
The Simple Times
TM

THE QUARTERLY NEWSLETTER OF SNMP TECHNOLOGY, COMMENT, AND EVENTS

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times is an openly-available publication
devoted to the promotion of the Simple Network Man-
agement Protocol. In each issue, The Simple Times
presents technical articles and featured columns, along
with a standards summary and a list of Internet re-
sources. In addition, some issues contain summaries of
recent publications and upcoming events.

In this Issue:

Applications, Tools, and Operations
Bulk Transfers of MIB Data 1
SNMP++: An Object Oriented Approach to

Network Management Programming 8
SNMPv3 Support for SNMP++ 10
SNMPv3 at Networld+Interop 12
Key Vendors Support SNMPv3 14

Featured Columns
Questions Answered 14
Editor’s Comment 17

Miscellany
Standards Summary 18
Recent Publications 20
Calendar and Announcements 21

Publication Information 22

The Simple Times is openly-available. You are free
to copy, distribute, or cite its contents; however, any
use must credit both the contributor and The Simple
Times. (Note that any trademarks appearing herein are
the property of their respective owners.) Further, this
publication is distributed on an “as is” basis, without
warranty. Neither the publisher nor any contributor
shall have any liability to any person or entity with
respect to any liability, loss, or damage caused or alleged
to be caused, directly or indirectly, by the information
contained in The Simple Times.

The Simple Times is available as an online journal in
HTML, PDF and PostScript. New issues are announced
via an electronic mailing list. For information on sub-
scriptions, see page 22.

Bulk Transfers of MIB Data
Ron Sprenkels, University of Twente
Jean-Philippe Martin-Flatin, EPFL

Since the original days of SNMP back in early 1988,
the requirements for managing IP-based networks like
the Internet have changed considerably. An important
change is that the total amount of management in-
formation that needs to be transferred has increased
greatly. Not only did the size of traditional MIB data
grow, for example IP routing tables and TCP connection
tables, but also new types of management information
appeared, for instance accounting tables, which tend to
be bulky. The widely deployed SNMP version 1 was
not designed for transferring large amounts of data.
The overall latency of such transfers can be quite high
and the way in which the SNMP messages are encoded
for transmission over the network is not particularly
efficient. The new version 3 of the SNMP protocol,
while improving on other issues like security and access
control, does not improve the transfer of large amounts
of MIB data sufficiently, even though it provides a
get-bulk operation.

In this article, we look into ways of making bulk trans-
fers of MIB data between SNMP agents and managers
more efficient. We consider a bulk transfer to be the
transfer of several hundreds of kilobytes of MIB data
in a single logical transaction. For bulk transfers, our
objectives are:

� to reduce the end-to-end latency (i.e., the total time
to transfer a set of management data between an
agent and a manager, including marshalling, un-
marshalling and network transfer);

� to reduce the network overhead (i.e., the ratio be-
tween the amount of bytes transferred over the
network and the actual management information);
and

� to improve the retrieval of SNMP MIB tables (by
both reducing latency and network overhead for the
particular case of table retrieval).

These objectives share a common goal: to improve the
scalability of network management in the IP world.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Simple Times 2

Improving scalability has become necessary because
both the number of systems to be managed, as well as
the amount of management information per system has
increased.

This article is structured as follows. First we discuss
what we consider the three main problems with bulk
transfers: latency, network overhead and table retrieval.
Next we discuss three different approaches to solve
these problems. The first approach aims to be a small
evolutionary change to the current SNMPv3 framework,
requiring minimal changes to existing SNMP manager
and agent implementations. As such, this approach is
envisaged to be useful in the short term. The second
approach uses a mixture of SNMP and other protocols.
The third approach discusses alternative protocols and
encodings, abandoning the SNMP protocol and asso-
ciated BER encoding altogether. This approach will
therefore take longer to design, implement and deploy,
and is envisaged to be useful in the longer term. This
approach also serves as food for thought, and is intended
to solicit discussion on future Internet management
frameworks and protocols.

Problem #1: Latency

Currently, retrieving large amounts of MIB data in-
volves a high number of PDU exchanges over the net-
work. When using the get-next operator, the retrieval
of large tables with many rows requires at least one
get-next operation per table row. If a table row does
not fit into a single message (due to message size con-
straints) even more operations per row are needed.

RFC 1187 describes an algorithm that speeds up the
retrieval of an entire table by using multiple threads
in parallel where each thread retrieves only a portion
of the table. To make this work, one needs a man-
ager which supports multiple threads and which has
knowledge about the distribution of instance identifiers
in the table. Note that the algorithm does not reduce
the total number of request/response PDU exchanges.
Instead, it is more efficient in terms of latency because
several threads gather data simultaneously. The price
for achieving reduced latency with multiple threads is
bursty SNMP traffic, which can cause overload problems
on the agent side.

If the algorithm described in RFC 1187 is not used,
then each get-next operation must be completely fin-
ished before the next one can start. Things get worse in
case packets get dropped within the network, since re-
transmission timers have to expire and retransmissions
must succeed before the retrieval process can continue.

The situation improves with the introduction of the
get-bulk operator. However, the response to a single

get-bulk operation still has to fit into a single UDP
packet. In theory, UDP can handle packets of nearly
64 KBytes. In practice, the maximum packet size will
be much smaller. For the hundreds of kilobytes of MIB
data we are considering here, even the use of get-bulk
results in a large overall delay.

Each request/response exchange (be it get-next or
get-bulk) involves at least a network round trip delay
time, possibly time-out and retransmission delays, and
probably also other protocol stack overhead delays (e.g.
marshalling and unmarshalling of data, context switch-
ing). In summary, the overall latency of a bulk transfer
is high because of the large number of PDU exchanges
involved and their synchronous nature.

Problem #2: Network Overhead

Network overhead is the proportion of the network band-
width used for management which is thus unavailable
for the transport of user data. Particularly in the case of
bulk transfers, which deal already with large amounts
of data, it is import to keep that overhead low. All cur-
rently active SNMP frameworks (SNMPv1, SNMPv2c
and SNMPv3) are inefficient in terms of the number of
bytes needed to transfer MIB data over the network. We
identified three causes for this inefficiency: the Basic
Encoding Rules (BER), the OID naming scheme and
what we will call the “get-bulk overshoot” problem.

BER encoding is well known to be fairly inefficient
in terms of network overhead. Mitra [1] and Neufeld
and Vuong [2] describe this issue in detail. At the time
BER was chosen for SNMP, network overhead was not
considered to be a main issue; the reason BER was
selected was because it was readily available and simple
to implement. Since alternative encoding rules exist
nowadays, it is feasible to reduce network overhead by
selecting another set of encoding rules. These new rules,
however, should not increase latency too much due to
additional encoding/decoding times.

If we look at the OIDs of the objects involved in a
bulk transfer, we observe a high degree of redundancy.
For the objects in a table, we see multiple occurrences
of identical portions of OIDs: all OID prefixes up to
the column number are identical, as are the instance
identifier postfixes of all entries of a single table row.
Because of this, redundant information is transferred,
resulting in a higher network overhead than strictly
needed.

The get-bulk operator also adds to the network over-
head, since the manager, which does not know the size
of the table to be retrieved, has to guess a value for
the max-repetitions parameter. Using small values
for max-repetitions may result in too many PDU ex-

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 3

changes. Using large values, however, may result in an
“overshoot” effect: the agent returns data that does not
belong to the table the manager is interested in. This
data will be sent over the network back to the manager,
just to be discarded.

Problem #3: Table Retrieval

The problems with table retrieval discussed here are
holes in tables, table consistency and get-bulk overshoot
consequences.

Retrieving table objects is more complex than retriev-
ing other objects. This is due to the fact that the
SNMP frameworks have no notion of tables, but only
of conceptual tables. The difference between these two
concepts is important for tables that have rows in which
some columnar objects do not exist; in other words,
for tables that allow their row entries to have “holes”
in them. Consider the case where a manager wants
to retrieve a table by performing repeated get-next

operations. In most cases the manager uses for each row
of the table a single get-next operation. The get-next

PDU contains a list of OIDs, one for each column of the
row; the value of these OIDs is usually taken from the
response of the previous get-next operation. If there is
a hole in the table, the get-next operation returns the
elements of the next row, except for the column in which
there is a hole. For this column the get-next operation
returns the next available object in the MIB tree, which
is the columnar object for the next table row that does
have a value in that column (we will not discuss what
happens if none of the remaining table rows has a value
in that column). As a consequence, the manager is faced
with a set of columnar objects that do not belong to
the same row anymore; it has the cumbersome task of
finding out what objects belong to which rows and where
the holes are. In short, reconstructing the actual table,
including determining where the holes in the table are
and where the table ends, is a time-consuming task.

Another problem is that the manager has no guar-
antee that it will retrieve a table in a consistent state.
This is particularly true for large tables, because the
retrieval of such tables involves a large number of PDU
exchanges, which take a considerable amount of time. If
in the meantime some table elements are changed by the
agent, the manager ends up with an inconsistent view of
the table.

Finally there is a problem which we call “get-bulk
overshoot.” When get-bulk is used to retrieve a table,
object values may be returned that do not belong to the
table of interest. If, for example, a max-repetitions

value of 50 is used, and the table contains only 10
additional elements, 40 elements will be returned that

are not really needed. In this case, the agent processed
information, retrieved object values from the instrumen-
tation and used resources, just to have the manager
discard the information. This can add up to quite an
amount of wasted resources.

Now that we have outlined some problems with bulk
MIB data transfers, we will discuss three approaches to
solving them.

Approach #1: Extending SNMP

In the first approach, we seek to make small evolution-
ary additions to the SNMP frameworks. As a result,
any changes or additions to the current protocol should
be easy to implement with limited changes to existing
implementations, thus protecting the investment in cur-
rent implementations of the frameworks.

An Additional Transport: SNMP over TCP
Adding an SNMP over TCP transport mapping (in ad-
dition to the preferred transport mapping over UDP) is
probably the most lightweight addition that can be made
to the SNMP frameworks, and it already solves some of
the problems outlined earlier. The immediate effect of
moving from UDP to TCP is that the UDP limitation of
the maximum SNMP message size of nearly 64 KBytes
or less disappears. TCP has a window mechanism that
allows several chunks of data to be in transit in parallel.
This removes the cause for additional round trip time
latencies when a table row does not fit into a single UDP
message, or when the requested number of repetitions
for a get-bulk request does not fit into a single UDP
packet. As a result, overall latency will decrease and
table consistency will improve. A downside is that large
buffers are required on both the manager and the agent
to store the large SNMP messages. This can be a serious
problem for agents in embedded environments.

Several issues should be investigated:

� To prevent the need for large buffers, a scheme could
be defined where many related smaller messages
are sent over the same TCP connection.

� As a result of using TCP as a transport, both agents
and managers get a task they did not have before:
managing their TCP connections. Possible strate-
gies are to close each TCP connection immediately
after use, to keep and manage a pool of established
TCP connections, or to close TCP connections after
some period of inactivity.

� SNMP manager and agent implementors should
have the option to decide on a per-operation basis
whether to use UDP or TCP. When a manager
expects to retrieve little data from a large set of

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 4

agents, UDP is the best choice. Conversely, when
large tables or MIB subtrees are expected to be
retrieved from a small set of agents, TCP is a better
choice.

In the early days of SNMP, when a well-known UDP
port was reserved for SNMP (161), the same TCP port
number was also allocated to SNMP. As a result, the
reservation of a well-known port for SNMP over TCP is
not an issue.

In 1994, the University of Twente had (temporarily)
a prototype of SNMPv2p running over TCP. Recently,
Schönwälder and Deri modified the Linux CMU SNMP
library and the UCD-SNMP software to transport SNMP
traffic over TCP. These experiments suggest that the ex-
tension of an existing SNMP implementation to support
TCP should be relatively straightforward.

New Encoding Rules and/or Compression
An issue that affects both latency and network overhead
is the way the management information is encoded for
transmission over the network. We have two different
ways (that can be used in conjunction) to reduce the
network overhead with respect to plain BER: replacing
BER by a different set of encoding rules and adding
compression.

There are two different types of encoding schemes:
schemes that use a definite form for the length field
and schemes that use an indefinite form. Definite-form
schemes require the whole of the message to be in a
buffer, because they insert the length of the message in
front of the message. Indefinite-form schemes do not put
a length field in front of a message. Instead, they mark
the end of an encoded ASN.1 element by a special byte.
Hence, an indefinite-form scheme does not require the
complete message to be buffered and it can encode on
the fly.

We first note that all versions of SNMP mandate the
use of the definite form of BER. Replacing BER by
a different encoding scheme therefore requires a new
protocol version and is thus a major change.

The ISO has defined several alternatives to BER. PER
encoding (Packed Encoding Rules) has approximately
30% shorter encodings, at the expense of a small in-
crease in encoding time. PER allows the use of the
indefinite form, so no large encoding buffer is needed.
Lightweight Encoding Rules (LER) decrease overall la-
tency by ensuring quick encoding and decoding. How-
ever, network overhead is adversely affected, because
the encodings can be much longer than those generated
by BER. Distinguished Encoding Rules (DER) use the
definite form only. They slightly improve encoding time
over BER while having a minimal impact on network
overhead compared to BER. Finally, Canonical Encoding

Rules (CER) use the indefinite form like PER, but are
less demanding in terms of encoding time.

We initially thought we should move from a definite-
form encoding scheme to an indefinite-form encoding
scheme in order to avoid large buffers. We later realized
that the SNMP version 3 (SNMPv3) message header can
include an authentication digest, which is computed over
the whole PDU. As a result, we must buffer the entire
PDU before transmitting it anyway if authentication is
used. Therefore, switching to alternate encoding rules
does not really prove advantageous over BER in the
general case.

SNMPv3 allows to add encryption envelopes to SNMP
messages. This feature can not only be useful for its
intended purpose, which is encryption, but it can also
be exploited to achieve data compression. By adding
an encryption algorithm that in fact compresses the
message, the size of the messages that are transmit-
ted over the wire decreases. Defining compression as
an encryption algorithm allows to add compression to
SNMPv3 without making any changes to the protocol.
However, since there is no noAuthPriv security level in
SNMPv3, one has to use authentication in order to take
advantage of compression.

Using compression relieves us of the need to abandon
BER, in order to replace it with a new more efficient
encoding scheme. It leaves the installed base of im-
plemented and debugged BER encoding and decoding
software in place. Any standard compression algorithm
can be used like e.g. DEFLATE (RFC 1951), for which
stable, debugged implementations are readily available.

Additional Protocol Operation: get-subtree
We advocate introducing a new SNMP protocol operation
to be used for the retrieval of complete MIB sub-trees,
since neither get-nextnor get-bulk are efficient for that
purpose. Note that retrieving an entire table, an entire
table column or a part of a table column are all special
cases of a MIB subtree. We define the get-subtree

operation to retrieve all objects below a particular node
in the MIB tree. By allowing the operation not only to
retrieve a single subtree, but also to retrieve multiple
subtrees with a varbind list, the operation becomes even
more powerful. It can then be used to retrieve selected
columns of a complete table or selected columns within
a range of rows of a column.

Examples of the usage of this operation include re-
trieving the entire interface table (ifTable), retrieving
the operational status of all interfaces in the ifTable,
retrieving both the operational and the administrative
statuses of all interfaces in the ifTable, and retrieving
the state and remote address of all TCP connections to
a particular local address/port combination. For each of
these examples, the information is requested in a single

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 5

protocol operation.
The amount of data returned for a single get-subtree

operation can be quite large; this has two implications.
First, the get-subtree operation will be most useful
when used over TCP. The strict message size limitations
of the UDP transport would immediately break the
advantages of this new operation. Second, even when
using TCP as a transport, it will generally not be feasible
for agents to have memory buffers to store huge response
message. Further, since it might take some time for the
agent to collect the MIB data, other requests may have
to wait some time before a single-threaded agent will
process them. Therefore, a mechanism is needed that
allows the agent to return multiple related response

messages for a single get-subtree request. The TCP
transport will take care of any required retransmissions
and it will keep the responses in order. The TCP trans-
port will also provide a window that allows multiple
responses to be in transit concurrently.

In summary, the main advantages of the get-subtree

protocol operation are:

� A table can be retrieved using a single protocol oper-
ation. As a result, latency can be minimal: a single
round trip time for the protocol operation, plus what
is added by the TCP transport for connection setup,
segmentation, retransmissions, etc.

� The agent implementation collects from its instru-
mentation only the values of the requested objects;
there is no get-bulk overshoot anymore.

� The absence of get-bulk overshoot also means that
no network overhead is generated for objects that
are not of interest anyway.

� The single operation property gives the agent the
best chance of returning a consistent view of the
table to the manager, much better than with a large
number of separate get-next or get-bulk opera-
tions.

� It is no longer necessary to guess max-repetitions

values.

� The get-subtree operation can be an extension to
both SNMPv1 and SNMPv3. No new message for-
mat is needed, only a new PDU type. This qualifies
get-subtree as a relatively small evolutionary step.

An agent implementation of get-subtree collects and
returns each of the subtrees specified in its varbind list
simultaneously, that is, row by row for a table. This
ensures an efficient retrieval of table rows from the
instrumentation and it minimizes the risk of getting
inconsistencies within a single row.

The problem with holes in tables discussed previously
still exists. The reconstruction of the conceptual table
remains the task of the manager. Only the retrieval and
transport over the network is greatly simplified by this
new protocol operation.

Approach #2: Hybrid Solutions

In this approach we present a solution which uses a
combination of SNMP and other protocols.

Bulk File MIB and FTP Client MIB
Stewart proposed to solve the bulk transfers problem
by using SNMP together with the File Transfer Pro-
tocol (FTP). His proposal consists of two MIB mod-
ules. The first MIB module (CISCO-BULK-FILE-MIB)
specifies how an SNMP agent stores a user-defined
set of MIB data into a local file. The second MIB
module (CISCO-FTP-CLIENT-MIB) can be used to upload
local files to an FTP server using the FTP protocol. An
SNMP agent implementing both MIB modules can be
instructed to save a specified (large) amount of local MIB
data into a file and upload that file to a particular FTP
server. We will now describe these MIB modules briefly.

The CISCO-BULK-FILE-MIB defines three tables. The
cbfDefineFileTable defines the name of the file, how
it is stored and what encoding format will be used.
One or more entries in the cbfDefineObjectTable are
associated to a row in the cbfDefineFileTable. The
entries specify what local MIB objects should be put in
the file upon creation. A complete MIB table can be
specified in a single entry in the cbfDefineObjectTable.
A manager initiates the creation of the actual file by
doing a set operation on the cbfDefineFileNow object.
This results in a new entry in the cbfStatusFileTable

which keeps track of the progress of the file creation.
The storage type of a bulk file can either be perma-

nent, volatile or ephemeral, where the latter indicates
that data exists only in small amounts until it is read.
This storage type, when used in combination with the
CISCO-FTP-CLIENT-MIB, prevents the need for a buffer
large enough to hold the complete file.

There are three options for the format of the data files:
BER encoded, binary and human-readable ASCII. The
BER encoded format is identical to an SNMP varbind
list. The binary format consists of tags and data fields.
There is a tag to set a standard OID prefix, a tag for
a single object, and some tags to encode tables. Tables
are encoded with little OID redundancy: for each entire
row only the common instance portion of all the OIDs
in that row is encoded. The binary format uses a
proprietary encoding scheme for the ASN.1 primitive
types INTEGER, OCTET STRING and OBJECT IDENTIFIER.
The ASCII format is a mechanical translation of the

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 6

binary format; translation rules for tags and values to
ASCII are given in the MIB specification.

The CISCO-FTP-CLIENT-MIB has a single table. An
entry in the cfcRequestTable table specifies a local file
that is to be uploaded to a specified FTP server, either
in binary or in ASCII mode, using a specified user
name and password. A manager can initiate a file
transfer from the agent to an FTP server by setting
the cfcRequestEntryStatus to active. The progress
and result of the transfer can be monitored by reading
the cfcRequestOperationState and cfcRequestResult

objects. The manager can abort an ongoing transfer by
setting the cfcRequestStop object.

In summary, this solution to the bulk transfer prob-
lem requires agents to implement two MIBs and the
manager to configure entries in several MIB tables to
initiate and control bulk transfers. This means that
bulk transfers are treated totally different from nor-
mal accesses to MIB data. For this reason, security
needs to be considered separately for these transfers.
For example, there is no mechanism in place which
authenticates or encrypts management data while in
transit over the network. The hybrid solution described
here also requires an FTP server on the manager side.
This means that management data retrieved via a bulk
transfer is processed very differently from management
data retrieved via SNMP since it becomes available in a
file on an FTP server.

Approach #3: Other Protocols and/or Encodings

The most important value of the SNMP management
frameworks lies in the large amount of existing MIB
specifications. These are not only the standard MIB
specifications developed within IETF working groups,
but also proprietary, vendor-specific MIB specifications.
The MIB specifications are valuable because they rep-
resent detailed knowledge of what is relevant man-
agement information for a large variety of networking
devices, protocols, network elements, transmission me-
dias and so forth. This value exists regardless of the
protocol used to move information around or the way
the information is encoded while in transit. Therefore,
both the SNMP protocol and the encoding rules can be
replaced by something else. Some possibilities for such
replacements and their properties are examined in this
section.

MIME
From a software engineering point of view, management
data is just another example of structured data. The
Internet community has a standard way for transferring
structured data called MIME, which is essentially a
“bag and tag” scheme to transfer data. In order to

transfer management data using MIME, we need to
define a MIME type for it (the tag) and we need to
define how data of that type is structured inside the
bag. Because of the overhead it introduces, MIME is
only suited for transferring bulk data. Furthermore, by
means of a transfer encoding, MIME allows content to
be transparently compressed while in transit. We will
now discuss three options for the MIME type and its
encoding.

� Option #1 is to define a new MIME tag for putting
a BER-encoded SNMP message, which is normally
sent over UDP, inside the MIME body. Using the
multi-part feature, multiple related SNMP mes-
sages can be put into a single MIME envelope.

� Option #2 is to define a new MIME tag for putting
management data encoded in ASCII into the MIME
body. An ASCII representation for each SNMP
protocol operation and for all SMI data types must
be defined. Using an ASCII encoding scheme has
the advantage that it is usually easier for program-
mers to read, understand and process data in a
human-readable format.

� Option #3 is to represent SNMP protocol operations
and SMI data types using an XML Document Type
Definition (DTD). If XML gets good acceptance in
industry, we will see many programmers with expe-
rience of using XML. Encoding management data in
XML means that many programmers will have the
knowledge and skills required to build management
applications. This is a big advantage compared to
the current situation where programmers need to
have at least some basic knowledge about ASN.1
and BER.

Wrapping management data in MIME types has the
advantage that several existing protocols can be used
to move MIB data around. This includes SMTP (a
store and forward protocol) or HTTP (a request/response
protocol). We will look a bit closer at HTTP now.

HTTP
The well-known HTTP protocol is a good candidate
for transferring MIME-encapsulated management data.
We identified three reasons for that. First, the pro-
tocol was designed to transfer MIME data. Second,
there currently is a clear trend in industry to embed
HTTP servers for management purposes in networking
equipment. So the chances of HTTP being accepted
by industry as a protocol for management seem good.
Third, HTTP is based on TCP, so it is suitable for the
transfer of bulk data, as we outlined earlier.

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 7

There are some downsides to using HTTP for man-
agement as well; we will name three. First there is the
feature richness of HTTP. HTTP has numerous options
and features that are valid and useful for its intended
purpose, which is to be used as a document transfer pro-
tocol in the World-Wide Web. However, for the transfer
of management data, many of those features will not
be useful or usable. Conforming implementations of the
protocol must include all of these features. As a result,
the HTTP implementations in network devices will be
needlessly big and complex.

Second, since the development and standardization of
HTTP will remain focused on its original purpose, future
versions of the protocol might have characteristics that
are unwanted for a management protocol. Also, for the
same reason, it will probably be difficult to get new
features that are desirable for the use as a management
protocol into HTTP.

Finally, the security mechanisms proposed and used in
conjunction with HTTP do not directly map to the secu-
rity mechanisms defined in SNMPv3. This means that
either some mappings need to be defined or that there
will be different security mechanisms (authentication,
privacy, access control) for accessing the same MIB data
via SNMP or HTTP.

Conclusions

In this article, we looked at bulk transfers of MIB
data. The current SNMP management frameworks are
not very efficient for bulk transfers. The three main
problems identified in this paper are latency, network
overhead and table retrievals. We discussed three differ-
ent approaches to speed up bulk transfers of MIB data.

We first looked at solutions within the SNMP frame-
work. We believe that within the boundaries of the
current SNMPv3 framework and with relatively little
effort and small changes, the problems can be solved to
a large extent. Latency can be significantly decreased
by using TCP as a transport and by introducing a new
get-subtree protocol operation. Network overhead can
be decreased by compressing the payload of an SNMP
message. Table retrieval can be improved by applying
the new get-subtree operation to conceptual tables.

Second, there are possible hybrid solutions. We pre-
sented a solution proposed by Stewart. A downside
to this solution might be that it treats bulk transfers
as a separate, special issue, and still requires all of
the normal SNMP framework and protocol stack to be
in place. Furthermore, a whole new set of security
problems will be the result of such an approach. Other
hybrid solutions are probably also possible, but are not
discussed in this article.

The third approach is to replace SNMP with another
protocol. By using a protocol that runs over TCP, bulk
transfer latency can remain low. By using compression
on the encoded management information, network over-
head can be kept low. If a mainstream technology is used
for representing management information, e.g. XML,
building management applications will no longer require
skills specific to network management.

The first solution aims to be a small evolutionary
step with respect to the current SNMPv3 management
framework. It is relatively easy to implement and
keeps the current implementations largely intact. This
protects investments in current SNMP technology. The
second solution is probably also fairly easy to implement,
but has some architectural and security-related down-
sides that make it in our view less attractive than the
first one. The third solution is not covered in as much
detail as the first two. It will take quite some work
to further define that solution. Because it breaks so
radically with the current SNMP framework it will be
more difficult to get it implemented and deployed. As
such, it is intended to serve as food for thought for the
long-term future of Internet management.

Acknowledgments

The ideas presented in this article emerged during a
two-day meeting that took place in November 1998
in Lausanne, Switzerland. The following people were
involved:

� L. Deri, University of Pisa

� J.P. Martin-Flatin, EPFL

� A. Pras, University of Twente

� J. Schönwälder, Technical University Braunschweig

� R. Sprenkels, University of Twente

� B. Wijnen, IBM T.J. Watson Research

This meeting resulted in the creation of the Network
Management Research Group (NMRG) of the Internet
Research Task Force (IRTF). Contact information and
additional documentation can be found on the NMRG
Web page at http://www.ibr.cs.tu-bs.de/projects/nmrg/.

References

[1] N. Mitra, Efficient Encoding Rules for ASN.1-Based
Protocols, AT&T Technical Journal, 73(3):80-93,
1994.

[2] G. Neufeld, S. Vuong, An overview of ASN.1, Com-
puter Networks and ISDN Systems, 23:393-415,
1992.

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 8

SNMP++: An Object Oriented Ap-
proach to Network Management
Programming

Peter Erik Mellquist, Hewlett Packard Corporation

Various Simple Network Management Protocol (SNMP)
Application Programmers Interfaces (APIs) exist which
allow for the creation of network management appli-
cations. The majority of these APIs provide a large
library of functions that require the programmer to be
familiar with the inner workings of SNMP and SNMP
resource management. Most of these APIs are platform
specific, resulting in SNMP code specific to an operating
system or network operating system platform and thus
not portable.

Application development using C++ has entered the
main stream and with it a rich set of reusable class
libraries are now readily available. What is missing
is a standard set of C++ classes for network manage-
ment. An object oriented approach to SNMP network
programming provides many benefits including ease of
use, safety, portability and extensibility. SNMP++ offers
power and flexibility that would otherwise be difficult to
implement and manage.

What Is SNMP++?

SNMP++ is a set of C++ classes that provide SNMP
services to a network management application devel-
oper. SNMP++ is primarily focused on management
application development, but many of the C++ classes
have been used in the agent space as well. SNMP++ is
not an additional layer or wrapper over existing SNMP
engines. SNMP++ utilizes existing SNMP libraries in
a few minimized areas and in doing so is efficient and
portable. SNMP++ is not meant to replace other existing
SNMP APIs such as WinSNMP, rather it offers power
and flexibility which would otherwise be difficult to
manage and implement.

SNMP++ Features

SNMP++ is based around a set of C++ classes including
the Object Identifier (Oid) class, Variable Binding (Vb)
class, Protocol Data Unit (Pdu) class, Snmp class and a
variety of classes making work with ASN.1 and SMI
types easy and object oriented.

The classes manage various SNMP structures and
resources automatically when objects are instantiated
and destroyed. This frees the application programmer
from having to worry about de-allocating structures
and resources and thus provides better protection from

memory corruption and leaks. SNMP++ objects may
be instantiated statically or dynamically. Static object
instantiation allows destruction when the object goes
out of scope. Dynamic allocation requires use of the
C++ constructs new and delete. Internal to SNMP++
are various SMI structures which are protected and
hidden from the public interface. All SMI structures
are managed internally, the programmer does not need
to define or manage SMI structures or values. For
the most part, usage of ‘C’ pointers in SNMP++ is non
existent. By hiding and managing all SMI structures
and values, the SNMP++ classes are easy and safe to
use. The programmer cannot corrupt what is hidden and
protected from scope.

GenAddressIpAddress MacAddress

UdpAddress IpxSockAddress

TimeTicks Gauge32 Counter32

Oid Address OctetString Int32 Uint32 Counter64

SnmpSyntaxVb

Pdu Snmp Target

CTarget

IpxAddress

An SNMP++ application communicates with an agent
through a session model. That is, an instance of the
Snmp class maintains logical connections to specified
agents. An application may have multiple Snmp in-
stances, each instance communicating to the same or
different agent(s). This is a powerful feature that allows
a network management application to have different
sessions for each management component. For example,
an application may have one Snmp object to provide
graphing statistics, another Snmp object to monitor traps,
and a third Snmp object to allow SNMP MIB browsing.
SNMP++ automatically handles multiple concurrent re-
quests from different Snmp instances. Alternatively, a
single Snmp instance may be used for everything.

The majority of SNMP++ is portable C++ code. Only
the implementation of the Snmp class is different for
each target operating system. If your program contains
SNMP++ code, this code will port without any changes.
Currently SNMP++ implementations are available for
Microsoft Windows NT, Windows ’95 and ’98, HP UNIX,
and Sun Solaris.

SNMP++ supports automatic time-out and retries.
This frees the programmer from having to implement
time-out or retry code. Retransmission policy is defined

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 9

in the SnmpTarget class. This allows each managed
target to have its own time-out / retry policy.

SNMP++ supports a blocking and an asynchronous
model. The blocked mode for MS-Windows allows multi-
ple blocked requests on separate Snmp class instances.
SNMP++ also supports a non-blocking asynchronous
mode for requests. Time-outs and retries are supported
in both blocked and asynchronous modes.

SNMP++ has been designed with support and usage
for SNMP version 1 (SNMPv1) and version 2c (SN-
MPv2c). All operations within the API are designed to
be multi-lingual and they are not SNMP version spe-
cific. Through utilization of the SnmpTarget class, SNMP
version specific operations are abstracted. SNMP++
supports all six SNMP operations (Get, GetNext, Get-
Bulk, Set, Inform and Trap) through corresponding Snmp

member functions. Each of these six functions utilizes
similar parameter lists and operates in a blocked or non-
blocked (asynchronous) manner. SNMP++ is designed to
allow trap reception and sending on multiple transports
including IP and IPX. In addition, SNMP++ allows trap
reception and sending using non-standard trap IP ports
and IPX socket numbers.

SNMP++ is implemented using C++ and thus allows a
programmer to overload or redefine behavior which does
not suite their needs. For example, if an application
requires special Oid object needs, a subclass of the Oid

class may be created, inheriting all the attributes and
behavior the Oid base class while allowing new behavior
and attributes to be added to the derived class.

An Introductory Example

Here is a simple example that illustrates the power and
simplicity of SNMP++. This example obtains the MIB-2
sysDescr.0 object from the specified agent. The example
shows all code needed to create a SNMP++ session, get
the system description, and print it out. Retries and
time-outs are managed automatically.

#include "snmp_pp.h"
#define SYSDESCR "1.3.6.1.2.1.1.1.0" // OID for sysDescr.0
void get_system_descriptor()
{
int status;
CTarget ctarget((IpAddress) "10.4.8.5"); // SNMP++ community target
Vb vb(SYSDESCR); // SNMP++ VB Object
Pdu pdu; // SNMP++ PDU

// Construct a SNMP++ SNMP session object. Check the
// creation status and print an error message on failure.

Snmp snmp(status);
if (status != SNMP_CLASS_SUCCESS) {

cout << snmp.error_msg(status);
return; }

// Add the varbind to the pdu object and invoke an SNMP get
// operation. Print the result or an error message.

pdu += vb;
if ((status = snmp.get(pdu, ctarget)) != SNMP_CLASS_SUCCESS)

cout << snmp.error_msg(status);
else {

pdu.get_vb(vb,0);
cout << "System Description = "<< vb.get_printable_value(); }

}; // Thats all!

The actual SNMP++ calls are made up of ten lines of
code. A CTarget object is created using the IP address of
the agent. A variable binding (Vb) object is then created
using the object identifier of the MIB object to retrieve.
The Vb object is then attached to a Pdu object. An Snmp

object is used to invoke a get operation. Once retrieved,
the response message is printed out. All error handling
code is included.

Applications Using SNMP++ Today

A significant number of commercial network manage-
ment applications have been successfully deployed using
SNMP++. This includes applications running stand-
alone as well as those integrated within network man-
agement platforms. In the area of Windows based man-
agement applications, SNMP++ is tightly integrated
with WinSNMP allowing sharing of trap services.

All source code for SNMP++ is freely available to any
developer. This includes all source code and make files
for building the libraries on MS-Windows, HP UNIX or
Sun Solaris. Since the code is ANSI C++ compliant, it
can also be ported to other platforms easily. Developers
are free to use SNMP++ in their products without any
royalties.

Future of SNMP++

SNMP++ has evolved to address a variety of needs. To
date SNMP++ includes a complete API for SNMP ver-
sion 1 and version 2c. In the near future, developments
in the area of SNMP version 3 and agent side classes will
be available. More information on SNMP++ including
a complete specification, libraries and source code is
available at http://rosegarden.external.hp.com/snmp++/.
Discussions on SNMP++ can be mailed to the Win-
SNMP mailing list. To subscribe, send an electro-
nic mail message to listserv@mailbag.intel.com with
subscribe winsnmp in the body.

References

[1] Rumbaugh, James, Object-Oriented Modeling and
Design, Prentice Hall, 1991

[2] Stroustrup, Bjarne, The C++ Programming Lan-
guage, Second Edition, Addison Wesley, 1991

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 10

[3] Mellquist, Peter E., SNMP++ An Object Oriented
Approach to Network Management Programming
Using C++, Sunsite FTP server.

[4] Mellquist, Peter E., SNMP++: An Object-Oriented
Approach to Developing Network Management Ap-
plications, Prentice Hall, 1997.

[5] Natale, Bob, WinSNMP v2.0 - Evolution of an
industry-standard API, The Simple Times 6(1),
March 1998.

SNMPv3 Support for SNMP++
Jochen Katz, University Karlsruhe

SNMP++v3 was developed within the scope of a students
assignment at the University of Karlsruhe. The purpose
of this work was to integrate support for SNMPv3 into
SNMP++. SNMP++v3 and AGENT++v3, a C++ class
library for SNMP agents, are used to build an agent
which grants read/write access to objects that need to
be protected from unauthorized access. Three months of
time had to suffice to survey SNMPv3, extend SNMP++
and write an elaboration. The base of this implementa-
tion are the RFCs 2271-2275 and SNMP++ version 2.61.
Peter Mellquist will have a look at this implementation
and probably take parts of it to build an official version of
SNMP++ with support for SNMPv3. For more informa-
tion about SNMP++v3 and AGENT++v3, visit the Web
page at http://www.fock.de/agent++/.

Requirements

This implementation had to meet several requirements:

1. Existing programs for SNMP++ must stay usable
with SNMP++v3.

2. Changes to existing SNMP++ classes and functions
should be kept to a minimum. This will make it
easy to patch the modifications into future releases
of SNMP++.

3. The details of time synchronization and engineID
discovery should be hidden from the user. In par-
ticular, SNMP++v3 must re-send requests in case
a Report-PDU is received which contains an un-
knownEngineIDs or a notInTimeWindows counter.

To support SNMPv3, parts of the dispatcher and the
complete SNMPv3 message processing model (v3MP)
and the user-based security model (USM) were imple-
mented and integrated into SNMP++. The SNMP++
classes Snmp and SnmpMessage needed modifications.

Message Processing

To hide the time synchronization and engineID discov-
ery from the user the Snmp class was modified. If the
user requests the class to send a Pdu with SNMPv3, first
the Pdu is stored for later reference and the engineID
of the host specified in the target object is determined.
If the engineID is unknown, the zero length engineID
is used. Then the request is treated like any other
SNMPv1/SNMPv2c request, i.e. it is passed to the
SnmpMessage class, which dispatches the message to the
appropriate Message Processing Model. The returned
serialized message is sent over the network and the
response is passed to the SnmpMessage class for deseri-
alization. In case the received Pdu is a Report-PDU, it is
checked whether it contains the unknownEngineIDs or
the notInTimeWindows counter. If this is true, the whole
process is repeated, i.e. the engineID is determined,
the original message is serialized and sent again. Addi-
tional tests prevent an infinite loop. For asynchronous
requests, this test is implemented by a new callback
function that is called instead of the function specified
by the user.

SNMP++ dispatches messages automatically between
the network and the application. The dispatcher checks
the version of incoming or outgoing messages and either
calls the new functions of the v3MP or the standard
functions to parse or build SNMPv1/SNMPv2c mes-
sages. The ASN.1/BER functions are called in the
SNMP++ class SnmpMessage. The methods of this class
were extended to check the version and to call the
correct message processing model. The methods of the
SnmpMessage class return and are called with a Pdu, the
version and the community. However, the v3MP of this
implementation needs and returns additional values
(engineID, securityName, securityModel, securityLevel,
contextEngineID and contextName). As a Pdu object
does not contain any version specific values and since
the interface of the SnmpMessage class should not be
modified, the community string was chosen to hold those
parameters. The user calls a function that writes all
values except the engineID separated by a backslash
into the community string. The engineID is added by
the Snmp class. This form of encoding has to be changed
to a length based encoding, as the engineIDs can contain
arbitrary characters.

The main part of the v3MP module was implemented
as described in the RFCs. The two SNMP ASIs to
prepare an outgoing message (prepareOutgoingMessage
and prepareResponseMessage) are implemented in one
function that only gets the values for engineID, security-
Model, securityName, securityLevel, contextEngineID,
contextName and PDU and returns the serialized mes-

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 11

sage. Similarly, the function to parse an incoming mes-
sage gets the serialized message and returns all the val-
ues the first function gets as input. All other parameters
are not needed in SNMP++ or can be determined during
processing: transportDomain and transportAddress are
not needed as the engineID is passed to the v3MP,
messageProcessingModel is assumed to be v3MP, expect-
Response and pduVersion can be determined from the
Pdu and sendPduHandle is not necessary as messages
are dispatched to the application using the requestID
of the Pdu. The v3MP does not return a stateReference
as this reference would have to be passed through the
SnmpMessage and Snmp classes to the message queue class
and would imply the change of several interfaces. So all
stateReferences are cached inside the v3MP.

For engineID discovery the following procedure is
used: The v3MP is called to build a message with a
zero length engineID. The v3MP sets the securityLevel
to noAuthNoPriv and deletes the variable bindings from
the Pdu. Then the standard behavior for a request
message is used. When the answer is processed, the
engineID is automatically added to the list of known
engineIDs. As this answer contains a Report-PDU with
the unknownEngineIDs counter, the Snmp class will start
the serialization process again.

SNMP++ uses the requestID of the Pdu to match
incoming responses to outstanding requests. If SNMPv3
is used, a response possibly does not contain the re-
questID of the sent message (this happens if the agent
can not decrypt the scopedPDU). For this reason the
stateReference of each request contains the requestID
and if a report message contains a wrong requestID,
it is set to the saved value. For other message types
the requestID is not changed as those messages have to
contain the correct requestID.

Security Protocols

The USM module contains a function to generate an out-
going message and another function to process an incom-
ing message. The standard authentication and privacy
protocols (MD5, SHA-1 and DES) are implemented. An
additional privacy protocol has been implemented which
uses the IDEA encryption algorithm.

The security modules use the MD5 and DES routines
of RSAEuro, the SHA routines of Uri Blumenthal and
the IDEA routines of Tatu Ylonen.

The USM module contains two user tables, one with
the user names and passwords and one with the lo-
calized keys for each used engineID. If SNMP++v3 is
used in a manager, the user can add entries to the first
table. Entries in the second table are automatically
created if the USM is called to process or build an

encrypted or authenticated message. If the user changes
an entry in the first table, all appropriate entries in
the other table are deleted. Both tables are deleted
at program exit. As the calculation of localized keys
may take several seconds and since an agent should
not store passwords, the first table is not used in an
agent. Users can be added at initialization time with
passwords, in this case localized keys are computed with
the local snmpEngineID, or through the usmUserTable
of the agent. Several functions were added to the USM
module to assist the user if he wants to change the keys
in the usmUserTable in an agent.

Lessons Learned

Most of the time needed to implement the SNMPv3
support was spent on the USM and the v3MP. The time
needed to modify SNMP++ was spent mainly on the
handling of asynchronous requests and on the handling
of the additional error codes of the v3MP.

This implementation was tested against the agents
from UCD and MG-Soft. With both agents engineID
discovery, time synchronization and exchange of noAu-
thNoPriv, authNoPriv (MD5 and SHA) and authPriv
(MD5/DES and SHA/DES) messages worked. An agent
written with AGENT++v3 and SNMP++v3 was used to
test the cloning of users and the key change algorithm.

Future versions of SNMP++v3 could improve the han-
dling of the SNMPv3 specific parameters. The chosen
solution, which encodes those parameters into the com-
munity string, works but it contradicts the concept of
SNMP++. According to this concept, a new target class
which contains the securityName, securityModel and
securityLevel and which is possibly responsible to store
the engineIDs for each address, has to be defined. The
context information would be stored in the Pdu or passed
directly to the methods get, get next, etc. of the Snmp

class. (This is already done with the parameters nonRe-
peaters and maxRepetitions for a get-bulk operation).
The community based solution has the advantage that it
is simple to implement, but it is bad design to misuse the
community string that way. Whereas the target solution
fits into the concept of SNMP++, but the implementation
is more complex and introduces incompatible changes in
the SNMP++ API.

The functions of the USM that assist the user to
change a key for one agent could be extended to do the
complete key change for several agents. To improve
the performance of the USM, the table that contains
the localized keys could be saved at program exit and
restored at initialization time.

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 12

SNMPv3 at Networld+Interop
Muriel Appelbaum, BMC Software

Rob Frye, MCI

The May 1998 Networld+Interop in Las Vegas, Nevada
USA had several multi-vendor technology showcase ‘Hot
Spots’ in the Trade Show Exhibition. The SNMPv3 Hot
Spot was hosted by SNMP Research International and
organized by David Reid. It highlighted the security
aspects of the SNMPv3 protocol, whose standards track
RFCs have Proposed Standard status. The ten orga-
nizations participating in the Hot Spot demonstrated
interoperability of working prototypes and products,
discussed the progress of the standard and promoted the
awareness of SNMPv3. The participants were

� Advent Network Management

� Bay Networks

� BMC Software

� Cisco Systems

� Hewlett-Packard

� IBM Networking

� Liebert Corporation

� Tivoli

� SNMP Research International and the

� University of Quebec in Montreal.

According to SNMP Research’s Jeff Case “The IETF
bases its work on rough consensus and running code.
The standards documents represent rough consensus
and the [Hot Spot] demo showed running code.” In
the Hot Spot, products and work in progress repre-
senting six independently-developed SNMPv3 security
feature implementations were shown interoperating.
Some participants showed both command generator
(manager) and command responder (agent) applications.
All demonstrated authentication using HMAC-MD5 and
privacy using CBC-DES. Most also showed HMAC-SHA
authentication as well as remote configuration, but a
few had not yet completed these features by show time.
Participants could be readily identified by their SNMPv3
caps and “Practice Safe Sets” buttons.

Advent Network Management showed interoperabil-
ity using their Java JDK 1.1-based SNMPv3 MIB
Browser. Bay Networks showed both command gen-
erator and responder applications. Bay’s multilingual
agent for their BayStack 200 hub showed different levels

of authentication and privacy based on the SNMP Re-
search stack, working with command generators (man-
agers) using other code bases. Bay’s Optivity manager
applications worked with other vendors’ code bases on
network hardware in the booth. BMC Software demon-
strated interoperation with authentication, encryption
and remote configuration features developed in C for
their PATROL SNMP Toolkit and Patrol product suite.
Cisco Systems demonstrated interoperability between
their implementation and other code bases, using the
SNMP Research-based C-language command responder
capability running on their Cisco 2500 platform.

HP demonstrated OpenView Network Node Manager
interoperation of secure SNMPv3 authentication, pri-
vacy and remote administration with command respon-
ders. The SNMPv3 manager is implemented with
a hook that allows the SNMP Research management
stack to translate SNMPv1/v2c requests into SNMPv3
before sending the request out on the wire. IBM Net-
working product division demonstrated authentication
and privacy interoperation using an OS/390 Unix agent
written in C, running in Dallas, which was remotely
configurable, and the Nways Workgroup Manager for
NT, written in Java. Liebert Corporation interoperated
using a monitoring and control agent for their UPStation
GX based on the SNMP Research stack.

SNMP Research’s SNMPv3 product line demonstrated
authentication and encryption as well as remote config-
uration, interoperating with other code bases as well
as with their own code base in other vendors’ prod-
ucts and prototypes. Tivoli demonstrated interopera-
tion of authentication and privacy using their Java-
based SNMPv3 Browser. Omar Cherkaoui and Ylian
Saint-Hilaire from the University of Quebec in Montreal
demonstrated interoperation using their Java-based ref-
erence implementation, including an SNMPv3 proxy, to
be licensed for non-commercial use.

Not confining themselves to the Hot Spot, Hot Spot
vendors also demonstrated interoperation with Epilogue
Technology’s SNMPv3 code on the show floor and with
SNMPv1 devices elsewhere in the show.

One User’s Perspective

Rob Frye said that he “was pleased to see vendors
there really supporting SNMPv3.” Some vendors gave
off-the-record tentative dates for shipping products (de-
tails of which can’t be revealed in this article), but
most stayed cautiously away from date commitments.
Unfortunately, most network equipment and network
management vendors do not yet seem to have plans for
support of SNMPv3; there is concern about whether it
will be adopted quickly or suffer the lack of acceptance

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 13

that SNMPv2 has. The vendors that support SNMPv3
show hope in the stability of the standards and the pace
of progress of the v3 Working Group.

Of course, large carriers such as MCI are very in-
terested in SNMP Version 3. Widespread support of
“confirmed Traps” via the Inform PDU, 64-bit counters
(for use on high-speed interfaces or in situations where
frequent polling is not feasible), and the use of GetBulk
for large table data retrieval can make an immediate
difference in managing large-scale carrier-grade net-
works. Although these features exist in SNMPv2, the
multiple versions of SNMPv2 that have led to a lack
of consistent acceptance have kept these capabilities
out of many systems and networks. The possibility
of a secure Set mechanism to securely replace the use
of (scripted) Telnet, particularly for customer service
delivery, will take longer to implement than the other
features, but will allow carriers such as MCI to improve
upon service activation times. When SNMPv3 is widely
supported, getting it into the network and management
systems may be a little difficult but should pose no
significant barrier. Carriers and users are used to rolling
version migrations where multiple versions of software
co-exist for some time. The forthcoming Coexistence and
Transition RFC should help guide the way to smooth
transitions between SNMPv1 (and v2) to SNMPv3.

The users and vendors look forward to future technol-
ogy showcases on SNMPv3, the continued IETF Work-
ing Group efforts to finalize the standard documents
(along with the various proposed enhancements being
discussed), and further announcements of SNMPv3-
capable products.

One Participant’s Perspective

Participants were pleased to have had the opportunity to
demonstrate to so many show attendees that SNMPv3 is
real; that it has support among toolkit providers, ISVs
and OEMs; and that the RFCs are sufficiently clear,
detailed and complete to permit these implementations
to interoperate. Participants explained the status and
progression of the protocol; the relationship it has to
SNMPv1 and SNMPv2; and their feeling that work on it
is progressing well, moving steadily towards achieving
Standard status. Ajay Gummadi of Bay Networks
said he was “... happy that the various parties to
SNMPv2 have finally cast aside their differences and are
unified in supporting SNMPv3.” Several participants
mentioned they were enthusiastic about talking to users
directly, and especially to hear first-hand about their
needs.

Participants brought command responder and com-
mand generator applications, including products, proto-

types and works in progress. Advent Net, IBM, Tivoli
and University of Quebec showed Java implementations.
As you might expect from a technology showcase and a
demonstration of work in progress, several companies
took advantage of the Hot Spot to identify and fix a
bug or two in their code, increasing the event’s overall
interoperability as the show continued.

Many of the booth’s visitors expressed both surprise
and pleasure at seeing 10 companies with SNMPv3
security implementations and, further, interoperating
code. Hot Spot participants noted excitement by some
visitors and a wait-and-see attitude by others; but many
attendees with a skeptical attitude indicated they now
believe SNMPv3 deserves a serious look. John Seligson
of Bay Networks recalled, “Many visitors asked what
happened to SNMPv2. Once I explained that SNMPv3
incorporated the standardized aspects of SNMPv2 (i.e.,
SMIv2, new protocol operations, etc.) adding an intu-
itive user-based security and administrative framework
they went away satisfied.”

We were pleased and encouraged to see visitors repre-
senting a broad range of companies and organizations,
notably the telecom industry and universities. We heard
that users understand that community-based security is
not sufficient. Kevin Dwinnell of Liebert said, “It is crit-
ical for customers to protect control over their network
devices” and applications. Some attendees expressed the
need to use SNMPv3 security for the public components
of their networks, even when they use SNMPv1 or
SNMPv2c for the private components. Many were grat-
ified to see SNMPv3’s simplified administration. John
Seligson said, “Many visitors ... asked whether [the
technology] would be appearing in products soon. ...
I talked with several managers of very large networks
who said that they would like to deploy as soon as
possible.” According to Cisco’s Ram Kavasseri, “Current
Cisco customers were very interested in the planned
release date for SNMPv3 functionality on Cisco routers,
and the availability of SNMPv3-capable management
platforms ... and applications.” Kavasseri added,
“Response from booth visitors was extremely favorable.
Major questions involved deploying of passwords across
networks, and difficulty in debugging packets with the
privacy mechanism enabled.”

While many visitors were well-informed about the
protocol and its progress, any number of visitors used
the Hot Spot to gather basic information. “This was the
way Interop used to be a few years ago,” said Muriel
Appelbaum of BMC Software, “when a show attendee
could just walk in and ask for a demo or ask a detailed
question and get as much technical information as they
wanted.”

Staffing the Hot Spot was productive and enjoyable

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 14

because all the participants were helpful and coopera-
tive. Bert Wijnen IETF Operations and Management
Area Director, noted he is “very encouraged with the
number of interoperating implementations and with the
positive spirit [shown in this] unified presentation ... of
a single technology. [This shows SNMP is] back on track
and moving forward.”

Please contact the respective organizations and ven-
dors above for detailed information on their product
plans and availability and take a look at the SNMPv3
web page at http://www.ibr.cs.tu-bs.de/projects/snmpv3/.

Key Vendors Support SNMPv3
David Reid, SNMP Research

SNMPv3 is writing a new chapter in the Internet Stan-
dard Management Framework story, even as SNMP
continues to thrive as the cornerstone of today’s enter-
prise management systems. Key vendors are already
supporting SNMPv3 in products available today.

At the October 1998 Networld+Interop in Atlanta,
SNMPv3 with Security and Administration was again
the focus of a Hot Spot. Hot Spots at NetWorld+Interop
focus on educating attendees about the latest in inter-
operable, standards-based technologies. At this event,
key vendors demonstrated their implementations of the
recently published SNMPv3. The demonstrations high-
lighted key features of the third version of the Internet-
Standard Management Framework which now includes
commercial-grade security and a robust administrative
framework with remote configuration.

The October SNMPv3 Hot Spot in Atlanta was very
similar to the highly successful SNMPv3 Hot Spot at
Networld+Interop in May of 1998 in Las Vegas. Both
demonstrated multiple interoperable implementations
of SNMPv3, increased attendee knowledge of the capa-
bilities, built enthusiasm for the new technology, and
showed the strong vendor support for SNMPv3.

There were also a number of differences. Most notably,
while the Hot Spot at Networld+Interop in May of
1998 was primarily a technology demonstration, the Hot
Spot in Atlanta in October was primarily a products
demonstration by the following participating companies:

� IBM demonstrated the currently shipping Nways
Workgroup Manager which supports SNMPv3 to-
day. IBM also demonstrated eNetwork Communica-
tions Server for OS/390 which will support SNMPv3
early 1999.

� SNMP Research International showed their devel-
opment toolkits and end-user products for Network,
System, and Application Management. All SNMP

Research products support SNMPv3 today. Sev-
eral other Hot Spot participants including Cisco,
Bay Networks, HP, and Liebert were demonstrating
products based on technology licensed from SNMP
Research International.

� InterWorking Labs demonstrated their
latest SNMP test suite, SilverCreek 6.0, which now
includes over 100 tests for SNMPv3. The SNMP
test suite is designed to insure interoperability and
compliance to the standard. SilverCreek 6.0, with
support for SNMPv3, is now available.

� Bay Networks, a Nortel Networks business, will be
shipping SNMPv3 technology in a select number of
Workgroup Switching products soon. Bay Networks
also plans to include SNMPv3 as a core component
of future release versions of Optivity NMS and
related applications.

� AdventNet’s SNMPv3 Java product, currently in
beta testing, is expected to be shipping by the time
this article is published.

� Hewlett-Packard provides SNMPv3 support today
for HP OpenView Network Node Manager through
a partnership with SNMP Research International.

� Cisco demonstrated SNMPv3 in their 2500 and
4500 routers. Cisco has incorporated SNMPv3 into
release 12.0(3)T of IOS. This release is expected to
start shipping to customers in the Spring of 1999.

� Liebert Corporation demonstrated SNMPv3 in their
uninteruptable power supplies. Liebert plans to
start shipping SNMPv3 in products in 1999.

� The University of Quebec in Montreal has a public
domain implementation of SNMPv3 available now
for download from their web site.

In addition to the Hot Spot participants, many other
vendors are also working on SNMPv3 products. More
information about SNMPv3, including links to the above
listed companies and technical information about SN-
MPv3, is available on the SNMPv3 Hot Spot web page
at http://www.snmp.com/v3hotspot/.

Questions Answered
David T. Perkins, SNMPinfo

The SNMPv3 framework and document set has seen
increasing attention over the last few months. This
has resulted in questions about what will happen to
SNMPv1. This month’s column will answer some of
those questions.

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 15

Will SNMPv1 become obsolete when SNMPv3 is
advanced by the IETF?

First, let’s review the status of IETF documents. IETF
documents are published in RFC series. Each document
is given a number and a status. Most, but not all RFCs,
are on the “standards track.” A specification enters the
standards track with a label of Proposed standard. After
meeting IETF specified requirements it can be advanced
and be given the Draft standard status. And after it
meets all IETF requirements, it is advanced to become
an IETF Standard (which is also called Full Standard
status). If a specification is replaced by a newer ver-
sion, the older one is given a status of Obsolete. If a
specification is replaced by newer technology, the older
technology specifications have their status changed to
Historical. The details of the IETF standards process
are found in RFC 2026.

The IETF standards process classifies documents as
a Technical Specification (TS) or an Applicability Spec-
ification (AS). A TS is “any description of a protocol,
service, procedure, convention, or format.” An AS de-
scribes “how, and under what circumstances, one or more
TSs may be applied to support a particular Internet
capability.” An AS specifies a requirement level to each
TS to which it refers. The levels are:

� Required - implementation of the TS is required for
minimal conformance with the AS

� Recommended - implementation is not required, but
is desired

� Elective - implementation is optional

� Limited Use - the TS is for use in limited or unique
circumstances, such as when the TS is Experimental
and not standards-track

� Not Recommended - the TS is not for general use,
such as when it has limited functionality or is
historic

Conceptually, ASs and TSs are separate documents. In
practice, a standards-track document may be a combi-
nation of an AS and one or more referenced TSs. The
latest version of the Internet Official Protocol Standards
RFC (as of this writing RFC 2400) specifies the status
and requirement level of each RFC.

Now, let’s review what is defined by each version of
SNMP. The SNMPv1 management framework includes
documents that define the SNMPv1 management proto-
col (RFC 1157), the structure of management informa-
tion (SMIv1) (RFC 1155, RFC 1212, and RFC 1215), and
an initial set of managed objects (RFC 1213) and events
(RFC 1215). The SMIv1 specifies the base data types for

managed objects. It also defines a language for defining
managed objects, events, refinements to the base data
types, and OID values. Finally, SMIv1 contains several
administrative assignments of OID values.

There are two additional frameworks for SNMP, which
are SNMPv2 and SNMPv3. Both of these frameworks
define similar, but “incompatible on the wire” versions of
the SNMP protocol. An improved version of the SMI,
called SMIv2, is defined in the SNMPv2 framework
that is also used by the SNMPv3 framework. Neither
the SNMPv2 nor the SNMPv3 frameworks replace the
initial set of objects and events defined in the SNMPv1
framework. However, each version defines additional ob-
jects used to manage the SNMP protocol. The SNMPv3
framework contains a large number of objects that can
be used to remotely configure the administrative aspects
of SNMP entities, which include those supporting SN-
MPv1, SNMPv2c, and SNMPv3.

Independently from the frameworks, the initial set of
objects and events defined in RFC 1213 and RFC 1215
were split into separate documents.

So, to answer the question “What will happen to
SNMPv1?,” we need to break the question into three
parts, which are:

1. What will happen to the SNMPv1 protocol?

2. What will happen to the MIB module language
defined in SMIv1?

3. What will happen to the MIB modules?

Here is what has occurred, and the best guess as to what
will happen.

What will happen to the SNMPv1 protocol?
The SNMPv1 protocol is currently supported by many
devices. The SNMPv3 framework supports the notion
of multi-lingual devices. Thus, my best guess is that
the SNMPv1 protocol (which currently has a “Recom-
mended” requirement level) will live on for a long time
and its definition, RFC 1157, will not be “retired” and
made Historic soon. (However, there will be some
political maneuvering for it to be made Historic or for
its requirement level to be changed to “Elective” or even
“Limited Use”. The market will be what determines the
time table for advancing SNMPv3 to [Full] Standard
status and the change of status for SNMPv1.)

What will happen to the SMIv1 language?
SMIv2 (which is currently at the “Elective” requirement
level) offers much improvement over SMIv1 (which is
currently at the “Recommended” requirement level).
SMIv2 has been approved for advancement to [Full]
Standard status, but has not been published as RFCs
at the time this article was written. Even before this

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 16

upgrade in status, all MIBs defined in new RFCs were
required to be written in the SMIv2 format. As RFCs
containing MIBs in the SMIv1 format are updated, the
MIBs are converted to the SMIv2 format. However,
this conversion could not be done for documents to be
advanced to [Full] Standard status because SMIv2 was
not yet at [Full] Standard status. Now that SMIv2 has
advanced, all MIBs in RFCs will be converted to the
SMIv2 format when they are updated. Currently, most
of the major vendors of SNMP management systems
that contain MIB compilers support SMIv2. Thus,
the best guess is that the SMIv1 documents will be
retired to Historic status (with requirement level “Not
Recommended”) now that SMIv2 documents have been
advanced to [Full] Standard status and given the re-
quirement level of “Recommended.”

What will happen to the MIB modules?
The initial set of objects defined in RFC 1213 and RFC
1215 have been replaced by RFCs that define individual
groups found in RFC 1213 and RFC 1215. When all
of these replacement documents are advanced to [Full]
Standard status, then RFC 1213 and RFC 1215 will
be retired to Historic status with requirement level of
“Not Recommended.” The replacement RFCs currently
have a requirement level of “Elective,” which will be
changed to “Recommended” when the replacement RFCs
are advanced. The replacement RFCs are:

� RFC 1907 - contains the system and snmp groups

� RFC 2233 - contains the interfaces group

� RFC 2011 - contains the ip group (except for the IP
routing table)

� RFC 2096 - contains a replacement for the IP rout-
ing table

� RFC 2012 - contains the tcp group

� RFC 2013 - contains the udp group

� The at group of RFC 1213 is not replaced, since it is
deprecated.

� The egp group of RFC 1213 is not replaced since it
is obsolete because EGP is Historic.

Is the MIB module language a proper subset of
ASN.1 and can ASN.1 tools be used on SNMP MIB
modules?

The MIB module language is not a proper subset of
ASN.1. It has never been and will never be. There
are two versions of the MIB module language, defined

in SMIv1 and SMIv2. Both use elements of ASN.1, but
are not ASN.1 subsets. ASN.1 works well in defining
the formats of messages and is used to define the format
of SNMP messages. ASN.1 tools can be used on the
definitions of SNMP messages to generate code to encode
and decode SNMP messages. However, none of the
leading vendors of SNMP toolkits (or freely available
SNMP toolkits) use ASN.1 tools in order to process
MIB modules. There have been many stories about
developers new to SNMP trying to use ASN.1 tools
to create management applications and agents. The
outcomes have been disaster. The SNMP MIB module
language is far removed from the “normal” usage of
ASN.1, and, thus, ASN.1 tools are of practically no value
in processing SNMP MIB specifications.

The latest update of the SMI specifications, which
should be published soon, clarify the differences between
ASN.1 and the MIB module language. However, these
SMI specifications still require the reader to have a copy
of the 1998 version of ASN.1 handy for reference.

How do you include a sequence within another
sequence?

This is an old and frequently asked question, with the
label “table in a table.” The answer to the question is
that it is not possible to directly have such a construct!
However, you can achieve the same result by defining
two tables in your SNMP MIB module.

Say, you have in the C language a struct definition like
the following:

struct myStruct {

int a;

int b[10];

int c;

} myTab[20];

To turn this into SNMP MIB definitions, you would need
two tables:

myfirstTable OBJECT-TYPE

SYNTAX SEQUENCE OF MyFirstEntry

...

myFirstEntry OBJECT-TYPE

SYNTAX MyFirstEntry

...

INDEX { i1 }

...

MyFirstEntry ::= SEQUENCE {

i1 Integer32,

a Integer32,

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 17

c Integer32 }

<< definitions for objects i1, a, and c >>

mySecondTable OBJECT-TYPE

SYNTAX SEQUENCE OF MySecondEntry

...

mySecondEntry OBJECT-TYPE

SYNTAX MySecondEntry

...

INDEX { i1, i2 } -- i1 is from the first, i2

-- is from the second table

...

MySecondEntry ::= SEQUENCE {

i2 Integer32,

b Integer32 }

<< definitions for objects i2 and b >>

Editor’s Comment
Jürgen Schönwälder, TU Braunschweig

Aiko Pras, University of Twente

A year has passed between the last issue of The Simple
Times and the issue you are reading right now. There
are a number of reasons for this delay. Many of them
have to do with recent activities within the IETF.

SMIv2 approved as Standard

In June 1998, a “design team” was chartered to advance
the SMIv2 (RFC 1902, RFC 1903, RFC 1904) from
Draft Standard to [Full] Standard. The advancement
to [Full] Standard is necessary in order to allow MIB
specifications to advance to [Full] Standard status. The
design team worked through a list of 75 issues related to
the current SMIv2 specifications. The changes proposed
by the design team were reviewed several times and
the IESG finally approved the SMIv2 revisions as [Full]
Standard in January 1999. Publication of the revised
RFCs can be expected in the coming months.

SNMPv3 approved as a Draft Standard

The SNMPv3 specifications, which were published in
January 1998 as Proposed Standards, have been revised
during the last months. The revised specifications
have been approved as Draft Standards by the IESG
in February 1999. The publication of the RFCs can be
expected any time soon. The Draft Standards status
indicates a strong belief that the SNMPv3 specifications

are mature and will be useful. This means that it
is reasonable for vendors to deploy implementations of
SNMPv3 into disruption sensitive environments. More
information can be found on the SNMPv3 Web page at
http://www.ibr.cs.tu-bs.de/projects/snmpv3/.

IRTF Research Groups

Two research groups have been formed within the In-
ternet Research Task Force (IRTF) in order to address
some of the long term management problems. The Ser-
vices Management Research Group (NSM) is chartered
to investigate new architectures, information models,
and supporting protocols to enable the convergence of
network and system management into a common service
management framework.

The Network Management Research Group (NMRG)
will work on solutions for network management prob-
lems that are not yet considered well understood enough
for engineering work within the IETF. The initial focus
will be on higher-layer management services that in-
terface with the current Internet management frame-
work. This includes communication services between
management systems, which may belong to different
management domains, as well as customer-oriented
management services.

We can expect to hear more about these research
groups and the work they are doing in the future. This
issue of The Simple Times already includes an article
about bulk transfers of MIB data. It is the result of an
ad-hoc meeting which led to the formation of the NMRG.

Operations and Management Area News

The “Operations and Management Area” (OPS) of the
IETF got a new area director. Randy Bush (Verio) was
selected to take over the position previously held by
Harald Alvestrand (Maxware). He will now supervise
the work within the OPS area together with the second
area director Bert Wijnen (IBM Research). Harald
Alvestrand was selected as a new member of the Inter-
net Architecture Board (IAB).

The OPS Web server (http://www.ops.ietf.org/) pro-
vides guidelines for authors of IETF MIB modules. It
also has a Web page which allows to track the progres-
sion of OPS related Internet-Drafts through the IESG.

Finally, there are two new public OPS mailing lists:
The ops-area@ops.ietf.org mailing list is intended for
general discussions relevant to the OPS area. The
mibs@ops.ietf.org mailing list is for discussions related
to MIB development. To subscribe, send a message to
the corresponding -request address with subscribe in
the body.

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 18

Standards Summary

Please consult the latest version of Internet Official
Protocol Standards. As of this writing, the latest version
is RFC 2400.

SMIv1 Data Definition Language

Full Standards:

� RFC 1155 - Structure of Management Information

� RFC 1212 - Concise MIB Definitions

Informational:

� RFC 1215 - A Convention for Defining Traps

SMIv2 Data Definition Language

Draft Standards:

� RFC 1902 - Structure of Management Information

� RFC 1903 - Textual Conventions

� RFC 1904 - Conformance Statements

SNMPv1 Protocol

Full Standards:

� RFC 1157 - Simple Network Management Protocol

Proposed Standards:

� RFC 1418 - SNMP over OSI

� RFC 1419 - SNMP over AppleTalk

� RFC 1420 - SNMP over IPX

SNMPv2 Protocol

Draft Standards:

� RFC 1905 - Protocol Operations for SNMPv2

� RFC 1906 - Transport Mappings for SNMPv2

� RFC 1907 - MIB for SNMPv2

� RFC 1908 - Coexistence between SNMPv1 and
SNMPv2

Experimental:

� RFC 1901 - Community-based SNMPv2

� RFC 1909 - Administrative Infrastructure

� RFC 1910 - User-based Security Model

SNMPv3 Protocol

Draft Standards:

� RFC 1905 - Protocol Operations for SNMPv2

� RFC 1906 - Transport Mappings for SNMPv2

� RFC 1907 - MIB for SNMPv2

Proposed Standards:

� RFC 2271 - Architecture for Describing SNMP Man-
agement Frameworks

� RFC 2272 - Message Processing and Dispatching

� RFC 2273 - SNMPv3 Applications

� RFC 2274 - User-based Security Model

� RFC 2275 - View-based Access Control Model

SNMP Agent Extensibility

Proposed Standards:

� RFC 2257 - AgentX Protocol Version 1

SMIv1 MIB Modules

Full Standards:

� RFC 1213 - Management Information Base II

� RFC 1643 - Ethernet-Like Interface Types MIB

Draft Standards:

� RFC 1493 - Bridge MIB

� RFC 1559 - DECnet phase IV MIB

� RFC 1757 - Remote Network Monitoring MIB

Proposed Standards:

� RFC 1285 - FDDI Interface Type (SMT 6.2) MIB

� RFC 1381 - X.25 LAPB MIB

� RFC 1382 - X.25 Packet Layer MIB

� RFC 1414 - Identification MIB

� RFC 1461 - X.25 Multiprotocol Interconnect MIB

� RFC 1471 - PPP Link Control Protocol MIB

� RFC 1472 - PPP Security Protocols MIB

� RFC 1473 - PPP IP NCP MIB

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 19

� RFC 1474 - PPP Bridge NCP MIB

� RFC 1512 - FDDI Interface Type (SMT 7.3) MIB

� RFC 1513 - RMON Token Ring Extensions MIB

� RFC 1514 - Host Resources MIB

� RFC 1515 - IEEE 802.3 MAU MIB

� RFC 1525 - Source Routing Bridge MIB

� RFC 1742 - AppleTalk MIB

SMIv2 MIB Modules

Draft Standards:

� RFC 1657 - BGP version 4 MIB

� RFC 1658 - Character Device MIB

� RFC 1659 - RS-232 Interface Type MIB

� RFC 1660 - Parallel Printer Interface Type MIB

� RFC 1694 - SMDS Interface Type MIB

� RFC 1724 - RIP version 2 MIB

� RFC 1748 - IEEE 802.5 Interface Type MIB

� RFC 1850 - OSPF version 2 MIB

� RFC 1907 - SNMPv2 MIB

� RFC 2115 - Frame Relay DTE Interface Type MIB

Proposed Standards:

� RFC 1567 - X.500 Directory Monitoring MIB

� RFC 1604 - Frame Relay Service MIB

� RFC 1611 - DNS Server MIB

� RFC 1612 - DNS Resolver MIB

� RFC 1628 - Uninterruptible Power Supply MIB

� RFC 1666 - SNA NAU MIB

� RFC 1696 - Modem MIB

� RFC 1697 - RDBMS MIB

� RFC 1747 - SNA Data Link Control MIB

� RFC 1749 - 802.5 Station Source Routing MIB

� RFC 1759 - Printer MIB

� RFC 2006 - Internet Protocol Mobility MIB

� RFC 2011 - Internet Protocol MIB

� RFC 2012 - Transmission Control Protocol MIB

� RFC 2013 - User Datagram Protocol MIB

� RFC 2020 - IEEE 802.12 Interfaces MIB

� RFC 2021 - RMON Version 2 MIB

� RFC 2024 - Data Link Switching MIB

� RFC 2037 - Entity MIB

� RFC 2051 - APPC MIB

� RFC 2074 - RMON Protocol Identifier

� RFC 2096 - IP Forwarding Table MIB

� RFC 2108 - IEEE 802.3 Repeater MIB

� RFC 2127 - ISDN MIB

� RFC 2128 - Dial Control MIB

� RFC 2206 - Resource Reservation Protocol MIB

� RFC 2213 - Integrated Services MIB

� RFC 2214 - Guaranteed Service MIB

� RFC 2232 - Dependent LU Requester MIB

� RFC 2233 - Interfaces Group MIB

� RFC 2238 - High Performance Routing MIB

� RFC 2239 - IEEE 802.3 MAU MIB

� RFC 2248 - Network Services Monitoring MIB

� RFC 2249 - Mail Monitoring MIB

� RFC 2266 - IEEE 802.12 Repeater MIB

� RFC 2271 - SNMP Framework MIB

� RFC 2272 - SNMPv3 MPD MIB

� RFC 2273 - SNMP Applications MIB

� RFC 2274 - SNMPv3 USM MIB

� RFC 2275 - SNMP VACM MIB

� RFC 2287 - System-Level Application Mgmt MIB

� RFC 2320 - Classical IP and ARP over ATM MIB

� RFC 2358 - Ethernet-Like Interface Types MIB

� RFC 2366 - Multicast over UNI 3.0/3.1 / ATM MIB

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 20

� RFC 2452 - IPv6 UDP MIB

� RFC 2454 - IPv6 TCP MIB

� RFC 2455 - APPN MIB

� RFC 2456 - APPN Trap MIB

� RFC 2457 - APPN Extended Border Node MIB

� RFC 2465 - IPv6 Textual Conventions and MIB

� RFC 2466 - ICMPv6 MIB

� RFC 2493 - 15 Minute Performance History TCs

� RFC 2494 - DS0, DS0 Bundle Interface Type MIB

� RFC 2495 - DS1, E1, DS2, E2 Interface Type MIB

� RFC 2496 - DS3/E3 Interface Type MIB

� RFC 2512 - Accounting MIB for ATM Networks

� RFC 2513 - Accounting Control MIB

� RFC 2514 - ATM Textual Conventions and OIDs

� RFC 2515 - ATM MIB

� RFC 2558 - SONET/SDH Interface Type MIB

IANA Maintained MIB Modules

� Interface Type Textual Convention (IANAifType)
ftp://ftp.iana.org/mib/ianaiftype.mib

Related Documents

Informational:

� RFC 1270 - SNMP Communication Services

� RFC 1321 - MD5 Message-Digest Algorithm

� RFC 1470 - Network Management Tool Catalog

� RFC 2039 - Applicability of Standard MIBs to WWW
Server Management

� RFC 2089 - Mapping SNMPv2 onto SNMPv1 within
a bi-lingual SNMP agent

Experimental:

� RFC 1187 - Bulk Table Retrieval with the SNMP

� RFC 1224 - Techniques for Managing
Asynchronously Generated Alerts

� RFC 1238 - CLNS MIB

� RFC 1592 - SNMP Distributed Program Interface

� RFC 1792 - TCP/IPX Connection MIB Specification

� RFC 2064 - Traffic Flow Measurement: Meter MIB

Recent Publications

Building Network Management Tools with Tcl/Tk

� Authors:
Dave Zeltserman <davez9@gte.net>

Gerard Puoplo <puoplo@shore.net>

� Publisher: Prentice Hall
http://www.prenhall.com/

� ISBN: 0-13-080727-3

� Available: April, 1998

This book shows how to build custom network manage-
ment tools using the scripting language Tcl/Tk. The
source code of several example applications for response
time monitoring, network discovery, IP path tracing,
web-based status monitoring and RMON2 configuration
is explained in detail.

RMON: Remote Monitoring of SNMP-Managed
LANs

� Author: Dave Perkins <dperkins@dsperkins.com>

� Publisher: Prentice Hall
http://www.prenhall.com/

� ISBN: 0-13-096163-9

� Available: September, 1998

This book translates the SNMP and RMON terminology
into business terms so you can communicate with your
network management product vendors. In addition, the
book provides a close-up review of the RMON standards
and walks you through the objects found in the RMON
MIB modules. The book contains many diagrams and
figures to illustrate the essential elements of the RMON
standards and the key SNMP concepts required to use
RMON.

SNMP-based ATM Network Management

� Author: H. Pan

� Publisher: Artech House
http://www.artech-house.com/

� ISBN: 0-89-006983-2

� Available: September, 1998

This book explains the fundamentals of the ATM net-
work and the SNMP protocol. It overviews the details of
the Physical and ATM Layer, LANE, PNNI, and shows
how different standard MIBs and proprietary MIBs are
used together to manage an ATM Switch.

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 21

SNMP, SNMPv2, SNMPv3, and RMON 1 and 2

� Author: William Stallings <ws@shore.net>

� Publisher: Addison-Wesley
http://www.aw.com/

� ISBN: 0-201-48534-6

� Available: December, 1998

A comprehensive treatment of SNMP-based standards,
including a description of the protocols, MIBs, and
practical issues. Covers SNMPv1, SNMPv2c and SN-
MPv3, the original RMON1, and the current version of
RMON2.

TMN Telecommunications Management Network

� Author: Divakara Udupa

� Publisher: McGraw-Hill
http://www.mcgraw-hill.com/

� ISBN: 0-07-065815-3

� Available: January, 1999

This book is a comprehensive study of TMN architec-
tures, functions, capabilities and requirements. It also
contains a chapter on SNMP management.

A Practical Guide to SNMPv3 and Network Man-
agement

� Author: Dave Zeltserman <davez9@gte.net>

� Publisher: Prentice Hall
http://www.prenhall.com/

� ISBN: 0-13-021453-1

� Available: May, 1999

A guide to SNMPv3 from the viewpoint of a management
application writer. This book describes in detail how
the remote configuration capabilities of SNMPv3 can be
used to automate SNMPv3 administration.

Calendar and Announcements

IETF Meetings:

� 44th Meeting of the IETF
March 15-19, 1999, Minneapolis, MN, USA

� 45th Meeting of the IETF
July 12-16, 1999, Oslo, Norway

� 46th Meeting of the IETF
November 8-12, 1999, Washington, DC, USA

Conferences and Workshops:

� Integrated Network Management ’99
May 22-28, 1999, Boston, MA, USA

� Distributed Systems Operations & Management ’99
October 11-13, 1999, Zurich, Switzerland

� Network Operations and Management
Symposium 2000
April 10-14, 2000, Honolulu, Hawaii, USA

Exhibitions and Trade Shows:

� NetWorld + Interop Singapore
April 5-9, 1999, Singapore, Singapore

� NetWorld + Interop London
April 19-21, 1999, London, UK

� NetWorld + Interop Las Vegas
May 10-14, 1999, Las Vegas, USA

� NetWorld + Interop Tokio
May 31- June 4, 1999, Tokio, Japan

� NetWorld + Interop Toronto
July 14-16, 1999, Canada

� NetWorld + Interop Paris
September 14-17, 1999, Paris, France

� NetWorld + Interop Atlanta
September 13-17, 1999, Atlanta, USA

� NetWorld + Interop Sao Paulo
November 9-12, 1999, Sao Paulo, Brazil

� NetWorld + Interop Sydney
November 15-19, 1999, Sydney, Australia

VOLUME 7, NUMBER 1 MARCH, 1999

The Simple Times 22

Publication Information

Editors
Jürgen Schönwälder TU Braunschweig

Aiko Pras University Twente
Editorial Board

David Harrington Cabletron Systems Inc.
Keith McCloghrie Cisco Systems Inc.

Bob Natale ACE*COMM
David Perkins SNMPinfo

Randy Presuhn BMC Software Inc.
Bob Stewart Cisco Systems Inc.

Steve Waldbusser International Network Service
Bert Wijnen IBM T.J. Watson Research

Contact Information
E-mail st-editorial@simple-times.org

ISSN 1060–6068

Submissions

The Simple Times solicits high-quality articles of tech-
nology and comment. Technical articles are refereed to
ensure that the content is marketing-free. By definition,
commentaries reflect opinion and, as such, are reviewed
only to the extent required to ensure commonly-accepted
publication norms.

The Simple Times also solicits terse announcements
of products and services, publications, and events. These
contributions are reviewed only to the extent required to
ensure commonly-accepted publication norms.

Submissions are accepted only via electronic mail,
and must be formatted in HTML version 1.0. Each
submission must include the author’s full name, title, af-
filiation, postal and electronic mail addresses, telephone,
and fax numbers. Note that by initiating this process,
the submitting party agrees to place the contribution
into the public domain.

Subscriptions

The Simple Times is available in HTML, PDF and
PostScript. New issues are announced via an electronic
mailing list. Send electronic mail to

st-request@simple-times.org

with

subscribe simple-times

in the body if you want to subscribe to this list. Back
issues are available via The Simple Times Web server:

http://www.simple-times.org/

VOLUME 7, NUMBER 1 MARCH, 1999

