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Abstract

The traffic generated by multimedia applications presents a high degree of burstiness that can be hardly described by a static
set  of  traffic  parameters.  The  following  paper  presents  a  dynamic  QoS  negotiation  scheme  applied  to  a  video  streaming
application.  In  applications  that  uses  RSVP,  the  dynamic  and  efficient  usage  of  the  resources  can  be  reached  with  the
introduction  of  the  renegotiable  variable  bit  rate  (RVBR)  service,  which  is  based  on  the  renegotiation  of  the  traffic
specification. In this paper we describe and discuss the RVBR service and how it applies to resource reservation for Internet
traffic with RSVP. For that we propose an architecture design that we evaluate by accomplishing a prototype implementation,
whose  performance  are  measured  with  real  MPEG2 video  traces.  The results  we obtained indicate  that  renegotiation is  an
efficient  mechanism  to  accommodate  traffic  fluctuations  over  the  burst  time-scale,  and  that  RVBR  service  can  be  easily
implemented, to this aim, in real applications, using available technology.

 

1. Introduction

Future  applications  make  use  of  different  technologies  as  voice,  data,  and  video.  These  multimedia  applications
require, in many cases, better service than a best effort service. This service is generally expressed in terms of Quality
of Service (QoS), whereas network efficiency depends crucially on the degree of resources sharing inside the network.

To  achieve  both  the  applications’  QoS  requirements  and  network  resources  efficiency  is  extremely  important  for
several reasons, for instance, network dimensioning or traffic charging.

We analyse how to achieve these goals at the source node where a traffic profile is negotiated with the network and the
traffic  is  shaped  according  to  the  contract.  In  many  situations,  a  single  traffic  profile  negotiation  can  lead  to  an
excessive usage of resources and unacceptable performance. In these cases a straightforward solution is to renegotiate
the traffic profile during the lifetime of the connection. 

The introduction of  the  the renegotiable variable  bit  rate (RVBR) service [1],  [2]  at  application layer  is  assumed to
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simplify  and  generalise  this  task.  Whenever  renegotiation  is  taking  place,  the  RVBR  scheme  generates  the  traffic
specification that conforms to the real demand, in order to reallocate the network resources in an optimal way while
guaranteeing  QoS  to  the  traffic  flows.  RVBR  service  uses  the  knowledge  of  the  past  status  of  the  system and  the
profile  of  the  traffic  expected  in  the  near  future,  which  can  be  either  pre-recorded  or  known  by  means  of  exact
prediction.

This  scheme  suits  perfectly  the  dynamics  of  the  traffic  generated  by  multimedia  application.  Moreover  it  naturally
integrates with the soft state mechanism of  Resource ReSerVation Protocol (RSVP) [6], the mechanism for Resource
Reservation used in the Internet. RVBR can be used to allow an application using RSVP protocol with Int-Serv traffic
specification, not only to specify the traffic for the initial negotiation, but also to to find the optimal Tspec for the next
renegotiation. In fact, with RSVP as reservation protocol, the reservation has to be periodically refreshed. Therefore
the Tspec  needs to be reissued at each renegotiation time. There is no additional signaling cost in applying a Tspec
renegotiation  at  that  point,  even  if  there  is  some  computational  overhead  due  to  the  computation  of  the  new
parameters, or to the call admission control, etc. It is important to note here that, contrary to the negotiation of a new
connection, with the renegotiation the reservation is never interrupted.

We consider the RSVP with Controlled-Load [9] (CL) service case study, and we describe the implementation design
of  a  video  streaming application,  which is  then  implemented in a  prototype,  whose performance are  measured with
MPEG2 video traces. We report the results of the conducted trials, which evaluated the RVBR Service for multimedia
IP traffic with RSVP. 

The rest of the paper is organised as follows. In the next section we give an overview of the analitical model of RVBR
and  we  illustrate  how  the  problem  of  finding  the  optimal  reallocation  parameters  has  tackled.  We  also  show  how
RVBR can be used for applications that use RSVP with CL. In Section 3 we introduce an approximation to RVBR in
order to be more easily integrated in applications. In Section 4 we propose an architecture design that we evaluate by
accomplishing a  prototype  implementation,  whose  performance  are  measured with real  MPEG2 video traces.  These
results, which show the benefits of renegotiation , are presented and discussed in Section 5. Final discussion and future
work are given in the conclusion section.

2. Resource Renegotiation: RVBR Service

The  renegotiable  variable  bit  rate  (RVBR)  service,  can  be  used  by  an  application  to  find,  at  any  renegotiation,  the
parameters  for  renegotiate  the  RSVP  connection,  when  the  input  traffic  is  known.  RVBR  service  is  based  on  the
network calculus [12] definition of the time varying leaky bucket shapers; such shapers are defined by a fixed numbers
of leaky buckets, whose parameters (rate and bucket size) are changed at specific transition moments. RVBR assumes
that the bucket levels are kept unchanged at those transition moments. 

RVBR service uses the knowledge of  the past status of  the system and the profile of  the traffic expected in the near
future,  which  can  be  either  pre-recorded  or  known  by  means  of  exact  prediction.  This  scheme  suits  perfectly  the
dynamics  of  the  traffic  generated  by  multimedia  applications  with  pre-recorded  traffic.  Moreover  it  naturally
integrates with the soft state mechanism of RSVP, which allows for renegotiating the resources. 

1. Overview of RVBR Service

We  first  recall  the  characterisation  of  the  RVBR  service  in  terms  of  input  and  output  functions  as  given  in  [2].

Figure 1 RVBR reference configuration



There is a renegotiable leaky bucket specification (with rate r and depth b) plus a fixed size buffer X drained at maximum at
renegotiable  peak  rate  p .  The  elements  of  a  RVBR  source,  as  illustrated  in  Figure  1 ,  are  a  renegotiable  leaky  bucket
specification (with rate r and depth b) plus a fixed size buffer X  drained at maximum at renegotiable peak rate p. In [2] the
RVBR service is described with two leaky bucket specifications. In the case of  RSVP the bucket associated to the peak p is
the  MTU  size,  hence  it  is  fixed.  We  further  assume  it  equal  to  zero  to  simplify  the  computation,  given  that  this  is  not  a
limitation. 

The observation time is divided into intervals, and Ii= [ti,ti+1] represents the i-th interval. Inside each interval the system does

not change. The parameters of the RVBR service in Ii are indicated with (pi, ri, bi). 

The RVBR service is completely defined by: 

the time instants ti at which the parameters change 

the RVBR parameters (pi,ri
,bi

), for each interval Ii

the fixed shaping buffer capacity X

A RVBR source cannot send more than the traffic specified by the shaping function s i, defined as 

s i(u)=min ( pi*u , ri*u + bi )

Moreover  the  RVBR  service,  at  the  transient  times  t i  between  two  adjacent  intervals,  keeps  the  level  of  the  buckets  and

restarts  from that  level  at  the  next  interval.  The justification of  this  choice  can be  found in [2].  Therefore there is  another
function, resulting from taking into account the bucket level q(t), which limit the traffic in Ii 

s0i(u)=min ( pi * u, ri *t u + bi
-q(ti))

If  we indicate with the function R(t) the amount of  traffic that has entered in the system in time interval [0,t], the resulting
output R*(t) is given by [2]

R*(t)=min (s0i(t-ti)+ R*(ti), infs ( si(t-s) +R(s))

1. Optimisation of the RVBR parameters

This input-output characterisation of the RVBR service, is further used to solve the problem of finding, at any renegotiation,
the optimal si to negotiate with the network. This problem is well know to have no trivial solution. For example some input

traffic could be specified from a large ri and a small bi as well as from a small ri and a large bi. In [2] the authors proposes

different  algorithms  that  solve  the  optimisation  problem  for  some  specific  cost  functions,  which  represent  the  cost  of  the
traffic specification to the network. Those algorithms are based on the exact knowledge of  the input traffic (pre-recorded or
know by means of an exact estimation). 

In particular,  the algorithm localOptimum ,  which finds the optimal solution when the choice of  the network is driven by a
linear cost function , was used to perform simulation of Internet traffic that takes the form of IntServ specification with RSVP
reservation. In RSVP the sender sends a PATH message with a Tspec  object which characterises the traffic it is willing to
send. If  we consider a network that provides a service as specified for the Controlled Load service, the Tspec takes the form
of  a double bucket specification as given by the RVBR service. In fact, with CL service there is a peak rate p  and a leaky
bucket specification with rate r and bucket size b. This corresponds to the parameter of RVBR service. Additionally, with CL
service, there is a minimum policed unit m and a maximum packet size M , which are assumed to be fixed and thus ignored.

1. RVBR when the traffic is specified by its arrival curve



localOptimum algorithm uses  functions  that  require  the  knowledge of  the exact  traffic.  In the real
case  of  video  stream applications,  the  module  that  implements  RVBR has to  access  information
related  to  the  network  and,  therefore,  even  if  the  traffic  is  prerecorded  and  stored,  it  is  not
reasonable to have access to the exact traffic.

To  the  aim  of  using  the  localOptimum  algorithm  in  a  real  application,  we  propose  an
approximation  to  some functions,  which  originally  work  with  the  exact  traffic,  in  order  to  work
with a smaller and less precise information: the exact traffic R(t) for t in Ii is substituted by upper

bound functions. We introduce the function:

ai(u)=min ( p a i * u, r a i *t u + b a
 i )

where 

p a i =supt,s (R(t)-R(s))

(t-s)

r a i = (R(ti+1)-R(ti))

(ti+1 -ti)

b a i =St [R(t)- r a i * t]+

and  a  second  function  that  takes  in  account  the  traffic  q(t i )  that  is  the  bucket  at  the  transient

period.

a0
i(u)=min ( p a0

 i * u, r a i *t u + b a i -q(ti))

where 

p a0
 i =supt (R(t)-R(ti))

(t- ti)

 

These  functions  are  arrival  curves  [12]  of  R(t),  i.e.  upper  bounds  to  the  traffic  R(t).  With  the
introduction of  ai and a0

i we can approximate the function bi and the optimal peak rate pi that in the RVBR are

originally computed from the exact traffic R(t).

Therefore,  indicating  with  w(t i )  the  backlog  in  the  shaping  buffer  at  time  t i  ,  the  function  b i  is  given  by

bi(s)=max ( (ai(s), a0i(s) +w(ti)+q(ti) )



and the minimum pi by

p i
 =max (sups (ai(s )-X)/s , sups (a

0
i(s )-X+w(ti) )/s)

we can use for our prototype the algorthm for RVBR as defined in [1 ] and [2]: 

ai and a0
i can be used in a real implementation, because computed with only four parameters: (p a i , r a i , b a i , p a0

i  ).  These  parameters  can  be  easily  stored  and  passed  from  the  application  level  to  the  RVBR

module

2. Prototype description

In this section we present the design of the prototype application providing RVBR features via RSVP we implemented under
Microsoft  NT  4.0  with  RSVP  by  Intel.  The  prototype  realises  a  client-server  application  for  data-transfer  regulated  by
pre-defined temporisation. The server is composed by the following modules: the Application module, the RSVP Daemon,
the  Data  Pump,  the  Network  Module  (IP,  UDP,  TCP).  A  graphical  representation  is  given  in  Figure  2



Figure 2 Prototype Architecture: Server

Figure 3 Prototype Architecture: Client

The client has the following module: the Application module, the RSVP Daemon, the Data Receiver, the Network Module
(IP,  UDP,  TCP)  and  the  Graphical  User  Interface.  A  graphical  representation  of  the  client  is  given  in  Figure  3 .

The behaviour of this prototype is illustrated in Figure 4:

Server: The server waits for data request on a predefined and known TCP port. This request contains information about file
to be transferred. The server uses this information to access a descriptor that contains the location of the requested file and the
related  QoS  Information.  The  server  computes  the  new  QoS according  to  mechanism described  in  Section  4  and  asks  for
reservation to the client sending the Tspec packet. Therefore, the following information are provided available to the server:
the average rate r a i,, the peak rate p a i , the transmission length, the burst size b a i , the max slope p a0

 i ,

the reallocation time ReallocationTime, and the service constraint.

If  the reservation successes, it activates the RSVP daemon with the list of  the rest of  QoS descriptors, in
the other case it  activates only the data pump. The RSVP daemon sends a new Tspec according to the
local refresh time defined for the soft-state and reallocation time define in the QoS descriptor. It sends a
new  Tspec  every  T int  seconds  where  T int =min  ( ReallocationTime ,  RefreshTime ).  The  new  Tspec

contains the new QoS computed by RVBR (if  it is needed) or the old one if  RefreshTime expires. In the
second case the ReallocationTime must be updated.

When  the  transmission  ends  the  RSVP  daemon  closes  the  RSVP  session  on  the  server  side.

The Data Pump sends data according to the temporisation defined for the special medium. The input file
is  composed  by  a  list  of  packet-dimension  with  the  related  time-stamp  for  sending.  The  Data  Pump
generates  a  data-packet  according  to  the  required  dimension  and  sends  it  according  to  the  required
time-stamp.



Client: The client asks for the requested file and waits for the PATH message (containing the Tspec).
On this basis it asks for reservation sending the RESV message. If  the phase (PATH-RESV) successes, it
activates the RSVP daemon, the Data Receiver module and the GUI. In the other case it activates only
Data Receiver module.

The GUI module is a window that allows interrogating the RSVP daemon about the resources
allocated.

The RSVP daemon waits for change the reservation (Tspec) and sends the new RESV. It tears
down the RSVP connection if it receives a PATH_TEAR message.

The Data Receiver builds the new file storing information received from the Data Pump on the
server side in a location defined from the user. 

 

Figure 4 Prototype behaviour

1. Upper bound to the losses for the approximated version of the RVBR Service

In  our  trials,  we use  a  4000 frame-long sequence that  conforms to  the  ITU-R 601 format  (720*576 at  25 fps).  The
sequence is  composed of  several  video scenes that  differ  in terms of  spatial  and temporal  complexities.  It  has been
encoded in an open-loop variable bit rate (OL-VBR) mode, as interlaced video, with a structure of 11 images between
each pair of  I-pictures and 2 B-pictures between every reference picture. For this purpose, the widely accepted TM5
video encoder [11] has been utilised. 

Our trials are aimed at verifying the ability of the RVBR service to provide a better allocation of the resources in a real
network  and  evaluating  the  overhead  (time  consuming)  introduced  by  the  support  of  renegotiation.



The trials have been performed between two PCs connected to a shared LAN. The communication between PCs does
not go through any router. The trials have been performed varying network parameters and reallocation time: in this
context we have identified two network configurations related to a shared Ethernet with medium load and a switched
Ethernet (it has been simulated performing the related trials on the unloaded Ethernet). Limitations on BucketDepth bi
derive from the buffer capacity of each NIC (256KB). 

The following figures show a comparison of allocated resources varying the reallocation time. The graphic in Figure 5
is related to BucketRate ri and PeakRate pi

 allocation with reallocation time respectively 30 seconds, 60 seconds and

without reallocation in the case of a shared Ethernet. In the following we will indicate as short reallocation the one at
30 seconds, long reallocation at 60 seconds and legacy the one without reallocation. In this case (shared Ethernet) we
have limited the bucket capacity to half of the NIC capacity to take into account the problems deriving usually from a
legacy Ethernet.  The line related to Peak rate is  constant  in the case of  60 seconds and no reallocation while it  is a
piece wise in the other case (yellow) and it lies under the others. We can observe that the peak value is pretty constant
in the case of  long period and it  is  constant (of  course) in the legacy case.  The short  reallocation requires a narrow
bandwidth with a peak value always under the others. 

Figure 5: Shared Ethernet. The BucketRate ri is indicated with TR and the PeakRate pi with PR

The graphic in Figure 6 is related to a Switched Ethernet. In both short and long reallocation cases, we can observe a
gain  deriving  from reallocation  of  resources  in  terms  of  bandwidth  (deriving  from BucketRate  r i  and  PeakRate  p i

parameters of  IS) compared to the legacy case. An interesting analysis is related to the time needed for reallocation.
This  is  critical  because  it  could  affect  the  right  behaviour  of  the  system.  A  too  slow  allocation  could  loose
synchronisation  between  Control  Plan  (RSVP)  and  User  Plan  (Data  Pump).  The  values  measured  in  our  trials  are
lower than 0.1 second, as are shown in Figure 7.



Figure 6:
Switched Ethernet. The BucketRate ri is indicated with TR and the PeakRate pi with PR

Figure  7  shows each  observed  time needed for  the  reallocation  related  to  all  performed experiments.  The variation
depends on the network load; the average value is 62 msec.

Figure 7: observed time needed for the reallocation

The  BucketDepth  analysis  is  not  significant  because  it  is  constrained  by  the  buffer  of  the  NIC.

2. Conclusion

In  this  work  we  considered  generic  multimedia  applications  with  pre-recorded  traffic  and  addressed  the  problem  of
supporting the QoS requirements for these applications while efficiently allocating the network resources. We analyzed this
problem at the source node where the traffic profile is negotiated with the network and the traffic is shaped according to the



contract. 

The goal of this work was to investigate the ability of renegotiation. We presented an architecture design based on the RVBR
service, which aims to renegotiate the traffic profile.

We  implemented  a  prototype  of  a  video  streaming  application  that  uses  RSVP  reservation  protocol  with  Controlled-Load
service integrated with the RVBR service. To this aim we modified some functions used by the RVBR service in order to use
and manage a reduced number of traffic information inside our implementation. 

We carried this study on a real network with the prototype client and server exchanging RSVP messages containing a Tspec
renegotiated according to the RVBR service.

The measurement performed on our testbed with real MPEG2 video traces showed the benefits of applying the renegotiation.
In fact, our results indicate that renegotiation is an efficient mechanism to allowing to better utilising network resources at the
very low price of implementing a service like RVBR.

Some important aspects that were neglected in this first release will be included in next releases. Among them, but not limited
to, we consider 

introduction of timing constraints to select the right QoS: it is a parameter of the traffic descriptor at application layer
and it should be introduced during the network optimization as a new constraint

synchronization between User Plan and Control Plan: problems deriving from delay during reallocation (Control Plan)
or on the User Plan (e.g. delay for retransmission or window size in the case of TCP, ....) must be considered

recovery in case of fault: actions to be performed if a reallocation does not successes 

Nevertheless, our results indicate that a reasonable renegotiation, i.e. with renegotiation periods of about 30 seconds (default
RSVP), the network resources utilization is better and it works using available technology. 
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