve than by our initial approattere we had directly replacéd; by Cyumma:
Bwfca =B@Y@ (BRYy+W). (4.36)

is a better service curve than (4.35).
For example, if3 = Srr andy = S 77, with R > R' andW < R'(T + T"), then the service curve of the

closed-loop system is the function represented on Figie 4.
PACKETIZED GREEDY SHAPER

Our last example in this chapter is the packetized greedyestiatroduced in Section 1.7.4. It amounts to
computing the maximum solution to the problem

x < RAPL(x)ACy(z)

whereR is the input flowe is a “good” function and. is a given sequence of cumulative packet lengths.
We can apply Theorem 4.9 and next Theorem 4.7 to obtain

x=Pr ANCs(R) =P oCsR)

which is precisely the result of Theorem 1.21.

4.4 FHXED POINT EQUATION (TIME METHOD)

We conclude this chapter by another version of Theorem 4Gapplies only to the disrete-time setting. It
amounts to compute the maximum solutior-= I1(a) of (4.22) by iterating on time instead of interatively
applying operatoflI to the full trajectorya(t). We call this method the “time method” (see also [11]). It
is valid under stronger assumptions than the space methade aequire here that operatidrbe min-plus
linear.

150 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

A B® =R[t-T]* A YO =R[t-TTH
R
R’
T t T t
> >
A BOYO A Butc2(®)

T+T T+T

Figure 4.3:The service curve ., of the closed-loop system with window flow control (bottom right), when
the service curve of the open loop system is 5 = S 1 (top left) and when v = g/ 1 (top right), with R > R’
and W < R'(T+1T").

THEOREM 4.11. Letll = Ly be a min-plus linear operator taking’ — F7, with impulse response
H e F’. For any fixed functiow € F”, the problem

Z<aANLy(X) (4.37)

has one maximum solution, given by

() = a(t)AOSiuxg_l{H(t,u)+f*(u)}.

PrROOF: Note that the existence of a maximum solution is given by Té®o4.9. Definer* by the
recursion in the Theorem. A§ € F* it follows easily by induction tha* is a solution to problem (4.37).
Conversely, for any solutiod, Z(0) < a(0) = *(0) and if Z(u) < *(u) forall0 < u <t — 1, it follows
thatz(t) < z*(t) which shows that™ is the maximal solution. O

4.5 CONCLUSION

This chapter has introduced min-plus and max-plus opexatord discussed their properties, which are
summarized in Table 4.5. The central result of this chapthich will be applied in the next chapters, is
Theorem 4.9, which enables us to compute the maximal solofia set of inqualities involving the iterative
application of an upper semi-continuous operator.

4.5. CONCLUSION

Operator Co D, St hoe | PL
Upper semi-continuoug yes no yes | yes| yes
Lower semi-continuous| no yes yes | no | no

Isotone yes yes yes | yes| yes

Min-plus linear yes no yes |yes| no

Max-plus linear no yes yes | no | no

Causal yes no | yes(l)| yes| yes

Shift-invariant yes yes yes | no | no

Idempotent no(2) | no(2)| no(3) | yes| yes
(1) (T >0)

(2) (unlessr is a ‘good’ function)
(3) (unlessT” = 0)

Table 4.1:A summary of properties of some common operators

151

152 CHAPTER 4. MIN-PLUS AND MAX-PLUS SYSTEM THEORY

PART Il

A SECOND COURSE IN NETWORK
CALCULUS

153

CHAPTER 5

OPTIMAL MULTIMEDIA SMOOTHING

In this chapter we apply network calculus to smooth multimeathta over a network offering reservation
based services, such as ATM or RSVP/IP, for which we know oménmal service curve. One approach
to stream video is to act on the quantization levels at th@dgrcoutput: this is called rate control, see
e.g. [26]. Another approach is to smooth the video streaimngus smoother fed by the encoder, see e.g.
[69, 72, 59]. In this chapter, we deal with this second apghoa

A number of smoothing algorithms have been proposed to agiwvarious performance metrics, such as
peak bandwidth requirements, variability of transmisgiates, number of rate changes, client buffer size
[29]. With network calculus, we are able to compute the madiolient buffer size required given a maximal
peak rate, or even a more complex (VBR) smoothing curve. Weatso compute the minimal peak rate
required given a given client buffer size. We will see that$hheduling algorithm that must be implemented
to reach these bounds is not unique, and we will determinéuthget of video transmission schedules that
minimize these resources and achieve these optimal bounds.

5.1 PROBLEM SETTING

A video stream stored on the server disk is directly deldeosthe client, through the network, as shown on
Figure 5.1. At the sender side, a smoothing device readsiteded video strearR(t) and sends a stream
x(t) that must conform to an arrival curee which we assume to be a ‘good’ function, i.e. is sub-adelitiv
and such that(0) = 0. The simplest and most popular smoothing curve in pracsi@edonstant rate curve
(or equivalently, a peak rate constrainty= \, for somer > 0.

We take the transmission start as origin of time: this ingptieatz(¢) = 0 for ¢ < 0.

At the receiver side, the video stredfwill be played back afteD units of times, thelayback delaythe
output of the decoding buffeB must therefore b& (¢t — D).

The network offers a guaranteed service to the flowlf y denotes the output flow, it is not possible, in
general, to expreggas a function ofc. However we assume that the service guarantee can be eeghimss

a service curves. For example, as we have seen in Chapter 1, the IETF assuatd3NP routers offer a
rate-latency service curve of the form g, ¢ (t) = C[t — L]" = max{0,C(t — L)}. Another example is

a network which is completely transparent to the flow (i.e.icltdoes not incur any jitter to the flow nor
rate limitation, even if it can introduce a fixed delay, whigh ignore in this chapter as we can always take
it into account separately). We speak afdl network It offers a service curvg(t) = do(t).

155

156 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

dient
Vi deo vi deo
Server di spl ay
Net wor k
(o}
| — B
L] B
R(t+d) X(t) y(t) R(t-D)
Snoot her dient
pl ayback
buffer

Figure 5.1: Video smoothing over a single network.

To keep mathematical manipulations simple, we assume tigagricoding buffer size is large enough to
contain the full data stream. On the other hand, the recdderoding) buffer is a much more scarce
resource. lIts finite size is denoted By

As the stream is pre-recorded and stored in the video satalpws the smoother to prefetch and send
some of the data before schedule. We suppose that the smaoéie to look ahead data for upddime
units ahead. Thikok-ahead delagan take values ranging from zero (in the most restrictige sghere no
prefetching is possible) up to the length of the full stredrhe sum of the look-ahead delay and playback
delay is called thé¢otal delay and is denoted by": T'= D + d.

These constraints are described more mathematically io8ex2.
We will then apply Theorem 4.9 to solve the following probkem
(i) we first compute, in Section 5.3, the minimal requirensemn the playback dela#, on the look-ahead

delayd, and on the client buffer sizB guaranteeing a lossless transmission for given smootmdgervice
curveso andg.

(i) we then compute, in Section 5.4, all scheduling strigte@t the smoother that will achieve transmission
in the parameter setting computed in Section 5.3. We callabelting scheduling “optimal smoothing”.

(i) in the CBR case¢ = \,), for a given rate- and for a rate-latency service curve € 5z,), we will
obtain, in Section 5.5, closed-form expressions of the méhivalues ofD, T' = D + d and B required for
lossless smoothing. We will also solve the dual problem ofigating the minimal rate needed to deliver
video for a given playback delal, look-ahead delay and client buffer size3.

We will then compare optimal smoothing with greedy shapm§éction 5.6 and with separate delay equal-
ization in Section 5.7. Finally, we will repeat problemsdid (iii) when intermediate caching is allowed
between a backbone network and an access network.

5.2 CONSTRAINTS IMPOSED BY L OSSLESSSMOOTHING

We can now formalize the constraints that completely defireesimoothing problem illustrated on Fig-
ure 5.1).

e Flow =z € F: As mentioned above, the chosen origin of time is such gt = 0 for ¢ < 0, or
equivalently
2(t) < do(1). (5.1)

e Smoothness constraintFlow x is constrained by an arrival cured-). This means that for ail > 0

z(t) < (z®@0o)(t) = Co(x)(). (5.2)

5.3. MINIMAL REQUIREMENTS ON DELAYS AND PLAYBACK BUFFER 157

e Playback delay constraint (no playback buffer underflow) The data is read out from the playback
buffer afterD unit of times at a rate given bi(¢ — D). This implies that/(¢) > R(t — D). However
we do not know the exact expression spfas a function ofrz. All we know is that the network
guarantees a service curgenamely thay(t) > (x® 5)(t). The output flow may therefore be as low
as(z® f)(t), and hence we can replagén the previous inequality to obtaix: @ 5)(t) > R(t— D).
Using Rule 14 in Theorem 3.12, we can recast this latter ialdglas

z(t) = (R p)(t — D) = Ds(R)(t — D) (5.3)
forall ¢ > 0.

e Playback buffer constraint (no playback buffer overflow): The size of the playback buffer is lim-
ited to B, and to prevent any overflow of the buffer, we must impose gl@t— R(t — D) < B for
all t > 0. Again, we do not know the exact valuemgfbut we know that it can be as high asbut not
higher, because the network is a causal system. Theref@@tistraint becomes, for ali> 0,

z(t) < R(t— D) + B. (5.4)

e Look-ahead delay constraint We suppose that the encoder can prefetch data from ther sgrie
d time units ahead, which translates in the following ineyal

2(t) < R(t + d). (5.5)

5.3 MINIMAL REQUIREMENTS ON DELAYS AND PLAYBACK BUFFER

Inequalities (5.1) to (5.5) can be recast as two sets of mléws as follows:

>
o
=
>
=
~
+
)
>
——
=
=~
|
S
+
Sy
——
>
A
Q
-
=

(5.6)
(RoB)(t - D). (5.7)

There is a solution: to the smoothing problem if and only if it simultaneouslyifies (5.6) and (5.7). This
is equivalent to requiring that the maximal solution of {5s6larger than the right hand side of (5.7) for all
t.

Let us first compute the maximal solution of (5.6). Ineqya(t.6) has the form
x < aACq(x) (5.8)

where
a(t) = 6o(t) NR(t +d) N{R(t — D)+ B}. (5.9)

We can thus apply Theorem 4.9 to compute the unique maxirhal@oof (5.8), which istpax = Cy(a) =
o ® a becauser is a ‘good’ function. Replacing by its expression in (5.9), we compute that the maximal
solution of (5.6) is

Tmax(t) = c(t) A{(c ® R)(t +d)} A{(0 @ R)(t — D) + B}. (5.10)

We are now able to compute the smallest values of the playteldy D, of the total delayl” and of
the playback buffe3 ensuring the existence of a solution to the smoothing probteanks to following
theorem. The requirement akfor reaching the smallest value 6fis therefored =T — D.

158 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

THEOREM 5.1 (Requirements for optimal smoothingfhe smallest values db, T" and B ensuring a
lossless smoothing to a ‘good’ curgethrough a network offering a service curgeare

Dmin = h(R,(B®0)=inf{t>0: (R0 (B®0))(—t) <0} (5.11)

Twin = h((ROR),(B®0)) (5.12)
= inf{t>0:(RoR)2 (B®0c))(-t) <0}

Bnin = v((ROR),(B®o))=(ROR)0(B®0))0). (5.13)

whereh andv denote respectively the horizontal and vertical distargigen by Definition 3.15.

ProoOF: The set of inequalities (5.6) and (5.7) has a solution if, amlgl if, the maximal solution of (5.6)
is larger or equal to the right hand side of (5.7) at all tinflHsis amounts to impose that for alEe R

(Rop)(t—D)—o(t)
(R2 B)(t — D) — (0 @ R)(t + d)
(RopB)(t—D)—(c@R)(t—D)

0
B.

ININ A

Using the deconvolution operator and its properties, ttierléhree inequalities can be recast as

(Ro(B®o))(-D) < 0
(RoR)o(Beo)(-T) < 0
(RoR)o(B®ao))(0) <

The minimal values oD, T' and B satisfying these three inequalities are given by (5.11)126and (5.13).
These three inequalities are therefore the necessary diidesit conditions ensuring the existence of a
solution to the smoothing problem. O

5.4 OPTIMAL SMOOTHING STRATEGIES

An optimal smoothing strategy is a solutieit) to the lossless smoothing problem whéeT = D + d
and B take their minimal value given by Theorem 5.1. The previeien shows that there exists at least
one optimal solution, namely (5.10). It is however not thiyame, as we will see in this section.

5.4.1 MAXIMAL SOLUTION

The maximal solution (5.10) requires only the evaluatioraofinfimum at timet over the past values of

R and over the future values @t up to timet + dyin, With dpin = Tmin — Dmin. Of course, we need

the knowledge of the traffic tracg(t) to dimensionD i, dmin @nd Byi,. However, once we have these
values, we do not need the full stream for the computatioh@smoothed input to the network.

5.4.2 MINIMAL SOLUTION

To compute the minimal solution, we reformulate the lossk®woothing problem slightly differently. Be-
cause of Rule 14 of Theorem 3.12, an inequality equivale(®.®) is

x(t) > (x @ 0)(t) = Dy(z)(t). (5.14)

5.5. OPTIMAL CONSTANT RATE SMOOTHING 159

We use this equivalence to replace the set of inequaliti€d énd (5.7) by the equivalent set

z(t) < do(t) NR(t+d) N{R(t— D)+ B}
(5.15)
z(t) > (R B)(t— D)V Dy(a)(t). (5.16)

One can then apply Theorem 4.10 to computentir@malsolution of (5.16), which i, = D, (b) = boo
whereb(t) = (R @ B)(t — D), because is a ‘good’ function. Eliminating from these expressions, we
compute that the minimal solution is

xmin(t) = (R @ (B ® U))(t - D)v (5-17)

and compute the constraints dnD and B ensuring that it verifies (5.15): one would get the very same
values ofDin, Timin @and Bin given by (5.11) (5.12) and (5.13).

It does achieve the values @),,;, and B, given by (5.11) and (5.13), but requires nevertheless the
evaluation, at time, of a supremum over all values &fup to the end of the trace, contrary to the maximal
solution (5.10). Min-plus deconvolution can however baespnted in the time inverted domain by a min-
plus convolution, as we have seen in Section 3.1.10. As thetido of the pre-recorded stream is usually
known, the complexity of computing a min-plus deconvolntitan thus be reduced to that of computing a
convolution.

5.4.3 ST OF OPTIMAL SOLUTIONS

Any functionz € F such that
Tmin < T < Tmax

and
r<r®o

is therefore also a solution to the lossless smoothing prepfor the same minimal values of the playback
delay, look-ahead delay and client buffer size. This gittiesset of all solutions. A particular solution among
these can be selected to further minimize another metrity as the ones discussed in [29], e.g. humber of
rate changes or rate variability.

The top of Figure 5.2 shows, for a synthetic trdeg), the maximal solution (5.10) for a CBR smoothing
curveo(t) = \(t) and a service curvé(t) = do(t), whereas the bottom shows the minimal solution (5.17).
Figure 5.3 shows the same solutions on a single plot, for tR&E®! traceR(t) of the top of Figure 1.2.4
representing the number of packet arrivals per time slofah4 corresponding to a MPEG-2 encoded video
when the packet size is 416 bytes for each packet.

An example of VBR smoothing on the same MPEG trace is shownigur& 5.4, with a smoothing curve
derived from the T-SPEC field, which is given by= vp s A 7,1, Wherel is the maximum packet size
(hereM = 416 Bytes), P the peak ratey the sustainable rate amdhe burst tolerance. Here we roughly
haveP = 560 kBytes/secy = 330 kBytes/sec and = 140 kBytes The service curve is a rate-latency curve
Br,c with L = 1 second and = 370 kBytes/sec. The two traces have the same envelope, thuartne s
minimum buffer requirement (here, 928kBytes). Howeverdbeond trace has its bursts later, thus, has a
smaller minimum playback delayX, = 2.05s versusD; = 2.815s).

5.5 OPTIMAL CONSTANT RATE SMOOTHING

Let us compute the above values in the case of a constantGBfR)(smoothing curve (t) = \.(t) = rt
(with ¢ > 0) and a rate-latency service curve of the netwé(k) = 5. o (t) = C[t — L]". We assume that

160 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

t o (t)=rt
R(® 5 Xl
Bmin ,’,I
I:'2(1:-|-dmin) -7
T - R(t-Dmin)
dmin Dmin t
R(t) /II Xmm(t)
Bmin ,’,I
R(t+dy,) -
7 A R(t-Dmin)
dmin Dmin t

Figure 5.2: In bold, the maximal solution (top figure) and mal solution (bottom figure) to the CBR
smoothing problem with a null network.

r < C, the less interesting case where> C being handled similarly. We will often use the decompositio
of a rate-latency function as the min-plus convolution ofiegdelay function, with a constant rate function:
Br,c = 01 ® Ac. We will also use the following lemma.

LEMMA 5.1.If f € F,

MS,Bre) = L+ 5 2 2e)(0) 519

5.5. OPTIMAL CONSTANT RATE SMOOTHING 161

5000 g Doy
4500
4000+ X . ©

3500¢ X ()
3000(
200 R(t+d,
2000

cumulative flow [Kbytes]
G
o
<

1000F R(t - Dmin)
min
500t t

0 100 200 300 400 500
frame number

Figure 5.3: In bold, the maximal and minimal solutions to @8R smoothing problem of an MPEG trace
with a null network. A frame is generated every 40 msec.

70
60 10000
50
8000 D
40 »
I 6000
20 4000
10 2000
100 200 300 400 100 200 300 400
70
60 10000 D
50
8000
40
20 6000
20 4000
10 2000
100 200 300 400 100 200 300 400

Figure 5.4: Two MPEG traces with the same arrival curve)lefthe corresponding playback delais
and D are the horizontal deviations between the cumulative flB\3g and functiono ® 3 (right).

162 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

PROOF: As f(t) =0fort < 0andasi, c = 0 ® A\c, we can write for any > 0

(f@BrLe)(=t) = sup{f(u—1)— (0 ®Ac)(u)}

u>0
= iglg{f(u —t)—Xc(u—L)}
= S;lgt{f(v) —Ac(v+t—L)}

= iglg{f(v) —Ac(v+t—L)}
= igg{f(v) —Ac(v)} = C(t— L)
— (fo)0) - Ct+CL,

from which we deduce the smallest valuetaihaking the left-hand side of this equation non-positive is
given by (5.18). O

In the particular CBR case, the optimal values (5.11), (bah2i (5.13) become the following ones.

THEOREM 5.2 (Requirements for CBR optimal smoothind).c = X\, and 8 = pr ¢ withr < C, the
smallest values ab, of " and of B are

1

Toin = L+%((R®R)®>\)(0) (5.20)

PrROOF: To establish (5.19) and (5.20), we note ti&and(R © R) € F. Sincer < C
BRoO=PBLc@N =0 QAN =0 QN = BLs

so that we can apply Lemma 5.1 with= R and f = (R © R), respectively.
To establish (5.21), we develop (5.13) as follows

(RoR)2 (B®0))(0) = (R2R)2 (6L @ A))(0)
= igg{(R®R)(u)—Ar(u—L)}
— (RoR)oM)(L)
= iglz{(R®R)(u) Ar(u—L)}
= iglz{(R®R)(u) Ar(u)} + 1L

< iglg{(R @ R)(u) — A\p(u)} + 7L

= (ROR)2A.)(0)+rL = rTyin.

O

This theorem provides the minimal values of playback débkgy,, and bufferB,,;,, as well as the minimal
look-ahead delayl,in, = Tmin — Dmin fOr a given constant smoothing rate< C' and a given rate-latency
service curvedr, ¢. We can also solve the dual problem, namely compute for gia&res of playback delay
D, of the look-ahead delay, of the playback buffe3 and for a given rate-latency service cumgc, the
minimal rater,,;, which must be reserved on the network.

5.6. OPTIMAL SMOOTHING VERSUS GREEDY SHAPING 163

THEOREM 5.3 (Optimal CBR smoothing rate)f o = A\, and 8 = g1 ¢ withr < C, the smallest value of
r,givenD > L,dandB > (R @ R)(L), is

o R(t) (R R)(1)
fmin = §3§{t+D—L}V§3§{t+D+d—L

{(R@R)(HL)—B}_ (5.22)

V sup

t>0 t

PROOF: Let us first note that because of (5.19), there is no solufidn kk L. On the other hand, if
D > L, then (5.19) implies that the ratemust be such that for all> 0

D>L+ %(R(t) —rt)
orequivalentlyr > R(t)/(t+D—L). The latter being true for all > 0, we must have > sup,-o{R(t)/(t+

D — L)}. Repeating the same argument with (5.20) and (5.21), weérotite. minimal rate (5.22). O

In the particular case where = 0 andr < C the network is completely transparent to the flow, and can
be considered as a null network: can replace) by dy(t). The values (5.19), (5.20) and (5.21) become,
respectively,

Duin = %(R 2 \)(0) (5.23)
Taw = (RO R)0A)0) (5.24)
Bmin = ((R %) R) %))\r))(o) = 7aTmin- (525)

It is interesting to compute these values on a real vide@trsuech as the first trace on top of Figure 1.2.4.
Since By, is directly proportional tdli,;, because of (5.25), we show only the graphs of the values of
Dyin anddyin = Tmin — Dmin, @S a function of the CBR smoothing rateon Figure 5.5. We observe
three qualitative ranges of rates: (i) the very low ones wtibe playback delay is very large, and where
look-ahead does not help in reducing it; (i) a middle randeke the playback delay can be kept quite
small, thanks to the use of look-ahead and (iii) the highsrateove the peak rate of the stream, which do not
require any playback nor lookahead of the stream. These tlkggons can be found on every MPEG trace
[79], and depend on the location of the large burst in thestrdfcit comes sufficiently late, then the use of
look-ahead can become quite useful in keeping the playbealely gmall.

5.6 OPTIMAL SMOOTHING VERSUS GREEDY SHAPING

An interesting question is to compare the requirement®a@nd B, due to the scheduling obtained in Sec-
tion 5.4, which are minimal, with those that a simpler schiedy namely the greedy shaper of Section 1.5,
would create. Ag is a ‘good’ function, the solution of a greedy shaper is

Tshapeft) = (0 @ R)(t). (5.26)

To be a solution for the smoothing problem, it must satisfycahstraints listed in Section 5.2. It already
satisfies (5.1), (5.2) and (5.5). Enforcing (5.3) is equméko impose that for all € R

(R pB)(t—D) < (0@ R)(1),

which can be recast as
(RoR)o (B®o))(—D) <0. (5.27)

164 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

[e2]
o

Dmin [sec]

N w N [$2)
o o o o
T T T T
1 1 1 1

=
o
T
1

| | | |
0 100 200 300 400 500 600 700
rate r [kBytes/sec]

o

151 b

dmin [sec]

05F b

O | | | | | |
0 100 200 300 400 500 600 700

rate r [kBytes/sec]

Figure 5.5: Minimum playback dela¥.,;, and corresponding look-ahead delgy;, for a constant rate
smoothingr of the MPEG-2 video trace shown on top of Figure 1.2.4.

This implies that the minimal playback delay needed for aaiming using a greedy shaping algorithm
is equal to the minimal total dela¥..;,, the sum of the playback and lookahead delays, for the optima
smoothing algorithm. It means that the only way an optimadatiner allows to decrease the playback delay
is its ability to look ahead and send data in advance. If tig4ahead is not possiblé & 0) as for example

for a live video transmission, the playback delay is the seamthe greedy shaper and the optimal smoother.

The last constraint that must be verified is (5.4), which isheent to impose that for atl € R
(c @ R)(t) < R(t — D) + B,

which can be recast as
(R®o) o R)(D) < B. (5.28)

Consequently, the minimal requirements on the playbackydehd buffer using a greedy shaper instead of
an optimal smoother are given by the following theorem.

THEOREM 5.4 (Requirements for greedy shapelf) o is a ‘good’ function, then the smallest valuesiof
and B for lossless smoothing of floi¥ by a greedy shaper are

Dgshaper = Tmin =h((RO R), (8 ®0)) (5.29)
Bshaper = ((R®0)© R)(Dshapep € [Bmin: 0(Dshapes)- (5.30)

PROOF: The expressions dDgpgape@nd Bghapedollow immediately from (5.27) and (5.28). The only
point that remains to be shown is thBfpaper< o(Dgshapet. Which we do by pickings = u in the inf
below:

Bshaper = (R © (R®0)) (Dshapet

5.7. COMPARISON WITH DELAY EQUALIZATION 165

= sup { o< siristhaper{R(s) + 0(u+ Dghaper- 8)} = R(u)}

< sup {R(U) +0(u+ Dshaper—v) — R(U)}

= 0 (Dshape}-

O

Consequently, a greedy shaper does not minimize, in gerleegblayback buffer requirements, although it
does minimize the playback delay when look-ahead is notilpless-igure 5.6 shows the maximal solution
Tmax Of the optimal shaper (top) and the solutimghape,of the greedy shaper (bottom) when the shaping
curve is a one leaky bucket affine curve= v, ;, when the look-ahead delaly= 0 (no look ahead possible)
and for a null network§ = dy). In this case the playback delays are identical, but nopliwgback buffers.

Another example is shown on Figure 5.7 for the MPEG-2 vidaodrshown on top of Figure 1.2.4. Here
the solution of the optimal smoother is the minimal solutigp,,.

There is however one case where a greedy shaper does mittaiglyback buffer: a constant rate smooth-
ing (c = A,) over a null network § = dy). Indeed, in this case, (5.25) becomes

Buin = 7'Tinin = 7 Dshaper= U(Dshape}>

and therefor&gnaper= Bmin. Consequently, if no look-ahead is possible and if the netwtransparent
to the flow, greedy shaping is an optimal CBR smoothing sisate

5.7 COMPARISON WITH DELAY EQUALIZATION

A common method to implement a decoder is to first remove afgyditer caused by the network, by
delaying the arriving data in a delay equalization buffefope using the playback buffer to compensate for
fluctuations due to pre-fetching. Figure 5.8 shows sucht@sydf the delay equalization buffer is properly
configured, its combination with the guaranteed servicevoit results into a fixed delay network, which,
from the viewpoint we take in this chapter, is equivalent tmtnetwork. Compared to the original scenario
in Figure 5.1, there are now two separate buffers for delaplkzation and for compensation of prefetching.
We would like to understand the impact of this separationhemtinimum playback delai .

The delay equalization buffer operates by delaying the lfitsof data by an initial delayD.,, equal to the
worst case delay through the network. We assume that theriebifers a rate-latency service curgg c.
Since the flowz is constainted by the arrival curvewhich is assumed to be a ‘good’ function, we know
from Theorem 1.6, that the worst-case delay is

Deq = h(07 BL,C)-

On the other hand, the additional part of the playback detagoimpensate for fluctuations due to pre-
fetching, denoted by, ¢, is given by (5.11) with3 replaced by:

Dpf = h(R,(50 ®O’) = h(R, O’).

The sum of these two delays is, in general, larger than thienapplayback delay (without a separation
between equalization and compensation for prefetchibgy),., given by (5.11):

Din = h(R> 5L,C ® U)'

166 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

A
o(t)
! By, 2
% e // R(t- Dmin)
: >
Dmin t
(a) Optinmal snoothing solution, with
pl ayback buffer requirements
A
o(t)

R(t)

, / xshaper(t)

/
4
4
/
4

4
, Rt-D
shaper 7
/
4
/
/

PSSR

os)

shaper)

~

v

D t

shaper

(a) Greedy shaper solution, with
pl ayback buffer requirenents

Figure 5.6: In bold, the maximal solution (top figure) and imial solution (bottom figure) to the smoothing
problem with a null network, no look-ahead and an affine simagtcurves = -, .

Consider the example of Figure 5.9, where- v, ;, with » < C'. Then one easily computes the three delays
Dyin, Deg @and Dy, ¢, knowing that

Broe®0 = 6L @A@Yy =0L D (Ao AYrp)
= (0L ®Ac) A (6L @ Yrp) = Br,o A (0L @ Yrp)-

One clearly had,.i, < D., + D,s. separate delay equalization gives indeed a larger ovelatback
delay. In fact, looking carefully at the figure (or workingtdhe computations), we can observe that the
combination of delay equalization and compensation fofepching in a single buffer accounts for the
busrtiness of the (optimally) smoothed flow only once. Tkismother instance of the “pay bursts only

5.7. COMPARISON WITH

Cummulative # of bits

Cummulative # of bits

DELAY EQUALIZATION

x 10

Video trace R(t-Dshaper)
Greedy shaping

167

I I I I
250 300 350 400
Frame number

L I I
50 100 150 200

x 10

Video trace R(t-Dmin)
Optimal smoothing

I)
450 500

I I I I
200 250 300 350
Frame number

I I
50 100 150

I)
400 450

Figure 5.7: Example of optimal shaping versus optimal simagtfor the MPEG-2 video trace shown on
top of Figure 1.2.4. The example is for a null network and aatimag curver = vp s A7y, With M = 416
bytes, P = 600 kBytes/secy = 300 kBytes/sec and = 80 kBytes. The figure shows the optimal shaper
[resp. smoother] output and the original signal (videodjashifted by the required playback delay. The
playback delay i2.76 sec for optimal shaping (top) afidd2 sec for optimal smoothing (bottom).

Guar ant eed service network \(/:“jggt

di spl a
Net wor k ptay

1 B) . 1
R(t+d) x(t —— R(@D)
Snoot her Del ay y(t) Cient
equal i zer pl ayback
buf fer

Figure 5.8: Delay equalization at the receiver.

168 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

once” phenomenon, which we have already met in Section.1.4.3

B® o(t)
Doin (cOB)(®)

pf

R(t)

Figure 5.9: Delay9,,.in, Deg and D, ; for a rate-latency service curyg, ¢ and an affine smoothing curve
O ="rb -

We must however make — once again — an exception for a comataramoothing. Indeed, éf = A, (with
r < C), thenD, is given by (5.23) and,,;, by (5.19), so that

Deq = h()\ra/BL,C):L
1
Dy = ~(ROA)0)

1
Dpin = L+ ;(R @ Ar)(0)
and thereforeD i, = D., + D). In the CBR case, separate delay equalization is thus alzitain the
optimal playback delay.

5.8 LOSSLESSSMOOTHING OVER TwO NETWORKS

We now consider the more complex setting where two netwagkarate the video server from the client:
the first one is a backbone network, offering a service ciiveo the flow, and the second one is a local
access network, offering a service curgto the flow, as shown on Figure 5.10. This scenario models
intelligent, dynamic caching often done at local networladiends. We will compute the requirements
on D, d, B and on the buffetX of this intermediate node in Subsection 5.8.1. Moreoverliesee in
Subsection 5.8.2 that for constant rate shaping curvesaadatency service curves, the size of the client
buffer B can be reduced by implementing a particular smoothingegjyainstead of FIFO scheduling at the
intermediate node.

Two flows need therefore to be computed: the first opg) at the input of the backbone network, and the
second one:;(t) at the input of the local access network, as shown on Figd 5.

The constraints on both flows are now as follows:

5.8. LOSSLESS SMOOTHING OVER TWO NETWORKS 169

dient
vi deo
. di spl ay
Backbone Internedi ate Access
Net wor K st orage Net wor K
ol Node a2
R(t+d
wa o LR
X1(0) y10) x2(t) y2() R(t-D)
Smoot her Snoot her dient
pl ayback
buf fer

Figure 5.10: Smoothing over two networks with a local caglode.

e Causal flowzq: This constraint is the same as (5.1), but witreplaced byz;:
z1(t) < do(t), (5.31)
e Smoothness constraintBoth flowsz; andxy are constrained by two arrival curves andos:

wl(t) < (1’1 &® 01)(t) (5.32)
z2(t) < (o ® 02)(1). (5.33)

e No playback and intermediate server buffers underflow The data is read out from the playback
buffer afterD unit of times at a rate given bi(¢ — D), which implies thay,(t) > R(t — D). On the
other hand, the data is retrieved from the intermediateesetva rate given by, (¢), which implies
thaty, (t) > x2(t). As we do not know the expressions of the outputs of each mkhhot only a

service curves; and 3, for each of them, we can replage by z1 ® 51 andy, by x5 ® 5-, and
reformulate these two constraints by

z2(t) < (21 ® B1)(?) (5.34)
za(t) = (R B2)(t — D). (5.35)

e No playback and intermediate server buffers overflow The size of the playback and cache buffers
are limited toB and X, respectively, and to prevent any overflow of the buffer, westiimpose that
y1(t) — z2(t) < X andyq(t) — R(t — D) < Bforall t > 0. Again, we do not know the exact value
of 1 andys, but we know that they are bounded by and z», respectively, so that the constraints
becomes, for ali > 0,

xl(t) < xg(t) + X (536)
x9(t) < R(t — D) + B. (5.37)

e Look-ahead delay constraint this constraint is the same as in the single network case:

21(t) < R(t + d). (5.38)

5.8.1 MINIMAL REQUIREMENTS ON THE DELAYS AND BUFFER SIZES FOR TwO NET-
WORKS

Inequalities (5.31) to (5.38) can be recast as three setgeqtialities as follows:

z1(t) < 0o(t) AR(t+d) A (o1 © 1) (t) A (2(t) + X) (5.39)
zo(t) < {R(t— D)+ B}A(B1®@x1)(t) A (02 ® 22)(t) (5.40)
z2(t) > (RQB)(t— D). (5.41)

170 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

We use the same technique for solving this problem sa in@ebtB, except that now the dimension of the
systemJ is 2 instead of 1.

With T" denoting transposition, let us introduce the followingatiains:

() = [w(t) w2(t)]”

d(t) = [6o(t) AR(t+d) R(t — D)+ BT
b(t) 0 (R p)(t—D)"

S(t) = oi(t) do(t) +X

Bi(t) oat)

With these notations, the set of inequalities (5.39), (bati®l (5.41) can therefore be recast as

8

< AN(ERD) (5.42)
z > b (5.43)

We will follow the same approach as in Section 5.3: we first pote the maximal solution of (5.42) and
then derive the constraints dn, 7" (and hencel), X and B ensuring the existence of this solution. We
apply thus Theorem 4.9 again, but this time in the two-dirmrad case, to obtain an explicit formulation
of the maximal solution of (5.42). We get

Tmax = Cx(d@) = (T ® a) (5.44)
whereY is the sub-additive closure &f, which is, as we know from Section 4.2,

Y = inf {2} (5.45)
neN

wherex(®) = D, and©(™ denotes theith self-convolution ofS. Application of (5.45) to matrix® is
straightforward, but involves a few manipulations which skipped. Denoting

_ o [D)
a = 01®02®71Lr€1§{ 1 +nX} (5.46)
= 01®0®B e/ +X,

we find that
T 0'1/\(Oé+X) (01®O'2—|-X)/\(04+2X)
N « oo A (a + X)

and therefore the two coordinates of the maximal solutiofb@f2) are

Timax(t) = o) A{at) + X} N (1 @R)(t+d) AN {(a®@R)(t+d)+ X}
N(o1® 0@ R)(t— D)+ B+ X}

ANM(a® R)(t — D) + B+ 2X} (5.47)
Tomax(t) = a(t) A(a® R)(t+d) A{(oc2® R)(t — D) + B}
AM(a®R)(t— D)+ B+ X}. (5.48)

Let us mention that an alternative (and computationallypsém approach to obtain (5.47) and (5.48) would
have been to first compte the maximal solution of (5.40), ametion ofz, and next to replace; in (5.39)
by this latter value.

We can now express the constraints ¥n B, D andd that will ensure that a solution exists by requiring
that (5.48) be larger than (5.41). The result is stated iridh@wving theorem, whose proof is similar to that
of Theorem 5.1.

5.8. LOSSLESS SMOOTHING OVER TWO NETWORKS 171

THEOREM5.5. The lossless smoothing of a flow to (sub-additive) cusyesnd o2, respectively, over two
networks offering service curvgg and 8, has a solution if and only if thé, 7', X and B verify the
following set of inequalities, with defined by (5.46):

(RO (a®pB)(-D) < 0 (5.49)
(ROR)@(a®f2))(-T) < O (5.50)
(ROR)2(02®B2))(0) < B (5.51)
(ROR)©(a®p2))(0) < B+X. (5.52)

5.8.2 OpTIMAL CONSTANT RATE SMOOTHING OVER TwO NETWORKS

Let us compute the values of Theorem 5.5 in the case of twdaonsite (CBR) smoothing curves = A,
andoy = \,,. We assume that each network offers a rate-latency senvive 6, = fr, c;, © = 1,2. We
assume that; < C; In this case the optimal values &f, T" and B become the following ones, depending
on the value ofX.

THEOREMb5.6. Letr = r1 A ro. Then we have the following three cases depending on
) If X > rLq, thenDyin, Tinin and By,in are given by

Duin = L1+ Lo+ %(R @ M) (0) (5.53)
Tmin = L1+ Lo+ %((R © R) @ A\)(0) (5.54)
Bunin = (ROR)2My)(L2)V{((R®R)® \)(L1 + La) — X}

< ((R@R)2 M\)(L2). (5.55)

(i) If 0 < X < rLythenDyin, Tmin @nd B, are bounded by

X Ly
— L ~ <Dmin
744— 2+X(R®/\Lil)(0)_

< L1+L2+%(R®/\%)(O) (5.56)
S+ L+ (RO R) 22 x)(0) < T

< L1+L2+%((R@R)@ALL)(O) (5.57)
(RO R) @A x)(L1 + Lo) = raLy < Buin

< (RoR)©Ax)(Le) (5.58)

(i) Let K be duration of the stream. K =0 < rL; thenD;, = K.

Proof. One easily verifies that, ") = 6,1y, and thah" ™" = Ac,. Sinces; = 61,0, = 61, ® Acy,
and sincer = ry A ry < (4, (5.46) becomes
o = Ar & lIelg {5(n+1)L1 & Acl + ’I’LX}
= 01, ® ian {6, @ \r + nX}. (5.59)
ne

) If X >rLy, thenfort > ni,
(Onp, @A)(t) +nX = A (t —nLly) +nX =rt+n(X —rLy) > rt = A\ (1)

172 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

whereas fof) < ¢t < nl;

(Onn, @A)(t) + nX = A\ (t —nLy) +nX =nX >nrL; > rt = \.(t).

Consequently, for all > 0, «(t) > (d1, ® A\»)(t). On the other hand, taking = 0 in the infimum in (5.59)
yields thate < 61, ® .. Combining these two inequalities, we get that

a:6L1®)\r

and hence that
a® 52 = 5L1 ® >\7" ® 5L2 ® >\7"2 = 5L1+L2 ® /\r = BL1+L2,7"- (560)

Inserting this last relation in (5.49) to (5.52), and usingnima 5.1 we establish (5.53), (5.54) and the
equality in (5.55). The inequality in (5.55) is obtained hytining thatr, > r and that

(RoR)O ALy + Ly) — X = sg;;{(R@R)(u—l—Ll—i—Lg)—ru}—X

s>u£) {(ROR)(v+Lg)—r(v—L1)} - X

Sli%{(R @ R)(v+ Ly) —rv}+ (rLy — X)

IN

< (RoR) @ Ar)(La).

(i) If 0 < X < rL4, the computation ofr does not provide a rate-latency curve anymore, but a fumctio
that can be bounded below and above by the two followingledéicy curvessy,, x/r, < o < Bx/r x/L,-
Therefore, replacing (5.60) by

OLy+Ls ®>\% Sa®fr<ixy, ®>\LL1>

and applying Lemma 5.1 to both bounding rate-latency cutyes,,r, andSBx,, x,r,, We get respectively
the lower and upper bounds (5.56) to (5.58).

(i) If X = 0andrL; > 0 then (5.59) yields that(t) = 0 for all ¢ > 0. In this case (5.49) becomes
sup,>o{R(u — D)} < 0. This is possible only i) is equal to the duration of the stream. O

It is interesting to examine these results for two particutdues ofX .

The first one isX = co. If the intermediate server is a greedy shaper whose owpyti) = (02 ® y1)(t),

one could have applied Theorem 5.2 with= A\, and = 31 ® 02 ® B2 = 61,1410 @ Ay = BLi4Loro

to find out thatD andT are still given by (5.53) and (5.54) but th&t = (R @ R) @ \;)(L1 + Ls) is
larger than (5.55). Using the caching scheduling (5.48gam of a greedy shaping one allows therefore to
decrease the playback buffer size, but not the delays. TifierbXi of the intermediate node does not need
to be infinite, but can be limited tal.

The second one iX' = 0. Then whatever the rate > 0, if L; > 0, the playback delay is the length of
the stream, which makes streaming impossible in practideell; = Lo = 0 however (in which case we
have two null networks)X = rL; = 0 is the optimal intermediate node buffer allocation. Thiswhown
in [69](Lemma 5.3) using another approach. We see that when 0, this is no longer the case.

5.9 BIBLIOGRAPHIC NOTES

The first application of network calculus to optimal smongtis found in [53], for an unlimited value of
the look-ahead delay. The minimal solution (5.17) is showré an optimal smoothing scheme. The

5.9. BIBLIOGRAPHIC NOTES 173

computation of the minimum look-ahead delay, and of the makisolution, is done in [79]. Network
calculus allows to retrieve some results found using othethods, such as the optimal buffer allocation of
the intermdiate node for two null networks computed in [69].

It also allows to extend these results, by computing thedetl of optimal schedules and by taking into
account non null networks, as well as by using more complepisly curvess than constant rate service
curves. For example, with the Resource Reservation PriofB&VP), o is derived from the T-SPEC field

in messages used for setting up the reservation, and is gwen= yp s A 7,5, WhereM is the maximum
packet sizeP the peak rate; the sustainable rate ahdhe burst tolerance, as we have seen in Section 1.4.3.

The optimal T-SPEC field is computed in [53]. More precistig, following problem is solved. As assumed
by the Intserv model, every node offers a service of the fGpa for some latency. and rateC, with the
latency parametelt depending on the raté according tal, = % + Dy. The constant§’y and Dy depends
on the route taken by the flow throughout the network. DeBtina choose a target admissible network
delay D,.;. The choice of a specific service curgg (or equivalently, of a rate parametéy) is done
during the reservation phase and cannot be known exactlgvange. The algorithm developed in [53]
computes the admissible choicesoot= vp s A 7, and of D,,.; in order to guarantee that the reservation
that will subsequently be performed ensures a playbacly adeibexceeding a given value.

174 CHAPTER 5. OPTIMAL MULTIMEDIA SMOOTHING

CHAPTER 6

AGGREGATESCHEDULING

6.1 INTRODUCTION

Aggregate scheduling arises naturally in many case. Letistsnmiention here the differentiated services
framework (Section 2.4 on Page 86) and high speed switchsopiical switching matrix and FIFO out-
puts. The state of the art for aggregate multiplexing is oy vich. In this chapter, we give a panorama of
results, a number of which are new.

In a first step (Section 6.2), we evaluate how an arrival cis\ueansformed through aggregate multiplex-
ing; we give a catalog of results, when the multiplexing n@&deither a service curve element with FIFO
scheduling, or a Guaranteed Rate node (Section 2.1.3),@wvigs curve element with strict service curve
property. This provides many simple, explicit bounds whiah be used in practice.

In a second step (Section 6.3), we consider a global netwsinguaggregate multiplexing (see assumptions
below); given constraints at the inputs of the network, canolstain some bounds for backlog and delay ?
Here, the story is complex. The question of delay bounds fataork with aggregate scheduling was first
raised by Chang [8]. For a given family of networks, we eaitical load factor v.,; a value of utilization
factor below which finite bounds exist, and above which tlexist unstable networks, i.e., networks whose
backlog grow to infinity. For feed-forward networks with aggate multiplexing, an iterative application
of Section 6.2 easily shows that.; = 1. However, many networks are not feed-forward, and thislresu
does not hold in general. Indeed, and maybe contrary totimtiiAndrews [3] gave some examples of
FIFO networks withv,.; < 1. Still, the iterative application of Section 6.2, augmeniath a time-stopping
argument, provides lower boundsgf; (which are less than 1).

In a third step (Section 6.4), we give a number of cases wheream say more. We recall the result in
Theorem 2.11 on Page 88, which says that, for a general netwmitr either FIFO service curve elements,
or with GR nodes, we have.,; > ﬁ whereh is abound on the number of hops seen by any flow. Then,
in Section 6.4.1, we show that the unidirectional ring alsvajways has..;, = 1; thus, and this may be
considered a surprise, the ring is not representative offeed-forward topologies. This result is actually
true under the very general assumption that the nodes omthare service curve elements, with any values
of link speeds, and with any scheduling policy (even non Flth@t satisfies a service curve property. As far
as we know, we do not really understand why the ring is alwtglde, and why other topologies may not be.
Last, and not least surprising, we present in Section 6.4¢&tcular case, originally found by Chlamtac,
Farag0, Zhang, and Fumagalli [15], and refined by Zhang @8] Le Boudec and Hébuterne [51] which
shows that, for a homogeneous network of FIFO nodes withtaohsize packets, strong rate limitations at

175

176 CHAPTER 6. AGGREGATE SCHEDULING

all sources have the effect of providing simple, closed foounds.

6.2 TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SCHEDUL -
ING

Consider a number of flows served as an aggregate in a comnutm nWithout loss of generality, we
consider only the case of two flows. Within an aggregate, gtackre served according to some unspecified
arbitration policy. In the following sub-sections, we cules three additional assumptions.

6.2.1 AGGREGATE MULTIPLEXING IN A STRICT SERVICE CURVE ELEMENT

The strict service curve property is defined in Definition dn7Page 21. It applies to some isolated sched-
ulers, but not to complex nodes with delay elements.

THEOREM 6.1 (Blind multiplexing). Consider a node serving two flows,and 2, with some unknown
arbitration between the two flows. Assume that the node giiees astrict service curved to the aggregate
of the two flows. Assume that flaws ay-smooth. Defing, (t) := [3(t) — as(t)]T. If 31 is wide-sense
increasing, then it is a service curve for flaw

ProOOF: The proof is a straightforward extension of that of PropositL..10 on Page 21. O

We have seen an example in Section 1.3.2i(#) = C't (constant rate server or GPS node) and= ~,
(constraint by one leaky bucket) then the service curve €ov 1l is the rate-latency service curve with rate
C —rand Iatency&. Note that the bound in Theorem 6.1 is actually for a preerapiriority scheduler
where flow 1 has low priority. It turns out that if we have noatlinformation about the system, it is the
only bound we can find. For completeness, we give the follgwiase.

COROLLARY 6.1 (Non preemptive priority node)Consider a node serving two flowd, and L, with non-
preemptive priority given to floi. Assume that the node guaranteestrict service curves to the aggre-
gate of the two flows. Then the high priority flow is guarantaezkrvice curvesy (t) = [B(t) — 1k 1T
wherelZ is the maximum packet size for the low priority flow.

If in addition the high priority flow isvz-smooth, then defing,, by 8.(t) = [8(t) — au(t)]". If 8L is
wide-sense increasing, then it is a service curve for thedouwrity flow.

PROOF: The first part is an immediate consequence of Theorem 6.1.sétend part is proven in the
same way as Proposition 1.10. O

If the arrival curves are affine, then the following corojlaf Theorem 6.1 expresses the burstiness increase
due to multiplexing.

COROLLARY 6.2 (Burstiness Increase due to Blind Multiplexingyonsider a node serving two flows in an
aggregate manner. Assume the aggregate is guarantedcaservice curve3r . Assume also that flow
i is constrained by one leaky bucket with parameterso;). If p1 + p2 < R the output of the first flow is

constrained by a leaky bucket with paramet@rs, b7) with

o2 + p2T

b = T
1=01+p1d +p1 R— p

Note that the burstiness increase contains a terim that is found even if there is no multiplexing; the

second ternpl% comes from multiplexing with flow 2. Note also that if we fugthassume that the

node is FIFO, then we have a better bound (Section 6.2.2).

6.2. TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SAEDULING 177

PROOF: From Theorem 6.1, the first flow is guaranteed a service ctpvgr with R = R — p, and
T =T+ ";%7;2’)2. The result follows from a direct application of Theorem @rbPage 23. O

DO WE NEED THAT THE SERVICE CURVE PROPERTY BE STRICT ? If we relax the assumption that
the service curve property is strict, then the above resldtsot hold. A counter-example can be built as
follows. All packets have the same size, 1 data unit, andtifipws have a peak rate equal to 1. Flow 1
sends one packet at tinie and then stops. The node delays this packet forever. Withhaious notation,
we have, fort > 0:

Ri(t) = min(¢,1) and R (t) =0

Flow 2 sends one packet every time unit, starting at tirsel. The output is a continuous stream of packets,
one per time unit, starting from time Thus
Ro(t) = (t — 1)* and R)(t) = Ra(t)
The aggregate flows are, for> 0:
R(t)=tand R'(t) = (t — 1)t

In other words, the node offers to the aggregate flow a seoticee §;. Obviously, Theorem 6.1 does not
apply to flow1: if it would, flow 1 would receive a service curyé, — ;)™ = d1, which is not true since it
received) service. We can interpret this example in the light of Secli@gl.4 on Page 29: if the service curve
property would be strict, then we could bound the duratiothefbusy period, which would give a minimum
service guarantee to low priority traffic. We do not have saitdound on this example. In Section 6.2.2 we
see that if we assume FIFO scheduling, then we do have as@&wice guarantee.

6.2.2 AGGREGATE MULTIPLEXING INA FIFO SERVICE CURVE ELEMENT

Now we relax the strict service curve property; we assumgtiiganode guarantees to the aggregate flow a
minimum service curve, and in addition assume that it hanpéekets in order of arrival at the node. We
find some explicit closed forms bounds for some simple cases.

PrRoPOSITIONG.1 (FIFO Minimum Service Curves [20])Consider a lossless node serving two flows,
and2, in FIFO order. Assume that packet arrivals are instantamgoAssume that the node guarantees a
minimum service curvg to the aggregate of the two flows. Assume that ffas as-smooth. Define the
family of functions3} by

By () = [B(t) — az(t =)] 110

Call Ry (t), R}(t) the input and output for flow. Then for any) > 0
R, >R ® B (6.1)
If B} is wide-sense increasing, flois guaranteed the service curgg

The assumption that packet arrivals are instantaneousaieainwe are either in a fluid system (one packet
is one bit or one cell), or that the input to the node is pazketiprior to being handled in FIFO order.

PROOF: We give the proof for continuous time and assume that flowtfans are left-continuous. All
we need to show is (6.1). Calit; the flowi input, R = R; + Rs, and similarlyR;, R’ the output flows.

Fix some arbitrary parametérand timet. Define

u:=sup{v: R(v) < R(t)}

178 CHAPTER 6. AGGREGATE SCHEDULING

Note thatu < ¢t and that
R(u) < R'(t) and R(u™) > R'(t) (6.2)

whereR, (u) = inf,~,[R(v)] is the limit to the right ofR at .

(Case 1) consider the case where- ¢. It follows from the above and fron®’ < R thatR|(t) = Ry (t).
Thus for anyd, we haveR} (t) = Ry (t) + 84(0) which shows thaf?} (t) > (R ® 3§)(t) in that case.

(Case 2), assume now that t. We claim that
Ri(u) < Ri(t) (6.3)

Indeed, if this is not true, namelR; (u) > R/ (¢), it follows from the first part of (6.2) thaRs(u) < R,(t).
Thus some bits from flow arrived after timeu and departed by timg whereas all bits of flowt arrived
up to timeu have not yet departed at timeThis contradicts our assumption that the node is FIFO aaid th
packets arrive instantaneously.

Similarly, we claim that
(R2)r(u) = Ry(t) (6.4)

Indeed, otherwise := R, (t) — (R2),(u) > 0 and there is somey € (u, t] such that for any € (u, vo]
we haveRs(v) < Ry(t) — 5. From (6.2), we can find som& € (u,vo] such that ifv € (u,v;] then
Ri(v) + Ra(v) > R'(t) — . It follows that

Ri(v) 2 Ry(t) + 5

Thus we can find some with R;(v) > R)(t) whereasRz(v) < R},(t), which contradicts the FIFO
assumption.

Call s atime such thaR'(t) > R(s) + 8(t — s). We haveR(s) < R/(t) thuss < w.
(Case 2a) Assume that< t — 6 thus alsat — s > 0. From (6.4) we derive
Ry(t) > Ri(s) + B(t — s) + Ra(s) — Ry(t) > Ri(s) + B(t —) + Ra(s) — (R2)r (u)
Now there exist some > 0 such thatu + ¢ < ¢t — 6, thus(Rz),(u) < Rs(t — 6) and
Ri(t) > Ry(s) + B(t —s) — aa(t —s — 0)
It follows from (6.3) that
Ri(t) = Ra(s)
which shows that
Ri(t) > Ri(s) + By(t — 5)
(Case 2b) Assume that> ¢t — 6. By (6.3):
Ri(t) > Ri(u) = Ri(u) + B5(t —u)
]

We cannot conclude from Proposition 6.1 thafly 34 is a service curve. However, we can conclude some-
thing for the output.

PrROPOSITION6.2 (Bound for Output with FIFO)Consider a lossless node serving two floivand 2,

in FIFO order. Assume that packet arrivals are instantareodssume that the node guarantees to the
aggregate of the two flows a minimum service cutvéssume that flo® is as-smooth. Define the family
of functions as in Proposition 6.1. Then the output of flow o} -smooth, with

a1(t) = juf (o1 2 68) (1)

6.2. TRANSFORMATION OF ARRIVAL CURVE THROUGH AGGREGATE SAEDULING 179

PrROOF: Observe first that the network calculus output bound holds &4 is not wide-sense increasing.
Thus, from Proposition 6.1, we can conclude that> 33 is an arrival curve for the output of flol This
is true for anyd. O

We can apply the last proposition and obtain the followinggcfical result.

THEOREM 6.2 (Burstiness Increase due to FIFO, General CaSehsider a node serving two flowisand

2, in FIFO order. Assume that flowis constrained by one leaky bucket with rateand burstinesg, and

flow 2 is constrained by a sub-additive arrival curarg. Assume that the node guarantees to the aggregate

of the two flows a rate latency service cuygr. Call p2 := inf;~q %Oég(t) the maximum sustainable rate
for flow 2.

If p1 + p2 < R, then at the output, flow is constrained by one leaky bucket with rateand burstines$;
with R
B
bik =01+ p1 <T+ E)

B = sup aa(t) + pit — Rl
>0

and

The bound is a worst case bound.

PROOF: (Step 1) Define3} as in Proposition 6.1. DefinBy = sup;sq [az2(t) — Rt]. Thus By is the
buffer that would be required if the laten@ywould be0. We first show the following

if@Z%—l—Tthen fort > 6: Bj(t) = Rt — RT — ax(t — 0) (6.5)

To prove this, cally(t) the right hand-side in (6.5), namely, for> 0 define¢(t) = Rt — as(t — 0) — RT.
We have

inf ¢(t) = inf [Rv — az(v) - RT + RY]

From the definition ofB,:

inf ¢(t) = —By + RO — RT
t>0

If 9 > % + T theng(t) > 0 for all ¢ > 6. The rest follows from the definition qﬂ‘gl.

(Step 2) We apply the second part of Proposition 6.1 With % + T'. An arrival curve for the output of
flow 1 is given by
O‘T =)‘01701 % 591

We now computey’. First note that obviously3 < B, and therefored} (t) = Rt — RT — as(t — 0) for
t > 0. o is thus defined fot > 0 by

ai(t) = Sl>1[8 [plt + o1+ p1s — 591(8)] =pit+o1+ Sl>1[8 [pls — ﬁ;(s)}
52 2

Definei(s) := p1s — B4(s). Obviously:

sup [¢(s)] = p10

s€[0,0]
Now from Step 1, we have
sup[P(s)] = sup[p1s — Rs + RT + aa(s — 0)]
s>0 s>0

= sup|[p1v — Rvas(v)] + (p1 — R)0 + RT
v>0

180 CHAPTER 6. AGGREGATE SCHEDULING

From the definition oﬂé, the former is equal to
sup[y(s)] = B+ (p1 — R)6 + RT = p16
5>

which shows the burstiness bound in the theorem.

(Step 3) We show that the bound is attained. There is a tifhguah thatB = (a2), () — (R — p1)6. Define
flow 2 to be greedy up to timé and stop from there on:

{ Ro(t) = aap(t) for t < 0
Ry(t) = (Ry),(0) for t > 0

Flow 2 is ap-smooth because; is sub-additive. Define flow by

Ri(t) = pit for t < 6
Ri(t) = p1t+ oy fort >0

Flow 1 is A, »,-smooth as required. Assume the server delays all bit§ lay time 0, then after timel’
operates with a constant raf& until time 6 + 6, when it becomes infinitely fast. Thus the server satisfies
the required service curve property. The backlog just aitee 6 is precisely3 + RT. Thus all flow2

bits that arrive just after timé are delayed by@ + T = 6. The output for flowl during the time interval

(0 + 0,0 + 6 + t] is made of the bits that have arrived(#h 0 +], thus there arg, ¢ + b* such bits, for any
t. O

The following corollary is an immediate consequence.

COROLLARY 6.3 (Burstiness Increase due to FIF@onsider a node serving two flowisand 2, in FIFO
order. Assume that flowis constrained by one leaky bucket with rateand burstiness;. Assume that the
node guarantees to the aggregate of the two flows a rate lats@iwice curvedr 1. If p1 + p2 < R, then
flow 1 has a service curve equal to the rate latency function wit fa— p; and latencyl’ + % and at the
output, flowl is constrained by one leaky bucket with rateand burstines$; with

. o
b =01+ p <T+§2)

Note that this bound is better than the one we used in Coydll& (but the assumptions are slightly differ-
ent). Indeed, in that case, we would obtain the rate-latsacyice curve with the same ral&— p, but with
a larger latencyT + % instead ofl" + 3. The gain is due to the FIFO assumption.

6.2.3 AGGREGATE MULTIPLEXING INA GR NODE

We assume now that the node is of the Guaranteed Rate typgof62cl.3 on Page 70). A FIFO ser-
vice curve element with rate-latency service curve sasidfiéss assumption, but the converse is not true
(Theorem 2.3 on Page 71).

THEOREM6.3. Consider a node serving two flowlsand2 in some aggregate manner. Arbitration between
flows is unspecified, but the node serves the aggregrate asRo@&with rateR and latencyl’. Assume
that flow1 is constrained by one leaky bucket with rateand burstinesg;, and flow 2 is constrained by a
sub-additive arrival curveys. Call ps := infy~q %aQ(t) the maximum sustainable rate for flQw

If p1 + p2 < R, then at the output, flow is constrained by one leaky bucket with rateand burstines$;
with
bt =01 + 1 (T+ID>
and
~ ag(t)—i-plt—i-al
t>0 R

—t]

6.3. STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDLING 181

PROOF: From Theorem 2.4 on Page 71, the delay for any packet is bdumg® + 7'. Thus an arrival
curve at the output of flow 1 is; (¢t + D). O

COROLLARY 6.4. Consider a node serving two flows,and 2 in some aggregate manner. Arbitration
between flows is unspecified, but the node serves the aggrega GR node with rat® and latencyT'.
Assume that flowis constrained by one leaky bucket with rateand burstiness;. If p1 + p2 < R, then,
at the output, flowl is constrained by one leaky bucket with rajeand burstines$;] with

" o1+ o
b1=01+P1<T+ ! 2)

R

We see that the bound in this section is less good than Cord@|a (but the assumptions are more general).

6.3 STABILITY AND BOUNDS FORANETWORKWITH AGGREGATE SCHEDUL -
ING

6.3.1 THE ISSUE OF STABILITY

In this section we consider the following global problemv&i a network with aggregate scheduling and
arrival curve constraints at the input (as defined in theodhiction) can we find good bounds for delay

and backlog ? Alternatively, when is a network with aggregatheduling stable (i.e., the backlog remains
bounded) ? As it turns out today, this problem is open in masgs. In the rest of the chapter, we make the
following assumptions.

ASSUMPTION AND NOTATION

e Consider a network with a fixed numbgiof flows, following fixed paths. The collection of paths is
called the topology of the network. A network node is modelsa collection of output buffers, with
no contention other than at the output buffers. Every buff@ssociated with one unidirectional link
that it feeds.

e Flow ¢ is constrained by one leaky bucket of rateand burstiness; at the input.

¢ Inside the network, flows are treated as an aggregate by therke within an aggregate, packets
are served according to some unspecified arbitration politg assume that the node is such that
the aggregate of all flows receives a service curve at modgual to the rate-latency function with
rater,, and latencye,,. This does not imply that the node is work-conserving. Alsterthat we do
not require, unless otherwise specified, that the servioeequroperty be strict. In some parts of the
chapter, we make additional assumptions, as explained late
e accounts for the latency on the link that exits naddt also account for delays due to the scheduler
at nodem.

e We writei > m to express that node: is on the route of flowi. For any noden, definep(™ =
> iam pi- The utilization factor of linkn is £~ and the load factor of the networkiis= max, 2

e The bit rate of the link feeding node is C,,, < +oo, with C,;, > r,.

m

In the context of the following definition, we call “network?” a system satisfying the assumptions above,
where all parameters except o;, rm, e, are fixed. In some cases (Section 6.3.2), we may add additiona
constraints on these parameters.

DEFINITION 6.1 (Critical Load Factor) We say that..,; is the critical load factor for a network/ if

e for all values ofp;, o, ., €, SUCh thaty < v,.,.;, N is stable

182 CHAPTER 6. AGGREGATE SCHEDULING

e there exists values @f, o;, 7., €, With v > v,.; such that\ is unstable.

It can easily be checked that,; is unique for a given network/.

It is also easy to see that for all well defined networks, tligcat load factor is< 1. However, Andrews
gave in [3] an example of a FIFO network with,; < 1. The problem of finding the critical load factor,
even for the simple case of a FIFO network of constant ratesgrseems to remain open. Hajek [37] shows
that, in this last case, the problem can be reduced to thatevdwery source sends a burst; instantly at
time 0, then sends at a rate limited py.

In the rest of this section and in Section 6.4, we give lowermds orv..,.; for some well defined sub-classes.

FEED-FORWARD NETWORKS A feed-forward network is one in which the graph of unidirecal links
has no cycle. Examples are interconnection networks usideimouters or multiprocessor machines. For
a feed-forward network made africt service curve element or GR nodes,; = 1. This derives from
applying the burstiness increase bounds given in Sectibrefeatedly, starting from network access points.
Indeed, since there is no loop in the topology, the procegsstnd all input flows have finite burstiness.

A LOWER BOUND ON THE CRITICAL LoAD FACTOR It follows immediately from Theorem 2.11 on
Page 88 that for a network of GR nodes (or FIFO service cusmehts), we have.,.; > ﬁ whereh is
the maximum hop count for any flow. A slightly better bound tanfound if we exploit the values of the

peak rates’,, (Theorem 2.12).

6.3.2 THE TIME STOPPING METHOD

For a non feed-forward network madesiifict service curve element or GR nodes, we can find a lower bound
onv.; (together with bounds on backlog or delay), using the tinopinhg method. It was introduced by
Cruz in [22] together with bounds on backlog or delay. Westitate the method on a specific example,
shown on Figure 6.1. All nodes are constant rate serverf, wnspecified arbitration between the flows.
Thus we are in the case where all nodes are strict service @lements, with service curves of the form
ﬁm = >\Cm-

The method has two steps. First, we assume that there is @ fimistiness bound for all flows; using
Section 6.2 we obtain some equations for computing thesedsouSecond, we use the same equations to
show that, under some conditions, finite bounds exist.

FIRST STEP: INEQUATIONS FOR THE BOUNDS For any flow: and any noden < i, defines]" as the
maximum backlog that this flow would generate in a constatet sarver with rate,;. By convention, the
fresh inputs are considered as the outputs of a virtual nadébered—1. In this first step, we assume that
o is finite for alls andm ¢ 1.

By applying Corollary 6.2 we find that for allandm < i:

o) < o

pred m) 6.6

+ p'Zij,jséi I, ! ()
! C_Zjam,j;éi Pj

o — O_!oredz(m)
where preg(m) is the predecessor of node. If m is the first node on the path of flow we set by
convention pregim) = —1 ando; ' = o;.

Now put all theg}”, for all (i, m) such thatn € i, into a vectorZ with one column andh rows, for some

appropriaten. We can re-write (6.6) as
¥<A¥+a (6.7)

6.3. STABILITY AND BOUNDS FOR A NETWORK WITH AGGREGATE SCHEDLING 183

Node 2

Figure 6.1: A simple example with aggregate scheduling, used to illustrate the bounding method. There
are three nodes numbered 0, 1,2 and six flows, numbered 0,...,5. For i = 0,1,2, the path of flow i is
i, (1 4+ 1) mod 3, (¢ + 2) mod 3 and the path of flow i + 3 is 7, (¢ + 2) mod 3, (i + 1) mod 3. The fresh arrival
curve is the same for all flows, and is given by «; = 7, . All nodes are constant rate, work conserving
servers, with rate C'. The utilization factor at all nodes is 6 5.

where A is ann x n, non-negative matrix and is a non-negative vector depending only on the known
guantitiess;. The method now consists in assuming that the spectralgadimatrix A is less thanl. In
that case the power seriés- A + A% 4 A3 + ... converges and is equal (@ — A)~!, wherel is then x n
identity matrix. Sinced is non-negative(l — A)~! is also non-negative; we can thus multiply (6.6) to the
left by (I — A)~! and obtain:

< (I-A)"'a (6.8)
which is the required result, sinegédescribes the burstiness of all flows at all nodes. From thverean
obtain bounds on delays and backlogs.

Let us apply this step to our network example. By symmetryhasxe only two unknowns andy, defined
as the burstiness after one and two hops:

{x:%:@:ﬁ:@:ﬁ:%
v =By =1 = of = b} = bl =1}

(6.6) becomes
v <o+ 55 (0 + 22 + 2y)
y<z+ 5520 + 2+ 2y)

Definen = C_LS/); we assume that the utilization factor is less thathus0 < n < 1. We can now write

(6.7) with
L (= ~(2n 20\ . _ [o(l+n)
w_<y>’A_<l+n 2n>’a_< 201

Some remnant from linear algebra, or a symbolic computataftware, tells us that

1-2n 2n
— _ 2 —6 2
a-art - (TR T)
1—6n+2n2 1—6n+2n>2
If n < %(3 —+/7) ~ 0.177 then(I — A)~! is positive. This is the condition for the spectral radiusiafo
be less than 1. The corresponding condition on the utibpafctory = % is

V7
19

Thus, for this specific example, if (6.9) holds, and if thedburess terms andy are finite, then they are
bounded as given in (6.8), witd — A)~! anda given above.

<98 ~ 0.564 (6.9)

184 CHAPTER 6. AGGREGATE SCHEDULING

SECOND STEP: TIME STOPPING We now prove that there is a finite bound if the spectral radfus is
less than 1. For any time > 0, consider the virtual system made of the original netwottkere all sources
are stopped at time. For this network the total number of bits in finite, thus wa egply the conclusion
of step 1, and the burstiness terms are bounded by (6.8)e 8iraight-handside (6.8) is independent-pf
letting 7 tend to+oco shows the following.

PrRoOPOSITION 6.3. With the notation in this section, if the spectral radiusAfis less thanl, then the
burstiness terms* are bounded by the corresponding terms in (6.8).

Back to the example of Figure 6.1, we find that if the utiliaatfactorv is less thari).564, then the burstiness
termsz andy are bounded by

36—96v+5712
y <20 18—18v+1?

2
{ z < 20 18—33v+16v
36—960+5712

The aggregate traffic at any of the three nodegsjs,-smooth withb = 2(o + x + y). Thus a bound on
delay is (see also Figure 6.2):
b o 108 — 198v + 911/

4= G =26 36 =960 1 5772
100
80
60
40
20 /
0.2 0.4 0.6 0.8 1

Figure 6.2: The bound d on delay at any node obtained by the method presented here for the network
of Figure 6.1 (thin line). The graph shows d normalized by Z (namely, %), plotted as a function of the
utilization factor. The thick line is a delay bound obtained if every flow is re-shaped at every output.

THE CRITICAL LOAD FACTOR FOR THIS EXAMPLE For the network in this example, where we impose
the constraint that ap; are equal, we find.,; > vy = 0.564, which is much less thah Does it mean that

no finite bound exists fary < v < 1 ? The answer to this question is not clear.

First, they, found with the method can be improved if we express moreardonstraints. Consider our
particular example: we have not exploited the fact that thetion of input traffic to node that originates
from another node has to bBe:-smooth. If we do so, we will obtain better bounds. Secondgiknow that
nodes have additional properties, such as FIFO, then we maple to find better bounds. However, even
so, the value of,,; seems to be unknown.

THE PRICE FOR AGGREGATE SCHEDULING Consider again the example on Figure 6.1, but assume
now that every flow is reshaped at every output. This is nasipteswith differentiated services, since there
is no per-flow information at nodes other than access nodewetier, we use this scenario as a benchmark
that illustrates the price we pay for aggregate scheduling.

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 185

With this assumption, every flow has the same arrival cunevaty node. Thus we can compute a service
curve 5, for flow 1 (and thus for any flow) at every node, using Theorem 6.1; wethatl5; is the rate-
latency function with ratéC — 5p) and Iatencyc%‘gp. Thus a delay bound for flow at any node, including

the re-shaper, ig(a1,a1 ® 1) = h(ag, B1) = C%%p for p < €. Figure 6.2 shows this delay bound,
compared to the delay bound we found if no reshaper is usedvefaready know, we see that with per-
flow information, we are able to guarantee a delay bound fgdihzation factor< 1. However, note also

that for relatively small utilization factors, the bounds &ery close.

6.4 STABILITY RESULTS AND EXPLICIT BOUNDS

In this section we give strong results for two specific cadee fbrmer is for a unidirectional ring of aggre-
gate servers (of any type, not necessarily FIFO or stricticecurve). We show that for all rings,,; = 1.
The latter is for any topology, but with restrictions on thetwork type: packets are of fixed size and all
links have the same bit rate.

6.4.1 THE RING IS STABLE

The result was initially obtained in [77] for the case of ayrof constant rate servers, with all servers having
the same rate. We give here a more general, but simpler form.

ASSUMPTION AND NOTATION We take the same assumptions as in the beginning of Sectoan@.
assume in addition that the network topology is a unidioceali ring. More precisely:

e The network is a unidirectional ring df/ nodes, labelled, ..., M. We use the notatiom & k =
(m+k—1)mod M +1andm ek = (m —k —1) mod M + 1, so that the successor of node
on the ring is noden @ 1 and its predecessor is nogec 1.

e The route of flowi is (0, 7.first, i.first © 1, ..., i.first & (h; — 1)) where0 is a virtual node representing
the source of flow, i.first is the first hop of flowi, andh; is the number of hops of flow At its last
hop, flow: exits the network. We assume that a flow does not wrap, namgkg, M. If h; = M,
then the flow goes around the all ring, exiting at the same itddes entered.

e Letb,, =e,rpandletb =) b, reflect the total latency of the ring.

e For any noden letc™ =3 ._ o,

Let oyax = max_; o™ ando = >, 0i- Note thatoax < 0 < Mopax.

e Definen = min,, (r,, — p™).

o Letpl™ = 3 s pi andp = max_ [Cpy — v + p™] "y reflects the sum of the peak rate
of transit links and the rates of fresh sources, minus tleegaéranteed to the aggregate of microflows.
We expect high values qf to give higher bounds.

THEOREM 6.4. If n > 0 (i.e. if the utilization factor is< 1) the backlog at any node of the unidirectional
ring is bounded by

M%(Mo'max‘i’b)‘FO'—Fb

PrRoOOF: The proof relies on the concept of chain of busy periods, éoetbwith the time stopping
method in Section 6.3.2.

186 CHAPTER 6. AGGREGATE SCHEDULING

For a noden and a flowi, defineR}"(t) as the cumulative amount of data of flowt the output of node.
Form = 0, this defines the input function. Also define

em(t) = Y (R)(t) = RY'(t)) (6.10)
2m
thusz,, (t) is the total amount of data that is present in the networkna tiand will go through node. at
some time> ¢.

We also define the backlog at nogeby
)= > RO+ Y R -Y R
129m,i.first#£m i.first=m 19m

Now obviously, for all timet and noden:

qm(t) < zm(t) (6.11)
and
M
<D alt) (6.12)
n=1

(Step 1) Assume that a finite bourdd exists. Consider a timeand a noden that achieves the bound:
xm(t) = X. We fixm and apply Lemma 6.1 to all nodes Call s,, the time calleds in the lemma. Since
n(sn) < X, it follows from the first formula in the lemma that

(t —sn)n < Momax + b (6.13)
By combining this with the second formula in the lemma we bta

Mowmax + b (n)

Now we apply (6.12) and note thE ne1 00 () _ o, from which we derive

X< M% (MOmax +b) +0+b (6.14)

(Step 2) By applying the same reasoning as in Section 6.22ing that (6.14) is always true. The theorem
follows from (6.11). O

LEMMA 6.1. For any nodesn, n (possibly withm = n), and for any time there is some such that

xm(t) s () (t_s)n+MUmax+b
< (t—

an(t) s\ + by + ol

o (n)
with 0y = Zi.ﬁrst:n Oi-

PROOF: By definition of the service curve property at nadg there is some; such that
ORI = Y RMMs)+ D RY(s)+rm(t—s1) —bn
19m 19m,i.first#£m ifirst=m

which we can rewrite as

STRP) > A+ 3] RY(s1) + 1t — 51) — b

i>m 2m

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 187

with

A=Y (R)(s1) = R* "(s1))

i9m,ifirst#m

Now the condition{i > m, i.first # m} implies that flowi passes through node—1, namely{i > (m — 1)}.
Furthermore, each element in the summation that constitliie nonnegative. Thus

AS S (B — R 1) = omen(s1)
i5(m—1)

Thus

S ORI(t) = —amer(s1) + Y R (s1) + rm(t — $1) = by (6.15)

2m iom
Now combining this with the definition of,,,(¢) in (6.10) gives:

Tm(t) < Tmei(s1) + Y (RY(E) — RY(51)) = rin(t — 51) + b
2m
From the arrival curve property applied to all micro-floivg the summation, we derive:
T () < me1(s1) — (rm — p(m))(t —s1)+ o™ + b,

and sincer,,, — p™ > nando(™ < oy, by definition ofy andoy.y, we have

xm(t) < wm@l(sl) - (t - 31)77 + Omax + bm
We apply the same reasoning to nogdeS 1 and times;, and so on iteratively until we reach node
backwards fromm. We thus build a sequence of timas= t, s1, s, ..., 55, ..., 5, such that
Tmej(85) < Tme(+1)(Sj+1) — (= 8j+1)7 + Tmax + bmey (6.16)

until we havem © k = n. If n = m we reach the same node again by a complete backwards rosaitbn
k = M. In all cases, we have < M. By summing (6.16) foj = 0 to k — 1 we find the first part of the
lemma.

Now we prove the second pakt= s is obtained by applying the service curve property to nodad time
sk_1- Apply the service curve property to nodend timet. Sincet > s;_1, we know from Proposition 1.8
on Page 19 that we can find somie> s such that

ORI = > RN+ D RN At —5) by

i3 n 19n,ifirst#n i.first=n
Thus
mt) < > (BPFNH) - RPPN)) +
19n,i.first#n
D> (RY) — RY(S)) = rult — 8') + bn
i.first=n
<(Crn= 14Tt = 8) + by + 0 < (t—)+ by + o8
the second part of the formula follows from< s’. O

REMARK : A simpler, but weaker bound, is
M%(Ma+b)+a+b
or

ME (Mo +b) + Mo + b (6.17)
77

188 CHAPTER 6. AGGREGATE SCHEDULING

THE SPECIAL CASE IN [77]: Under the assumption that all nodes are constant rate sexi/eate equal
to 1 (thusC,, = r,, = 1 andb,, is the latency of the linkn), the following bound is found in [77]:

Mb + M?0pax
B, = %er (6.18)

In that case, we have < 1 — . By applying (6.17), we obtain the bound

_ Mupb + [M?p + Mn] max
"

By +b
since
p<l-n (6.19)

ando < n <1, M < M?, we haveB, < Bi, namely, our bound is better than that in [77]. If there is
equality in (6.19) (namely, if there is a node that receivesransit traffic), then both bounds are equivalent
whenn — 0.

6.4.2 ExpLICIT BOUNDS FOR AHOMOGENEOUS ATM N ETWORK WITH STRONG SOURCE
RATE CONDITIONS

When analyzing a global network, we can use the bounds indpe6i2.2, using the same method as in
Section 2.4. However, as illustrated in [41], the boundststained are not optimal: indeed, even for a FIFO
ring, the method doesot find a finite bound for all utilization factors less than 1 lalagh we know from
Section 6.4.1 that such finite bounds exist).

In this section we show in Theorem 6.5 some partial resuttdgbas beyond the per-node bounds in Sec-
tion 6.2.2. The result was originally found in [15, 51, 83].

Consider an ATM network with the assumptions as in Secti@n\ith the following differences

e Every link has one origin node and one end node. We say thait & Is incident to linke if the origin
node of linke is the destination node of link. In general, a link has several incident links.

e All packets have the same size (called cell). All arrivalg departures occur at integer times (syn-
chronized model). All links have the same bit rate, equdl ¢ell per time unit. The service time for
one cell isl time unit. The propagation times are constant per link ateper.

e Alllinks are FIFO.

PrROPOSITIONG.4. For a network with the above assumption, the delay for acatriving at nodee over
incident linki is bounded by the number of cells arriving on incident lirikg i during the busy period,
and that will depart before.

PrRoOF: Call R'(t) (resp. R;(t), R(t))the output flow (resp. input arriving on link total input flow).
Call d the delay for a tagged cell arriving at timen link i. Call A; the number of cells arriving on link
up to timet that will depart before the tagged cell, and fet= Zj Aj. We have

d=A—-R({t)<A—-R(s)—(t—s)
wheres is the last time instant before the busy period.at/e can rewrite the previous equation as

d <Y [Aj = Rj(s)] + [Ai() = Ri(s)] = (t = 9)
JFi

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 189

Now the link rates are all equal tg thusA; — R;(s) <t — s and

d < [Aj = Ry(s)]
i
Ol

An “Interference Unit” is defined as a set, {j, k}) wheree is a link, {j, k} is a set of two distinct flows
that each have on their paths, and that arrive @abver two different incident links (Figure 6.3). The Route
Interference Number (RIN) of flow is the number of interference units that contgirt is thus the number
of other flows that share a common sub-path, counted withiptiaity if some flows share several distinct
sub-paths along the same path. The RIN is used to define aienifftondition, under which we prove a
strong bound.

fIOWj flow i2
node| nodeh node g hode f hode e
41— NDZ N A — >
. b4 J— = T ’:e I _|ﬂ
N— '\ N — N — E —
node
flow i

Figure 6.3:The network model and definition of an interference unit. Flows j and i» have an interference
unit at node f. Flows j and i; have an interference unit at node [and one at node g.

DEFINITION 6.2 (Source Rate Condition)l'he fresh arrival curve constraint (at network boundary) fo
flow j is the stair functiorvg;1,r+1, WhereR is the RIN of flow;.

The source rate condition is equivalent to saying that a flemegates at most one cell in any time interval
of durationRIN + 1.

THEOREM 6.5. If the source rate condition holds at all sources, then

1. The backlog at any node is boundedMy- max; IV;, whereN; is the number of flows entering the
node via input linki, and N = . ;.

2. The end-to-end queuing delay for a given flow is boundets#yIN.

3. There is at most one cell per flow present during any busipger

The proof of item 3 involves a complex analysis of chained/lmeriods, as does the proof of Theorem 6.4.
It is given in a separate section. Item 3 gives an intuitivplaxation of what happens: the source rate
condition forces sources to leave enough spacing betwdksn s that two cells of the same flow do not
interfere, in some sense. The precise meaning of this imgivene proof. Items 1 and 2 derive from item 3
by a classical network calculus method (Figure 6.6).

PROOF OF THEOREM 6.5 As a simplification, we call “path of a cell* the path of the fla#the cell.
Similarly, we use the phrase “interference unitbivith the meaning of interference unit of the flow af

We define a busy period as a time interval during which the lbgcfor the flow at the node is always
positive. We now introduce a definition (super-chain) thdt be central in the proof. First we use the
following relation:

190 CHAPTER 6. AGGREGATE SCHEDULING

cell d

cell ¢

cell ¢,

l h g cellc, e
I
Ce” d m m m {] {] {]

cell ¢4

Figure 6.4:A time-space diagram illustrating the definitions of d <, ¢1 and ¢; <y c2. Time flows downwards.
Rectangles illustrate busy periods.

DEFINITION 6.3 (“Delay Chain” [15]). For two cellsc and d, and for some link, we say that <. d if ¢
andd are in the same busy period afnd c leavese befored.

Figure 6.4 illustrates the definition.

DEFINITION 6.4 (Super-Chain [15])Consider a sequence of cells= (¢, ..., ¢, ..., ¢) and a sequence of
nodesf = (f1, ..., fx). We say thafc, f) is a super-chain if

e f1,..., i, are all on the pathP of cell ¢y (but not necessarily consecutive)
e ¢ 1y cifori=1tok.
e the path of celk; from f; to ;.1 is a sub-path of?

We say that the sub-path af that spans from nodg, to nodef; is the path of the super-chain.

DEFINITION 6.5 (Segment Interfering with a Super-Chaitr a given super-chain, we call “segment” a
couple(d, P) whereP is a sub-path of the path of the super-chaihis a cell whose path also hak as
a sub-path, and? is maximal (namely, we cannot extefdto be a common sub-path of bathand the
super-chain). We say that the segmentP) is interfering with super-chairic, f) if there is somé on P
such thatd <, ¢;. B

LEMMA 6.2. Let(c, f) be a super-chain. Lef, be the arrival time of celt, at link f; ands), the departure
time of cell¢;, from link fi. Thens), — so < Ry + 11k, WhereR; j, is the total number of segments
interfering with (¢, f) and T ;, is the total transmission and propagation time on the pattthefsuper-
chain.

PrRoOOF: Consider first some nodg on the super-chain. Let;_; (resp.t;) be the arrival time of cell
cj-1 (resp.c;) at the node. Let; , (resp.s’;) be the departure time of cel}; (resp.c;) (Figure 6.5). Let

6.4. STABILITY RESULTS AND EXPLICIT BOUNDS 191

Y
B;
Cell Cj-1 Sj-1
0
A J.JL ‘
T i1
1 Cell ¢

s
v time

Figure 6.5:The notation used in the proof of Lemma 6.2.

vj be the last time slot before the busy period thais in. By hypothesisy; + 1 < s;_;. Also defines;
(resp.B;?) as the set of segments, P) whered is a cell arriving at the node after time on a link incident
to the path of the super-chain (resp. on the path of the stin) and that will depart no later than cej
and whereP is the maximal common sub-path féand the super-chain thgj is in. Also defineA? as the
subset of those segmentsmﬁ for which the cell departs after;_;. Let B; (resp. B;?, Ag?) be the number
of elements in3; (resp.5}, AY), see Figure 6.5.

Since the rate of all incident links is we have
0 0
Bj — Aj § Sj_l —Uj
Also, since the rate of the nodeliswe have:

s;—vj:Bj—l—B;-)

Combining the two, we derive

S;- —Sj—1= Bj + B;) — (Sj_l - Uj) < Bj + A? (620)

By iterative application of (6.20) fromi = 1 to k, we obtain
k
82, — S0 < Z(BJ + A?) + Tl,k
j=1

Now we show that all sets in the COIIeCtiquj,A?, j = 1tok} are two-by-two disjoint. Firstly, if
(d, P) € Bj then; is the first node of” thus(d, P) cannot be in some othét;, with j # j'. Thus the;
are two-by-two disjoint. Second, assuffae P) € B; and(d, P) € A?,. It is obvious from their definitions
that, for a fixedj, B; and ,49 are disjoint; thusj # j'. Sincef; is the first node of? andj’ is on P,
it follows thatj < j'. Now d leavesf; beforec; and leavesf; afterc;,_;, which contradicts the FIFO
assumption. Thus ths; andA?, are two-by-two disjoint. The same reasoning shows thatribtgpossible
that(d, P) € A; (N Aj with j < j'.

Now, by definition, every segment in eithi or A? is an interfering segment. Thus

(Bj + AY) < Ry
1

k
Jj=

192 CHAPTER 6. AGGREGATE SCHEDULING

PROPOSITIONG.5. Assume the source rate condition holds. («tf) be a super-chain.

1. For every interference unit ef) there is at most one cell interfering with the super-chain.
2. ¢, does not belong to the same flowcgs

ProoF: Define the time of a super-chain as the exit time for the ldbtcgeon the last nodd),. We use
a recursion on the timeof the super-chain.

If ¢t = 1, the proposition is true because any flow has at most one relllmk in one time slot. Assume
now that the proposition holds for any super-chain with tiché — 1 and consider a super-chain with time
t.

First, we associate an interference unit to any segifieit) interfering with the sub-chain, as follows. The
paths ofd andcy may share several non contiguous sub-paths,faisdone of them. Calf the first node of
P. Tod we associate the interference ufft {jo, 7}), wherej, (resp.j) is the flow of¢, (resp.d).

We now show that this mapping is injective. Assume that asrosegmentd’, P') # (d, P) is associated
with the same interference urif, {jo,j}). Without loss of generality, we can assume tthatas emitted
befored’. d andd’ belong to the same floy thus, sinceP and P’ are maximal, we must havé = P’. By
hypothesis, have an interference with the super-chain atla onP. Let f; be a node on the super-chain
and onP such thatd <y, ¢. If d' leaves nodef; beforec;, thend <y, @', and thus((d,d'), (f;)) is a
super-chain. Sincéd is an interfering cell, necessarily, it must leave nggeeforet, thus the proposition
is true for super-chain(d, d’), (f;)), which contradicts item 2. Thug must leave nodg¢; after cellc;. But
there is some other index < k such thatd <y, ¢, thus celld’ leaves nodg,, before cellc,,. Define

I as the smallest index with< I” < m such thatd’ leaves nodef;: after cellc;_; and beforec;. Then
((dyepyeycr—1,d"), (f1, .., frr)) is @ super-chain with time ¢ — 1 which would again contradict item 2 in
the proposition. Thus, in all cases we have a contradictr@mmapping is injective, and item 1 is shown for
the super-chain.

Second, let us count a bound on the maximum queuing delayllofceCall u its emission timeF, the
sub-path ofcy from its source up to, but excluding, nodge and7 the total transmission and propagation
time for the flow ofcy. The transmission and propagation time ald#ids thusT —T; ;.. By Proposition 6.4,
the queuing delay afy at a nodef on F; is bounded by the number of cells<; ¢, that arrive on a link not
on P,. By the same reasoning as in the previous paragraph, thatensst one such cell per interference
unit of ¢y at f. DefineR as the number of interference units of the flonegbn P;. We have thus

so<ug+R+T— Tl,k (6.21)
Similarly, from Lemma 6.2, we have
sp < so+ R+ Tig

Call R’ the number of interference units of the flowagfon the path of the super-chain. It follows from the
first part of the proof thak, , < R', thus

32 <so+ R + T,
Combining with (6.21) gives
s, <up+R+R +T (6.22)
Now by the source condition, if, belongs to the flow o, its emission time:’ must satisfy
W >ug+R+R +1

and thus
s, >ug+R+R +1+T

which contradicts (6.22). This shows that the second iterthefproposition must hold for the super-
chain. O

6.5. BIBLIOGRAPHIC NOTES 193

PROOF OF THEOREM 6.5: Item 3 follows from Proposition 6.5, since if there would betcellsd, d’
of the same flow in the same busy period, tiieh d’), (¢)) would be a super-chain.

Now we show how items 1 and 2 derive from item 3. Ggl(t) the maximum number of cells that may
ever arrive on incident link duringt time units inside a busy period. Singgis a service curve for node
the backlogB at nodee is bounded by

I
B <sup [Z al (t) — t]

20 |i=1
Now by item 3,0 () < N; and thus
a; (t) < a;(t) :== min[N;, t]

Thus ;
B <su a;(t) —t
<sp| a0

Now define a renumbering of th¥;’s such thatV;) < Ny < ... < N(py. The function} ; a;(t) — tis
continuous and has a derivative at all points except\jj¢s (Figure 6.6). The derivative changes its sign
at Ny (=maxi<;<s(N;)) thus the maximum is av ;) and its value isV — N(), which shows item 1.

A

a(t)

N

— N-N

o) t
\ 4

v

Nagy Ng N

Figure 6.6:Derivation of a backlog bound.

From Item 1, the delay at a node is bounded by the number afenémce units of the flow at this node.
This shows item 2. O

6.5 BIBLIOGRAPHIC NOTES

In [51], a stronger property is shown than Theorem 6.5: Glmrsa given linke and a subsetl of m con-

nections that use that link. Letbe a lower bound on the number of route interferences that@amyection
in the subset will encounter after this link. Then over amyetiinterval of durationn + n, the number of
cells belonging ta4 that leave linke is bounded byn.

It follows from item 1 in Theorem 6.5 that a better queuingagdbound for flow; is:

6(]) B Z {i such tl%rantiIllSiSI(e)(N(E) B NZ(E))}

e such that e€j

194 CHAPTER 6. AGGREGATE SCHEDULING

whereI(e) is the number of incident links at node N;(e) is the number of flows entering nodeon link

i, and N = > i =1/(9)N;(e). In other words, the end-to-end queuing delay is boundecheystim of
the minimum numbers of route interference units for all flatsll nodes along the path of a flow. For
asymmetric cases, this is less than the RIN of the flow.

6.6 EXERCISES

EXERCISE 6.1. Consider the same assumptions as in Section 6.4.1 but wittear Inetwork instead of a
ring. Thus noden feeds noden + 1 for m = 1, ..., M — 1; node1 receives only fresh traffic, whereas all
traffic exiting nodeM leaves the network. Assume that all service curves ard.sKied a bound which is
finite forv < 1. Compare to Theorem 6.4.

EXERCISE 6.2. Consider the same assumptions as in Theorem 6.5. Show &bty period duration is
bounded byV.

EXERCISE6.3. Consider the example of Figure 6.1. Apply the method of &e6ti3.2 but express now that
the fraction of input traffic to nodéthat originates from another node must have as an arrival curve .
What is the upper-bound on utilization factors for which aibd is obtained ?

EXERCISE6.4. Can you conclude anything an,.; from Proposition 2.6 on Page 90 ?

CHAPTER 7

ADAPTIVE AND PACKET SCALE RATE
GUARANTEES

7.1 INTRODUCTION

In Chapter 1 we defined a number of service curve conceptsinmin service curve, maximum service
curve and strict service curves. In this chapter we go bewmmtldefine some concepts that more closely
capture the properties of generalized processor shariRG)G

We start by a motivating section, in which we analyze somaufea of service curves or Guaranteed Rate
node that do not match GPS. Then we provide the theoretiaaidwork of packet scale rate guarantee
(PSRG); it is a more complex node abstraction than GuardriRete, which better captures some of the
properties of GPS. A major difference is the possibility évide information on delay when the buffer size
is known — a property that is not possible with service cunvguaranteed rate. This is important for low
delay services in the internet. PSRG is used in the definifdhe Internet Expedited Forwarding service.

Just like GR is the max-plus correspondant of the min-plugept of service curve, PSRG is the max-plus
correspondant adidaptive service curves hese were first proposed in Okino’s dissertation in [62] bn
Agrawal, Cruz, Okino and Rajan in [1]. We explain the relasbip between the two and give practical
applications to the concatenation of PSRG nodes.

In the context of differentiated services, a flow is an agate@f a number of micro-flows that belong to the
same service class. Such an aggregate may join a routerfbyedif ports, and may follow different paths
inside the router. It follows that it can generally not beusmsed that a router is FIFO per flow. This is why
the definition of PSRG (like GR) does not assume the FIFO prape

In all of this chapter, we assume that flow functions aredefttinuous, unless stated otherwise.

7.2 LIMITATIONS OF THE SERVICE CURVE AND GR NODE ABSTRAC-
TIONS

The definition of service curve introduced in Section 1.3risahstraction of nodes such as GPS and its
practical implementations, as well as guaranteed delagsio@ihis abstraction is used in many situations,
described all along this book. However, it is not always sifit.

195

196 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Firstly, it does not provide a guarantee over any intervaingider for example a node offering to a flow
R(t) the service curve . AssumeR(t) = B fort¢ > 0, so the flow has a very large burst at tilhand then
stops. A possible output is illustrated on Figure 7.1. Itasf@ctly possible that there is no output during the
time interval(0, B(/?G], even though there is a large backlog. This is because therggve a higher service
than the minimum required during some interval of time, drelgdervice property allows it to be lazy after

that.

B R(t)
B-¢ /

R*(1)

Ct

v

Figure 7.1:The service curve property is not sufficient.

Secondly, there are case where we would like to deduce a bmutite delay that a packet will suffer given
the backlog that we can measure in the node. This is used tamaiy bounds in FIFO systems with
aggregate scheduling. In Chapter 6 we use such a propergydonstant delay server with rafeé given
that the backlog at timeis @, the last bit present at timewill depart before within a time o%. If we
assume instead that the server has a service urythen we cannot draw such a conclusion. Consider for
example Figure 7.1: at time> 0, the backlogg, can be made arbitrily small, whereas the de%i —t

can be made arbitrarily large.

The same limitation applies to the concept of Guaranteeé Ratle. Indeed, the example in Figure 7.1
could very well be for GR node. The main issue here is that a Gdenlike a service curve element, may
serve packetsarlier than required.

A possible fix is the use ddtrict service curveas defined in Definition 1.7 on Page 21. Indeed, it follows
from the next section (and can easily be shown independethiy if a FIFO node offers a strict service
curve 3, then the delay at timeis bounded by3~1(Q(t)), whereQ(t) is the backlog at timeé, and5~! is

the pseudo-inverse (Definition 3.7 on Page 108).

We know that the GPS node offers to a flow a strict service cequel of the form\z. However, we cannot
model delay nodes with a strict service curve. Consider fangle a node with inpui2(t) = et, which
delays all bits by a constant time Any interval s, t] with s > d is within a busy period, thus if the node
offers a strict service curvg to the flow, we should havg(t — s)e(t — s), ande can be arbitrarily small.
Thus, the strict service curve does not make much sense torsdant delay node.

7.3 PACKET ScCALE RATE GUARANTEE

7.3.1 DEFINITION OF PACKET SCALE RATE GUARANTEE

In Section 2.1.3 on Page 70 we have introduced the definitiqquaranteed rate scheduler, which is the
practical application of rate latency service curves. @i®rsa node where packets arrive at timgs>
0,as9,... and leave at timedy, ds, A guaranteed rate scheduler, with ratand latencye requires that

7.3. PACKET SCALE RATE GUARANTEE 197

d; < f! + e, wheref! is defined iteratively by, = 0 and

l;
fi = max{a;, fi_1} + -

wherel; is the length of théth packet.

A packet scale rate guarantes similar, but avoids the limitations of the service cunamcept discussed

in Section 7.2. To that end, we would like that the deadlifiés reduced whenever a packet happens to
be served early. This is done by replacifig, in the previous equation byin{f/,d;}. This gives the
following definition.

DEFINITION 7.1 (Packet Scale Rate Guarante€pnsider a node that serves a flow of packets numbered
i=1,2,.... Call a;,d;,[; the arrival time, departure time, and length in bits for tile packet, in order of
arrival. Assumer; > 0.We say that the node offers to the flow a packet scale rateagtese with rate- and
latencye if the departure times satisfy

d; < fi+e

wheref; is defined by:

Jo=dy=0
{ fi = max{a;, min (d;_1, fi—1)} + lf foralli >1 (7.1)
See Figure 7.2 and Figure 7.3 for an illustration of the dtdini
f(n) = max{a(n), min[d(n-1), f(n-DT}+ L(n)/r
L(n)/r T
| | ; ! >
f(n-1) d(n-1) a(n) f(n) d(n)
L(n)/r
N l [! >
a(n) f(n-1) d(n-1) f(n) d(n)
L(n)/r
| I
Yy | >
a(n)d(n-1) f(n-1) f(n) d(n)
Figure 7.2:Definition of PSRG.
THEOREM 7.1. A PSRG node with rate and latencye is GR(, ¢).
ProoF: Follows immediately from the definition. O

Comment. It follows that a PSRG node enjoys all the properties of a Géendn particular:

198 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

Packet Scale Rate Guarantee

f(n) = max{a(n), min[d(n-1), f(n-1)]}+ L(n)/r

L(n)/r

v
o

A 4

|
ly |

a(n)d(n-1) f(n-1) f(n) 'd(n)

\4

Guaranteed Rate
f(n) = max{a(n), f(n-1)1}+ L(n)/r
| L(n)/r

1 2 .
a(n)'d(r'n—l) f(n-1) f(n) 'd(n)

A
A\

Figure 7.3:Difference between PSRG and GR when packet n — 1 leaves before f,,.

e Delay bounds for input traffic with arrival curves can be afd from Theorem 2.4.
e PSRG nodes have a rate latency service curve property (&imedr3) that can be used for buffer
dimensioning.

We now obtain a characterization of packet scale rate gtegdhat does not contain the virtual finish times
fn. Itis the basis for many results in this chapter. We start it expansion of the recursive definition of
packet scale rate guarantee,

LEMMA 7.1 (Min-max expansion of PSRG onsider three arbitrary sequences of non-negative nusber
(an)n>1, (dp)n>0, @and(my,),>1, with dy = 0. Define the sequend¥,,),,>o0, by

fo=0
frn = max [ay, min (dy—1, fn_1)] + my forn > 1
Also define

J

A’?:aj+mj+...+mnf0r1§j§n
D} =dj+mjp1+ ... +myfor0<j<n-—1

For all n > 1, we have

fo=min [max(A], A" |, ..., A7),
max(Ay, Ay ..., Ay, DY),

n n n n
max(Ay, Ay _q..., A7, DY),

max(Az, Ay, Do),

max(Ay, Dy_1)

7.3. PACKET SCALE RATE GUARANTEE 199

The proof is long and is given in a separate section (Section i is based on min-max algebra.

Comment: The expansion in Lemma 7.1 can be interpreted as followsfifdtéermmax(A”, A", ..., A7)
corresponds to the guaranteed rate clock recursion (semdrhe2.2). The following terms have the effect

of reducingf,,, depending on the values df.

We now apply the previous lemma to packet scale rate guarame obtain the required characterization
without the virtual finish timeg,:

THEOREM 7.2. Consider a system where packets are numbeéred... in order of arrival. Calla,,, d,, the
arrival and departure times for packet, and/,, the size of packet. Define by conventiod, = 0. The
packet scale rate guarantee with rateand latencye is equivalent to: For all and all0 < j <n — 1, one
of the following holds

l; et ln
dn§e+dj+$ (7.2)
or there is somé& € {j + 1, ...,n} such that
lg+ ... + 1y
dn§€+ak+% (7.3)

The proof is also given in Section 7.7. It is a straightfordvapplication of Lemma 7.1.

Comment 1: The original definition of EF in [42] was based on the inforimalition that a node guarantees
to the EF aggregate a rate equal-taat all time scales (this informal definition was replacedH8RG).
Theorem 7.2 makes the link to the original intuition: a rateugntee at all time scales means that either
(7.2) or (7.3) must hold. For a simple scheduler, the formeans that;, d,, are in the same backlogged
period; the latter is for the opposite case, and hgras the beginning of the backlogged period. But
note that we do not assume that the PSRG node is a simple $ehettumentioned earlier, it may be any
complex, non work conserving node. It is a merit of the alosPESRG definition to avoid using the concept
of backlogged period, which is not meaningful for a compoaibde [13, 5].

Comment 2: In Theorem 2.2 we give a similar result for GR nodes. It isrindive to compare both in
the case of a simple scheduler, where the interpretatioering of backlogged period can be made. Let us
assume the latency term(s to make the comparison simple. For such a simple sched®&RG means
that duringanybacklogged period, the scheduler guarantees a rate aebpaettor. In contrast, and again
for such simple schedulers, GR means that during the bagitbgeriod starting at the first packet arrival
that finds the system empty (this is called “busy period” iewujng theory), the average rate of service is
at leastr. GR allows the scheduler to serve some packets more quicély dt rate:, and take advantage
of this to serve other packets at a rate smaller thaas long as the overall average rate is at leastSRG
does not allow such a behaviour.

A special case of interest is when= 0.

DEFINITION 7.2. We callminimum rate servewith rater, a PSRG node for with lateney= 0.

For a minimum rate server we have

{ do =0 (7.4)

d; <max{a;,d;i_1} + 172 foralli>1

Thus, roughly speaking, a minimum rate server guaranteggitiring any busy period, the instantaneous
output rate is at least A GPS node with total raté' and weightw; for flow i is a minimum rate server for

flow 4, with rater; = %.
g)

200 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.3.2 PRACTICAL REALIZATION OF PACKET SCALE RATE GUARANTEE

We show in this section that a wide variety of schedulers idmthe packet scale rate guarantee. More
schedulers can be obtained by using the concatenatiorethaarthe previous section.

A simple but important realization is the priority schedule

PropPoOsITION7.1. Consider a non-preemptive priority scheduler in which a@tkets share a single FIFO
queue with total output rat€’. The high priority flow receives a packet scale rate guarantath rateC
and latencye = % wherel, ... is the maximum packet size of all low priority packets.

PrRooF: By Proposition 1.13, the high priority traffic receives actservice curves, .. O

We have already introduced in Section 2.1.3 schedulerc#mabe thought of as derived from GPS and we
have modeled their behaviour with a rate-latency serviceecun order to give a PSRG for such schedulers,
we need to define more.

DEerFINITION 7.3 (PSRG Accuracy of a scheduler with respect to rateConsider a schedule$ and call
d; the time of the-th departure. We say that the PSRG accuracy afith respect to rate- is (e, eq) if
there is a minimum rate server with rateand departure times; such that for alli

gi—el <di <gi+e (7.5)

We interpret this definition as a comparison to a hypothe@d2S reference scheduler that would serve the
same flows. The term, determines the maximum per-hop delay bound, whetgedms an effect on the
jitter at the output of the scheduler. For example, it is shaw[6] that WFQ satisfies:; (WF?Q) = a2 /7,
e2(WF?Q) = lynaz/C, Wherel,,.. is maximum packet size ard is the total output rate. In contrast, for
PGPS [64]e2(PGPS = e3(WF?Q), while ¢; (PGPS is linear in the number of queues in the scheduler.
This illustrates that, while WA® and PGPS have the same delay bounds, PGPS may result iargiatist
burstier departure patterns.

THEOREM 7.3. If a scheduler satisfies (7.5), then it offers the packetescatie guarantee with rate and
latencye = e; + es.

The proof is in Section 7.7.

7.3.3 DeELAY FRoOM BACKLOG

A main feature of the packet scale rate guarantee definisidhai it allows to bound delay from backlog.
For a FIFO node, it could be derived from Theorem 7.7 and Téradf.9. But the important fact is that the
bound is the same, with or without FIFO assumption.

THEOREM 7.4. Consider a node offering the Packet Scale Rate Guarantderaii¢ » and latencye, not
necessarily FIFO. Call) the backlog at time. All packets that are in the system at timwill leave the
system no later than at timet+ Q/r + e,

The proof is in Section 7.7.

Application to Differentiated Services Consider a network of nodes offering the EF service, as in Sec
tion 2.4.1. Assume node is a PSRG node with rate,, and latencye,,,. Assume the buffer size at node
is limited to B,,,. A boundD on delay at noden follows directly

B
D==""+14¢,

Tm

7.4. ADAPTIVE GUARANTEE 201

1
dela
Y 0.8
0.61
h=10 1 MB
e:2MTU/r‘ 0.4
r=150 Mb/s O 4 MB
C=BR g .2} .
i 0.1 MB
0.05 0.1 0.15 0.2 0.25

Figure 7.4:End to end delay bound versus the utilization factor « for an infinite buffer (left curve) and buffers
sizes of 1IMB (top), 0.38MB (middle) and 0.1MB (bottom). There are & = 10 hops, ¢, = 21325, o; = 100B
and p; = 32kb/s for all flows, r,, = 149.760Mb/s.

Compare to the bound in Theorem 2.11: this bound is valid lfartéization levels and is independent of
traffic load. Figure 7.4 shows a numerical example.

However, forcing a small buffer size may cause some packst [dhe loss probability can be computed if
we assume in addition that the traffic at network edge is méd&tionary, independent flows [58].

7.4 ADAPTIVE GUARANTEE

7.4.1 DEFINITION OF ADAPTIVE GUARANTEE

Much in the spirit of PSRG, we know introduce a stronger sereurve concept, callextaptive guarantee
that better captures the properties of GPS [62, 1], and Haldsg concatenation properties for PSRG.
Before giving the formula, we motivate it on three examples.

Example 1. Consider a node offering a strict service cupe Consider some fixed, but arbitrary times
s < t. Assume thap is continuous. If’s, t] is within a busy period, we must have

R¥(t) = R*(s) + B(t — s)
Else, callu the beginning of the busy period atWe have

R*(t) > R(u) + B(t —)
thus in all cases

R*(t) = (R*(s) + B(t = 5)) A uier[lsfﬂ (R(u) + B(t — u)) (7.6)

Example 2. Consider a node that guarantees a virtual delay If ¢ — s < d then trivially

R¥(t) = R*(s) + 0a(t — s)
and ift — s > d then the virtual delay property means that

R*(t) > R(t —d) = inf (R(u)+ dq(t —u))

u€|[s,t]

202 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

thus we have the same relation as in (7.6) itk d,.
Example 3. Consider a greedy shaper with shaping functiof@ssumed to be a good function). Then

R*(t) = inf[R(u) + o(t — u)]

u<t
Breaking the inf intau < s andu > s gives

R*(t) = inf[R(u) + o(t —u)] A inf [R(u)+ o(t —u)] (7.7)

u<s u€|s,t]

Defines := c@o, namely,
o(u) = irtlf[a(t +u) — o(u)] (7.8)

For example, for a piecewise linear concave arrival cureaj(mction of leaky bucketsy;(t) = min; (r;u+
b;), we haves (u) = min; r;u. Back to (7.7), we have

o(t—u) >o(s—u)+a(t—s)

and finally
R*(t) > (R*(s)+a(t—s)) A inf (R(u)+ o(t —u)) (7.9)

u€(s,t]
We see that these three cases fall under a common model:
DEFINITION 7.4 (Adaptive Service Curve)Let 3, 3 be in F. Consider a systers and a flow throughS

with input and output function& and R*. We say thatS offers theadaptive guarante@é, B) if for any
s < tit holds:

R*(t) > (R*(s) v Bt — s)) A inf [R(u) + B(t — u)]

u€(s,t]

If 3 = 3 we say that the node offers the adaptive guarartee

The following proposition summarizes the examples disstisdove:

PROPOSITION7.2. o If S offers to a flow a strict service curvg then it also offers thadaptive guar-
anteeg.
e If S guarantees a virtual delay bounded ythen it also offers thadaptive guaranteg
e A greedy shaper with shaping curee whereo is a good function, offers thadaptive guarantee
(¢,0), with & defined in (7.8).

Similar to [62], we use the notatioR — (3, 3) — R* to express that Definition 7.4 holds. #f= 3 we
write R — (8) — R*.

Assume thatR is left-continuous andg is continuous. It follows from Theorem 3.8 on Page 115 that th
adaptive guarantee is equivalent to saying that fos allt, we have either

R*(t) — R*(s) 2 B(t — s)

or
R*(t) > R(u) + B(t - u)

for someu € s, t].

7.4.2 PROPERTIES OF ADAPTIVE GUARANTEES

THEOREM7.5. LetR — (3, 8) — R*. If 3 < 3 thenf is a minimum service curve for the flow.

7.4. ADAPTIVE GUARANTEE 203

PROOF: Apply Definition 7.4 withs = 0 and use the fact that < £. O
THEOREM 7.6 (Concatenation)lf R — (51, 81) — Ry andR; — (52, 32) — R* thenR — (3, 8) — R*
with . . .

B=(Bep)ni
and

B =p1® P

The proof is in Section 7.7

COROLLARY 7.1. If R;_y — (B3;, 8;) — R; fori = 1tonthenRy — (3, 8) — R, with

8= (/8~1®/82®...®,8n)/\</8~2®/83®---®5n>/\---/\</én—1®/8n>/\5~n

and
B=0®..0Q0H

ProOOF: Apply Theorem 7.6 iteratively and use Rule 6 in Theorem 3.Page 111. O

THEOREM 7.7 (Delay from Backlog) If R — (3,8) — R*, then the virtual delay at timeis bounded by
B7HQ(t)), whereQ(t) is the backlog at time, and 5! is the pseudo-inverse of (see Definition 3.7 on
Page 108).

The proof is in Section 7.7. Note that if the node is FIFO, thienvirtual delay at time is the real delay
for a bit arriving at timet.

Consider a systenbit-by-bit systehwith L-packetized input? and bit-by-bit outputR*, which is then
L-packetized to produce a final packetized outgit We callcombined systerthe system that map8
into R’. Assume both systems are first-in-first-out and losslessndReber from Theorem 1.18 that the
per-packet delay for the combined system is equal the marimittual delay for the bit-by-bit system.

THEOREM 7.8 (Packetizer and Adaptive GuaranteH)the bit-by-bit system offers to the flow the adaptive
guarantee(3, 3), then the combined system offers to the flow the adaptiveagtes(5’, 5’) with

Bl(t) = [5@) - lmaX]+

and

B/(t) = [/B(t) - lmax]+

wherel,.x is the maximum packet size for the flow.

The proof is in Section 7.7.

7.4.3 PSRGAND ADAPTIVE SERVICE CURVE

We now relate packet scale rate guarantee to an adaptivargear We cannot expect an exact equivalence,
since a packet scale rate guarantee does not specify whaergpo bits at a time other than a packet
departure or arrival. However, the concept of packetiZemneal us to establish an equivalence.

204 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

THEOREM 7.9 (Equivalence with adaptive guarante€onsider a nodeS with L-packetized inpufz and
with outputR*.

1. If R — (B) — R*, whereg = f, . is the rate-latency function with rateand latencye, and ifS is
FIFO, thenS offers to the flow the packet scale rate guarantee with ragad latencye.

2. Conversely, i§ offers to the flow the packet scale rate guarantee with reded latencye and if R*
is L-packetized, thes is the concatenation of a nod# offering the adaptive guarante®. . and the
L-packetizer. IfS is FIFO, then so isS’.

The proof is long and is given in a separate section (Section Rote that the packet scale rate guarantee
does not mandate that the node be FIFO; it is possibledthatd; | in some cases. However, part 1 of the
theorem requires the FIFO assumption in order for a comddioR, R* to be translated into a condition on
delays.

7.5 CONCATENATION OF PSRG NODES

7.5.1 CONCATENATION OF FIFO PSRG NODES

We have a simple concatenation result for FIFO systems:

THEOREM 7.10. Consider a concatenation of FIFO systems numbéréaln. The output of systefin— 1
is the input of system for i > 1. Assume systetroffers the packet scale rate guarantee with ratend
latencyr;. The global system offers the packet scale rate guarantberater = min;—; ., 7; and latency

J— . —L
e=2 i1, n€t D g e

PrROOF: By Theorem 7.9—(2), we can decompose systento a concatenatios;, P;, wheres; offers
the adaptive guarantegg, ., andP; is a packetizer.

Call S the concatenation
S1,P1,852, P2y ey S, Pr—1, Sy

By Theorem 7.9—(2)5 is FIFO. By Theorem 7.8, it provides the adaptive guarapee By Theorem 7.9—
(2), it also provides the packet scale rate guarantee wighrrand latencye. Now P,, does not affect the
finish time of the last bit of every packet.

O

A Composite NodeWe analyze in detail one specific example, which often aiisgsactice when mod-
elling a router. We consider a composite node, made of twopoments. The former (“variable delay
component”) imposes to packets a delay in the rdhge: — 9, dmax]- The latter is FIFO and offers to its
input the packet scale rate guarantee, with rad@d latencye. We show that, if the variable delay compo-
nent is known to be FIFO, then we have a simple result. We fivsttge following lemma, which has some
interest of its own.

LEMMA 7.2 (Variable Delay as PSRGEonsider a node which is known to guarantee a defay,,... The
node need not be FIFO. Cdll,;,, the minimum packet size. For any> 0, the node offers the packet scale
rate guarantee with latency = [fyax —]+ and rater.

Proof. With the standard notation in this section, the hypothesfies thatd,, < a, + dmax for all n > 1. Define
fn by (71) We haVan 2 an + lTn 2 an + lm%’ thUSdn - fn S 5max - lmin S [5max - lrr,‘,.in]“ﬁ-

T

7.5. CONCATENATION OF PSRG NODES 205

0

We will now apply known results on the concatenation of FIHEnents and solve the case where the
variable delay component is FIFO.

THEOREM 7.11. (Composite Node with FIFO Variable Delay Compor)eftonsider the concatenation of
two nodes. The former imposes to packets a de€ldy, ... The latter offers the packet scale rate guarantee
to its input, with rater and latencye. Both nodes are FIFO. The concatenation of the two nodeshyn a
order, offers the packet scale rate guarantee with ragad latencye’ = e + Jppay.

Proof. Combine Theorem 7.6 with Lemma 7.2: for arfy> r, the combined node offers the packet scale guarantee
with rater and latencye(r’) = e + max + ex-lmin - Define f,, for all n by (7.1). Consider some fixed but
arbitraryn. We haved,, — f. < e(r’), and this is true for any’ > r. Letr’ — +oo and obtaind,, — f, <
inf,/>, e(r') = € 4 dmax as required.

7.5.2 CONCATENATION OF NON FIFO PSRG NODES

In general, we cannot say much about the concatenation ofFtie@ PSRG nodes. We analyze in detall
composite node described above, but now the delay elemeohiEIFO. This is a frequent case in practice.
The results are of interest for modelling a router. The atsvesthe purpose of showing that the results in
Theorem 7.10 do not hold here.

To obtain a result, we need to an arrival curve for the incgntiaffic. This is because some packets may
take over some other packets in the non-FIFO delay elemeqnir@7.5); an arrival curve puts a bound on
this.

THEOREM7.12. (Composite Node with non-FIFO Variable Delay Compohebbnsider the concatenation

of two nodes. The first imposes to packets a delay in the rige — J, dmax)- The second is FIFO and

offers the packet scale rate guarantee to its input, witle raaind latencye. The first node is not assumed
to be FIFO, so the order of packet arrivals at the second ned®ti the order of packet arrivals at the first
one. Assume that the fresh input is constrained by a conimaaival curvea(-). The concatenation of the
two nodes, in this order, satisfies the packet scale rateantae with rate- and latency

= e + 5max+

min{suptzo[m —t], (7.10)
SuPOStS&[a(t)+a(£)_21min Y

The proof is long, and is given in Section 7.7.

Figures 7.6 to 7.8 show numerical applications when thearcurve includes both peak rate and mean rate
constraints.

Special Case Fora(t) = pt + o, a direct computation of the suprema in Theorem 7.12 gives:

lf p S T then e/ —= € —|— 5max + p5+g_lmin

T
else e/:e+5max_5+2%

The latency of the composite node has a discontinuity equalt at p = r. It may seem irrelevant to
consider the casp > r. However, PSRG gives a delay from backlog bound; there masabes where
the only information available on the aggregate input is @noloon sustainable rage with p > r. In such

206 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

non FI delay & FIFO,PSRG q
a b
: 1 ks 2
ll A

[, | |91 b,=b
Al P2 . 22=Pq)
B I
GNpl\‘ dz=dy
tla, b =bg,
l4 P4 R b4 =b(3)
as
d;=d
b3 =b 4 177@
P
ds=dg,
ds =d

Figure 7.5:Composite Node with non-FIFO Variable Delay Component. Packet n arrives at times a,, at
the first component, at time b,, at the second component, and leaves the system at time d,,. Since the first
component is not FIFO, overtaking may occur; (k) is the packet number of the kth packet arriving at the
second component.

sec

Mops

50 100 150 200

Figure 7.6:Numerical Application of Theorem 7.12 and Theorem 2.7, showing the additional latency ¢’ — ¢
for a composite node, made of a variable delay element (6 = ..« = 0.01s) followed by a PSRG or GR
component with rate » = 100Mb/s and latency e. The fresh traffic has arrival curve pt+o, with o = 50KBytes.
The figure shows ¢’ — e as a function of p, for [,,;, = 0. Top graph: delay element is non-FIFO, second
component is PSRG (Theorem 7.12); middle graph: delay element is non-FIFO, second component is GR
(Theorem 2.7); bottom line: delay element is FIFO, both cases (Theorem 7.11 and Theorem 7.12). Top and
middle graph coincide for p < r.

7.5. CONCATENATION OF PSRG NODES 207

sec sec
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
50 100 150 200 VPPS 50 100 150 200 "PPS

Figure 7.7:Same as Figure 7.6, but the fresh traffis has a peak rate limit. The arrival curve for the fresh
traffic is min(pt + MTU, pt + o), with MTU = 500B, p = 200Mb/s (top picture) or p = 2p (bottom picture).

Figure 7.8:Latency increase as a function of peak rate and mean rate. The parameters are the same as
for Figure 7.7.

208 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

cases, there are probably other mechanisms (such as winolewedhtrol [47]) to prevent buffer overflow;
here, it is useful to be able to bouadas in Theorem 7.12.

Comment1: We now justify why Theorem 7.12 is needed, in other words:dfrelax the FIFO assumption
for the variable delay component, then Theorem 7.11 doekaidtany more. Intuitively, this is because a
tagged packet (sa¥3 on Figure 7.5) may be delayed at the second stage by packétn(the figure) that
arrived later, but took over our tagged packet. Also, theiserrate may appear to be reduced by packets
(P1 on the figure) that had a long delay in the variable delay corapb Formally, we have:

PrRoOPOSITION7.3 (Tightness).The bound in Theorem 7.12 is tight in the case of an arrivavewf the
forma(t) = pt + o and if lyyax > 2lmin.

The proof is in Section 7.7.

The proposition shows that the concatenation of non-FIFE®80odes does not follow the rule as for
FIFO nodes, which is recalled in the proof of Theorem 7.11teNbat if the conditior,,,.x > 20,5 IS NOt
satisfied then the bound in Theorem 7.12 is tight up to a totera®f21,,;,, /7.

Comment 2 : (7.10) for the latency is the minimum of two terms. In the cage) = pt + o, for
p < r, the bound is equal to its former term, otherwise to its sdderm. For a general however, such a
simplification does not occur.

Comment 3 : If ais not continuous (thus has jumps at some values), then teahown that Theorem 7.12
still holds, with (7.10) replaced by

= e + 5max+
min{SUPtzo[M —t],

SUPogtg&[M - t]}

with ag(u) = minfo(u+) — lmin, a(u)].

7.6 COMPARISON OF GR AND PSRG

First, we know that a PSRG node is GR with the same paraméléis.can be used to obtain delay and
backlog bounds for arrival curve constrained input trafiempare however Theorem 2.1 to Theorem 7.3:
the PSRG characterization has a larger laterttyan the GR characterization, so it is better not to use tbe tw
characterizations separately: GR to obtain delay and bgdkbunds, PSRG to obtain delay-from-backlog
bounds.

Second, we have shown that for GR there cannot exist a dedaytbacklog bound as in Theorem 7.4.

Third, there are similar concatenation results as for PSiRTGheorem 2.7. The value of latency increase
¢’ for the composite node is the same for PSRG and GR when thertotaming ratep is less than the
scheduler rate. However, the guarantee expressed by PSRG is strongertthiaof tGR. Thus the stronger
guarantee of PSRG comes at no cost, in that case.

7.7 PROOFS

7.7.1 RROOF OF LEMMA 7.1

In order to simplify the notation, we use, locally to this pfothe following convention: firsty has prece-
dence oven; second, we denoté Vv B with AB. Thus, in this proof only, the expression

ABANCD

7.7. PROOFS 209

means
(AV B) A (CV D)

The reason for this convention is to simplify the use of tharitiutivity of \V with respect to\ [28], which
is here written as
A(BANC)=ABNAC

Our convention is typical of “min-max” algebra, wheten takes the role of addition andax the role of
multiplication. Armed with this facilitating notation, ¢hproof becomes simple, but lengthy, calculus. In the
rest of the proof we consider some fixeé&nd drop superscript

For0 < j <n-—1,define
Fj:fj—l—mj+1—|—...+mn

and letF,, = f,. AlsoletDy =dy +m1+ ... + mp=mq + ... + my,
First note that for alj > 1:
fi = (aj +mi) Vv [(fj—1 +mj) A (dj-1 +my)]
then, by addingn ;1 + ... + m,, to all terms of the right hand side of this equation, we find
Fj = AV (Fj1 ADj1)

or, with our notation:
Fj=A;(Fj-1 ADj-1)

and by distributivity:
F; = AjF’j—l A Aij_l (7.12)

Now we show by downwards induction gn=n — 1, ..., 0 that

AnAp_1.. A1 D;

AnAn—l-'-Ak’-l-le

> > > > >

AnAn—an—Z
A AnDp_q (7.12)

wherek ranges fronyj ton — 1. Forj = n — 1, the property follows from (7.11) applied fgr= n. Assume
now that (7.12) holds for somee {1,...,n — 1}. By (7.11), we have

AnAn—l---Aj+1F’j =
AnAn—l---Aj—l—l(AjF’j—l VAN Aij_l)
thus
AnAn_l...Aj_;’_l_F}' -
AnAn_l...Aj+1Aij_1 A AnAn_l...Aj+1Aij_1
which, combined with (7.12) fof shows the property fof — 1.
Now we apply (7.12) foj = 0 and find

fn=A4A, 1. A1Fo N AL A, 1...A1 Dy A ...
/\AnAn—an—2 N AnDn—l

210 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

First note thatF, = Dy so we can remove the first term in the right hand side of theiguevequation.
Second, it follows fronu; > 0 that Dy < A; thus

ApnApn_1...A1Dy = ApAy_1... Ay
thus finally

fn=AA0 1. AL NARAL 1...As D1 A ...
/\AnAn—an—Z A AnDn—l

which is precisely the required formula.

7.7.2 RROOF OF THEOREM 7.2

First, assume that the packet scale rate guarantee holgsy B@mma 7.1 withm,, = 17” It follows that,
forl1<j<n-—1.
fn < max [AZ, Al

n—1y-

) A?+17D;'Lj|

thus f,, is bounded by one of the terms in the right hand side of theigusvequation. If it is the last term,

we have
lj-i—l + ...+ ln

fnSDgl:dj‘F ,

nowd,, < f, + e, which shows (7.2). Otherwise, there is solne {j + 1, ...,n} such that

I+ ... +1,
fL< AN =gkt

which shows (7.3). Fof = 0, Lemma 7.1 implies that

fn <max [A7 AT, . AT

n—1»
and the rest follows similarly.

Second, assume conversely that (7.2) or (7.3) holds. Censaine fixed:, and defined?, D7, F}* as in
Lemma 7.1, withm,, = 2. For1 < j < n — 1, we have

T

n—1»

d,, — e < max [AZ, Al ...,A;-‘H,D;-‘]

and forj = 0:
d, — e < max [AZ, AP

n—1"

AT

thusd,, — e is bounded by the minimum of all right-handsides in the twoatipns above, which, by
Lemma 7.1, is precisely,,.

7.7.3 PROOF OF THEOREM 7.3

We first prove that for ali > 0
fizgi—el (7.13)

wheref; is defined by (7.1). Indeed, if (7.13) holds, then by (7.5)):
di <git+e < fitel+e

which means that the scheduler offers the packet scale wataigiee with rate and latencye = e + es.
Now we prove (7.13) by induction. (7.13) trivially holds fbe 0.

7.7. PROOFS 211

Suppose now that it holds fer— 1, namely,
fi-1 2 gi-1— el

By hypothesis, (7.5) holds:
di—1 2 gi-1 — €1

thus
min(f;_1,di—1] > gi-1 — e (7.14)
Combining this with (7.1), we obtain
(i
fi > gi-1—e1+ % (7.15)
Again from (7.1) we have
fiz a+h
r _ 7.16
> a;—er+ Q (7:16)
Now by (7.4)
l;
gi < max|a;, gi—1] + - (7.17)

Combining (7.15)), (7.16)) and (7.17) gives

fi>gi—el

7.7.4 PROOF OF THEOREM 7.4

Consider a fixed packet which is present at time. Call a; [resp. d,] the arrival [resp. departure] time of
packetj. Thusa, <t < d,. LetB be the set of packet numbers that are present in the systémeat in
other words:

B={k>1lap <t <dy}

The backlog at time¢ is Q = >,z ;- The absence of FIFO assumption means fhist not necessarily a
set of consecutive integers. However, defjras the minimum packet number such that the intelpival] is
included inB. There is such &g because: ¢ B. If j > 2thenj — 1isnotinB anda;_; < a, < tthus
necessarily

di—1 <t (7.18)

If 5 = 1, (7.18) also holds with our conventiafy = 0. Now we apply the alternate characterization of
packet scale rate guarantee (Theorem 7.2)&nd;j — 1. One of the two following equations must hold:

lj —|—+ln
T

dy <e+dj_y + (7.19)

or there exists & > 7, k < n with

Lt o 1,
dnge+ak+% (7.20)

Assume that (7.19) holds. Sin¢gn| C B, we haveR,, > I; + ... + . By (7.18) and (7.19) it follows that

dn§e+t+9
,

which shows the result in this case. Otherwise, use (7.20have > I, + ... + 1, anda;, < t thus

dn§e+t+9
,

212 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.7.5 PROOF OF THEOREM 7.6
Consider some fixed but arbitrary times< ¢ and letu € [s, ¢t]. We have

Ri(u) > [Rl(s) + B — s)] A inf [R(v) + Bi(u — v)]

vE[s,u]
thus
Ri(u) + ot —u) > [Rl(s) + B(u— 8) + Bat — u)] A
infy,efs0) [R(v) + B1(u —v) + Ba(t — u)]
and

inf [Ry(u) + Ba(t —u)] >

u€|(s,t]

inf |Ri(s) + B(u —s) + Bo(t — u)

u€(s,t]

A inf [R(v) 4 Bi(u—v) + Ba(t — u)]

u€[s,t],vels,ul

After re-arranging the infima, we find

inf [Ry(u) 4 Bo(t — u)] >

w€|[s,t]

(Rl<s> + i [Bu—s) + Al —u)}) A

u€ls,t

inf (R(v) + inf [Bi(u—wv)+ f2(t — U)]>

vE|s,1] u€(v,t]

which can be rewritten as

inf [Ry(u) + Ba(t — u)] >

u€(s,t]
(Ri() + (Br @ B)(t = 9)) A
inf [R(v) + B(t —v)]

vE[s,t]

Now by hypothesis we have

R (8) = (R*(s) + Balt =)) A_inf [R(u) + B(t —)]

u€|[s,t]

Combining the two gives

)
(B*(5) + Balt =) A (B (5) + (Br @ Bt = 9))
A inf: | [R(v) + B(t — v)]

7.7. PROOFS 213

7.7.6 PROOF OF THEOREM 7.7

If the virtual delay at time is larger thart + 7 for somer > 0, then we must have

R*(t+ 1) < R(t) (7.21)
By hypothesis
R(t+7)> (R*(t) + Bm) A mERG) + 3+)] (7.22)

now foru € [t,t + 7]
R(u)+ p(t+7—u) > R(t)+ 5(0) > R*(t + 1)

thus (7.22) implies that

R*(t+7) > R*(t) + (1)

combining with (7.21) gives)
Q(t) = R(t) — R*(t) = B(7)
thus the virtual delay is bounded byp{7 : 3(7) > Q(t)} which is equal t3~(Q(t)). O

7.7.7 RROOF OF THEOREM 7.8

PROOF: Lets < t. By hypothesis we have

R*(t) > (R*(s) v Bt — s)) A inf [R(u) + B(t — u)]

u€(s,t]

We do the proof when thiaf in the above formula is a minimum, and leave it to the alertieedo extend
it to the general case. Thus assume that for some s, t]:

inf [R(u) + B(t —u)] = R(uo) + B(t — uo)

u€(s,t]

it follows that either .
R*(t) — R*(s) > B(t — s)

or
R*(t) = R(uo) + B(t — uo)

Consider the former case. We hali§t) > R*(t) — lmax andR/(s) < R*(s) thus
R'(t) > R*(t) — lmax > R'(s) + B(t — 5) — lax
Now also obviouslyR’(t) > R/(s), thus finally
R'(t) > R'(s) + max[0, B(t — 8) — lmax] = R'(s) + '(t — s)
Consider now the latter case. A similar reasoning shows that
R'(t) > R(ug) + B(t — uo) — lmax

but also
R*(t) > R(uo)

now the input isL-packetized. Thus
R'(t) = PY(R*(t)) = P*(R(uo)) = R(uo)
from which we conclude thak’(t) > R(uo) + S'(t — uo).
Combining the two cases provides the required adaptiveagtee. O

214 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.7.8 PROOF OF THEOREM 7.9

The first part uses the min-max expansion of packet scalegtateantee in Lemma 7.1. The second part
relies on the reduction to the minimum rate server.

We use the same notation as in Definition 7.1i) = Z§:1 l; is the cumulative packet length.

ITEm 1: Define the sequence of timgs by (7.1). Consider now some fixed but arbitrary packet index
n > 1. By the FIFO assumption, it is sufficient to show that

R*(t) > L(n) (7.23)

with ¢t = f,, + e. By Lemma 7.1, there is some indéx< j < n such that

. <S N L(n) — L(j — 1)> b <ak N L(n) — L(k — 1)> (7.24)

r k=j+1 r

with

s =aj \/dj_l

and with the convention thak = 0.
Let us now apply the definition of an adaptive guarantee taithe intervals, ¢]:

R*(t)> AAB

with

A:=R(s)+r(t—s—e)t and B := iI[lf]B(u)
uel(s,t

where
B(u) == (R(u) +r(t —u—e)")

Firstly, sinces > d;_;, we haveR*(s) > L(j — 1). By (7.24), f, > s+ M thust > s +
M + e. It follows that

L(n) —L(j—-1)

t—s—e>

and thusA > L(n).

Secondly, we show tha® > L(n) as well. Consider some € [s,t]. If u > a,, thenR(u) > L(n) thus
B(u) > L(n). Otherwiseu < a,; sinces > aj, it follows thata,_; < u < a;, for somek € {j+1,...,n}
andR(u) = L(k — 1). By (7.24),
L(n)— L(k—1)

T

fn > ap +

thus
L(n) — L(k—1)

t—u—e>

It follows that B(u) > L(n) also in that case. Thus we have shown that L(n).
Combining the two shows thdt*(t) > L(n) as required.

7.7. PROOFS 215

ITEM 2: We use a reduction to a minimum rate server as follows.d.et min(d;, f;) for i > 0. By
(7.1) we have

l;
a; < d, < max(a;,d;_,) + - (7.25)

and
d,<d; <d,+e (7.26)

The idea of the proof is now to interpré} as the output time for packetout of a virtual minimum rate
server.

Construct a virtual nod® as follows. The input is the original inpi(t). The output is defined as follows.
The number of bits of packétthat are output up to timeis v;(¢), defined by

if ¢ > d'(i) then ¢;(t) = L(i)
else if a(i) <t < d'(i) then v;(t) = [L(i) — r(d'(i) — t)]*
else ¥;(t) =0

so that the total output AR is Ry (t) = >~ ¥i(?).

The start time for packet is thusmax[a;, d, — %’] and the finish time igl,. ThusR is causal (but not
necessarily FIFO, even if the original system would be FIR@ now show that during any busy period,
‘R has an output rate at least equatto

Lett be during a busy period. Consider now some ttrdaring a busy period. There must exist sonsecch
thata; <t < d,. Let: be the smallest index such that this is truea;If> d,_, then by (7.25)) — ¢t < l;
and thusy!.(t) = r wherey).. is the derivative of); to the right. Thus the service rate at timis at least.

Otherwisea; < D’i — 1. Necessarily (because we number packets in order of inogeags — this is not
a FIFO assumption),;_; < a;; sincei is the smallest index such that < t < d}, we must have > d,_,.
But thend, — ¢ < l7 and the service rate at tintes at leastr. Thus, nodeR offers the strict service curve
A, and

R— (M) = Ry (7.27)

Now define nodeD. Leti(i) := d; — d}, so thatd < §(i) < E. The input ofD is the output ofR. The
output is as follows; let a bit of packetarrive at timet; we havet < d; < d;. The bit is output at time

t' = max[min|[d;_1,d;],t + d;]. Thus all bits of packet are delayed irD by at most (i), and ifd;_1 < d;
they depart afterl;. It follows that the last bit of packetleavesD at timed;. Also, sincet’ > t, D is
causal. Lastly, if the original system is FIFO, th&n, < d;, all bits of packet depart afterl; _; and thus
the concatenation dR andD is FIFO. Note thafR is not necessarily FIFO, even if the original system is
FIFO.

The aggregate output @ is
Ro(t) > > wi(t —6(i) > Ra(t —e)

i>1
thus the virtual delay foP is bounded by and
Rl — ((58) — R2 (728)

Now we plug the output dD into anL-packetizer. Since the last bit of packdeavesD at timed;, the final
output isR*. Now it follows from (7.27), (7.28) and Theorem 7.6 that

R—>()\r®5e)—>R2

216 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.7.9 PROOF OF THEOREM 7.12

We first introduce some notation (see Figure 7.5). @alb> 0 the arrival times for the fresh input. Packets
are numbered in order of arrival, o< a; < as < Letl, be the size of packet. Call b, the arrival
time for packetn at the second componen; is not assumed to be monotonic withbut for alln:

an <b, <a,+9 (7.29)

Also call d,, the departure time of packetfrom the second component. By conventiap,= dy = 0.
Then, define

t+9)— lmin
€1 =€+ Omax + sup[%

_ t]
t>0 r

and
a(t) + a(d) — lnin

€2 = €+ Omax + SUp [— t]

0<t<s

so thate’ = min[eq, eo]. It is sufficient to show that the combined node separatdigfiss the packet scale
rate guarantee with rateand with latencieg; ande,. To see why, defing,, by (7.1). Ifd,, — f, < e; and
d, — fn < e forall n, thend,, — f,, < ¢€'.

Part 1: We show that the combined node satisfies the packet scalguatantee with rate and latency;.

An arrival curve for the input traffic to the second comporisnts(t) = a(t + §). Thus, by Theorem 2.4,
dy < by, + Do, with

dn < bn+e+sup[a(t+5) —t]
t>0 r
By (7.29): t45)
a(t +

dn — ap S e+ 5max + Sup[
t>0 r

_ t]
Now we apply Lemma 7.2 which ends the proof for this part.
Part 2: We show that the combined node satisfies the packet scalguatantee with rate and latencyes.

Let dmin = dmax — 0 the constant part of the delay. We do the proofdgy, = 0 since we can eliminate the
constant delay by observing packéis, time units after their arrival, and adding,;,, to the overall delay.

Part 2A:

We assume in this part that there cannot be two arrivals aahe instant; in part 2B, we will show how to
relax this assumption.

For a time interval s, t] (resp. [s, t]), defineA(s, t] as the total number of bits at the fresh input during the
interval (s, t] (resp.|[s, t]); similarly, defineB(s, t] and B[s, t| at the input of the second node. We have the
following relations:

A(s,t] =) Lcanzmpn s Als.t] =D Lisca, <apin

n>1 n>1
B(37t] = Z 1{s<bn§t}}ln) B[37t] = Z 1{s§bn§t}}ln
n>1 n>1

Note that .
Alaj,an] = Z l;
i=j+1
but, by lack of FIFO assumption, there is no such relationdor
By definition of an arrival curve, we havé(s, t] < a(t — s).

7.7. PROOFS 217

LEMMA 7.3. For 0 < t,u and0 < v < t, if there is an arrival att, then A(¢,t + u] < a(u) — Iy, and
A[t -0, t) < a(’l)) - lmin

Proof. First note thatA[t, ¢ + u] < infcso A(t — €, + u] < infeso a(u + €) = a(u) (the last equality is because
« is continuous).

Second, let be the packet length for one packet arriving at tim&henA(¢,t + u] + 1 < Aft, t + u] < a(u) thus
A(t,t 4+ u] < a(u) — 1 < a(u) — lmin. The same reasoning shows the second inequality in the lemma

0

Now we apply Theorem 7.2. Consider some fixed packets nunibgrg < n. We have to show that one
of the following holds:

Alaj,an
d, < e+ dj + M (7.30)
or there is somé € {j + 1, ...,n} such that
A n
d, < e+ ag + L2kl (7.31)
T
(Case 1:)Assume thab,; > b,,. Since the second node is FIFO, we have
d, <d;
and thus (7.30) trivially holds.
(Case 2:)Assume thab,; < b,. By Theorem 7.2 applied to the second node, we have
1
d, <e+dj+ ;B(bj, by,] (7.32)
or there exists some such thab; < b, < b, and
1
dn < ¢+ by, + = Blbg, bl (7.33)

(Case 2a:)Assume that (7.32) holds. By (7.29), any packet that arratesode 2 in the intervalb;, b,
must have arrived at nodein the interval(a; — 6, b,) C (a; — 6, a, + d]. Thus

B(bj, bn] < A(aj — 5, an + 5]
< A(aj,an] + Alaj — 6,a;) + A(an, a, + 9]
< A(aj, an] + 206(5) - 2lmin

the last part being due to Lemma 7.3. Thus

dy <e+6+20 5490 4 g,

+%A(aj, an] — QZmin
<es+dj+ LA(aj,a,)

which shows (7.30).

(Case 2b:) Assume that (7.33) holds. Note that we do not know the ordér with respect tgj andn.
However, in all cases, by (7.29):
B[bka bn] < A[bk - 57 an + 5] (734)

We further distinguish three cases.

218 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

(Case 2bl:)k < j:
Define
u=a; —bp+46 (7.35)
By hypothesisa;, < a; andb, — ¢ < ay, so thatu > 0. Note also that;; < b; < b, and thusu < 6.
By (7.34):
Blby, by] < Albr, — 9, a5) + Alaj, an] + A(an, a, + 0]
Now by Lemma 7.34(ay,, a, + 0] < «(6) andA[by, — 6, a;) < a(u) — lypin. Thus

Blby, by] < Alaj, an) + a(u) + a(8) — 2lmin

Combine with (7.33), (7.35) and obtain

which shows that (7.31) holds.
(Case 2b2:)j < k < n:
Defineu = § — by, + ay. By (7.34)

B[bk, bn] S A[ak, CLn] + a(u) + a(é) — 2lmin

which shows that)
dn, < ex+ ay + ;A[aka an]

(Case 2b3:)k > n:

Defineu = 6 — by, + a,. By by, < b, andb,, < a,, + 0 we haveu > 0. By by, > a; anday > a,, we have
u < 4.

Now by (7.33):
1 1
d, < e+bk+;B[bk,bn] = e—l—é—u—l—an—l—;B[bk,bn]

By (7.34)
Blbg, by) < Alay, — u,ay + 9]
= Alay, — u,ap) + I, + A(ay, an + 9]
< ofu) + Iy + a(6) — 2lmin

which shows that
Iy
dn <ey+a,+ ?

Part 2B: Now it remains to handle the case where packet arrivalstareibmponent may be simultaneous.
We assume that packets are ordered at component 2 in ordeivaf,avith some unspecified mechanism
for breaking ties. Packets also have a label which is theleroof arrival at the first component; we cél)
the label of thekth packet in this order (see Figure 7.5 for an illustration).

Call S the original system. Fix some arbitrary integér Consider the truncated syste$?’ that is derived
from the original system by ignoring all packets that ard@tehe first component after timey + §. Call
al¥, bl dN | fN the values of arrival, departure, and virtual finish timegHe truncated system (virtual
finish times are defined by (7.1)). Packets with numbersV are not affected by our truncation, thus
al = an,bN = b,,dY = d,, fN = f, forn < N. Now the number of arrival events at either component
1 or 2 in the truncated system is finite; thus we can find a pesitumben; which separates arrival events.
Formally: for anym,n < N:

A, = Gy, OF |Gy — G| >

7.7. PROOFS 219

and
by, = by or |byy, — by| > 1

Lete < . We define a new system, call&d’<, which is derived fromS™ as follows.

e We can find some sequence of numheyse (0,¢), n < N such that: (1) they are all distinct; (2)
if the packet labeledn is ordered before the packet labeledn the order of arrival at the second
component, them,,, < z,,. Building such a sequence is easy, and any sequence sajigtyiand (2)
will do. For example, take:;,, = Niﬂe wherek is the order of arrival of packet (in other words,
(k) = n).

e Define the new arrival and departure times by
as, = ap + Ty, by, =by +xy , df, =dy + xp

It follows from our construction that atl;, are distinct forn < IV, and the same holds féf,. Also,
the arrival order of packets at the second component is the sa in the original system.

Thus we have built a new systefi'-< where all arrivals times are distinct, the order of packete@second

component is the same asS§®’, arrival and departure times are no earlier tha§ i and differ by at most
€.

Fork < N, call F(Ek) the virtual finish times at the second component. By defimitio

Fy = max by min (dfy_y) 7,)]
—I—l(Tk') fork>1

and a similar definition holds fak{;,, by droppinge. It follows by induction that
Fliy = Fuwy
thus
dfk,) Sdk—l—ege—l—F(k) §e+F(€k)—|—e

Similarly, b5, < aj, + 6. This shows thas™V< satisfies the assumptions of the theorem, witeplaced by
e+e€

Thus the conclusion of Part 2A holds f6rV<. Define nowf< by (7.1) applied tai, andd:,. We have:
di, < fr+ex+e (7.36)

It also follows by induction that
f;L < fn +e€
Now d,, < d;, thus
dn_fngd;_f;—’_e
Combining with (7.36) gives:
dyp — fn < ez +2e¢

Now e can be arbitrarily small, thus we have shown that fonadt V:
dn - fn < eg

SinceN is arbitrary, the above is true for ail

220 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

7.7.10 HRROOF OF PROPOSITION 7.5.2

Proof. Casep < r: Assume that the source is greedy from time O, with packet 1, of sizeli = lmin,

a1 = 0, b1 = dmax. Assume all subsequent packets have a delay in the first cq@npequal t@m,.x — 6. We

can build an example where pacKeis overtaken by packets = 2, ..., ny that arrive in the interva{0, 6], with

lo+ ...+ ln, = pd + o — ;1. Assume that packdtundergoes the maximum delay allowed by PSRG at the second
component. It follows after some algebra thHat= e + dmax + ”5% Now f1 = lmri“ thusd, — f1 = ¢’ and the
characterization is tight.

Casep > r: We build a worst case scenario as follows. Weslet 0, without loss of generality (add a delay element
to this example and obtain the general case). The prindggtefirst build a maximum size burst which is overtaken
by a tagged packet. Later, a tagged packet is overtaken by a second maximum size burst. Between the two,
packets arrive at a data ratgthe second burst is possible becatise p anda,, — a; is long enough. Details are in
Figure 7.9 and Table 7.1. We find finally, — f. = 2(pd + o — lmin) /7 Which shows that the bound is achieved.

non FIEQ, delay & FIFO,PSRG
A ﬁ?\ by 2 dy
o N\

1
To o| P,
ﬁLtu £
i P) P
5 5
Pn Pn+1
an aﬂ
| L i
/ H p o b
Wan+5 Pn+1 7an+5 "\l
ay b,

Figure 7.9:Worst-case example for Theorem 7.12. All packets have 0 delay through the first component
except packets 1...; — 1 and n.

7.8 BIBLIOGRAPHIC NOTES

The concept of adaptive service curve was introduced in @kidissertation in [62] and was published
by Agrawal, Cruz, Okino and Rajan in [1], which contains maesgults in Section 7.4.2, as well as an
application to a window flow control problem that extendst®ec4.3.2 on Page 147. They callan
“adaptive service curve” and a “partial service curve”.

The packet scale rate guarantee was first defined indepgnaér@daptive service guarantees in [4]. It
serves as a basis for the definition of the Expedited Forwgrdapability of the Internet.

7.9 EXERCISES

EXERCISE7.1. Assume thak — (33, 5) — R*.

7.9. EXERCISES 221

\ k \ g | b [b] Tk \ dy;
1 0 0 — lmin ot not relevant dj + 1l /r
lg/p Iy 5t not relevant dj + (ll + lQ)/T‘
Jj—1 J lj—1 ot not relevant dj + A
J J lmin o >0+ lmin/r 0+ lmin/r
j+1 0 + lin/7 lmin a1 0 + 2lwmin /7 fimi+A
n—1 04 (n—J— Dlnin/7 Imin Ap—1 0+ (n — J)lmin/T foo1+A
n 0+ (n — J)lmin/7 lmin an+0 |04+ (n—7+ Dlpin/r fn+2A
n+1 a 0 — lmin Ani1 not relevant o1+ A+ (00— lmin) /7
n+ 2 ap + a9 Iy Ap4-2 not relevant fno1+A+ (O’ — lmin + lg)/’f'
n+j—1 (an +0)~ li—y (an +0)~ not relevant fno1+2A
Notes: A = (pd + 0 — lnin) /7
(4,12, ...,lj—1) isasolution tdy + ... + 1j_1 = pd, SCla,...,1;—1 € [lmin, lmax]. FOr example, lef = 2 + Ll”‘? |,
Iy = p0 — (j — 3)lmin, I3 = .. = Lj_1 = lynin. We havely < e beCausémax > 2lmin

Table 7.1:Details for Figure 7.9. Assume for this table that o — I, < lnax, Otherwise replace packets 1
and n + 1 by a number of smaller packets arriving in batch.

1. Show that the node offers to the flow a strict service cuqueleo 3 ® B, whered is the sub-additive
closure of.
2. If B = g is a rate-latency function, what is the value obtained far $krict service curve ?

EXERCISE7.2. Consider a system with inpuit and outputR*. We call “input flow restarted at timé&' the
flow R; defined foru > 0 by

Ri(u) = R(t+u) — R*(t) = R(t,u] + Q(t)

whereQ(t) := R(t) — R*(t) is the backlog at time. Similarly, let the“output flow restarted at tim# be
the flowR; defined foru > 0 by
R;(u) = R*(t +u) — R*(t)

Assume that the node guarantees a service ctrneeall couples of input, output flow(d;, R;). Show that
R— (B) —» R*.

222 CHAPTER 7. ADAPTIVE AND PACKET SCALE RATE GUARANTEES

CHAPTER 8

TIME VARYING SHAPERS

8.1 INTRODUCTION

Throughout the book we usually assume that systems aretitifee). This is not a limitation for systems
that have a renewal property, namely, which visit the iddesinfinitely often — for such systems we choose
the time origin as one such instant.

There are cases however where we are interested in the affidctet of non zero initial conditions. This
occurs for example for re-negotiable services, where #fédrcontract is changed at periodic renegotiation
moments. An example for this service is the Integrated Serof the IETF with the Resource reSerVation
Protocol (RSVP), where the negotiated contract may be neobferiodically [33]. A similar service is the
ATM Available Bit Rate service (ABR). With a renegotiablengee, the shaper employed by the source
is time-varying. With ATM, this corresponds to the conceptDynamic Generic Cell Rate Algorithm
(DGCRA).. At renegotiation moments, the system cannot igaiyebe assumed to be idle. This motivates
the need for explicit formulae that describe the transiéfieceof non-zero initial condition.

In Section 8.2 we define time varying shapers. In generatetienot much we can say apart from a
direct application of the fundamental min-plus theoremSeation 4.3. In contrast, for shapers made of a
conjunction of leaky buckets, we can find some explicit folasu In Section 8.3.1 we derive the equations
describing a shaper with non-zero initial buffer. In Sect®3.2 we add the constraint that the shaper has
some history. Lastly, in Section 8.4, we apply this to analy®e case where the parameters of a shaper are
periodically modified.

This chapter also provides an example of the use of timarspift

8.2 TIME VARYING SHAPERS

We define a time varying shaper as follows.

DEFINITION 8.1. Consider a flowR(¢). Given a function of two time variablel (¢, s), a time varying
shaperforces the outpuf*(¢) to satisfy the condition

R*(t) < H(t,s) + R*(s)

for all s < t, possibly at the expense of buffering some data. An optimeal\tarying shaper, or greedy time
varying shaper, is one that maximizes its output among asibe shapers.

223

224 CHAPTER 8. TIME VARYING SHAPERS

The existence of a greedy time varying shaper follows froenftfiowing proposition.

PrROPOSITIONS8.1. For an input flowR(¢) and a function of two time variableH (¢, s), among all flows
R* < R satisfying
R*(t) < H(t,s) + R*(s)

there is one flow that upper bounds all. It is given by

R*(t) = ;gg [H(t,s) + R(s)] (8.1)

whereH is the min-plus closure off, defined in (4.10) on Page 142.

PrROOF: The condition defining a shaper can be expressed as
R* < Ly(R¥)
R*<R

where Ly is the min-plus linear operator whose impulse respongé ($heorem 4.1). The existence of a
maximum solution follows from Theorem 4.9 and from the fdwtt being min-plus lineatl ; is upper-
semi-continuous. The rest of the proposition follows frohedrem 4.6 and Theorem 4.9. O

The output of the greedy shaper is given by (8.1). A time iiavdrshaper is a special case; it corresponds to
H(s,t) = o(t—s), whereo is the shaping curve. In that case we find the well-known tésdlheorem 1.11.

In general, Proposition 8.1 does not help much. In the reshisfchapter, we specialize to the class of
concave piecewise linear time varying shapers.

PrRoPOSITIONS8.2. Consider a set off leaky buckets with time varying rateg(t) and bucket sizes;(t).
At timeO0, all buckets are empty. A floR(t) satisfies the conjunction of theleaky bucket constraints if
and only if forall0 < s < ¢:

R(t) < H(t,s)+ R(s)

with

¢
H(t,s) = 1%1£J{bj(t) +/S rj(u)du} (8.2)

PrRoOOF: Consider the level of thgth bucket. It is the backlog of the variable capacity nodec{Se
tion 1.3.2) with cumulative function

t
M;(t) = / rj(u)du
0
We know from Chapter 4 that the output of the variable capawtle is given by

Rj(t) = inf {M;(t) = M(s) + R(s))

The jth leaky bucket constraint is
R(t) — Rj(t) < b;(t)

Combining the two expresses thig constraint as
R(t) — R(s) < M;(t) — M;(s) + b;(t)

for all 0 < s < t. The conjunction of all these constraints gives (8.2).

In the rest of this chapter, we give a practical and explisinputation ofd for H given in (8.2), when the
functionsr;(t) andb;(t) are piecewise constant.

8.3. TIME INVARIANT SHAPER WITH INITIAL CONDITIONS 225

8.3 TIME INVARIANT SHAPER WITH NON-ZERO INITIAL CONDITIONS

We consider in this section some time invariant shapers. t&Wewsith a general shaper with shaping curve
o, whose buffer is not assumed to be initially empty. Then wikapply this to analyze leaky bucket shapers
with non-empty initial buckets.

8.3.1 SHAPER WITH NON-EMPTY INITIAL BUFFER

PrRopPOSITION8.3 (Shaper with non-zero initial bufferlConsider a shaper system with shaping cusve
Assume that is a good function. Assume that the initial buffer contentyis Then the outpuRR* for a
given inputR is

R*(t) = o(t) A Oi<nf;t{R(s) +wy+o(t—s)} forallt>0 (8.3)

PROOF: First we derive the constraints on the output of the shaperthe shaping function thus, for all
t>s>0
R*(t) < R*(s)+o(t—s)

and given that the bucket at time zero is not empty, foriahy0, we have that
R*(t) < R(t) +wo
At time s = 0, no data has left the system; this is expressed with

R¥(t) < do(t)

The output is thus constrained by
R* < (o0 ®@ R*) A (R+ wp) A do

where® is the min-plus convolution operation, defined gy® ¢)(t) = infs f(s) + g(t — s). Since the
shaper is an optimal shaper, the output is the maximum fmatatisfying this inequality. We know from
Lemma 1.6 that
R* =0 ®[(R+wp) A do]
= [0 ® (R4 wp)] A [0 & o]
=[o® (R+wo)| Ao
which after some expansion gives the formula in the projoosit 0.

Another way to look at the proposition consists in saying tha initial buffer content is represented by an
instantaneous burst at tinde

The following is an immediate consequence.

COROLLARY 8.1 (Backlog for a shaper with non-zero initial buffeffhe backlog of the shaper buffer with
the initial buffer contentu is given by

w(t) = (R(t) —o(t) +wp) V sup {R(t) — R(s) —o(t —s)} (8.4)

0<s<t

8.3.2 LEAKY BUCKET SHAPERS WITH NON-ZERO INITIAL BUCKET LEVEL

Now we characterize a leaky-bucket shaper system with eominitial bucket levels.

226 CHAPTER 8. TIME VARYING SHAPERS

ProPOSITION8.4 (Compliance with/ leaky buckets with non-zero initial bucket levels). flow S(t) is
compliant with.J leaky buckets with leaky bucket specificatigns b;), j = 1,2...J and initial bucket
levelq! if and only if

S(t) —S(s) < lgligJ[rj (t—s)+b;] forall0<s<t
<<
< mi . 40 >
S(t) < 12?;5[7”3 t+0b; — qj] forallt >0

PrRoOOF: Apply Section 8.1 to each of the buckets. O

PrRoPOSITION8.5 (Leaky-Bucket Shaper with non-zero initial bucket IsyeConsider a greedy shaper
system defined by the conjunction.ofeaky bucketgr;,b;), with j = 1,2...J. Assume that the initial
bucket level of the j-th bucket@’?g. The initial level of the shaping buffer is zero. The outgtitfor a given
input R is

R*(t) = min[o®(¢), (6 ® R)(t)] forallt>0 (8.5)

whereo is the shaping function

o(u) = min {oj(u)} = min {r;-u+0b;}
ando? is defined as

0(0) — i . . _ 0
o’ (u) = 12;1;]{7‘3 u+b; —q;}

PrROOF: By Corollary 8.4 applied t& = R*, the condition that the output is compliant with tideaky

buckets is
R*(t) — R*(s) <o(t—s) forall0<s<t
R*(t) < o%(t) forallt >0

Sinceo’(u) < o(u) we can extend the validity of the first equationste= 0. Thus we have the following
constraint:
R*(t) < [(c ® R*) A(RA)](2)

Given that the system is a greedy shager(-) is the maximal solution satisfying those constraints. gsin
the same min-plus result as in Proposition 8.3, we obtain:

R*=0®(RA")=(0c@R)A(c®d")

As ¢V < &, we obtain
R*=(c®R)N°

We can now obtain the characterization of a leaky-buckgbeshaith non-zero initial conditions.

THEOREM 8.1 (Leaky-Bucket Shaper with non-zero initial conditipn€onsider a shaper defined by
leaky bucketgr;, b;), with j = 1,2... J (leaky-bucket shaper). Assume that the initial bufferlle¥es w,
and the initial level of theth bucket isqjo.. The outputR* for a given inputR is

R*(t) = min{o?(t), wo + QILI;%{R(’LL) +o(t—wu)}} forallt>0 (8.6)

with

000 — s . _ 0
o (u)—lrgnjlgj(rj u+b; —qj)

8.4. TIME VARYING LEAKY-BUCKET SHAPER 227

PROOF: Apply Proposition 8.5 to the inpu®’ = (R + wg) A §y and observe that’ < o. O

An interpretation of (8.6) is that the output of the shapehwion-zero initial conditions is either the output
of the ordinary leaky-bucket shaper, taking into accoustitfitial level of the buffer, or, if smaller, the
output imposed by the initial conditions, independent efitiput.

8.4 TIME VARYING LEAKY-BUCKET SHAPER

We consider now time varying leaky-bucket shapers that eeewise constant. The shaper is defined by
a fixed number/ of leaky buckets, whose parameters change at timdsort € [t;,t,41) := I;, we have
thus

ri(t) = r;- and b;(t) = bé—
Attimest;, where the leaky bucket parameters are changed, we keegattyeducket levej; (¢;) unchanged.
We say that;(u) := minlSjJ{rj-u + b;ﬁ} is the value of the time varying shaping curve during intedya
With the notation in Section 8.2, we have

H(t,tl') = O'Z'(t — tl') iftel;

We can now use the results in the previous section.

ProrPOsSITION8.6 (Bucket Level).Consider a piecewise constant time varying leaky-buckapeshwith
output R*. The bucket leve};(t) of the j-th bucket is, fot € I;:

G = [R(O) - R (t) =1 (t—t) +qs(t)| v 8.7)
Supy <<t L7 (8) = R¥(s) =1 - (£ = 5)}

ProoOF: We use a time shift, defined as follows. Consider a fixed ialefvand define
(1) = R*(t; + 7) — R*(t;)

Observe that;(t; + 7) is the backlog at time (call it w(7) at the shaper with shaping curs¢r) = 7“;- - t,
fed with flow z*, and with an initial buffer levey;(¢;). By Chapter 8.1 we have

w(r) = [a"(r) =1} T+ gi(t)] v sup {a'(r) =2’ —r) - (7 =)

which after re-introducing?* gives (8.7) O

THEOREM 8.2 (Time Varying Leaky-Bucket Shapersfonsider a piecewise constant time varying leaky-
bucket shaper with time varying shaping curwgin the interval I;. The outputR* for a given inputR
is

R*(t) = min [og(t —t;) + R*(t;), tiig}gfgt{ai(t —s)+ R(s)}} (8.8)

with ¢! is defined by
— mi i T it
o; (u) = 1213'ng riu+ by — g (tz)]

andg;(t;) is defined recursively by (8.7). The backlog at tihmedefined recursively by

sup {R(t) — R(s) — oi(t — s)},] el

t;<s<t

R(t) — R(t;) — o)t — t;) + w(t;)

2

w(t) = max (8.9)

228 CHAPTER 8. TIME VARYING SHAPERS

PrROOF: Use the same notation as in the proof of Proposition 8.6 afidedi| addition
(1) := R(t; + 1) — R(t;)

We can now apply Theorem 8.1, with initial bucket levels édqog;(t;) as given in (8.7) and with an initial
buffer level equal tav(¢;). The input-output characterization of this system is givgr(8.6), thus

z*(1) = 0} (1) A [oi ® 2'](7)

where
2 (7) = { (1) +w(t;) 7>0

x(7) 7<0
Hence, re-introducing the original notation, we obtain

R(t) — R* (1) — [ag(t) A, inf{oi(t —)+ R(s) — R(5) +w(t))

t:

which gives (8.8).
The backlog at time follows immediately. O

Note that Theorem 8.2 provides a representatioFl oHowever, the representation is recursive: in order to
computeR*(t), we need to comput&*(t;) for all t; < ¢.

8.5 BIBLIOGRAPHIC NOTES

[71] illustrates how the formulas in Section 8.4 form theibdsr defining a renegotiable VBR service.

It also illustrates that, if some inconsistency exists lestwnetwork and user sides whether leaky buckets
should be reset or not at every renegotiation step, thermthig result in inacceptable losses (or service
degradation) due to policing.

[12] analyzes the general concept of time varying shapers.

CHAPTER 9

SYSTEMS WITH LOSSES

All chapters have dealt up to now with lossless systems. diapter shows that network calculus can also
be applied to lossy systems, if we model them as a lossletsnsyseceded by a ‘clipper’ [17, 18], which
is a controller dropping some data when a buffer is full, oewla delay constraint would otherwise be
violated. By applying once again Theorem 4.9, we obtain esegmtation formula for losses. We use this
formula to compute various bounds. The first one is a boundenass rate in an element when both an
arrival curve of the incoming traffic and a minimum serviceveuof the element are known. We use it next
to bound losses in a complex with a complex service curve, (¥R shapers) by means of losses with
simpler service curves (e.g., CBR shapers). Finally, werekthe clipper, which models data drops due to
buffer overflow, to a ‘compensator’, which models data aatta prevent buffer underflow, and use it to
compute explicit solutions to Skorokhod reflection mapgangpblem with two boundaries.

9.1 A REPRESENTATION FORMULA FOR LOSSES

9.1.1 LOSSES INAFINITE STORAGE ELEMENT

We consider a network element offering a service cutyand having a finite storage capacity (bufféf)
We denote by the incoming traffic.

We suppose that the buffer is not large enough to avoid |dssesl possible input traffic patterns, and we
would like to compute the amount of data lost at timeith the convention that the system is empty at time
t = 0. We model losses as shown in Figure 9.1, wheftg is the data that has actually entered the system
in the time interval0, ¢]. The amount of data lost during the same period is therdfdte= a(t) — x(¢).

The model of Figure 9.1 replaces the original lossy elemantan equivalent concatenation a controller
or regulator that separates the incoming flown two separate flowsy and L, and that we caltlipper,
following the denomination introduced in [18], togethettiwihe original system, which is now lossless for
flow z.

The amount of datdz(t) — z(s)) that actually entered the system in any time interfvak] is always
bounded above by the total amount of d&i@) — a(s)) that has arrived in the system during the same
period. Therefore, forany < s <t, z(t) < x(s)+a(t) —a(s) or equivalently, using the linear idempotent
operator introduced by Definition 4.5,

z(t) < inf {a(t) —a(s) +z(s)} = he(z)(t). (9.2)

T 0<s<t

229

230 CHAPTER 9. SYSTEMS WITH LOSSES

Clipper

a(t) —» —X(—t)> X O—»y(t)
v

L(t)

Figure 9.1:System with losses

On the other handy is the part ofa that does actually enter the system.ylflenotes its output, there is
no loss forzx if z(t) — y(t) < X for anyt¢. We do not know the exact mapping= II(z) realized by the
system, but we assume tHatis isotone. So at any time

z(t) <y(t)+ X =M(x)(t) + X 9.2)

The datax that actually enters the system is therefore the maximuntiealto (9.1) and (9.2), which we
can recast as
x <aA{ll(x) + X} A hq(x), (9.3)

and which is precisely the same equation as (4.33) Wite= X andM = a. Its maximal solution is given
by

z = ({Il4+ X} A hq)(a),
or equivalently, after applying Corollary 4.1, by

2= ((hao T+ X)) 0 ha) (a) = ((ha o T+ X)) (a) (9.4)

where the last equality follows frorf, (a) = a.
We do not know the exact mappiig but we know thall > Cg. We have thus that

2 > (ha 0 Carx)(a). (9.5)
The amount of lost data in the intervl ¢] is therefore given by

L(t) = a(t) — x(t)
= a(t) = o {Cax }@)(t) = a(t) = inf { (ke 0 Co1)™ } (@)(1)

= sup {a(t) = (ha o Ca:x)™ (a)(1)}

neN
=suplalt) =, <Y, o () mals) FBls1 =) +X
+a(sg) — ...+ a(son)}}
= sup{ sup {a(s1) — B(s1 — s2) — a(s2)

neN 0<s2,<...<s2<s1<t
+...—a(s2n) —nX}}

Consequently, the loss process can be represented by lineifig formula:

L(t) <

9.1. AREPRESENTATION FORMULA FOR LOSSES 231

sup { sup {Z [a(s2i—1) — a(s2i) — B(s2i—1 — s2:) — X] }} (9.6)
neN | 0<s2n<..<sp<s1<t | ;T

If the network element is a greedy shaper, with shaping carwdenlII(z) = Cg, and the inequalities in
(9.5) and (9.6) become equalities.

What the formula says is that losses up to titn@re obtained by summing the losses over all intervals
[s2i—1, $2i], wheresq; marks the end of an overflow period, and whejge ; is the last time before,; when

the buffer was empty. These intervals are therefore latgar the congestion intervals, and their number
is smaller or eqaul to the number of congestion intervalgufé 9.2 shows an example where= 2 and
where there are three congestion periods.

x(t)
a(t)

v

Figure 9.2:Losses in a constant rate shaper (3 = \¢). Fresh traffic a is represented with a thin, solid line;
accepted traffic « is represented by a bold, solid line; the output process y is represented by a bold, dashed
line.

We will see in the next sections how the losses representaiiomula (9.6), can help us to obtain determin-
istic bounds on the loss process in some systems.

9.1.2 LOSSES IN ABOUNDED DELAY ELEMENT

Before moving to these applications, we first derive a ragregion formula for a similar problem, where
data are discarded not because of a finite buffer limit, buaabse of a delay constraint: any entering data
must have exited the system after at mosiit of time, otherwise it is discarded. Such discarded deat¢a
called losses due to a delay constraint/diime units.

As above, letr be the part otz that does actually enter the system, andyldéte its output. All the data
z(t) that has entered the system durildgt] must therefore have left at time+ d at the latest, so that
x(t) — y(t + d) < 0foranyt. Thus

2(t) < y(t +d) = T(@)(t +d) = (S_q 0 () (1), 9.7)

whereS_ 4 is the shift operator (with forward shift @ftime units) given by Definition 4.7.

232 CHAPTER 9. SYSTEMS WITH LOSSES

On the other hand, as in the previous example, the amountt@fdé) — x(s)) that actually entered the
system in any time intervdls, ¢] is always bounded above by the total amount of data) — a(s)) that
has arrived in the system during the same period. Theref@relatar that actually enters the system is
therefore the maximum solution to

z<aA(S_goll)(z) A hg(z), (9.8)

which is

z=({S_go I} Aha)(a),
or equivalently, after applying Corollary 4.1, by

v = (hao((S a0} 0 hy) (@) = (ha oS _goTI) (a). 9.9)

Sincell > Cg, we also have,
x> (hgoS_40Cg) (a). (9.10)

The amount of lost data in the interal ¢] is therefore given by

L(t) < sup {a(t) = (ha 0S40 C)™ (a)(1)}

neN

which can be developed as
L(t) <

sup { sup {Z [a(s2i-1) — a(s2;) — B(s2i-1 + d — $2;)] }} (9.11)

neN | 0<s2,<...<s2<s1<t | 7
Once again, il = Cg, then (9.11) becomes an equality.
We can also combine a delay constraint with a buffer comgtraind repeat the same reasoning, starting

from
r<aA{Ill(x)+ X} A (S_goll)(x) A he(z). (9.12)

to obtain

n

L(t) < sup{ sup {Z[a(sm_l)—a(sm)
neN 0<s2,<...<s2<s1<t i—1

—(B(s2i—1 +d — s2) AN{B(s2i-1 — s2:) + X })]}}. (9.13)

This can be recast as a recursion on timedf N, following the time method to solve (9.12) instead of the
space method. This recurstion is established in [17].

9.2 APPLICATION 1: BOUND ON LOSSRATE

Let us return to the case of losses due to buffer overflow, apgase that in this section fresh traféids
constrained by an arrival curve

The following theorem provide a bound on the loss tate= L(t)/a(t), and is a direct consequence of the
loss representation (9.6).

THEOREM 9.1 (Bound on loss rate)Consider a system with storage capaciy offering a service curvg
to a flow constrained by an arrival curve. Then the loss rat&t) = L(t)/a(t) is bounded above by

N
I(t)= |1 — inf Bla) £ X 17

o<s<t «(s) (9.14)

9.3. APPLICATION 2: BOUND ON LOSSES IN COMPLEX SYSTEMS 233

PROOF: With [(¢) defined by (9.14), we have that for aby< u < v < ¢,

i g BOAX _Bu-—w+ X B —u)+ X
L0 =0 T® T S e w S a() —a(w)

because(v) — a(u) < a(v — u) by definition of an arrival curve. Therefore, for aby< v < v < t,

a(v) — a(u) = Bv —u) — X <I(t) - [a(v) — a(u)].
Foranyn € Ny = {1,2,3,...}, and any sequencgs }i<i<on, With 0 < s, < ... < 57 < ¢, setting
v = S9;_1 andu = sy; in the previous equation, and summing o¥vawre obtain

n n

> lalsaic1) — alsai) = Blszio1 — s21) = X] < 1(t) - Y [a(sai-1) — a(s2)] .

i=1 i=1

Because the,, are increasing wittt, the right hand side of this inequality is always less thargqual to,
[(t) - a(t). Therefore we have

L(t) < sup { sup {Z [a(s2i—1) — a(s2;) — B(s2i—1 — s2i) — X] }}

neN | 0<s2,<...<s1<t i=1
which shows thak(t) > I(t) = L(t)/a(t). O
To have a bound independent of tiheve take the sup over allof (9.14), to get

10:)[(t): [1—infwr,

-~ (9.15)

and retrieve the result of Chuang [16].
A similar result for losses due to delay constraininstead of finite buffetX, can beeasily obtained too:

+
i = {l_oggt ﬁ(jz(—;)d)] (9.16)
. B+ d)]T
[= {1—%25 ofl)] . (9.17)

9.3 APPLICATION 2: BOUND ON LOSSES INCOMPLEX SYSTEMS

As a particular application of the loss representation fden{9.6), we show how it is possible to bound
the losses in a system offering a somewhat complex service ¢y by losses in simpler systems. The
first application is the bound on the losses in a shaper by teraythat segregates the resources (buffer,
bandwidth) between a storage system and a policer. Thedepmtication deals with a VBR shaper, which
is compared with two CBR shapers. For both applications|dbges in the original system are bounded
along every sample path by the losses in the simpler systéfos.congestion times however, the same
conclusion does not always hold.

9.3.1 BOUND ON LOSSES BYSEGREGATION BETWEEN BUFFER AND POLICER

We will first compare the losses in two systems, having theesaput flowa(t).

234 CHAPTER 9. SYSTEMS WITH LOSSES

The first system is the one of Figure 9.1 with service cyhand bufferX, whose losse&(t) are therefore
given by (9.6).

The second system is made of two parts, as shown in Figura)9.Bfe first part is a system with storage
capacityX, that realizes some mappihf of the input that is not explicitly given, but that is assunedte
isotone, and not smaller thah(IT’ > II). We also know that a first clipper discards data as soon astle
backlogged data in this system exceéds This operation is calleuffer discard The amount of buffer
discarded data if0, ¢] is denoted byLp,.¢(¢). The second part is a policer without buffer, whose output is
the min-plus convolution of the accepted input traffic by pledicer by 5. A second clipper discards data
as soon as the total output flow of the storage system exchedaaximum input allowed by the policer.
This operation is callegolicing discard The amount of discarded data by policing[int] is denoted by

LPol(t)'

Bu.ffer Policer
Clipper Clipper
> System with
_>
al(t) + x(t) buffer X y(t)
LBuf(t) LPol(t]
(a)
Buffer Virtual segregated system
Clipper — — — — —
| Policer

— v Y1(U| Clipper
a0 < xS Ny

Liui(t) Lpoi(t)

(b)

Figure 9.3:A storage/policer system with separation between losses due to buffer discard and to policing
discard (a) A virtual segregated system for 2 classes of traffic, with buffer discard and policing discard, as
used by Lo Presti et al [56] (b)

THEOREM9.2. Let L(t) be the amount of lost data in the original system, with sereiorves and bufferX.

Let Lpyu¢(t) (resp. Lpoi(t)) be the amount of data lost in the time intery@l¢| by buffer (resp. policing)
discard, as defined above.

ThenL(t) < Lpu(t) + Lpoi(t).

9.3. APPLICATION 2: BOUND ON LOSSES IN COMPLEX SYSTEMS 235

PrROOF: Letz andy denote respectively the admitted and output flows of theebedf part of the second
system. Then the policer implies that= 5 ® x, and any times we have

a(s) — Lpue(s) — X = x(s) — X < y(s) < z(s) = a(s) — Lpus(s).
which implies that for any < u < v <,

y(v) —y(u) — Blv —u)
> (a(v) — Lput(v) — X) — (a(u) — Lput(v)) — B(v — u)
= a(v) —a(u) = B(v —u) = X — (Lpur(v) — Lpur(u))-

We use the same reasoning as in the proof of Theorem 9.1: wWampyo: € Ny and any increasing sequence
{skt1<r<on, With 0 < s9, < ... < 51 < t. Then we set = sy;_1 andu = sy, in the previous inequality,
and we sum ovet, to obtain

Z [y(s2i-1) — y(s2i) — B(s2i-1 — 52:)] >

i=1
> la(sai-1) — a(sai) — Blszi1 — s2:) — X]
i—1
- Z [(LBut(52i-1) — LBut(52i))] -

i=1

By taking the supremum over ail and all sequencegs; }i<x<2n, the left hand side is equal tp(t),
because of (9.6) (we can replace the inequality in (9.6) bgauality, because the output of the policer is
y = B ® x). Since{sy} is a wide-sense increasing sequence, and singe is a wide-sense increasing
function, we obtain therefore

LPol(t) >

sup { sup [a(s2i—1) — a(s2:) — B(s2i—1 — S2i) — X]} — Lpu(t)

neN (0<s9,<...<s1<t

= L(t) — Lpue(t),

which completes the proof. O

Such a separation of resources between the “buffered syatedripolicing system” is used in the estimation
of loss probability for devising statistical CAC (Call Aqutence Control) algorithms as proposed by Elwalid
et al [27], Lo Presti et al. [56]. The incoming traffic is seqtad in two classes. All variables relating to
the first (resp. second) class are marked with an index 1.(r@gpso thata(t) = aq(t) + ao(t). The
original system is a CBR shapef & \¢) and the storage system is a virtually segregated system as i
Figure 9.3(b), made of 2 shapers with rates and C5 and buffersX{ and X3j. The virtual shapers are
large enough to ensure that no loss occurs for all possibieabfunctionsa;(t) and ax(t). The total
buffer space (resp. bandwidth) is larger than the origindlie space (resp. bandwidthX} + X3 > X
(CY + C3 > C). However, the buffer controller discards data as soon asdfal backlogged data in the
virtual system exceedX and the policer controller discards data as soon as thedatplit rate of the
virtual system exceeds.

9.3.2 BOUND ON LOSSES IN AVBR SHAPER

In this second example, we consider of a “buffered leaky btickhaper [54] with buffetX’, whose output
must conform to a VBR shaping curve with peak r&tgsustainable raté/ and burst toleranc®& so that

236 CHAPTER 9. SYSTEMS WITH LOSSES

Clipper

R o

Lepr(t)

Clipper

Xepre(t)
a(t) —p> ' x+B [M)—»

Lepre(t)
(a)
Clipper Clipper
XCBR (t]
w0 > —»:@»
Yeer t)
Legr (t) LCBR (1)

(b)

Figure 9.4:Two CBR shapers in parallel (a) and in tandem (b).

here the mapping of the elementlis= Cgz with 3 = Ap A yas,5. We will consider two systems to bound
these losses: first two CBR shapers in parallel (Figure 9.4(ad second two CBR shapers in tandem
(Figure 9.4(b)). Similar results also holds for losses dua tlelay constraint [52].

We will first show that theamount of losseduring [0, ¢] in this system is bounded by the sum of losses
in two CBR shapers in parallel, as shown in Figure 9.4(a):fitlse one has buffer of siz& and rateP,
whereas the second one has buffer of size B and rateM. Both receive the same arriving traffias the
original VBR shaper.

THEOREM9.3. Let Lyg(t) be the amount of lost data in the time intery@lt] in a VBR shaper with buffer
X and shaping curv& = Ap A v, 5, When the data that has arrived |6, t] is a(t).

Let Legr (t) (resp. Legr (t)) be the amount of lost data duriri@, ¢t] in a CBR shaper with buffek (resp.
(X + B)) and shaping curve p (resp. As) with the same incoming traffig(t).

ThenLVBR(t) é LCBR’ (t) + LCBF{/ (t).

PrRooOF: The proof is again a direct application of (9.6). Pick @ny v < v < t. Sincef = Ap Ayum, B,

a(v) —a(u) — v —u) — X =
{a(v) —a(u) — P(v —u) — X} V{a(v) —a(u) — M(v—u) — B— X}
Pick anyn € Ny and any increasing sequente; }1<x<an, With 0 < sg, < ... < 51 < t. Setv = s9;1
andu = so; in the previous equation, and sum ovgto obtain

n

> la(sai1) — a(sai) — Blsai1 — s2:) — X]

i=1

9.4. SKOHORKHOD’S REFLECTION PROBLEM 237

= Z[{G(S%—l) —a(s2i) — P(s2i—1 — s2;) — X}
=1

V{a(s2i—1) — a(s2i) — M(s2i—1 — s2;) — B — X}
Z [a(s2i—1) — a(s2i) — P(s2i—1 — s2;) — X]

i=1

IN

+ Z [a(s2i—1) — a(s2i) — M (s2;—1 — s2i) — B — X]
i—1
§ LCBR’ (t) + LCBR” (t)7

because of (9.6). By taking the supremum overadhd all sequencess; }1<,<2, in the previous inequal-
ity, we get the desired result. O

A similar exercise shows that the amount of losses dufing in the VBR system is also bounded above by
the sum of losses in two CBR shapers in cascade as shown ireFgi(b): the first one has buffer of size
X and rateP, and receives the same arriving trafii@s the original VBR shaper, whereas its output is fed
into the second one with buffer of siZéand rate)M .

THEOREM9.4. Let Lyg(t) be the amount of lost data in the time intery@lt] in a VBR shaper with buffer
X and shaping curvg = Ap A var,5, Wwhen the data that has arrived jf, ¢] is a(t).

Let Legr (t) (resp. Legrr (t)) be the amount of lost data duriri@, ¢] in a CBR shaper with buffek (resp.
B) and shaping curve p (resp. Ays) with the same incoming traffie(t) (resp. the output traffic of the first
CBR shaper).

ThenLVBR(t) S LCBF((t) + LCBF\‘” (t)

The proof is left as an exercise.

Neither of the two systems in Figure 9.4 gives the better ddanany arbitrary traffic pattern. For example,
suppose that the VBR system parametersfare 4, M = 1, B = 12 and X = 4, and that the traffic is a
single burst of data sent at rakeduring four time units, so that

0 R-t if 0<t<4
YW=V 4r if t>4

If R = 5, both the VBR system and the parallel set of the WBR’ and CBR” systems are lossless,
whereas the amount of lost data after five units of time in &melém of the tw@’BR’ andCBR/” systems
is equal to three.

On the other hand, iR = 6, the amount of lost data after five units of time in the VBR systthe parallel
system CBR/ andCBR”) and the tandem systef@BR’ andCBR”) are respectively equal to four, eight
and seven.

Interestingly enough, whereas both systems of Figure 9ldwaind theamount of losses in the original
systemit is no longer so for theongestion periodd.e. the time intervals during which losses occur. The
tandem system does not offer a bound on the congestion pedodtrary to the parallel system [52].

9.4 SOLUTION TO SKOHORKHOD 'S REFLECTION PROBLEM WITH TwO
BOUNDARIES

To obtain the model of Figure 9.1, we have added a regulat@iledxclipper — before the system itself,
whose inpute is the maximal input ensuring a lossless service, giveni@fatorage capacity . The clipper

238 CHAPTER 9. SYSTEMS WITH LOSSES

eliminates the fraction of fresh trafficthat exceeds. We now generalize this model by adding a second
regulatorafter the lossless system, whose output is denoted witts shown on Figure 9.5. This regulator
complementg, so that the output of the full process is now a given functian 7. The resulting process
N =y — bis the amount of traffic that needs to be fed to prevent thegwsystem to enter in starvation.
N compensates for possible buffer underflows, hence we namsegtond regulataompensator

Clipper Compensator

x(t) y(t)
a(t) _>D—> S}E‘S’%‘i@ —p —» b(t)

L(t) N(t)

Figure 9.5:A storage system representing the variables used to solve Skorokhod’s reflection problem with
two boundaries

We can explicitly compute the loss procdsand the “compensation” proced§, from the arrival process
a and the departure procelsausing, once again, Theorem 4.9. We are looking for the mab&mlution

x(t) < Oigr;f%t{a(t)—a(s)—i-w(s)} (9.18)
z(t) < yt)+X (9.19)
y(t) < aft) (9.20)
y(O) < int {6(0) ~b(s) + y(s). (9.21)

The two first inequalities are identical to (9.1) and to (9®)e two last inequalities are the dual constraints
ony. We can therefore recast this system as

a A ha(z) Ay + X} (9.22)
bAx A hy(x). (9.23)

whereH andda are defined as
at) = fa(t) b()"

a(t) —a(s) oo(t—s)+ X
H(ts) = | "5 s) blt)— b(s)

forall 0 < s < t. Instead of computingf, we go faster by first computing the maximal solution of (9.23
Using properties of the linear idempotent operator, we get

y = hy(z Ab) = hy(x A b) = hy(x) A hy(b) = hy(2).

9.4. SKOHORKHOD’S REFLECTION PROBLEM 239

Next we replacey by h,(x) in (9.22), and we compute its maximal solution, which is
= hq A{hy + X} (a).
We work out the sub-additive closure using Corollary 4.1 e obtain
x = (hgo{hy+ X})(a) (9.24)

and thus
y = (hb o Ty o {hy + X}) (a). (9.25)

After some manipulations, we get

N(t) =b(t) —y(t) =
+
sup{ sup {Z —1)(a(s;) — b(s))} —nX} (9.26)

neN | 0<s2,4+1<...<52<51<t

L(t) = a(t) —z(t) =

2n
sup { sup {Z(—l)”l(a(si) - b(sz))} - nX} . (9.27)
neN | 0<s2,<...<52<51<t =1

Interestingly enough, these two functions are the solutibthe so-called Skorokhod reflection problem
with two fixed boundaries [74, 38].

Let us describe this reflection mapping problem following #xposition of [46]. We are given a lower
boundary that will be taken here as the origin, an upper bagynd > 0, and afree procesg(t) € R such
that0 < z(0—) < X. Skorokhod'’s reflection problem looks for function§¢) (lower boundary proce$s
andL(t) (upper boundary proceysuch that

1. Thereflected process
W(t) = z(t) + N(t) — L(t) (9.28)
is in [0, X] for all t > 0.
2. BothN(t) and L(t) are non decreasing witN (0—) = L(0—) = 0, andN(¢) (resp. L(t)) increases
only whenW (t) = 0 (resp.W(t) = X), i.e., with1,4 denoting the indicator function of

/0 I{W(t)>0}dN(t) =0 (9.29)

/0 Law<xydL(t) = 0 (9.30)

The solution to this problem exists and is unique [38]. Whely one boundary is present, explicit formulas
are available. For instance, ¥ — oc, then there is only one lower boundary, and the solution sdyea
found to be

N(t) = — inf {=(s)}

L(t) = 0.

If X < oo, then the solution can be constructed by successive appatioins but, to our knowledge, no
solution has been explicitly obtained. The following therargives such explicit solutions for a continuous
VF function z(¢). A VF function (VF standing for Variation Finie [38, 70})(¢) on R* is a function such

that for allt > 0
sup sup {Z |z(si) — 32+1)|} < 00.

neNg 0=sp<sp—1<...<s1<sp=t

VF functions have the following property [70}(t) is a VF function oriR* if and only if it can be written
as the difference of two wide-sense increasing function® on

240 CHAPTER 9. SYSTEMS WITH LOSSES

THEOREM 9.5 (Skorokhod’s reflection mappinglet the free process(t) be a continuous VF function on
R*. Then the solution to Skorokhod’s reflection problem®iX | is

2n+1 _
N(t) = sup { sup { Z (—1)’z(si)} - nX} (9.31)

neN | 0<s2,41<...<52<51<t i—1

2n
L(t) = sup { sup {Z(—l)”lz(si)} - nX} . (9.32)

neN | 0<s2,<...<s9<s1<t i—1

PROOF: As z(t) is a VF function on0, co), there exist two increasing function$t) andb(t) such that
z(t) = a(t) — b(t) forall t > 0. As z(0) > 0, we can také(0) = 0 anda(0) = z(0). Note thata, b € F.

We will show now thatl. = ¢ — z and N = b — y, wherez andy are the maximal solutions of (9.22) and
(9.23), are the solutions of Skorokhod’s reflection problem

First note that

W(t) = 2(t) + N(t) — L(t) = (a(t) — b(t)) + (b(t) — y(t)) — (a(t) — z(t)) = z(t) — y(t)

isin [0, X] for all t > 0 because of (9.19) and (9.20).

Second, because of (9.21), note thét0) = b(0) — y(0) = 0 and that for any > 0 and0 < s < t,
N(t) — N(s) = b(t) — b(s) + y(s) — y(t) > 0, which shows thatV(¢) is non decreasing. The same
properties can be deduced fb(t) from (9.18).

Finally, if W(t) = x(t) — y(t) > 0, there is some* € [0, ¢] such thaty(¢) = y(s*) + b(t) — b(s*) because
y is the maximal solution satisfying (9.20) and (9.21). Tleme for all s € [s*,],

0 < N(t) = N(s) < N(t) = N(s7) = b(t) = b(s™) + y(s™) —y(t) = 0

which shows thatV(¢) — N(s) = 0 and so thatV(¢) is non increasing itV (¢) > 0. A similar reasoning
shows thatl.(¢) is non increasing iV (t) < X.

ConsequentlyN (t) and L(t) are the lower and upper reflected processes that we are ¢pfikinWe have
already computed them: they are given by (9.26) and (9.2&pldRinga(s;)—b(s;) in these two expressions
by z(s;), we establish (9.31) and (9.32). O

9.5 BIBLIOGRAPHIC NOTES

The clipper was introduced by Cruz and Tenaja, and was estetwlget the loss representation formula
presented in this chapter in [17, 52]. Explicit expressish&n operatoil is a general, time-varying oper-
ator, can be found in [17]. We expect results of this chamidotm a starting point for obtaining bounds
on probabilities of loss or congestion for lossy shapers witmplex shaping functions; the method would
consist in applying known bounds to virtual systems and tageminimum over a set of virtual systems.

Bibliography

[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. A framewdok adapative service guarantees. In
Proc. Allerton Conf on Comm, Control and Comp, Monticellg, $ept 1998.

[2] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performamounds for flow control protocols.
IEEE/ACM Transactions on Networking (7)ages 310-323, June 1999.

[3] M. Andrews. Instability of fifo in session-oriented neivks. InEleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 200pages 440447, January 2000.

[4] J. C. R. Bennett, Benson K., Charny A., Courtney W. F., dn¥. Le Boudec. Delay jitter bounds and
packet scale rate guarantee for expedited forwardin@rdeeedings of Infocoppril 2001.

[5] J. C. R. Bennett, Benson K., Charny A., Courtney W. F., &nd. Le Boudec. Delay Jitter Bounds
and Packet Scale Rate Guarantee for Expedited Forward@ll/IEEE Transactions on Networking
2002.

[6] J.C.R.Bennettand H. Zhang. Wf2q: Worst-case fair wigidtiair queuing. IfiProceedings of Infocom
volume 1, pages 120-128, Mar 1996.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and Wi&¥¥. An architecture for differentiated
services, December 1998. RFC 2475, IETF.

[8] C. S. Chang. Stability, queue length and delay, part itebministic queuing networks. Technical
Report Technical Report RC 17708, IBM, 1992.

[9] C.-S.Chang, W.-J. Chen, and H.-Y. Hunag. On serviceajutaes for input buffered crossbar switches:
A capacity decomposition approach by birkhoff and von neumé#n Proc of IWQOS 99March 1999.

[10] C.S. Chang. On deterministic traffic regulation andvieer guarantee: A systematic approach by
filtering. IEEE Transactions on Information Theo¥4:1096—-1107, August 1998.

[11] C.S.ChangPerformance Guarantees in Communication Netwo8{winger-Verlag, New York, 2000.

[12] C.S. Chang and R. L. Cruz. A time varying filtering thedoy constrained traffic regulation and
dynamic service guarantees. Pneprint, July 1998.

[13] A. Charny, J.C.R. Bennett, K. Benson, J.-Y. Le BoudecChiu, W. Courtney, S. Davari, V. Firoiu,
C. Kalmanek, and K.K. Ramakrishnan. Supplemental Infoionafior the New Definition of the EF
PHB (Expedited Forwarding Per-Hop Behavior). RFC 3247,01&002.

[14] A. Charny and J.-Y. Le Boudec. Delay bounds in a netwoitk wggregate scheduling. First Inter-
national Workshop on Quality of future Internet Servicedume 1922 ol ecture Notes in Computer
Sciencepages 1-13, Berlin, Germany, September 2000. Springer.

241

242 BIBLIOGRAPHY

[15] I. Chlamtac, A. Farag6, H. Zhang, and A. Fumagalli. Aedministic approach to the end-to-end
analysis of packet flows in connection oriented networkSEE/ACM transactions on networking
(6)4:422-431, 08 1998.

[16] J.-F. Chuang, C.-M.and Chang. Deterministic losoorgtiality of service guarantees for high speed
networks.|IEEE Communications Letterd:236—238, July 2000.

[17] R.Cruz, C.-S. Chang, J.-Y. Le Boudec, and P. Thiran. A-plus system theory for constrained traffic
regulation and dynamic service guarantees. Technical RESL/1999/024, EPFL, July 1999.

[18] R. Cruz and M. Taneja. An analysis of traffic clipping. Pnoc 1998 Conf on Information Science &
Systems, Princeton Universit{998.

[19] R. L. Cruz. Lecture notes on quality of service guarasfe1 998.

[20] R. L. Cruz. Sced+ : Efficient management of quality ofvéms guarantees. IlEEE Infocom’98, San
Franciscq March 1998.

[21] R.L. Cruz. A calculus for network delay, part i: Netwoglements in isolationlEEE Trans. Inform.
Theory, vol 37-1pages 114-131, January 1991.

[22] R.L. Cruz. A calculus for network delay, part ii: Netvkoanalysis.|IEEE Trans. Inform. Theory, vol
37-1, pages 132-141, January 1991.

[23] B. Davie, A. Charny, F. Baker, J. Bennett, K. Benson,Y.J.Le Boudec, A. Chiu,
W. Courtney, S. Davari, V. Firoiu, C. Kalmanek, K. K. Ramakmam, and D. Stil-
iadis. An expedited forwarding phb, April 2001. Work in Pregs, Internet Draft,
ftp://ds.internic.net/internet-drafts/draft-ietf-diffserv-rfc2598bis-02.txt.

[24] G. De Veciana, July 1996. Duality and Convex PrograngmifResource allocation and Performance
Bounds.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis and sitioul of a fair queuing algorithmJournal
of Internetworking Research and Experienpages 3—-26, Oct 1990.

[26] N. G. Duffield, K. K. Ramakrishan, and A. R. Reibman. Saia algorithm for smoothed adaptative
video over explicit rate networksEEE/ACM Transactions on Networking:717—728, Dec 1998.

[27] A. Elwalid, Mitra D., and R. Wenworth. A new approach faltocating buffers and bandwidth to
heterogeneous, regulated traffic in ATM nod&EE Journal of Selected Areas in Communicatjons
13:1048-1056, August 1995.

[28] Baccelli F., Cohen G., Olsder G. J.,, and Quadrat ByRchronization and Linearity, An Algebra for
Discrete Event System3ohn Wiley and Sons, 1992.

[29] W.-C. Feng and J. Rexford. Performance evaluation afathing algorithms for transmitting variable-
bit-rate video.IEEE Transactions on Multimedid:302—-312, Sept 1999.

[30] L. Georgiadis, R. Guérin, V. Peris, and R. Rajan. Effitisupport of delay and rate guarantees in an
internet. InProceedings of Sigcomm’9fages 106-116, August 1996.

[31] L. Georgiadis, Gurin R., and Peris V. Efficient networkyisioning based on per node traffic shaping.
IEEE/ACM Transactions on Networking:482-501, 1996.

[32] P. Goyal, S. S. Lam, and H. Vin. Determining end-to-emtag bounds in heterogeneous networks.
In 5th Int Workshop on Network and Op. Sys support for Digitadiéwand Video, Durham NHApril
1995.

BIBLIOGRAPHY 243

[33] R. Guérinand V. Peris. Quality-of-service in packetworks - basic mechanisms and directicBem-
puter Networks and ISDN, Special issue on multimedia conuations over packet-based netwarks

1998.
[34] R. Guérin and V. Pla Aggregation and conformance inffetentiated ser-
vice networks — a case study. Technical Report Research rRepd Penn,

http://www.seas.upenn.edu:8080/ guerin/publicataggreg.pdf, August 2000.

[35] Jeremy Gunawardena. From max-plus algebra to nonsikgamappings: a nonlinear theory for
discrete event systempre-print, 1999.

[36] Sariowan H., Cruz R. L., and Polyzos G. C. Schedulinggfaality of service guarantees via service
curves. InProceedings ICCCN’95ages 512-520, Sept 1995.

[37] B. Hajek. Large bursts do not cause instabilligEE Trans on Aut Controi5:116-118, Jan 2000.
[38] J. M. Harrison.Brownian Motion and Stochastic Flow Systervdley, New-York, 1985.

[39] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Aagdorwarding phb group, June 1999. RFC
2597, IETF.

[40] Golestani S. J. A self clocked fair queuing scheme fghhépeed applications. IRAroceedings of
Infocom '94 1994.

[41] F. Farkas J.-Y. Le Boudec. A delay bound for a networkhveigggregate scheduling. Rroceedings
of the Sixteenth UK Teletraffic Symposium on Managementaft@af Service page 5, Harlow, UK,
May 2000.

[42] V. Jacobson, K. Nichols, and K. Poduri. An expeditedvarding phb, June 1999. RFC 2598, IETF.

[43] Y. Jiang. Delay bounds for a network of guaranteed rateess with fifo aggregation. Pre-print,
National University of Singapore, 2001.

[44] C Kalmanek, H. Kanakia, and R. Restrick. Rate conttbBervers for very high speed networks. In
IEEE Globecom’90, vol Jpages 12-20, 1990.

[45] Keshav. Computer Networking: An Engineering ApproacRrentice Hall, Englewood Cliffs, New
Jersey 07632, 1996.

[46] T. Konstantopoulos and V. Anantharam. Optimal flow cohschemes that regulate the burstiness of
traffic. IEEE/ACM Transactions on Networking:423-432, August 1995.

[47] Cruz R. L. and Okino C. M. Service guarantees for windawfcontrol. In34th Allerton Conf of
Comm., Cont., and Comp. Monticello,, lDct 1996.

[48] Gun L. and R. Guérin. Bandwidth management and coigesbntrol framework of the broadband
network architecture.Bandwidth management and congestion control frameworkebtoadband
network architecture, vol 2ages 61-78, 1993.

[49] Zhang L. A new traffic control algorithm for packet swiing networks. InProceedings of ACM
Sigcomm '901990.

[50] J.-Y. Le Boudec. Some properties of variable lengthkpaishapers. IProc ACM Sigmetrics / Perfor-
mance ‘0] pages 175-183, 2001.

244 BIBLIOGRAPHY

[51] J.-Y. Le Boudec and G. Hebuterne. Comment on a detesticrapproach to the end-to-end analysis
of packet flows in connection oriented netwoiEEE/ACM Transactions on Networking:121-124,
february 2000.

[52] J.-Y. Le Boudec and P. Thiran. Network calculus viewsdaamin-plus system theory applied to
communication networks. Technical Report SSC/1998/086;LE April 1998.

[53] J.-Y. Le Boudec and O. Verscheure. Optimal smoothinggiearanteed service. Technical Report
DSC2000/014, EPFL, March 2000.

[54] Jean-Yves Le Boudec. Application of network calculogtiaranteed service netword&EE Trans-
actions on Information Theoyy#4:1087-1096, May 1998.

[55] J. Liebeherr, D.E. Wrege, and Ferrari D. Exact admissiontrol for networks with bounded delay
services ACM/IEEE transactions on networking:885-901, 1996.

[56] F. Lo Presti, Z.-L. Zhang, D. Towsley, and J. Kurose. i®ettime scale and optimal buffer/bandwidth
trade-off for regulated traffic in a traffic nodeEEE/ACM Transactions on Networking:490-501,
August 1999.

[57] S.H. Lowand P. P. Varaiya. A simple theory of traffic aedaurce allocation in atm. [@lobecom’91
pages 1633-1637, December 1991.

[58] J.-Y. Le Boudec M. Vojnovic. Stochastic analysis of soexpedited forwarding networks. Fro-
ceedings of Infocom 200Rlew-York, June 2002.

[59] J. M. McManus and K.W. Ross. Video-on-demand over ATMn6tant-rate transmission and trans-
port. IEEE Journal on Selected Areas in Communicatjoh&087-1098, Aug 1996.

[60] J. Naudts A Scheme for Multiplexing ATM Sourc&Shapman Hill, 1996.

[61] J. Naudts. Towards real-time measurement of trafficrcbparametersComputer networks34:157—
167, 2000.

[62] Clayton M. Okino. A framework for performance guarasgen communication networks, 1998. Ph.D.
Dissertation, UCSD.

[63] A.K. Parekhand R. G. Gallager. A generalized proceskaring approach to flow control in integrated
services networks: The single node cd&&E/ACM Trans. Networking, vol 1-pages 344-357, June
1993.

[64] A.K.Parekhand R. G. Gallager. A generalized proceskaring approach to flow control in integrated
services networks: The multiple node caseEE/ACM Trans. Networking, vol 2-pages 137-150,
April 1994,

[65] Vinod Peris. Architecture for guaranteed delay saxiithigh speed networks, 1997. Ph.D. Disserta-
tion, University of Marylandht t p: / / www. i sr. und. edu.

[66] Fabrice P. Guillemin Pierre E. Boyer, Michel J. Servehe spacer-controller: an efficient upc/npc for
atm networks. INSS '92, Session A9.3, volumeQctober 1992.

[67] Agrawal R. and Rajan R. A general framework for analgzathedulers and regulators in integrated
services network. 184th Allerton Conf of Comm., Cont., and Comp. Monticellq,dages 239-248,
Oct 1996.

[68] Agrawal R. and Rajan R. Performance bounds for guaeanémd adaptive services, December 1996.
IBM Technical Report RC 20649.

BIBLIOGRAPHY 245

[69] J. Rexford and D. Towsley. Smoothing variable-bieraideo in an internetworklEEE/ACM Trans-
actions on Networkingr:202—-215, April 1999.

[70] H. L. Royden.Real AnalysisMc-Millan, New-York, 2 edition, 1968.

[71] J.-Y. Le Boudec S. Giordano. On a class of time varyingpshs with application to the renegotiable
variable bit rate servicelournal on High Speed Network3(2):101-138, June 2000.

[72] J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsleyp®rting stored video: Reducing rate
variability and end-to-end resource requirements thramjimal smoothinglEEE/ACM Transactions
on Networking 6:397-410, Dec 1998.

[73] H. Sariowan. A service curve approach to performancaranutees in integrated service networks,
1996. Ph.D. Dissertation, UCSD.

[74] A. Skorokhod. Stochastic equations for diffusion @eges in a bounded regicrheory of Probability
and its Applications6:264—-274, 1961.

[75] D. Stiliadis and A. Varma. Rate latency servers: a ganerodel for analysis of traffic scheduling
algorithms. INIEEE Infocom '96 pages 647—654, 1991.

[76] Rockafellar R. T.Convex AnalysisPrinceton University Press, Princeton, 1970.

[77] L. Tassiulas and L. Georgiadis. Any work conservingi@plstabilizes the ring with spatial reuse.
IEEE/ACM Transactions on Networkingages 205—208, April 1996.

[78] Lothar Thiele, Samarjit Chakraborty, and Martin NadedeReal-time calculus for scheduling hard
real-time systems. IIECAS Geneva, May 2000.

[79] P. Thiran, J.-Y. Le Boudec, and F. Worm. Network calsudyplied to optimal multimedia smoothing.
In Proc of Infocom 2001April 2001.

[80] D Verma, H. Zhang, and D. Ferrari. Guaranteeing dekigrjbounds in packet switching networks. In
Proceedings of Tricomm '91, Chapel Hiflages 35-46, April 1991.

[81] H. Zhang. Service disciplines for guaranteed perfarcesservice in packet switching networlo-
ceedings of the IEEB3:1374-1396, October 1995.

[82] H. Zhang and D. Ferrari. Rate controlled service digegs. Journal of High Speed Network3 No
4:389-412, August 1994.

[83] Honghiao Zhang. A note on deterministic end-to-endag@nalysis in connection oriented networks.
In Proc of IEEE ICC’99, Vancouver, pp 1223-122B099.

[84] Z.-L. Zhang and Duan Z. Fundamental trade-offs in aggte packet scheduling. BPIE Vol. 4526
August 2001.

Index

C4 (Vector min-plus convolution), 134 bivariate function, 132

Cs (Min-plus convolution), 133 burst delay function, 105

D, (Min-plus deconvolution), 133

P, (Packetization), 133 caching, 168

Ly (Min-plus linear operator), 136 causal, 139

N, 4 CDVT (cell delay variation tolerance), 13
Np, 233 concave function, 109

IT (Max-plus operator), 133 controlled Ior_sld service, 75

II (Min-plus operator), 133 convex function, 109

R*. 4 convex set, 109

Critical Load Factor, 181

rate-latency function), 106
Frz (y) mulative Packet Length, 41

F (set of wide-sense increasing functions that a?éJ
zero for negative arguments), 105

g (set of wide-sense increasing functions), 105

or (burst delay function), 105

damper, 93
damping tolerance, 93
Delay Based Scheduler, 80

7 (affine function), 106 DGCRA, 223

h (horizontal deviation), 128 dioid, 104

h, (Linear idempotent operator), 134

Ar (peak rate function), 105 Earliest Deadline First (EDF) scheduler, 80
Veriy 181 EDF see Earliest Deadline First, 80
@ (min-plus deconvolution), 122 EF, 87

@ (min-plus deconvolution), 129 epigraph, 110

® (min-plus convolution), 110 Expedited Forwarding, 87

® (max-plus convolution), 129

7 (sub-additive closure of), 118 Finite lifetime, 125

F (Set of wide-sense increasing bivariate functions

C%'CRA (Generic Cell Rate Algorithm
definition, 11

Good function, 14

GPS (generalized processor sharing, 18

GR, 70

greedy shaper, 30

greedy source, 15

guaranteed delay node, 20

Guaranteed Rate node, 70

guaranteed service, 75

132
ur - (Staircase function), 106
vy (step function), 106
v (vertical deviation), 128
V (max or sup), 122
A (min or inf), 103

Lexpr (Indicator function), 40

ABR, 223

adaptive guarantee, 202 horizontal deviation, 128
AF, 87

affine function, 106 idempotent, 141

arrival curve, 7 impulse response, 136, 139
Assured Forwarding, 87 infimum, 103

Available Bit Rate, 223 Intserv, 3

246

INDEX

isotone, 135 vertical deviation, 128

. Very good function, 16
limit to the left, 9

limit to the right, 6

linear idempotent operator, 134
look ahead delay, 155

lower semi-continuous, 135

max-plus convolution, 129
max-plus deconvolution, 129
maximum, 129

min-plus convolution, 110
min-plus deconvolution, 122
Min-plus linear, 136, 139
minimum, 103

minimum rate server, 199

Packet Scale Rate Guarantee, 197

Packetizer, 41

peak rate function, 105

PGPS: packet generalized processor sharing, 68
PL, 41

playback buffer, 155

playback delay, 155

policer, 30

Priority Node, 20, 176

pseudo-inverse function, 108

rate-latency function, 106
Re-negotiable service, 223
RSVP, 76

SCED, 80

shaper, 30

shaping curve, 30

shift invariant, 140

Shift matrix, 136

smooth &-smooth for some function(t), 7
smoothing, 155

staircase function, 106
star-shaped function, 110
step function, 106

strict service curve, 22
sub-additive closure, 118
sub-additive fucntion, 116
supremum, 129

T-SPEC (traffic specification), 13
time varying shaper, 223

upper semi-continuous, 134

variable capacity node, 22

247

