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Delay Jitter Bounds and Packet Scale Rate
Guarantee for Expedited Forwarding
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Abstract— We consider the definition of the Expedited
Forwarding Per-Hop Behaviour (EF PHB) as given in RFC
2598 [1], and its impact on worst case end-to-end delay jit-
ter. On one hand, the definition in RFC 2598 can be used to
predict extremely low end-to-end delay jitter, independent
of the network scale. On the other hand, we find that the
worst case delay jitter can be made arbitrarily large, if we
allow networks to become arbitrarily large; this is in contra-
diction with the previous statement. We analyze where the
contradiction originates, and find the explanation. It resides
in the fact that the definition in RFC 2598 is not easily imple-
mentable in schedulers we know of, mainly because it is not
formal enough, and also because it does not contain an error
term. We propose a new definition for the EF PHB, called
“Packet Scale Rate Guarantee”, which preserves the spirit
of RFC 2598, while allowing a number of reasonable imple-
mentations, and has very useful properties for per-node and
end-to-end network engineering. We show that this defini-
tion is stronger than the rate-latency service curve guaran-
tee. Then we propose some proven bounds on delay jitter
for networks implementing this new definition, both in cases
without loss and with loss.

Keywords— Differentiated Services; Expedited Forward-
ing; Delay Jitter

I. INTRODUCTION

We consider the Expedited Forwarding (EF) service, de-
fined by the IETF in the context of differentiated services.
The aim of EF is to provide low delay and virtually no loss
to some flows, without per flow queuing. The underlying
principle of EF is to ensure that at each hop the aggregate
of traffic requiring EF treatment receives a service rate ex-
ceeding the total bandwidth requirements of all flows in
the aggregate at this hop. Recently, many practical imple-
mentations of EF PHB have been suggested, where all EF
traffic is shaped and policed at the backbone ingress, while
in the core equipment all EF traffic shares a single priority
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FIFO or single high-weight queue in a Class-Based Fair
Queuing scheduler. Since these implementations offer a
very high degree of scalability at comparatively low price,
they are naturally very attractive.

More precisely, RFC2598 [1] defines the Expedited For-
warding Per-Hop Behaviour (PHB) as follows

Definition I.1 (RFC2598)“The EF PHB is defined as
a forwarding treatment for a particular diffserv aggregate
where the departure rate of the aggregate’s packets from
any diffserv node must equal or exceed a configurable rate.
The EF traffic should receive this rate independent of the
intensity of any other traffic attempting to transit the node.
It should average at least the configured rate when mea-
sured over any time interval equal to or longer than the
time it takes to send an output link MTU sized packet at
the configured rate.”

The intuitive content of this definition is fairly clear. On
all time scales ranging down to very small time scales, the
EF aggregate should be given at least its fair share of the
output link bandwidth. Among other things, this allows EF
to support applications that are delay- and jitter-sensitive.

Definition I.1 has been used in [2] to propose a service
called “Virtual Wire” which aims to provide a very low
end-to-end delay jitter to some flows. The delay jitter is
defined as the variable part of delay; in [2] as well as in
this paper, it is equated with queuing delay (thus ignoring
delay variations due to route changes or to the nature of
the physical layer on radio links). Definition I.1 is used in
[2] as the basis for showing that, in an arbitrary network,
the end-to-end delay jitter is bounded by�T , whereT is
the assumed packet inter-emission time for sources using
the Virtual Wire service, and� is a bound on the utiliza-
tion factor on very link. The utilization factor is defined
as the ratio between the maximum sustainable rate for the
aggregate of all flows using the Virtual Wire service, and
the configured rate at this link.

In this paper we first analyze a network which exhibits a
behaviour very different from what can be expected based
on the previous paragraph. Indeed, in Section II, we con-
struct a family of networks, with a unique service class
and constant rate links, which violates the expected result.
More precisely, for any arbitrary largeD, we can exhibit
one network in this family for which the worst case end-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


EPFL DSC/2000/030 2

to-end delay jitter is larger thanD, while the packet inter-
emission timeT and the utilization factor� remain con-
stant (with� < 1). This example, while being of very
artificial nature, reveals a contradiction.

In Section III, we find that the contradiction comes
from Definition I.1 itself. We identify that the sched-
ulers/configuration rates on which the definition can be im-
plemented are quite limited. We show that these difficul-
ties are not correctable with any simple fix, and that they
prevent network engineers from configuring, advertising,
or analyzing the EF service.

Fortunately, there is an alternative definition, the packet
scale rate guarantee, that captures the intuitive content of
Definition I.1 and is implementable using a number of ex-
isting schedulers. It also admits quantitative compliance
testing. In Section IV, we define the packet scale rate guar-
antee, which we propose as alternative to Definition I.1.
This new definition has two parameters, a rateR (in bits
per second) and an error termE (in units of time). We
establish some of its properties, in particular in terms of
delay jitter. We show that it implies, but is stronger than,
the well known guaranteed rate scheduler definition, and
therefore it satisfies the rate-latency service curve property
defined for example in [3], [4], [5], [6]. We also give a
catalog of schedulers which satisfy our definition and give
their corresponding error terms. Hierarchical schedulers
have particularly low error terms.

In Section V we give some bounds on the worst-case
end-to-end delay jitter that can be expected from a network
of nodes that satisfy our definition and preserve packet se-
quence. First, we consider the lossless case. We find de-
lay jitter bounds under some assumptions on the maximum
utilization factor. These bounds exploit the fact that the
packet scale rate guarantee implies the service rate guar-
antee. We apply network calculus [4], [5], [6] to obtain the
bounds. Second, we consider a network with losses. We
obtain a bound by using the relation between queue length
and delay jitter shown in Section IV. The bounds in this
Section are deterministic, thus we expect that it is possible
to give better bounds that would be true only with some
probability; this is left for further work.

Proofs of the Theorems in Section IV are in the ap-
pendix.

II. A FAMILY OF NETWORK EXAMPLES WITH

ARBITRARY LARGE DELAYS

In this section we present a family of networks where
the delay jitter is arbitrarily large.

We consider a family of networks with a single traffic
class (the EF class) and constant rate links, all with same
bit rateC. The network is assumed to be made of infinitely

fast switches, with one output buffer per link. Assume that
sources are all leaky bucket constrained, but are served in
an aggregate manner, first in first out. Leaky bucket con-
straints are implemented at the network entry; after that
point, all flows are aggregated. Without loss of generality,
we also assume in this paper that propagation delays can
be set to 0; this is because we focus only on queuing de-
lays (see [4], [6] for a discussion). As a simplification, we
also assume that all packets have a unit size. In Section V,
we give the result that, for such networks, the end-to-end
delay jitter is bounded by hM

1�(h�1)�
, where� is the uti-

lization factor,h is the maximum hop count for any flow,
andM is a constant which depends on the packet size and
the ratio between leaky bucket depth and rate, under the
assumption that� < 1

h�1
. In this section, we consider a

family of networks with 1
h�1

< � < 1 (thus do not satisfy
the previous inequality). We show that for any fixed, but
arbitrary delay jitter budgetD, we can build a network of
that family where the worst case delay jitter is larger than
D. This will show a contradiction with the result on delays
in [2] mentioned in the introduction.

This family of networks was first introduced in [7]. We
give here a slight variant. A network in our family is called
N (h; �; J) and has three parameters:h (maximum hop
count for any flow),� (utilization factor) andJ (recursion
depth). We focus on the cases whereh � 3 and 1

h�1
<

� < 1, which implies that we can always find some integer
k such that

� >
1

h� 1

kh+ 1

kh� 1
(1)

NetworkN (h; �; J) is illustrated in Figures 1 and 2; it
is a collection of identical building blocks, arranged in a
tree structure of depthJ . Every building block has one in-
ternal source of traffic (called “transit traffic”),kh(h � 1)

inputs (called the “building block inputs”),kh(h� 1) data
sinks,h � 1 internal nodes, and one output. Each of the
h�1 internal nodes receives traffic fromkh building block
inputs plus it receives transit traffic from the previous in-
ternal node, with the exception of the first one which is fed
by the internal source. After traversing one internal node,
traffic from the building block inputs dies in a data sink.
In contrast, transit traffic is fed to the next internal node,
except for the last one which feeds the building block out-
put (Figure 1). Figure 2 illustrates that our network has the
structure of a complete tree, with depthJ . The building
blocks are organized in levelsj = 1; :::; J . Each of the in-
puts of a levelj building block (j � 2) is fed by the output
of one levelj � 1 building block. The inputs of level1
building blocks are data sources. The output of onej � 1

building block feeds exactly one levelj building block in-
put. At levelJ , there is exactly one building block, thus
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h - 1  i n t e r n a l  n o d e s

( h - 1 )  k h  i n p u t s
1  d a t a
s o u r c e

1  o u t p u t

( h - 1 )  k h  d a t a  s i n k s

m u l t i p l e x e r d e m u l t i p l e x e r

b u f f e r

Fig. 1. The internal node (top) and the building block (bot-
tom) used in our network example.

at levelJ � 1 there arekh(h � 1) building blocks, and at
level1 there are(kh(h� 1))

J�1 building blocks. All data

l e v e l  J  -  2

l e v e l  J - 1

l e v e l  J

Fig. 2. The network made of building blocks from Figure 1

sources have the same rater =
�C
kh+1

and burst tolerance
b = 1 packet. In the rest of this section we take as time
unit the transmission time for one packet, so thatC = 1.
Thus any source may transmit one packet every� =

kh+1
�

time units. Note that a source may refrain from sending
packets, which is actually what causes the large delay jit-
ter. The utilization factors on all links is�, and every flow
uses1 or h hops.

Now consider the following scenario. Consider some
arbitrary level 1 building block. At timet0, assume that
a packet fully arrives at each of the inputs of all leftmost
internal nodes inside building blocks in level1, and at time

t0+1, let a packet fully arrive from each data source inside
every level1 building block (this is the first transit packet).
The first transit packet is delayed byhk � 1 time units in
the first internal node. Just one time unit before this packet
leaves the first queue, let a packet fully arrives at each in-
put of the second internal node. Our first transit packet will
be delayed again byhk�1 time units. If we repeat the sce-
nario along all internal nodes inside the building block, we
see that the first transit packet is delayed by(h�1)(hk�1)

time units. Now from (1),� < (h � 1)(hk � 1), so it is
possible for the data source to send a second transit packet
at time(h�1)(hk�1). Let all sources mentioned so far be
idle, except for the emissions already described. The sec-
ond transit packet will catch up the first one, so the output
of any level1 building block is a burst of two back-to-back
packets. We can chooset0 arbitrarily, so we have a mech-
anism for generating bursts of 2 packets.

Now we can iterate the scenario and use the same con-
struction at level2. The level-2 data source sends ex-
actly three packets, spaced by� . Since the internal node
receiveshk bursts of two packets originating from level
1, a judicious choice of the level 1 starting time lets the
first level 2 transit packet find a queue of2hk � 1 pack-
ets in the first internal node. With the same construction
as in level 1, we end up with a total queuing delay of
(h � 1)(2hk � 1) > 2(h � 1)(hk � 1) > 2� for that
packet. Now this delay is more than2� , and the first three
level-2 transit packets are delayed by the same set of non-
transit packets; as a result, the second and third level-2
transit packets will eventually catch up the first one and
the output of a level 2 block is a burst of three packets.
This procedure easily generalizes to all levels up toJ . In
particular, the first transit packet at levelJ has an end-to-
end delay of at leastJ� . Since all sources become idle
after some time, we can easily create a last levelJ tran-
sit packet which finds an empty network and thus a zero
queuing delay.

Thus there are two packets in networkN (h; �; J), with
one packet having a delay larger thanJ� , while the other
packet has zero delay. This establishes that a bound on de-
lay jitter in networkN (h; �; J) has to be at least as large
asJ� . This example contradicts the application of Def-
inition I.1 made in [2], which would in this case predict
a delay jitter bounded by��. SinceJ can be arbitrarily
large, and� does not depend onJ , we have a contradic-
tion. As explained in Section III-A.5, the contradiction
comes from the fact that, contrary to the expected intu-
ition, Definition I.1 does not apply to this example. In
Section IV-C.1 we show that the new definition proposed
in this paper does not have this problem.
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III. A NALYSIS OF DEFINITION I.1

We now show that the contradiction comes from Defini-
tion I.1, which is not satisfied by the nodes in our network,
nor by most reasonable implementations of the EF “intu-
ition”. We first start with an analysis of some difficulties
caused by Definition I.1 then argue that incremental fixes
are not possible.

A. A Short List of Difficulties with Definition I.1

A literal interpretation of Definition I.1 would consider
the following three behaviors non-compliant.

A.1 Perfectly-Clocked Forwarding:

Consider the following stream forwarded from a node
with configured rateR = C=2, whereC is the output line
rate. In the illustration,E is an MTU-sized EF packet while
x is a non-EF packet or unused capacity also of size MTU.

... E x E x E x E x E x E x...
|-----|

The interval between the vertical bars is3MTU=C, which
is greater than MTU=(C=2), and so is subject to the EF
PHB definition. During this interval,3MTU=2 bits of the
EF aggregate should be forwarded, but only MTU bits are
forwarded.

A.2 No EF Packets to Forward

Consider a node configured as in the previous example,
and suppose that no EF traffic is offered to the node. Nat-
urally, it produces the output

... x x x x x x x x x x x x x ...
|-----|

As before, the interval between the vertical bars is
3MTU=C and is subject to the EF PHB definition, and
again an insufficient number of EF bits are forwarded.

Outrageous as this last example may be, it indicates that
a change to the definition is warranted. A related, slightly
more complicated, example illustrates that the exposed dif-
ficulty is not as trivial as one might hope.

A.3 Server Internal Delay

Consider a node configured as in the previous examples,
but with an internal delay of3T , with T = MTU=C, be-
tween the time that a packet arrives at the node and the time
that it is first eligible for forwarding. Such things as header
processing, route look-up, and delay in switching through
a multi-layer fabric could cause this delay. Now imagine
that EF traffic arrives regularly at a rate of2

3
R =

C
3

. The
node will perform as shown below.

EF Packet Number 1 2 3 4 5
Arrival(at node) 0 3T 6T 9T 12T
Arrival(at scheduler) 3T 6T 9T 12T 15T
Departure 4T 7T 10T 13T 16T

Again, the output does not satisfy Definition I.1, even
though the node is always backlogged. As with the pre-
vious example, the node cannot forward EF traffic faster
than it arrives. This example is important because the ob-
vious simple fixes discussed in section IV do not make this
example compliant.

A.4 Maximum Configurable Rate and Provisioning Effi-
ciency

With any non-preemptive scheduler, the maximum com-
pliant configurable rate for a EF aggregate isC=2 [2].
This is because an MTU-sized EF packet may arrive to an
empty queue at timet just as an MTU-sized non-EF packet
begins service. The maximum number of EF bits that
could be forwarded during the interval[t; t + 2MTU=C]

is MTU. But if R > C=2, then this interval would
be of length greater than MTU=R, and more than MTU
EF bits would have to be served during it. Thus,R
must be no greater thanC=2. Without significant over-
provisioning, even this rate can be configured only with
Priority Queueing (PQ) where the EF aggregate is as-
signed the highest priority. The behavior given in the
perfectly-clocked-forwarding example could be obtained
with a time-division multiplexed (TDM) circuit, but the
EF-configured rate could be R/3 at most. In other words,
the TDM circuit in this example would have to be 50%
over-provisioned just to satisfy a strict interpretation of
the definition. This is by no means the worst-case over-
provisioning requirement.

A.5 A FIFO single class network

This is the example in Section II. Consider levelj and
the output link used by the transit flow (point 1 on Fig-
ure 1). There arej idle packet transmission times, fol-
lowed by one packet transmission, thus the configured rate
is at most C

j+1
, which contradicts the EF intuition (the net-

work is dedicated to EF traffic, thus the rate should beC),
and explains the contradiction in Section II.

B. The Non-trivial Nature of the Difficulties

Upon the discovery of the examples given above and
others like them, it was the authors’ hope that simple fixes
to Definition I.1 would eliminate them. For instance, we
hoped that the first example could be corrected by a dif-
ferent definition of the intervals to which the definition
applied or by averaging over intervals. However, it soon
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became clear that any such redefinition of applicable in-
tervals leads to considerable implementation difficulties.
In essence, assuring that interval start and finish times are
properly aligned with epochs of the forwarded stream is
fraught with the risk of misinterpretation and mistake in
practice. Averaging of intervals leads to long-term guar-
antees, but annihilates the short-term guarantees that are
the essence of EF PHB.

The authors also explored two further simple fixes. The
first is the addition of the condition that the only intervals
subject to the definition are those that fall inside a period
during which the EF aggregate is continuously backlogged
in the node (i.e., when an EF packet is in the node). The
second is the addition of a latency term that could serve
as a figure-of-merit in the advertising of EF services. That
term could be expressed as
� In any interval of time[t1; t2] in which EF traffic is con-
tinuously backlogged, at leastR(t2 � t1 �E)

+ bits of EF
traffic must be served, whereR is the configured rate for
the EF aggregate andE is an implementation-specific er-
ror (or latency) term.

The “continuously backlogged” condition eliminates
the no-packets-to-forward difficulty, while the addition of
a latency term of size MTU=C resolves the perfectly-
clocked-forwarding example in Section III-A.1. However,
neither fix (nor the two of them together) resolves the third
example. The EF aggregate is continuously backlogged
and no finite latency term will suffice to bring the example
into conformance.

IV. PACKET SCALE RATE GUARANTEE, A NEW

DEFINITION FOR EF PHB

In this section we introduce our proposed definition,
study its properties, and show how some schedulers sat-
isfy it.

A. Packet Scale Rate Guarantee, a formal definition

The intent of EF PHB is to provide the configured ser-
vice rate to the EF aggregate at as small a timescale as
possible. In order to express this notion rigorously, we in-
troduce the definition of “packet scale rate guarantee”.

We first need some notation.
Let Pin(j) andPout(j) denote thej-th packet of the EF

aggregate arriving to and departing from a network node
respectively. In the case when all EF traffic shares a single
FIFO queue,Pin(j) andPout(j) refer to the same packet,
but in general thej-th arrival and thej-th departure may
correspond to different packets.

Let a(j) denote the time of arrival of the last bit of
Pin(j) to a network node. Letd(j) denote the time of

departure of the last bit ofPout(j) from the network node.
LetL(j) denote the length ofPout(j).

We require that the indexing is chosen in such a way
that the packetPin(1) arriving at timea(1) sees no other
packet of the EF aggregate in the node upon arrival, and
d(1) � a(1).

Definition IV.1 (Packet Scale Rate Guarantee)We say
that a node offers to the EF aggregate a “packet scale rate
guarantee R with latency E” if thej-th departure time sat-
isfies the following condition for allj � 0:

d(j) � F (j) +E (2)

whereF (j) is defined iteratively by

F (0) = 0; d(0) = 0

for all j > 0 :

F (j) = max [a(j);min (d(j � 1); F (j � 1))] +
L(j)

R
(3)

Note that the choice of indexes does not restrict when
in the actual packet stream we start the observation of the
arrival and departure process. The only restriction that is
being imposed is that the observation starts when there are
no EF packets in the node.

We now define the EF PHB as a forwarding treatment
for a particular diffserv aggregate where the node offers to
the aggregate a packet scale rate guaranteeR with latency
E, whereR is a configurable rate andE is a tolerance
which depends on the particular node characteristics.

B. Properties of Definition IV.1

B.1 Delay as a function of queue length

It is first important to note that just as Definition I.1, the
new definition does not in itself guarantee per-packet delay
for the EF aggregate. While the definition implies that the
aggregate service is within a certain error from the desired
service at the configured rate, the definition says nothing
about per-packet delay. In particular, for non-FIFO service
order for packets within the EF aggregate it is possible in
principle that a scheduler satisfying the EF definition (both
new and old) delays a given packet an infinite amount of
time.

However, if the node serves packets in order of arrival,
then a simple relation exists between queue length and
maximum delay. The proof is given in the appendix.

Theorem 1:If a scheduler conforms to Definition IV.1,
and the EF packets are served in FIFO order, then all EF
packets that are in the system at timet will leave the sys-
tem no later than at timet+Q=R+E, whereQ is the total
EF backlog at timet.
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B.2 Service Curve Property

We compare our definition with the rate-latency service
curve property [3], [4], [5], [6] used in the Integrated Ser-
vices context. It can be shown [4] that the rate-latency
curve is equivalent to the following conditions (we use the
same notation as with Definition IV.1):

d(j) � F 0
(j) +E (4)

whereF 0
(j) is defined iteratively by

F 0
(0) = 0

for all j > 0 :

F 0
(j) = max[a(j); F 0

(j � 1)] +
L(j)

R

(5)

It can be easily verified that Definition IV.1 is stronger
than the rate-latency service curve, namely if a scheduler
satisfies Definition IV.1 it also satisfies the rate-latency
curve. For this, simply notice that for allj, F 0

(j) � F (j).
As a result, all the properties known for the rate-latency
curve also apply to our definition (see Section V for an
application).

Our interest in the service curve guarantee concept is
that we know good end-to-end delay jitter bounds for it.
However, we now argue why Definition IV.1 is more suit-
able to reflect the intent of EF PHB than the rate-latency
curve. Theorem 1 and Section V-B also illustrate a bound
which is not obtainable with the rate-latency service curve.

It is easy to see thatF 0
(j) corresponds to the time the

j-th departure should have occurred, should the EF aggre-
gate be constantly served exactly at its configured rateR.
Following the common convention, we refer toF 0

(j) as
the “fluid finish time” of thej-th packet to depart.

While (5) guarantees the desired rate to the EF aggre-
gate in all intervals[0; t] within a specified error term, it
may nevertheless result in large gaps in service. For ex-
ample, suppose that (a large number)N of identical EF
packets of lengthL arrived from different interfaces to the
EF queue in the absence of any non-EF traffic. Then any
work-conserving scheduler will serve allN packets at link
speed. When the last packet is sent at timeNL=C, where
C is the capacity of output link,F (N) will be equal to
NL=R. Suppose now that at timeNL=C a large number
of non-EF packets arrive, followed by a single EF packet.
Then the scheduler can legitimately delay starting to send
the EF packet until time(N + 1)L=R + E � L=C. This
means that the EF aggregate will have no service at all in
the interval(NL=C; (N + 1)L=R + E � L=C). This in-
terval can be quite large ifR is substantially smaller than
C orN is large. In essence, the EF aggregate can be ”pun-
ished” by a gap in service for receiving faster service than
its configured rate at the beginning.

Definition IV.1 alleviates this problem by introducing
the termmin(d(j � 1); F (j � 1)) in the recursion. In par-
ticular, this allows Theorem 1 to hold, while it is easy to
see that it does not for the rate-latency service curve prop-
erty.

C. Satisfiability of the definition

We show in this section that a wide variety of schedulers
satisfy our definition.

C.1 Priority Scheduler (PQ)

Theorem 2:A strict priority scheduler in which all EF
packets share a single FIFO queue with total output rateC,
which is served at strict non-preemptive priority over other
queues satisfies Definition IV.1, with rateR = C and error
termE =

Lmax

C
. In the formula,Lmax is the maximum

packet size of non-EF packets.
The proof is given in the appendix. This shows that the
network in Section II satisfies the packet scale rate guaran-
tee with rateC and error termE = 0.

C.2 Packet Based Implementations of WFQ

A wide family of schedulers can be thought of as derived
from Weighted Fair Queueing (WFQ) [8]. More precisely,
we say that a scheduler is derived from WFQ if we can
compare its accuracy with respect to the reference fluid
scheduler when both are subject to the same arrival pat-
terns, in the following sense. Calld(i) the time of thei-th
departure under schedulerS, andG(i) the i-th departure
in the reference GPS scheduler with rateR allocated to the
flow. The accuracy ofS with respect to GPS is determined
by two error termsE1 andE2 such that for alli

G(i)�E1 � d(i) � G(i) +E2 (6)

The term E2 determines the maximum per-hop delay
bound, whereasE1 has an effect on the jitter at the out-
put of the scheduler. For example, it is shown in [9] that
W2FQ satisfiesE1(W2FQ) = Lmax=R, E2(W2FQ) =

Lmax=C, whereR is the rate allocated to a flow (here an
EF aggregate) andC is the total output rate. In contrast,
for PGPS [8]E2(PGPS) = E2(W2FQ), whileE1(PGPS)
is linear in the number of queues in the scheduler. This il-
lustrates that, while WF2Q and PGPS have the same delay
bounds, PGPS may result in substantially burstier depar-
ture patterns. A systematic collection of error termsE1

andE2 for all known schedulers is work in progress.
Theorem 3:If a scheduler satisfies (6), then it satisfies

Definition IV.1 with rateR and error termE = E1 +E2.
The proof is given in appendix.
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C.3 The new definition avoids the difficulties in Sec-
tion III-A

Definition IV.1 avoids the difficulties mentioned in Sec-
tions III-A.1 and III-A.2 because it does not attempt to
qualify the output rate, but rather considers an input-output
relationship.

Node internal delays are accounted for by adding the
delay to the error termE. Consider for example the case
in Section III-A.3 and assume that the scheduler (which is
left unspecified in the example) offers a packet scale rate
guarantee with rateR and error termE (for example we
may assume it is a scheduler derived from WFQ, see Sec-
tion IV-C.2). Then the complete node offers a packet scale
rate guarantee with rateR and error termE + 3T .

The problem mentioned in Section III-A.4 does not exist
anymore, as can be seen by examining the results in Sec-
tions IV-C.1 and IV-C.2. Finally, the problem mentioned
in Section III-A.5 is solved as mentioned in Section IV-
C.1.

V. SOME BOUNDS ON DELAYS ACHIEVABLE WITH

PACKET SCALE RATE GUARANTEE

In this section we consider a network of arbitrary topol-
ogy, offering to the EF class a service according to Defini-
tion IV.1. We first find a bound on delay jitter for the case
where network buffers are large enough to avoid any loss,
then we consider the case with losses.

A. Lossless case

There is a widespread belief, based largely on intu-
ition, that as long as the utilization on any link is kept
small enough (such as less than 50%), the worst case delay
through the network will be very small. Unfortunately, this
intuition leads to erroneous conclusions. The question of
delay bounds for a network with aggregate scheduling was
raised in [10]. In general, the set of utilization factors for
a session oriented network with aggregate scheduling that
keeps the network stable1 is not known. A partial result
is in [11], which shows that a uni-directional ring is stable
for any utilization factor less than 1, assuming that there
is only type of traffic and links are dedicated. The proof
does not hold, even for a ring, for a GPS scheduler, there-
fore it does not hold for the definition we are proposing
for EF. In [12], the author exhibits an unstable, session-
oriented network, with utilization factor1 (a “critical” net-
work), and claims that this also holds for some sub-critical
networks, but the proof is not conclusive. In addition, a
startling fact referred to as a “non-monotone property” of
FIFO networks is described in [12], where it is shown that

1I.e. that ensure that queues in the network are bounded

a network that isstablewith a set of sessions with given
rates may becomeunstableif the rates of some of these
sessions arereducedfor a period of time.

On the other side of the spectrum, [13], [14] demon-
strate that the ability to provide good delay bounds may
depend on complex global conditions. In particular, this
work assumes that individual flows are shaped at the net-
work entry in such a way that the spacing between packets
is at least equal to the so-called route interference number
(RIN)2. It is shown that in this case the end-to-end result is
bounded by the time to transmit a number of packets equal
to the RIN.

Considering a network where the EF aggregate is served
at all nodes in accordance to Definition IV.1, we can ap-
ply Section IV-B.2 and exploit the fact that a service curve
property holds. Indeed, delay bounds for such a case are
given in [7]. We recall them here.

The assumptions for the bound are as follows.

� Each end to end EF flowf is shaped to conform to a
leaky bucket with parameters(�f ; �f ) when it arrives at
the ingress edge. Note that the flow can itself consist of
a number of microflows sharing the same ingress-egress
edge pair, but no assumption is made on how those mi-
croflows are shaped.
� The node serving linkl offers to the EF aggregate a
packet scale rate guaranteeRl with error termEl. Let E
be a bound on allEl (namely,E � maxlEl).
� Let S(l) denote the set of all priority EF flows consti-
tuting the EF aggregate on linkl. It is assumed that the
amount of EF traffic on any link does not exceed a cer-
tain ratio� < 1 of the configured rate on any link. More
specifically it is required that for any linkl in the networkP

f2S(l) �f � �Rl.

� For any link l let �l =
1
R
l

P
f2S(l) �f , and let� be a

bound on all�l.
� The route of any flow in the network traverses at mosth

nodes (also referred to as hops)
� Let Pl denote a bound on the peak rate of all incoming
EF traffic at link l. If we have no information about this
peak rate, thenPl = +1. For a router with large internal
speed and buffering only at the output,Pl is the sum of the
bit rates of all incoming links. The delay bound is better
for a smallerPl.
� Let ul =

P
l
�R

l

P
l
��R

l

. Note that0 < ul � 1, ul increases
with Pl, and ifPl = +1, thenul = 1. Callu = maxl ul.

Then we have:

Theorem 4 ([7]) If � < minl
P
l

(P
l
�R

l
)(h�1)+R

l

then a

2RIN is defined as the number of occurrences of a flow joining the
path of some other flow.
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bound on the end-to-end delay jitter for EF traffic is

D =
h

1� (h� 1)u�
(E + u�)

If we have no information about the peak incoming rate
Pl, then we setPl = +1 and the theorem tells us that, for
� < 1

h�1
, a bound on delay is h

1�(h�1)�
(E + �).

If the condition on the utilization factor� in Theorem 4
is not satisfied, then it is not clear whether finite bounds
exist, and if so, what they would be. Section II is pre-
cisely about the case where Theorem 4 does not apply. It
shows that the worst case delay jitter can be made arbitrar-
ily large; thus if such bounds exist, then they must depend
on the network topology or size, not only on the utilization
factor and the number of hops as in Theorem 4.

B. Delay Jitter Bounds for lossy systems

Consider the same assumptions as in Section V-A with
one exception. Assume that the buffer sizeBl dedicated
to the EF aggregate at linkl is limited, and the buffer may
thus overflow. A direct application of Theorem 1 gives a
boundhD� on delay jitter, whereD� is a bound on delay
jitter at one node:

D�
= max

l

�
Bl

Rl

+El

�

In this case, another quantity of interest is the loss ratio. It
is proposed in [15] to upper bound the loss ratio at a node
l by

�l = 1�
Bl

B0

l

(7)

whereB0

l is the buffer which would be required for a
loss free operation.B0

l can be estimated by the network
calculus method used in [7], as follows. A total arrival
curve for EF traffic arriving at nodel has as an upper
bound the arrival curvea(t) = min(Plt; �Rlt + bl), with
bl = Rl(� + (h� 1)�D�

). It follows that

B0

l = max fmin[ PlEl; Rl(� + �(h � 1)D�
+El];

min[ Pl
u�1
��1

(� + �(h � 1)D�
);

Rl(u(� + �(h� 1)D�
) +El)]g

(8)
Combining (7) and (8) would give an upper bound of

the loss ratio at one node. The accuracy of this estimation
is work in progress. Alternative methods based on expo-
nentially bounded burstiness [16] will also be examined.

VI. CONCLUSION

While the intuitive content of the current definition of
EF is fairly clear, we have argued that it is not readily oper-
ational. In order for vendors, operators, service providers,

and users to exploit EF, they must be able to build nodes
that provide quantifiable EF service, to configure those
nodes, to advertise accurately the capabilities and capac-
ities of the offered EF service, and to determine the per-
node and end-to-end service characteristics. None of this
is possible unless the definition of EF admits quantitative
compliance testing.

As it stands, the RFC 2598 definition does not admit
such testing. Fortunately, there is an alternative defini-
tion, the packet scale rate guarantee, that captures the in-
tuitive content of the RFC 2598 definition and also admits
quantitative compliance testing. We have introduced this
new definition and shown that there are well established
scheduling policies to which it applies. We have also given
some explicit, deterministic bounds on delay jitter, in cases
with or without loss. The sharpness of the bounds is a topic
of its own which is not fully addressed in this paper. How-
ever we have indicated that better bounds must depend on
finer descriptions of the network, which may be beyond
the intention of differentiated services.

APPENDIX

I. PROOF OFTHEOREM 1

Consider timet. Let a(1); :::; a(n) denote the arrival
times of all EF packets that are in the system at timet. For
all of these packetsa(i) � t. Let d(0) � t denote the
last departure time beforet. Let d(1); :::; d(n) denote the
first n departures after timet, letL(1); :::L(n) denote the
packet lengths corresponding to these departures and let
F (1); :::; F (n) denote the corresponding “finish times” in
Definition IV.1. We now prove by induction thatF (i) �

t+
L(1)+:::L(i)

R
for all 1 � i � n.

Base case: Sincea(1) < t, it is easy to see that

F (1) = max[a(1);min(d(0); F (0))] +
L(1)

R

� max[a(1); d(0)] +
L(1)

R

� t+
L(1)

R

Inductive step: SupposeF (i) � t +
L(1)+:::L(i)

R
for all

i � j < n. Then, recalling that for all1 � j � n,
a(j) < t, we have

F (j + 1) = max[a(j + 1);min(d(j); F (j))] +
L(j+1)

R

� max[a(j + 1); F (j)] +
L(j+1)

R

� t+
L(1)+:::L(j+1)

R

Therefore, the firstn departures must occur no later than
F (n) +E = t+

L(1)+::::L(n)

R
+E. QED.



EPFL DSC/2000/030 9

II. PROOF OFTHEOREM 2

Consider any busy period of the EF queue. Letk = 1

correspond to the first packet in that busy period. Define
F (j) for all j � 0 by (3) with the value ofR set toC.

We prove by induction that for allk � 1 in this busy
period

d(k) � F (k) +
Lmax

C
(9)

This would immediately imply the theorem.
Base case: Fork = 1,

F (1) = max[a(1);min(d(0); F (0)] +
L(1)

C

� a(1) +
L(1)

C

(10)

because the first priority packet in the queue may wait at
most for one largest packet transmission before its own
transmission begins. It follows that

d(1) � a(1) + Lmax

C
+

L(1)

C

� F (1) +
Lmax

C

Inductive step: Note that for a packetk > 1 in the busy
period of the EF queue

d(k) = d(k � 1) +
L(k)

C
(11)

Now from the induction hypothesis

F (k � 1) � d(k � 1)�
Lmax

C

since EF has the highest priority. Plugging this into the
definition (3) ofF (k) gives

F (k) �

max[a(k);min(d(k � 1); d(k � 1)�
Lmax

C
)] +

L(k)

C

= max[a(k); d(k � 1)�
Lmax

C
] +

L(k)

C
(12)

It follows immediately from (12) that

F (k) � d(k � 1)�
Lmax

C
+
L(k)

C

Combining with (11) shows (9) and completes the induc-
tive step.

III. PROOF OFTHEOREM 3

We first prove that for alli � 0

F (i) � G(i)�E1 (13)

whereF (i) is the set of finish times recursively defined by
(3). Indeed, if (13) holds, then from (6) and (13):

d(i) � G(i) +E2 � F (i) +E1 +E2

which means that the scheduler satisfies Definition IV.1
with error termE = E1 +E2.

Proof of (13): First note that in the reference GPS sys-
tem, packeti starts its service at timemax[a(i); G(i � 1)]

and receives a service rate at least equal toR, thus

G(i) � max[a(i); G(i � 1)] +
L(i)

R
(14)

Now the proof of (13) proceeds by induction.
Base case:F (0) = 0, G(0) = 0, so (13) trivially holds

for i = 0.
Inductive step: Suppose (13) holds for allj = 0; 1:::i �

1, (i � 1). We have both

F (i� 1) � G(i� 1)�E1

and from (6)

d(i� 1) � G(i� 1)�E1

thus

min[F (i� 1); d(i � 1)] � G(i� 1)�E1 (15)

Combining this with (3), we obtain

F (i) � G(i� 1)�E1 +
L(i)

R
(16)

Again from (3) we have

F (i) � a(i) +
L(i)

R

� a(i)�E1 +
L(i)

R

(17)

Combining (16), (17) and (14) gives

F (i) � G(i)�E1

which completes the proof.
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