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Abstract

A fair exchange protocol is a protocol in which two (or more) mutually suspicious
parties exchange their digital items in a way that neither party can gain an advantage
over the other. Many fair exchange protocols have been proposed in the academic lit-
erature, but they provide rather di�erent types of fairness. The formal comparison of
these protocols has remained di�cult, mainly because of the lack of a formal framework
in which each can be modeled and formal de�nitions of fairness can be given. In this
paper, we introduce game theory as a formal tool to model exchange protocols. We give
formal de�nitions of various types of fairness using standard notions of game theory, and
show how the de�ned fairness types are related to each other. Our results can serve as
the foundations of the formal comparison of existing and future fair exchange protocols
with respect to fairness.

1 Introduction

Protocols that allow two (or more) mutually suspicious parties to exchange their digital items

via communication networks are essential building blocks for electronic commerce services.

Examples where such protocols are needed include signing of electronic contracts, certi�ed

e-mail delivery, and purchase of network delivered services. In all of these applications, there

is an inherent problem, which stems from the fact that the parties distrust each other and

may potentially misbehave: a party may end up in a disadvantageous situation. In contract

signing, for instance, the party that signs the contract �rst commits itself without being sure

that the other party will also sign the contract. This problem may discourage the parties and

hinder otherwise desired transactions. Therefore, an important requirement that exchange

protocols should satisfy is fairness. Roughly, a fair exchange protocol is a protocol in which

the parties can exchange their digital items in a way that neither party can gain an advantage

over the other.

�This report is an updated version of EPFL SSC Technical Report No. SSC/1999/039. The earlier version

was published in December 1999.
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Many scienti�c papers propose fair exchange protocols (e.g., [Cle89, Ket95, Jak95, Tyg96,

DGLW96, ZG96, FR97, ASW97, Syv98, BDM98]). Interestingly enough, besides the details of

the proposed protocols, these papers also di�er in the interpretation of the concept of fairness

informally described above. Examples for various interpretations include the following:

� Early work on fair exchange has resulted in a number of theoretically important fair

exchange protocols (e.g., [Cle89]), which are based on gradual secret release schemes.

In these protocols, the items of the parties are exchanged in small pieces, typically bit-

by-bit. Here, fairness of the protocol means that the computational e�ort required from

the parties to obtain each other's remaining bits is approximately equal at any stage

during the execution of the protocol. Clearly, this fairness de�nition based on equal

computational complexity makes sense only if the parties have equal computing power,

which is an often unrealistic and undesirable assumption. Therefore, in this paper, we

will focus on the other interpretations described below.

� In many of the recent papers that describe practical fair exchange protocols (e.g., [Tyg96,

PJ97, BDM98]), fairness is de�ned (or meant) as some sort of atomicity property, which

requires that either both parties obtain the item of the other or none of them gets

anything useful.

� Some papers (e.g., [FR97, ASW97]) de�ne fairness as a less demanding property by

specifying that the protocol guarantees that correctly behaving parties never su�er a

disadvantage.

� Another set of exchange protocols (e.g., [Jak95, Syv98, But99]) provide yet another

kind of fairness. When faithfully executed by each party, these protocols ensure a fair

outcome, but they do not exclude the possibility that a correctly behaving party su�ers a

disadvantage if the other party misbehaves. However, in order to ensure that this unfair

situation occurs only rarely, the protocols are constructed in a way that misbehavior is

uninteresting for each party. This means that, although it may cause some damage to

a correctly behaving party, the misbehaving party also loses something or at least does

not gain anything (apart from malicious joy) with the misbehavior.

The full understanding of these interpretations and the formal comparison of fair exchange

protocols of di�erent types are di�cult, mainly because of the lack of a formal framework, in

which exchange protocols can be modeled and formal de�nitions of fairness can be given. In

this paper, we introduce game theory [Mor94] to solve this problem. We illustrate the use of

game theory in this context in two ways:

1. We model various types of exchange protocols with game trees. A game tree is a directed

labeled tree graph that models the possible moves of the protocol participants and the

advantages and disadvantages in each possible situation in which the exchange may

terminate.

2. We give formal de�nitions for various types of fairness using standard notions of game

theory, and show how the de�ned fairness types are related to each other.

The outline of the paper is the following. In Section 2, we brie
y introduce all the game

theoretic notions that we use in this paper. In Section 3, we introduce the idea of modeling
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exchange protocols with game trees and illustrate it with examples. In Section 4, we propose

formal de�nitions for fairness, and investigate the relationships between these de�nitions. We

discuss some related work in Section 5 and conclude the paper in Section 6.

2 Game theory

Games, such as chess, tic-tac-toe, and many others, can naturally be represented by a labeled

directed tree graph. Each vertex of this graph (except for the terminal vertices) is labeled

with the name of a player and represents a decision point for this player in the course of the

game. The choices or possible moves at this point are represented by the edges starting from

this vertex. The terminal vertices (leaves) of the tree correspond to possible ends of the game.

Each leaf is labeled with a tuple of real numbers, which represent the payo�s for the players

if the game ends in that leaf. The payo� may be negative, in which case it is interpreted as

a loss. The starting point of the game is represented by the root of the tree.

A game is said to be of perfect information if each player knows at every point in the game

the entire previous history of the game. Chess, for instance, is a game of perfect information,

but bridge is not (because the cards dealt to the other players are hidden). In the tree

representation of games of imperfect information, there always exists at least one set S of

vertices, all belonging to a single player P , such that, at a certain point in the game, P knows

that she is at one of the vertices in S, but does not know which one. This set is called an

information set for P . Graphically, we will indicate information sets by dashed boxes that

surround the vertices of the sets.

A classical example for a game is The Prisoner's Dilemma. It is described as follows1:

Two criminals, call them Bonnie and Clyde, are arrested by the police. They are immediately

separated so that they cannot communicate in any way. Each is o�ered the following deal:

� If you confess and implicate the other, then

{ you will serve only 1 year in jail if the other does not confess, or

{ 5 years if the other does confess.

� On the other hand, if you do not confess, then

{ you will serve 10 years if the other confesses, or

{ 2 years if the other does not confess either.

Now, Bonnie and Clyde have to decide, without communicating with each other, to confess

or to keep quiet about the crime they have committed. Their decisions will determine the

number of years they have to serve in jail.

The game is carefully constructed so that it encourages the criminals to confess. In order

to see this, let us imagine how Bonnie may think. Bonnie may assume that Clyde will confess.

In this case, Bonnie should also confess, because if she does so, then she has to serve 5 years in

jail, while if she keeps quiet, then she gets 10 years. Bonnie may also assume that Clyde will

keep quiet. In this case again, Bonnie should confess, because this means 1 year in jail, while

if she keeps quiet, she has to serve 2 years. Thus, given that Bonnie cannot communicate and

agree on a strategy to follow with Clyde, confessing is the best thing she can do. And the

same is true for Clyde.

1This presentation of The Prisoner's Dilemma is taken from [Mor94].
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Bonnie

Clyde Clyde

confess

confess confess

keep quiet

keep quietkeep quiet

(-5, -5) (-1, -10) (-10, -1) (-2, -2)
1.1 1.2 2.1 2.2

1 2

Figure 1: The Prisoner's Dilemma

The game tree of The Prisoner's Dilemma is illustrated in Figure 1. In order to

facilitate the following discussion, we labeled the edges of the tree with the possible moves

of the players and numbered the vertices in addition to the labeling with the players and the

payo�s. The game has two players: Bonnie and Clyde. Without loss of generality, we assume

that the deal is �rst o�ered to Bonnie and then to Clyde without telling him her decision.

This means that the game is started by Bonnie, and thus, the root of the tree is labeled by

her name. Bonnie has two possible moves: to confess or to keep quiet. These are represented

by the two edges starting from the root. Vertex 1 and vertex 2, both of which belong to

Clyde, form an information set for Clyde, because he cannot learn Bonnie's decision. Clyde

knows that he is at one of these vertices, but he does not know which one. Independently

of which vertex he is at, Clyde has two possible moves too: to confess or to keep quiet, and

the edges starting from vertex 1 and vertex 2 are labeled accordingly. The game has four

possible outcomes, which are represented by the leaves of the tree. Each leaf is labeled with

a payo� vector, the �rst element of which is the payo� for Bonnie and the second element is

the payo� for Clyde. In this game, the payo�s are negative and correspond to the number

of years that have to be spent in jail. Leaf 1.2, for instance, represents the situation where

Bonnie confesses and Clyde keeps quiet, and thus, it is labeled with a payo� of -1 for Bonnie

and -10 for Clyde according to the rules of the game.

2.1 Strategies

Informally, a strategy for player P is a plan that tells P how to move in any conceivable

situation during the game. In order to formally capture this idea, we �rst introduce the

notion of choice subtrees. We note that a subtree S of a tree T is a tree, whose vertices form

a subset of the vertices of T , whose edges form a subset of the edges of T , whose root is the

root of T , and whose leaves form a subset of the leaves of T .

De�nition 2.1 Let T be a game tree and let P be one of the players. A choice subtree for P

is a subtree S of T , such that for all vertices v in S: (a) if v belongs to P , then exactly one

of the children of v is in S; (b) if v does not belong to P , then all the children of v are in S.

By de�nition, a choice subtree S for player P always suggests a single move to P at each

vertex of S that belongs to P . Furthermore, if P chooses her moves according to S, then the

game always remains within S (i.e., it never reaches a vertex, which is not in S). It might

seem that a choice subtree for P , indeed, encodes a strategy for P . The problem with choice
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subtrees is that they do not respect information sets, which means that a choice subtree for

P may call for di�erent moves at two vertices, both of which belong to the same information

set for P . Since P does not know in which of these vertices she actually is, the choice subtree

does not tell her unambiguously how to move in this situation. Therefore, a strategy for P

must call for the same move at all vertices that belong to the same information set for P .

De�nition 2.2 Let T be a game tree and let P be one of the players. A strategy for P is a

choice subtree for P that respects P 's information sets.

The game tree of The Prisoner's Dilemma has four choice subtrees for Clyde, but

only two out of the four are strategies for Clyde. These are denoted by SC;c and SC;q, and

depicted in the lower part of Figure 2. On the other hand, there are two choice subtrees for

Bonnie and both are also strategies for Bonnie, because she does not have information sets.

The strategies for Bonnie are denoted by SB;c and SB;q, and illustrated in the upper part of

Figure 2.

Bonnie

Clyde Clyde

confess

confess confess

keep quiet

(-5, -5) (-10, -1)
1.1 2.1

1 2

Bonnie

Clyde Clyde

confess keep quiet

keep quietkeep quiet

(-1, -10) (-2, -2)
1.2 2.2

1 2

( Clyde, confess: SC,c ) ( Clyde, keep quiet: SC,q )

Bonnie

Clyde

confess

confess keep quiet

(-5, -5) (-1, -10)
1.1 1.2

1

( Bonnie, confess: SB,c ) ( Bonnie, keep quiet: SB,q )

Bonnie

Clyde

confess

keep quiet

keep quiet

(-10, -1) (-2, -2)
2.1 2.2

2

Figure 2: Strategies for Bonnie and Clyde in The Prisoner's Dilemma

Let us now consider a game with n players P1; P2; : : : ; Pn. Let us denote the tree repre-

sentation of the game by T and the set of all possible strategies for Pi by �i. It is easy to

see that for any n-tuple of strategies (S1; S2; : : : ; Sn) 2 �1 � �2 � : : : � �n the intersection

of the strategies \ni=1Si is a single path from the root to some leaf of T . In other words, if

each player Pi plays according to one of her strategies Si 2 �i, then the game follows the

path determined by \ni=1Si. The payo� vector that labels the terminal vertex of this path is

~p(S1; S2; : : : ; Sn) = (pi(S1; S2; : : : ; Sn)).

Looking again at our example, it is easy to verify that if Bonnie plays according to her

strategy SB;c and Clyde plays according to his strategy SC;q, then the game follows the path

root! 1! 1:2 and results in the payo� vector ~p(SB;c; SC;q) = (�1;�10).
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2.2 Equilibria

The goal of the players in a game is to maximize their payo�s. A good strategy drives its

user toward this goal. Indeed, a player P in a game may have a strategy S� that is the best

response to any combination of strategies played by the other players, in the sense that P 's

payo� is maximal if she plays S� { no matter what strategies are played by the others. This

strategy is called dominant strategy for P and formalized as follows:

De�nition 2.3 Let T be a game tree with players P1; P2; : : : ; Pn and strategy sets �1;�2; : : : ;

�n for the players. S�

i 2 �i is a dominant strategy for Pi if for all S1 2 �1; S2 2 �2; : : : ; Sn 2

�n (where Si 6= S�

i )

pi(S1; S2; : : : ; Si; : : : ; Sn) < pi(S1; S2; : : : ; S
�

i ; : : : ; Sn)

If each of the n players has a dominant strategy, then the n-tuple of these is called

dominant strategy equilibrium.

De�nition 2.4 Let T be a game tree with players P1; P2; : : : ; Pn and strategy sets �1;�2; : : : ;

�n for the players. An n-tuple of strategies (S�

1
; S�

2
; : : : ; S�

n) 2 �1��2�: : :��n is a dominant

strategy equilibrium if S�

i is a dominant strategy for Pi for all 1 � i � n.

The pair of strategies (SB;c; SC;c) in the game of The Prisoner's Dilemma is a dominant

strategy equilibrium, because, as we explained before, confessing is the best thing each player

can do.

There are, however, games, in which no dominant strategy exists for any of the players.

In these games, one has to apply other equilibrium concepts to �nd the n-tuple that contains

the \best" strategies for the players. Another frequently encountered equilibrium concept

is called Nash equilibrium. An n-tuple of strategies is a Nash equilibrium if no player has

incentive to deviate from his strategy assuming that the other players do not deviate. The

formal de�nition is the following:

De�nition 2.5 Let T be a game tree with players P1; P2; : : : ; Pn and strategy sets �1;�2; : : : ;

�n for the players. An n-tuple of strategies (S�

1
; S�

2
; : : : ; S�

n) 2 �1 � �2 � : : : � �n is a Nash

equilibrium if for all 1 � i � n and for all Si 2 �i

pi(S
�

1
; S�

2
; : : : ; Si; : : : ; S

�

n) � pi(S
�

1
; S�

2
; : : : ; S�

i ; : : : ; S
�

n)

It is easy to verify that the pair of strategies (SB;c; SC;c) in The Prisoner's Dilemma

is a Nash equilibrium and it is the only one.

There are several other equilibrium concepts, such as weak dominant strategy equilibrium

and iterated-dominant strategy equilibrium, which we do not introduce here because we do

not use them in this paper.

3 Modeling exchange protocols using game theory

There are some striking similarities between exchanges and games. Indeed, in both cases,

we have two (or more) parties/players who interact with each other according to some

rules, and whose actions in
uence the future actions of the other; in the course of the

6



interaction, they may or may not have perfect information; the goal of the parties/players

is to maximize their pro�t/payo�; in order to achieve this, they choose and follow a strategy

(which, in the case of exchanges, may or may not coincide with the faithful execution of a given

exchange protocol). This inspired us to use game theory as a tool to analyze the properties

of exchange protocols.

The following conventions can be used when transforming an exchange protocol in a game:

� Players. The participants of the exchange protocol are represented by the players of

the game.

� Game tree. When a protocol participant is about to send a message, she has several

options: to send the message correctly, to send it incorrectly, or to not send it at all.

Indeed, a participant may send any kind and number of messages that she can construct

using the information she possesses at that time. These may be represented as possible

moves in the game and determine the structure of the game tree.

� Payo�s. An advantage can be represented with a positive payo�, and a disadvantage

can be modeled as a negative payo�. Let us assume, for instance, that the participants

of the exchange protocol are called A and B, and the items that they want to exchange

are iA and iB , respectively. Then, one way to compute the payo� for A may be the

following: If A loses control2 over iA, but, as a compensation, gains access to iB , or she

does not lose control over iA and she does not gain access to iB , then the payo� for A

is 0. The rationale is that, in the two cases described above, A does not lose or gain

any advantages, and the payo� of 0 represents this situation. If, on the other hand, A

gains access to iB and does not lose control over iA, then the payo� for A is 1, since,

in this case, A has an advantage. Similarly, if A does not gain access to iB , but loses

control over iA, then the payo� for A is -1, because she has a disadvantage. The payo�

for B can be computed in the same way.

We hasten to note that these are only conventions and not precise rules for the trans-

formation of any exchange protocol in a game. We by no means want to give a complete

formal procedure for this transformation, mainly because we think that it would be quite

di�cult. Therefore, for some protocols, the determination of the players, the construction of

the game tree, and the calculation of the payo�s may be di�erent from the way we have just

indicated. It may not be necessary, for instance, to explicitly model each protocol participant

as a player. Usually, it is su�cient to model only those protocol participants as players that

have choices and make decisions during the execution of the protocol. A trusted third party,

for instance, is usually not modeled explicitly as a player, because it is assumed to execute

the protocol faithfully and, thus, its actions are completely predetermined. Similarly, it may

not be necessary to model each protocol message explicitly as a possible move in the game,

and the payo�s may be calculated in another way, too. However, as shown in the examples

provided hereafter, any particular exchange protocol can easily be transformed in a game.

2We use the term lose control in a general sense to express a disadvantageous situation for a player.

Depending on the particular protocol and application in question, losing control over an item may mean that

the other party has taken possession of it, that it has lost its value (e.g., a digital coin has been revoked),

that it has expired, etc. Similarly, we use the term gain access in a general sense to express an advantageous

situation for a player.
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Example 1: As an example, let us consider a certi�ed e-mail protocol, which ensures that

either a proof-of-delivery and a proof-of-origin are available to the originator A and the

recipient B, respectively, or neither the originator nor the recipient has any proof [DGLW96].

In order to achieve this, the protocol uses a trusted third party (TTP). When A wants to send

a mail m to B, she �rst computes a cryptographic hash value of m, signs m, and encrypts

the signed mail with the public key of the TTP. A then sends the encrypted and signed

mail together with the cryptographic hash value to B. If B wants to read the mail, he has

to sign the hash value and send the encrypted mail together with the signed hash value to

the TTP. The TTP decrypts the mail, computes the cryptographic hash value, and veri�es

the signatures. If all the veri�cations are successful, then the TTP creates a proof-of-origin

token and a proof-of-delivery token and makes the mail and the tokens available to A and B.

Finally, A eventually fetches the proof-of-delivery and B eventually fetches the mail and the

proof-of-origin from the TTP.

B

stop fetch proof
and mail

(1, -1) (0, 0)
1.2.2.1 1.2.2.2

A

B

stop

send encrypted mail + hash value

send encrypted mail + signed hash value

1.2

1

A

stop fetch proof

1.2.1 1.2.2B

stop fetch proof
and mail

(0, 0) (-1, 1)
1.2.1.1 1.2.1.2

A

stop fetch proof

(0, 0) (0, 0)
1.1.1 1.1.2

1.1

Figure 3: Game tree for the protocol of Example 1

The game tree for the certi�ed mail protocol is illustrated in Figure 3. There are two

players: A and B. The TTP is not a player, because it always executes the protocol faithfully,

thus, it does not have choices. The game is started by A when sending the encrypted and

signed mail and the hash value to B. B then has two moves: (1) either to sign the hash

value and send the encrypted mail and the signed hash value correctly to the TTP, or (2) to

send an incorrect message or nothing at all. These moves are represented by the two edges

starting from vertex 1. Vertex 1.1 and vertex 1.2 form an information set for A, because she

does not know how B moved. She has two possible moves: (1) to try to fetch the proof-of-

delivery from the TTP, or (2) to stop the execution of the protocol. These are represented

by the edges starting from vertex 1.1 and vertex 1.2. If B has sent an incorrect message

to the TTP or stopped (i.e., if A is actually in vertex 1.1), then the TTP does not create

the proof-of-delivery and the proof-of-origin tokens. This means that neither party can ever

receive a proof. Therefore, independently of A's move (fetch or stop), the payo� can only be

0 for both parties. That is why both of vertex 1.1.1 and vertex 1.1.2 are labeled with the

payo� vector of (0; 0). If B has sent the encrypted mail and the signed hash value correctly
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to the TTP (i.e., if A is actually in vertex 1.2), then the TTP creates the proof tokens, and

A and B may eventually get them if they try to fetch them from the TTP. Now, A and B

have the same moves: each can try to fetch a proof from the TTP or stop execution. Vertex

1.2.1 and vertex 1.2.2 form an information set for B, because he does not know whether A

stopped or she fetched the proof-of-delivery from the TTP. If they both fetch their proofs or

they both stop, then the game terminates with a payo� of 0 for both players. These situations

are represented by vertex 1.2.2.2 and vertex 1.2.1.1, respectively. If A fetches her proof, but

B does not fetch his, then the payo� is 1 for A and -1 for B. Similarly, if B fetches his proof,

but A does not fetch hers, then the payo� is 1 for B and -1 for A. Vertex 1.2.1.2 and vertex

1.2.2.1 represent these situations. 2

One might think that every exchange protocol is best modeled with a zero-sum game (i.e.,

a game in which the sum of the payo�s of the players is always 0), because every situation that

is advantageous for a player is disadvantageous for the other. Although this is often the case,

it is not always true. Below, we present an example protocol that leads to a non-zero-sum

game. In general, exchange protocols are represented by non-positive-sum games (i.e., games

in which the sum of the payo�s of the players is always less than or equal to 0). We exclude

those games, in which the sum of the payo�s can be positive, because they would allow the

generation of wealth from nothing, which is usually not possible (as opposed to loss of wealth,

which is often the case). Thus, if the game of a protocol allows a positive combined payo�,

then the model is probably erroneous and should be re-considered (e.g., a party that is not

modeled as a player in the game should, indeed, be modeled as a player).

Example 2: Let us consider now the following protocol that allows two parties to exchange

payment for services in a way that neither party has an incentive to cheat the other [Jak95].

The protocol is based on special digital coins that can be ripped into two halves. We assume

that a single half coin has no value, and once a half coin has been spent, it cannot be spent

again. The protocol works as follows: First A rips a coin and sends the �rst half of it to B.

Then B provides the service (which is worth 1 coin) to A. Finally, A sends the second half

of the the coin to B, who can redeem the two halves for real money.

A

B

stop

send first half coin

provide service

1.1 1.2

1

A

stop send second half coin

(0, -1) (0, 0)
1.2.1 1.2.2

(-1, 0)

Figure 4: Game tree for the protocol of Example 2

The game tree of this protocol is illustrated in Figure 4. The game is started by A when

sending the �rst half coin to B. When B receives the half coin, it has two possible moves: (1)

either to provide the service, or (2) to deny service provision. These two moves are represented
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by the two edges starting from vertex 1. If B denies the service provision, then the game

terminates in vertex 1.1 with a payo� of -1 for A and 0 for B. The reason is that, in this

case, A lost her coin, although, she did not receive any services. Thus, A has a disadvantage.

B neither lost nor gained anything, because he did not provide any services and he has only

a half coin, which has no value. If B provides the service, then A has two choices: (1) either

to send the second half coin, or (2) to stop the exchange. These choices are represented by

the two edges starting from vertex 1.2. If A does not send the second half coin to B, then

the game terminates in vertex 1.2.1 with a payo� of 0 for A and -1 for B. The explanation

is that, in this case, A lost one coin, but she also received the service, thus, she did not lose

or gain any advantages. On the other hand, B provided the service, but he has only a half

coin, which is worth nothing. Thus, he has a disadvantage. If A and B execute the protocol

faithfully, then the game terminates in vertex 1.2.2 with a payo� of 0 for both players for

obvious reasons. 2

Actually, the game model of an exchange protocol represents not only the protocol but

also the possible misbehavior of the parties. Therefore, in some sense, it encodes much more

than the exchange protocol itself. The exchange protocol is a set of rules that governs the

interaction of the parties by specifying what they should do in any conceivable situation that

may occur during the exchange. This is very similar to the concept of strategy in game theory.

Indeed, we can say that the game is constructed from the description of the protocol and the

assumptions about its participants and environment, and the exchange protocol itself (as a

set of rules) is represented by a tuple of strategies (one strategy for each player) in the game.

Therefore, fairness properties of the exchange protocol can be investigated by analyzing the

properties of the strategy tuple that represents the protocol within the game. In the next

section, we follow this approach to formally de�ne various types of fairness.

4 Fairness de�nitions

In this section, we formalize three interpretations of the concept of fairness in two-party

exchange protocols using standard notions of game theory, and investigate how these inter-

pretations are related to each other.

4.1 Strict fairness

As we mentioned in Section 1, fairness is often de�ned as an atomicity property that requires

a fair exchange protocol to guarantee that either both parties obtain the item of the other

party, or none of them gets any useful information about the item of the other. An implicit

assumption behind this de�nition is that at least one party behaves correctly and follows the

steps of the protocol, otherwise, if none of the parties are faithful to the protocol, then the

protocol can hardly guarantee anything for them. Therefore, we can say that fairness as an

atomicity property means that if a party behaves correctly, then neither party can gain or

lose any advantages, no matter how the other party behaves. We call this type of fairness

strict fairness and formalize it in the following way:

De�nition 4.1 Let P be a two-party exchange protocol. Let us consider the game represen-

tation of the protocol and denote the two players by A and B and the strategy sets for the

players by �A and �B. Let us denote the strategy pair that corresponds to the faithful execu-

10



tion of the protocol by (S�

A; S
�

B). P is said to be strictly fair if 8SB 2 �B : ~p(S�

A; SB) = (0; 0)

and 8SA 2 �A : ~p(SA; S
�

B) = (0; 0).

Protocols that try to achieve strict fairness should cope with irrationally behaving parties.

An irrationally behaving party is a party that does not follow the protocol, but instead of

gaining some advantages with the misbehavior, it su�ers a disadvantage and may bring the

other correctly behaving party in an advantageous situation. As an example, let us consider

the protocol of Example 1 in Section 3. Let us assume that the originator A sends the

encrypted mail and the hash value to the receiver B, who signs the hash value and sends

the encrypted mail and the signed hash value to the TTP. The TTP, thus creates the proof

tokens and makes them available to A and B. If at this point, A stops and does not fetch

the proof-of-delivery, while B continues and fetches the mail and the proof-of-origin, then A

su�ers a disadvantage and B, who followed the protocol faithfully, gains an advantage. This

should not happen if the protocol is strictly fair.

4.2 Safe fairness

Although theoretically possible, irrational behavior is not very frequent in practice. This

means that protocols that do not try to protect the interests of irrational parties, and thus

achieve weaker types of fairness (than strict fairness) can still be useful. Furthermore, since

they provide weaker guarantees, they are probably less complex. This reasoning leads to the

following, less demanding de�nition of fairness: a fair exchange protocol is a protocol that

ensures that a correctly behaving party can never su�er a disadvantage. In other words,

executing the protocol is safe for each party. Therefore, we call this interpretation of fairness

safe fairness and formalize it in the following way:

De�nition 4.2 Let P be a two-party exchange protocol. Let us consider the game representa-

tion of the protocol and denote the two players by A and B and the strategy sets for the players

by �A and �B. Let us denote the strategy pair that corresponds to the faithful execution of

the protocol by (S�

A; S
�

B). P is said to be safe fair if

1. ~p(S�

A; S
�

B) = (0; 0), and

2. 8SB 2 �B : pA(S
�

A; SB) � 0 and 8SA 2 �A : pB(SA; S
�

B) � 0.

It is easy to verify that the certi�ed mail protocol of Example 1 achieves this type of

fairness. Note that according to the de�nition, a safe fair protocol may allow a misbehaving

party to gain an advantage, while ensuring that a correctly behaving party does not su�er a

disadvantage. However, this never happens, because correct models are always non-positive-

sum games.

4.3 Nash equilibrium fairness

Instead of requiring the protocol to ensure that a correctly behaving party never su�ers a

disadvantage, some interpretations of fairness require the fair exchange protocol to guarantee

that a misbehaving party can never gain an advantage (given that the other party behaves

correctly). This idea can be formalized in a very similar way as safe fairness, but instead of

requiring that 8SB 2 �B : pA(S
�

A; SB) � 0 and 8SA 2 �A : pB(SA; S
�

B) � 0, we now require

that 8SB 2 �B : pB(S
�

A; SB) � 0 and 8SA 2 �A : pA(SA; S
�

B) � 0. This means that (S�

A; S
�

B)

11



is a Nash equilibrium since we also require that ~p(S�

A; S
�

B) = (0; 0). Therefore, we call this

type of fairness Nash equilibrium fairness and formalize it in the following way:

De�nition 4.3 Let P be a two-party exchange protocol. Let us consider the game represen-

tation of the protocol and denote the two players by A and B. Let us denote the strategy pair

that corresponds to the faithful execution of the protocol by (S�

A; S
�

B). P is said to be Nash

equilibrium fair if

1. ~p(S�

A; S
�

B) = (0; 0), and

2. (S�

A; S
�

B) is a Nash equilibrium.

It is easy to verify that the protocol of Example 2 provides this type of fairness. As

it can be seen from the de�nition, Nash equilibrium fair protocols do not guarantee that a

correctly behaving party never su�ers a disadvantage as a consequence of the misbehavior of

the other party. They do, however, make misbehaving uninteresting for each party, because

they ensure that the misbehaving party loses something as well, or at least it does not gain

anything (apart from malicious joy) with the misbehavior.

4.4 Relationships

A direct consequence of the de�nitions is that strict fairness implies both safe fairness and

Nash equilibrium fairness, but not vice versa. Therefore, strict fairness is stronger than safe

fairness and Nash equilibrium fairness.

The relationship between safe fairness and Nash equilibrium fairness is summarized in the

following two theorems:

Theorem 4.1 Safe fairness implies Nash equilibrium fairness given that the game represen-

tation of the two-party exchange protocol is a non-positive-sum game.

Proof: The proof follows directly from the fact that if the game is non-positive-sum, then for

all SA 2 �A and for all SB 2 �B, pA(SA; SB) � 0 implies pB(SA; SB) � 0 and pB(SA; SB) � 0

implies pA(SA; SB) � 0. 2

Theorem 4.2 Nash equilibrium fairness implies safe fairness if, and only if, the game rep-

resentation of the two-party exchange protocol is a zero-sum game.

Proof: First, we prove that Nash equilibrium fairness implies safe fairness if the game repre-

sentation of the protocol is zero-sum. This follows directly from the fact that if the game is

zero-sum, then for all SA 2 �A and for all SB 2 �B , pA(SA; SB) � 0 implies pB(SA; SB) � 0

and pB(SA; SB) � 0 implies pA(SA; SB) � 0. Next, we have to prove that if the game is not

zero-sum, then Nash equilibrium fairness does not imply safe fairness. This follows from the

fact that there are protocols that are Nash equilibrium fair but not safe fair; an example is

the protocol of Example 2 in Section 3. 2

Thus, in general, safe fairness is stronger than Nash equilibrium fairness, but they coincide

if the game model of the protocol is zero-sum.

12



5 Related work

In spite of the crucial importance of fair exchange, very few researchers have tried to produce

a formal de�nition of this concept. We report here on two attempts in this direction, and

compare them with our proposal.

In [Aso98], Asokan de�nes two types of fairness:

� strong fairness: When the protocol has completed, either each party has the item of

the other party, or neither party has gained any additional information about the item

of the other.

� weak fairness: When the protocol has completed, either strong fairness is achieved, or

a correctly behaving party, say P , can prove to an arbiter that the other party has

received (or can still receive) P 's item without any further intervention from P .

Both strong and weak fairness consider fairness as some sort of atomicity property. They

di�er in the items actually exchanged in the protocol: strong fairness guarantees that the

real items are exchanged, whereas weak fairness only ensures that either the real items are

exchanged or one party receives the real item and the other party receives an a�davit, which

can be used later and outside the system to eventually obtain the real item (typically by

the enforcement from an authority). Thus, strong and weak fairness are concerned with

the question: how can fairness (as an atomicity property) be achieved? In case of strong

fairness, the atomic property of the exchange is guaranteed by the protocol itself. In case

of weak fairness, it may be achieved only with help coming from outside of the system. As

opposed to the approach of Asokan, in this paper, we are mainly concerned with the question

of what fairness is, and less interested in the way it can be achieved. This means that

our work complements rather than extends or re�nes the work of Asokan. In fact, as they

cover complementary aspects, both proposals can be combined, and we carefully selected the

terminology of the de�nitions provided in Section 4 in order to prevent ambiguities.

Formal de�nitions for strong fairness and weak fairness are given by G�artner et al. in

[GPV99, PG99]. They adopt the formalism of concurrency theory and de�ne strong fairness

and weak fairness based on safety and liveness properties. Strong fairness is de�ned as a safety

property [PG99]. Weak fairness can be de�ned as a liveness or as a safety property depending

on whether the dispute is resolved within the system or outside the system [GPV99]. If

dispute resolution is possible within the system, then weak fairness can be formalised as a

liveness property. The authors call this type of weak fairness eventually strong fairness. If

dispute resolution is not possible within the system, then weak fairness is formalised as a safety

property. Although their proposal has certainly a strong potential, it is somewhat limited to

the study of strong and weak fairness as they were de�ned by Asokan. The advantages of

their approach are the very precise system model and the possibility to derive requirements

on the system that are necessary to achieve strong fairness. The latter is important when

considering implementation issues.

6 Conclusion and extensions

In this paper, we introduced the idea of using game theory as a formal framework in which

di�erent types of exchange protocols can be modeled and formal de�nitions for fairness can

be given. We illustrated the use of game theory in this context in two ways:
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1. We modeled exchange protocols with game trees.

2. We formally de�ned various types of fairness using standard notions of game theory,

and showed how the de�ned fairness types are related to each other.

The strongest form of fairness we introduced is called strict fairness. An exchange protocol

that achieves this type of fairness ensures that neither party can gain or lose any advantages

assuming that at least one of the parties behaves correctly. A weaker type of fairness is called

safe fairness. An exchange protocol is said to be safe fair if it guarantees that a correctly

behaving party can never su�er a disadvantage. Finally, the weakest type of fairness we

introduced is called Nash equilibrium fairness. A protocol achieves this if it ensures that a

misbehaving party cannot gain an advantage by the misbehavior assuming that the other

party behaves correctly.

We believe that each of these de�nitions are meaningful and capture a valid interpretation

of the concept of fairness in electronic commerce. Their existence is a warning that fairness

may be understood in several di�erent ways and it is important, when specifying a fair

exchange protocol, to make it clear which type of fairness is provided. Furthermore, the

formal de�nitions of di�erent types of fairness make it possible to understand their nature

better and compare them easier. Indeed, we can now establish a classi�cation of existing and

future fair exchange protocols and, therefore, assess their strengths and weaknesses. Since,

once the game tree representation of a fair exchange protocol is given, the veri�cation whether

the protocol satis�es the conditions of the various fairness de�nitions is rather mechanical,

these formal de�nitions may also serve as the basis of an automated analysis tool for fair

exchange protocols.

Beside clarifying the concept of fairness, the formal de�nitions and, in particular, the ap-

plication of game theory may have additional advantages: they can suggest as yet unknown

(or not studied) types of fairness. One can easily de�ne, for instance, dominant strategy equi-

librium fairness by slightly changing the de�nition of Nash equilibrium fairness and requiring

that the strategy pair that corresponds to the faithful execution of the protocol be a dominant

strategy equilibrium. This yields a stronger type of fairness than Nash equilibrium fairness,

and interestingly, in the case of protocols that can be modeled as zero-sum games, it is also

stronger than safe fairness (i.e., it implies safe fairness, but not vice versa).

Furthermore, one can also de�ne probabilistic versions of our fairness types. Probability

can be introduced into the model in two ways. First, we can introduce a pseudo-player, which

we may call Chance or Nature, who would choose its moves according to some probability

distribution. Second, we can allow participants to play mixed strategies, which means that

each participant picks a strategy according to some probability distribution. In both cases,

we can assign a probability to each leaf of the game tree that models the protocol and give

fairness de�nitions in terms of expected payo�s. This would make sense in case of repeated

exchanges between the same two parties (e.g., in case of micropayments).

There are other ways as well to extend our results. One obvious direction would be to

generalize our fairness de�nitions for n-party protocols. Another less obvious extension is the

following: In our de�nitions, we implicitly assumed that there is always one single strategy

for each player that corresponds to the faithful execution of the protocol. In general however,

this is not necessarily true, because the protocol itself may o�er several legitimate choices to

a participant, which may result in several faithful strategies for that participant. In spite of

the fact that we are not aware of any fair exchange protocols of this type, in principle, such

protocols may exist. Our fairness de�nitions can be generalized for these protocols.
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