
The problem of protecting an

execution environment from

possibly malicious mobile

agents has been studied

extensively, but the reverse

problem—protecting the agent

from malicious execution

environments—has not.

The authors propose an

approach that relies on trusted

and tamper-resistant hardware

to prevent breaches of trust,

rather than correcting them

after the fact.

A Pessimistic Approach to Trust
in Mobile Agent Platforms

UWE G. WILHELM, SEBASTIAN M. STAAMANN, AND LEVENTE BUTTYÁN

Ecole Polytechnique Fédérale de Lausanne

Mobile agent technologies such as Aglets1 and Telescript2 are
being deployed on the Internet to support new approaches to
distributed computing. In the domain of electronic commerce,

a scenario involving these technologies might consist of an agent program
that searches a service for its owner by roaming the Internet and visiting
the sites of various service (or product) providers. Such an agent is con-
figured by its owner with all the relevant information to describe a desired
service, the constraints on an acceptable offer, and a list of potential
providers. The agent may also hold confidential information such as data
for one or several payment methods to finalize a purchase. The agent
should make this data available to a provider only in the event of a pur-
chase. Even then, it should offer only data pertinent to the payment
method used in the purchase.

Because the agent is vulnerable while it is executing on the service
provider’s execution platform, its owner must obtain some guarantees con-
cerning the protection of the agent. Example threats from a malicious ser-
vice provider include trying to obtain payment data without providing the
service or trying to remove information about a better offer from the agent’s
memory, thereby tricking it into accepting the malicious provider’s offer.

The usual approach to protecting mobile agents is to assume that service
providers are trusted principals that behave correctly.3 Although the impor-
tance of trust has long been recognized as paramount for the development
of secure systems, the meaning associated with trust or a trusted principal
is seldom clearly defined. In this article, we address the question of how
to base trust on technical reasoning. We present a pessimistic approach to
trust, which tries to prevent malicious behavior from occurring in the first
place rather than correcting it after it has occurred. Our approach relies
on a tamper-resistant hardware device that can be operated safely in an
untrusted environment.

The ideas presented here are purely conceptual and have yet to be
implemented. Nevertheless, we believe that they can have important reper-
cussions on the design of open mobile agent systems, whereby potential-
ly everyone could become a service provider.

2 SEPTEMBER • OCTOBER 2000 h t tp ://computer.org/ in te rne t/ 1089-7801/ 00/$10.00 ©2000 IEEE IEEE INTERNET COMPUTING

A
G

EN
T

TE
C
H

N
O

LO
G

IE
S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

P E S S I M I S T I C T R U S T

3IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER •OCTOBER 2000

We begin by introducing our model for mobile
agents and pointing out the problems related to
trust within this model. We then discuss the notion
of trust and define its relation to policy before
describing a piece of trusted hardware and a proto-
col that, together, establish a technological basis for
trust in the context of mobile agents.

MOBILE AGENT PARADIGM
Many researchers have proposed mobile agents as
a promising approach to structure problems in dis-
tributed computing (for example, see Chess et al.4).
The merits of the mobile agent paradigm, however,
are still debated; and Harrison et al.5 have shown
that it has no conceptual advantage over classic
client-server approaches. On the other hand, these
same authors point out that the mobile agent par-
adigm can offer interesting solutions to many real-
life problems in at least two contexts:

■ high-bandwidth interactions, where the user
sends an agent to search for some specific infor-
mation on a database server that holds a large
amount of unstructured data, and

■ mobile users, where a user who is disconnected
from the communication network sends an
agent out from a mobile computer in order to
accomplish a well-defined task.

In this article, we are not concerned with the
underlying technology that implements the mobile
agent paradigm. We require only a simple model
for our discussion:

■ a mobile agent consisting of code, data, and the
current execution state. The agent can be mar-
shaled by its owner in a transport format and
subsequently sent to an agent executor.

■ cryptographic mechanisms that can protect the
agent’s confidentiality and integrity during
transit. These mechanisms also provide origin
authentication for the marshaled agent.

The executor will eventually unmarshal the agent
and instantiate it on a special environment called
the agent platform. Here, the mobile agent can
interact with local services, as well as other agents
located at this platform, and continue the task it
was given by its owner. After the agent has com-
pleted its local interaction, it can request migration
to another platform or back to its owner.

There are many cases where an agent may need to
hold confidential information that should not be dis-

closed to either the executor or the service provider
(two principals that could be identical or could easi-
ly cooperate to mount an attack on the agent):

■ A shopping agent that integrates mechanisms
for online payment may hold data for several
payment methods, such as different credit
cards. In the event of a purchase, the service
provider should be able to obtain data for the
one payment method used, but not for the
others.

■ An agent for electronic commerce may hold a
private key with which it can sign messages on
behalf of its owner. This key must be kept
secret to prevent the service provider from ille-
gitimately signing messages in the agent
owner’s name.

■ Finally, an agent that merely searches for some
particular financial data, such as stock quotes,
may convey some very sensitive information;
the request itself already conveys interest in
the data.

In a conventional mobile agent system, when an
executor receives a mobile agent, the owner loses
all control over the agent’s code and data. The
executor can reverse-engineer the code, analyze the
data, or arbitrarily change either one. If no direct
attack is feasible, the executor can still experiment
with the agent by feeding it arbitrary data to
observe its reactions and by resetting it to its initial
state. The executor could even do this with a copy
of the agent on an isolated platform. The owner has
to trust the executor not to use these methods to
illicitly obtain confidential information.

This problem does not exist in the client-server
paradigm, where the client can rely on many low-
level system guarantees (for example, that code will
be executed at most once or that it will be executed
correctly). The client implementation resides in a
physically trusted user environment where it can,
for instance, log any irregularities as evidence for a
possible dispute with a service provider. This con-
trasts with the mobile agent paradigm, where the
owner cannot control or even reliably know about
the executor’s behavior. Digitally signing the agent’s
data can considerably limit the malicious actions
of an executor, but it cannot prevent them.

We want to suggest an environment for mobile
agents that lets them base their execution on guar-
antees, similar to those provided by the client-serv-
er paradigm, so that a mobile agent can protect
itself from a malicious agent executor.

F E A T U R E

4 SEPTEMBER •OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

THE NOTION OF TRUST
Central to our definition of trust is a policy—that is,
a set of rules prescribing a principal’s behavior for
all relevant situations. This policy must be written
down and made available to all other principals that
interact with its issuer. The policy is, of course, con-
sistent with the issuer’s goals. This policy lets us sep-
arate the notion of trust into two components: ade-
quacy of the policy and trustworthiness of its issuer:

■ For a principal A to trust a principal B, A must
verify B’s policy and decide whether it ade-
quately protects A’s interests. This problem is
difficult but can be assisted by a formal specifi-
cation of the policy (similar to the approach
described for security architectures in Rueppel6).

■ Then A must assess B’s trustworthiness by
establishing a basis for believing that B will
adhere to its published policy. This problem is
quite difficult to formalize.

Depending on how the trustworthiness of a prin-
cipal is established, two fundamentally different
approaches to trust can be identified: one opti-
mistic and the other pessimistic. (We have named
these approaches in accordance with similar con-
cepts in transaction processing.)

Optimistic Approach
In the optimistic approach, principal A gives prin-
cipal B the benefit of the doubt, assumes that it will
behave properly, and tries to punish any violation
of the published policy after the event. This
approach is easy to implement because it requires
no special measures to allow trusted interactions
between A and B. It does, however, require some
reliable mechanism to discover a policy violation
after it has occurred. (The extreme case of this
approach, in which such a mechanism does not
exist, is not recommended for any important trans-
action and is not discussed further.)

If internal business processes were transparent
to external observers, it would be easier to discov-
er a policy violation. It is unlikely, however, that
many principals would support this transparency.
An alternative is to designate specialized companies
that would execute frequent and in-depth appraisals
of company conduct.

If a policy violation is discovered and if it can be
attributed irrefutably to one of the principals in the
corresponding transaction, this principal could be
punished according to the appropriate laws and the
damage caused by the policy violation. The prima-

ry goal of this punishment is to deter violations from
occurring in the first place. Depending on how this
punishment is enacted, the optimistic approach can
be further subdivided into trust based on (a good)
reputation and trust based on explicit punishment.

■ In trust based on reputation, A assumes that B is
well known and has little to gain but much to
lose from a discovered violation of its own policy.
This loss is attributed to lost revenue when cus-
tomers take their business to another principal.

■ In trust based on explicit punishment, A does not
necessarily trust B, but rather trusts the underly-
ing legal framework to marshal B’s behavior. The
tradeoff is similar to that in trust based on repu-
tation, with disciplinary legal actions substituting
for lost revenues. An obvious problem with this
approach is enforcing such laws, particularly if
different countries are involved.

By definition, the optimistic approach cannot pre-
vent malicious behavior but tries only to compen-
sate for violations. In many real-world situations,
however, proper functioning of the system is
absolutely essential, and any violation can have
irreparable effects.

Pessimistic Approach
In the pessimistic approach, principal A trusts that
principal B is prevented from performing actions
that do not conform to its defined policy. The behav-
ior of B—so far as it is constrained by its policy—
becomes completely visible, eliminating the need to
scrutinize any particular action. If the policy pre-
scribes a particular action for some event and if the
policy is enforced, then the action is guaranteed to
take place. Unfortunately, this approach cannot be
realized in its full generality but is limited to those
policies (or rules of a policy) that can be effectively
enforced with a mechanism that cannot be circum-
vented. For policies that cannot be enforced, princi-
pals must rely on optimistic approaches to trust.

PROPOSED IMPLEMENTATION
We know of no simple way to conceive an enforce-
ment mechanism that cannot be circumvented with-
out relying on trusted and tamper-resistant hardware.
This was in principle the conclusion reached by Chess
et al.4 Sander and Tschudin7 have since described an
approach that may eventually provide some agent
protection based purely on cryptographic mecha-
nisms; however, their approach supports only poly-
nomial and rational functions and does not yet allow

P E S S I M I S T I C T R U S T

5IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER •OCTOBER 2000

the creation of agents that encode arbitrary programs.
Therefore, our proposed approach is implemented
on trusted and tamper-resistant hardware.

The proposed implementation relies on public
key cryptography. In this approach, principals A and
B each have a pair of keys, one public and one pri-
vate (security can be further increased if each prin-
cipal has two pairs of keys, one for encryption-
decryption and one for digital signatures). Given
these keys and the corresponding cryptographic
algorithms, A can encrypt one message with B’s pub-
lic key to obtain an encrypted message, which only
B can decrypt by using its private key. Principal A
can use its private key to generate a signed message
(including a digital signature) that can be verified by
anyone who has A’s public key. (For details on pub-
lic key cryptography, see Menezes et al.8)

In the following we assume the use of optimiza-
tion schemes, such as encrypting a large message
with a symmetric session key, which in turn is
encrypted through the use of public key cryptog-
raphy and hash algorithms to reduce the compu-
tational complexity of signing.

Figure 1 gives an overview of the trusted princi-
pals in the proposed implementation: a trusted man-
ufacturer produces the execution environment, called
the trusted processing environment (TPE), which can
be purchased by an agent executor. An agent owner has
to trust the manufacturer to design and produce its
execution environments properly. The broker is pri-
marily a directory service to locate other principals.

Processing Environment
The concept of tamper-resistance usually applies to
a well-defined hardware module that executes a
given task. The outside environment cannot inter-
fere with the task except through a restricted inter-
face that is completely controlled by the tamper-
resistant module. We call this device a trusted
processing environment; the TPE provides a com-
plete agent platform, as shown in Figure 2, which
cannot be inspected or tampered with. Any agent
residing on the TPE is thus protected from both
disclosure and manipulation.

The TPE is a complete computer that consists
of a CPU, RAM, and ROM. It boots from the
ROM, which contains all the code required to
operate the TPE. This includes the code of the vir-
tual machine (VM), which provides the platform
for agent execution and which guarantees that an
agent’s code will be executed correctly. The VM is
governed by a trusted operating system, which is
also loaded from the ROM. The operating system

coordinates and controls the TPE resources, name-
ly the CPU, the external I/O interface, and the
access to memory. (The use of virtual memory
techniques can protect agents from each other by
establishing and enforcing protection domains; it
does not, however, overcome the problem of covert
channels between agents on the same TPE.) The
TPE also provides cryptographic functionality in
the form of an extensive cryptographic library.
This library contains a private encryption key that
is not known outside the TPE—even the physical
owner of the TPE does not know this private key.
This secrecy can be achieved, for instance, by gen-
erating the keys on the TPE itself. The secrecy of
this private key, ensured by the TPE’s tamper-resis-
tance, is a crucial requirement to the proposed
implementation.

The TPE is connected to a host computer con-
trolled by the TPE’s owner. This host computer can
access the TPE only through a well-defined inter-
face that allows, for instance, the following opera-
tions on the TPE:

Host
computer

Provides
TM

AO

Trust

TPE

Br

AE

TM
TPE

AE
AO

Br

TPE manufacturer
Trusted processing environment

Agent executor
Agent owner
Broker

Figure 1. Trusted principals in the proposed implementation. A trusted
manufacturer produces the execution environment, which can be pur-
chased by an agent executor. An agent owner has to trust the manu-
facturer to design and produce its execution environments properly. A
broker is primarily a directory service for locating other principals.

Hardware

Operating system

Virtual machine

I/O
library Crypto

library

A1

KPrivate

A2 An
TPE

Figure 2. The trusted processing environment. The TPE is a tamper-
resistant computer that contains all the code on its own ROM that it
requires to boot and to operate a complete agent platform.

F E A T U R E

6 SEPTEMBER •OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

■ uploading, migrating, or removing agents;
■ facilitating interactions between the host and

agents;
■ verifying certain properties of the TPE, such

as which agents are currently executing.

Because the TPE is implemented as a tamper-resis-
tant module with restricted access via the I/O inter-
face, no one outside the TPE can directly access
information inside it. This property is ensured by
the TPE manufacturer, which also provides a signed
certificate to the agent executor. The certificate con-
tains information about the TPE, such as its man-
ufacturer, type, guarantees, and public key. The
agent owner has to trust the manufacturer that the
TPE actually does provide the protection claimed
in the certificate (discussed further in the section,
“Trust in the Manufacturer”).

CryPO Protocol
We have defined a protocol called CryPO (short
for Cryptographically Protected Objects) to trans-
fer agents exclusively in encrypted form over the
network to a TPE by using the TPE’s public key.
The CryPO protocol makes it impossible for any-
one who does not know the private TPE key to
obtain the code or data of an agent in transit to a
TPE. CryPO has two distinct phases.

Phase 1: Initialization. The first phase consists of
an initialization, shown in Figure 3, which allows
the agent owner to verify that it interacts with the
TPE of a trusted manufacturer. This phase sets up
the required key information exchanges:

■ The agent owner holds an authentic copy of the

trusted TPE manufacturer’s public key, which
is used to verify TPE certificates.

■ The trusted manufacturer sends the signed TPE
certificate to the agent executor.

■ The executor registers its reference—name,
physical network address, policy, and signed
TPE certificate—with one or several brokers.

Phase 2: Operation. After the initialization, the
participants can actually transfer mobile agents, as
shown in Figure 4.

■ The agent owner queries the broker for the refer-
ence of the executor that it wants to interact with.

■ The owner verifies the executor’s policy to
decide whether it is adequate and checks the
manufacturer-issued TPE certificate to decide
whether the TPE provides sufficient support to
enforce this policy. If any of these checks fail,
the owner will abort the protocol.

■ If the checks do not fail, the owner sends the
agent, encrypted with the TPE public key, to
the executor.

■ The executor cannot decrypt the TPE-encrypted
agent, nor can it do anything other than upload
the agent to its TPE.

■ The TPE uses its private key to decrypt the
message sent by the agent owner, thus obtain-
ing the executable agent, which it will eventu-
ally start. The agent can then interact with the
executor’s local environment or with other
agents on the TPE.

■ After finishing its task, the agent can migrate
back to its owner or to another TPE-certified
executor to which it holds a reference.

The problem of protecting the TPE from malicious
agents is independent of this approach and must be
solved by using other mechanisms. The problem of
protecting the TPE from agents that have been tam-
pered with can be solved by concatenating the agent
with a hash of the entire agent, including its execu-
tion state, before encrypting it. The TPE simply has
to verify the correct hash before starting the agent.

Limitations of the
Proposed Implementation
Constructing a device that can actually resist tam-
pering is a decidedly nontrivial task. Given sufficient
time and resources, an attacker could violate the pro-
tection of any device, so this is a weakness in the pro-
posed approach. A disadvantage is that any com-
promise of the TPE’s private key gives an attacker

Host
computer

Provides
TM

AO

Trust

TPE

Br
RefAE

CertTPE

AE

Ref
TM
TPE

AE
AO

Br

Reference for an AE
TPE manufacturer
Trusted processing environment

Agent executor
Agent owner
Broker

Figure 3. Initialization phase of the CryPO protocol. The participants
exchange the required information key information. An agent owner
holds a copy of a TPE manufacturer’s public key. An agent executor
registers the certificate for its TPE with a broker.

P E S S I M I S T I C T R U S T

7IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER •OCTOBER 2000

complete control over the agents sent to this TPE.
These problems, however, are very similar to those
in areas where the use of tamper-resistant devices is
well established, such as debit cards and the sub-
scriber identity module (SIM) cards used for global
system for mobile (GSM) communications.

If the TPE’s basic physical protection is consid-
ered too weak, it could be periodically inspected by
an independent appraisal organization with capa-
bilities to detect tampering. This would limit the
time an attacker could benefit from a successful
attack. It might also provide an effective deterrent
if an attempted or successful breaking of a TPE were
severely punished. Thus, in the rare case when an
attacker does break a TPE, the protection provided
by the optimistic approach is still available. As dis-
cussed in Anderson and Kuhn,9 a tamper-resistant
device can resist even massive attacks if only detec-
tion—not prevention—of tampering is required.

The TPE could become a performance bottle-
neck. It is possible to alleviate these performance
problems by establishing a maintenance contract
with the manufacturer, in which it ensures proper
operation and adequate performance of a service
provider’s TPE installation. Such a maintenance
contract might not be available to the small service
providers who might have the most to gain from
the availability of a TPE.

Maintaining and upgrading a tamper-resistant
device can be difficult and the device itself may be
expensive. All these limitations must be weighed
against the perceived advantages.

EXAMPLE SCENARIO
Together, the TPE concept and the CryPO protocol
guarantee the integrity of the agent platform to an
agent owner. Further, they protect the agent’s code
and data against manipulation and disclosure, both
in transit and during execution. These basic guaran-
tees could be extended by formulating new rules for
the TPE policy. The policy itself must support the
desired protection, and it must be enforced on the
TPE where the agent executes. The policy can be
verified with the help of the certificate issued by the
manufacturer, who also assures its enforcement.

With this approach, the agent owner does not
need to trust the executor; it suffices to trust the
manufacturer to properly manufacture and control
its TPE so that the claimed guarantees hold. We
will now describe how the approach can be used to
implement agents with a limited lifetime as well as
a mechanism that lets them base their execution on
results of previous executions. (For a more detailed

discussion of protections that mobile agents can
implement, see Wilhelm10.)

The TPE Policy
Consider the case of a shopping agent that contains
data for more than one payment method but should
disclose data for no more than one of them. For the
sake of this discussion, assume furthermore that the
service provider’s TPE enforces a well-defined set of
rules that are detailed in its policy. In the example
scenario, the TPE enforces the following six rules:

1.The TPE will never disclose or alter an agent’s
code.

2.Any invocation of the agent’s methods will be
executed exactly according to the code in the
agent.

3.An agent’s data can be accessed and manipulated
exclusively through the agent’s interface. If the
agent does not provide methods to access a data
item directly, its value can, at most, be inferred
from responses to other method invocations.

4.Before a migration, an agent will obtain the
reference to the designated receiver’s TPE,
which also contains the policy. The agent can
decide whether it wants to be transferred, and
the current TPE will honor the agent’s decision.
The actual transfer follows the CryPO protocol.

5.The TPE provides an internal clock with
reasonable accuracy (on the order of several
seconds). It synchronizes this clock with a
trusted time service and tells the agent whether
its synchronization was successful.

6. The TPE then provides a small amount of

Host
computer

Provides
TM

AO

Trust

TPE

Br

{A}KTPE

{A}KAO

RefAE

AEname

AE

Ref
TM
TPE

AE
AO

Br

Reference for an AE
TPE manufacturer
Trusted processing environment

Agent executor
Agent owner
Broker

Figure 4. CryPO protocol operations. The agent owner verifies the
policy and TPE mechanism of an agent executor through a broker,
then uses the TPE public key to transfer agents to the TPE for
processing.

F E A T U R E

8 SEPTEMBER •OCTOBER 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

nonvolatile storage for a fixed period of time even
to an agent that has terminated its execution.

Protecting the Shopping Agent
With this policy in place, it is possible to imple-
ment a shopping agent that will not, under any cir-
cumstances, reveal more than the data for one pay-
ment method.

The agent’s overall behavior is this: It finds a
suitable offer, queries the service provider for the
supported payment methods, chooses from these
the preferred owner’s method, and finalizes the pur-
chase by disclosing the payment information.

To implement the desired protection, the agent
actualizes the policy: Rules 1 and 2 guarantee basic
protection of its code and ensure its proper execu-
tion; rule 3 guarantees the protection of its data
from undesired disclosure and manipulation.
Therefore, the owner can rely on the agent’s pro-
grammed methods not to disclose more than data
for a single payment method. Rule 4 guarantees
that the agent knows the TPE policy to which it is
transferred and will thus not be sent to a TPE that
provides insufficient protection.

This level of protection, however, is not yet suf-
ficient for the shopping agent because the executor
could store the originally received and encrypted
agent before uploading it to its TPE, thereby
obtaining the agent’s data for the first payment
method through normal interaction. The executor
could then replace the agent on the TPE with the
stored version and conduct another interaction
with the agent, this time requesting data for anoth-
er payment method.

To counter this attack, the agent must know
about possible previous executions on the TPE in
question. Rule 5 allows an agent containing an expi-
ration date to implement a limited lifetime of, say, a
few days or hours. When it arrives, the agent requests
the current time and determines whether it is with-
in its attributed lifetime. If its expiration date has
passed or the TPE did not successfully synchronize
its clock, the agent will abort. This sets a time after
which the agent can no longer be executed.

Finally, rule 6 lets the agent store its identity and
its chosen payment method, during the limited life-
time, in the TPE’s nonvolatile storage. The agent
does all of this before it discloses the payment infor-
mation. If it finds its identity already stored in the
TPE, it refuses to disclose more payment informa-
tion. The limited lifetime of the stored information
removes expired entries and prevents a memory
overflow in the TPE. The agent can be executed
only during its lifetime, and it has information
about its previous executions.

If these guarantees are enforced, an agent can be
created to use several payment methods but disclose
only one of them.

TRUST IN THE MANUFACTURER
The mechanism introduced in the example scenario
requires the agent owner to trust the manufacturer
to properly design, implement, and produce its
TPEs. We know of no way to enforce correct behav-
ior of the manufacturer, so our approach might
seem simply to replace one required trust relation-

Related Work in Trusted Mobile Systems

Several researchers have explored the idea of using trusted hard-
ware to ensure a certain behavior of a system.

Herzberg and Pinter1 describe a device that can be used to pro-
tect software against piracy. Chaum and Pedersen2 describe a wal-
let architecture that carries a database with personal information
and that protects the database from unauthorized access (even from
the owner of the wallet). That system incorporates trusted hardware
(called the observer) comparable to the hardware proposed in our
approach, but it is explored in a very different setting.

A more recent approach by Yee and Tygar3 has much in com-
mon with the one we present here. However, the authors are more
interested in the classical issues of ensuring that the system func-
tions securely, while we are more interested in data protection.

Sander and Tschudin4 describe a completely different approach
to code protection that relies on the execution of encrypted func-
tions and does not need trusted hardware. Unfortunately, their
approach does not support arbitrarily complex functions and is
not sufficiently powerful for our application. A similar idea, pre-
sented by Hohl,5 allows arbitrarily complex functions but guaran-
tees protection only for a certain time interval.

References
1. A. Herzberg and S.S. Pinter, “Public Protection of Software,” Advances in Cryp-

tology: Crypto 85), Springer, Berlin, 1985, pp. 158-179.

2. D. Chaum and T.P. Pedersen, “Wallet Databases with Observers,” Advances in

Cryptology: Crypto 92, Lecture Notes in Computer Science, Vol. 740, Springer,

New York, 1992, pp. 89-105.

3. B. Yee and D. Tygar, “Secure Coprocessors in Electronic Commerce Applica-

tions,” Proc. First Usenix Workshop on Electronic Commerce, Usenix Assn.,

Berkeley, Calif., USA, 1995, pp. 155-170.

4. T. Sander and C. Tschudin. “Toward Mobile Cryptography,” IEEE Symp. Securi-

ty and Privacy, IEEE Computer Society, Los Alamitos, Calif., 1998, pp. 215-224.

5. F. Hohl. “Time Limited Blackbox Security: Protecting Mobile Agents from Mali-

cious Hosts,” Mobile Agents and Security, Vol. 1419, Lecture Notes in Comput-

er Science, G. Vigna, ed., Springer-Verlag, Berlin, 1998, pp. 92-113.

P E S S I M I S T I C T R U S T

9IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER •OCTOBER 2000

ship with another. Nevertheless, we believe that this
replacement has several subtle implications.

The manufacturer is a specialized service provider
that primarily provides security devices and has a
good understanding of security and privacy prob-
lems. Expert appraisal organizations could control
the relatively small number of manufacturers (sever-
al hundreds) more easily than they could the large
number of possible owners of a TPE (several mil-
lions). Further, because TPEs are difficult to pro-
duce, manufacturers would be major corporations
with resources to build a good reputation. For exam-
ple, a manufacturer could invite external experts to
control its operation, similar to the approach for
quality assurance in the ISO-9000. Finally, because
the manufacturer and the owner of the TPE are
independent, the manufacturer cannot draw a direct
benefit from a TPE that does not enforce its policy.

We believe that these arguments of expertise, con-
trollability, good reputation, and lack of incentive to
violate policy are sound reasons to trust a manufac-
turer to build reliable and powerful TPEs. An agent
executor, who may offer no incentive to place trust
in it, can leverage the trust an agent owner has in a
TPE manufacturer, in order to convince the agent
owner to start a business transaction with it. This
favors the open systems philosophy, by which any
principal can become a provider of services.

CONCLUSION
Agent owners currently face a dilemma when they
want to interact with an unknown and untrusted
service provider that needs confidential informa-
tion to complete a transaction. We have proposed
an approach that lets a service provider define a
trust policy, which is actually enforced through an
execution environment based on trusted and tam-
per-resistant hardware purchased from a third-party
manufacturer. With this approach, the service
provider can benefit immediately from the trust
that users have in the TPE manufacturer.

While making it easier for a new service provider
to establish itself in the market, this solution also
allows an agent owner to protect specific data in a
mobile agent. It can thus encourage the construc-
tion of open mobile agent systems that allow any
principal to become a service provider. ■

ACKNOWLEDGMENTS
Research supported by a grant from the EPFL (Privacy project)

and by the Swiss National Science Foundation as part of the

Swiss Priority Programme Information and Communications

Structures (SPP-ICS) under project number 5003-045364.

REFERENCES
1. D. B. Lange and M. Ishima, Program and Deploying Java

Mobile Agents with Aglets, Addison-Wesley, Boston, 1998.

2. J.E. White, “Mobile Agents,” Software Agents, J. M. Brad-

shaw, ed., AAAI Press/MIT Press, Menlo Park, Calif., 1997.

3. V.A. Pham and A. Karmouch, “Mobile Software Agents: An

Overview,” IEEE Comm., Vol. 36, No. 7, 1998, pp. 26-37.

4. D.M. Chess et al., “Itinerant Agents for Mobile Computing,”

IEEE Personal Comm., Vol. 2, No. 5, Oct. 1995, pp. 34-49.

5. C.G. Harrison, D.M. Chess, and A. Kershenbaum,

“Mobile Agents: Are They a Good Idea?” Mobile Object Sys-

tems: Toward the Programmable Internet, Vol. 1222 of Lec-

ture Notes in Computer Science, J. Vitek and C. Tschudin,

eds., Springer-Verlag, New York, 1997, pp. 25-47.

6. R.A. Rueppel, “A Formal Approach to Security Architec-

tures,” Proc. EuroCrypt, Springer, Berlin, 1991, pp. 387-398.

7. T. Sander and C. Tschudin. “Toward Mobile Cryptogra-

phy,” IEEE Symp. Security and Privacy, IEEE Computer

Society, Los Alamitos, Calif., 1998, pp. 215-224.

8. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Hand-

book of Applied Cryptography, CRC Press, Fla., 1997.

9. R. Anderson and M. Kuhn, “Tamper Resistance—A Cau-

tionary Note,” Proc. Second Usenix Workshop on Electronic

Commerce, Usenix Assn., Berkeley, Calif., 1996, pp. 1-11.

10. U.G. Wilhelm, A Technical Approach to Privacy Based on

Mobile Agents Protected by Tamper-resistant Hardware, doc-

toral dissertation, École Polytechnique Fédérale de Lau-

sanne, Switzerland, 1999.

Uwe Wilhelm was a researcher and lecturer at the Operating Sys-

tems Laboratory (LSE) in the Computer Science Depart-

ment of the Swiss Federal Institute of Technology (EPFL)

at the time this article was written. He has since joined T-

Nova, Deutsche Telekom Innovationsgesellschaft mbH, as a

researcher and project manager. Wilhelm received a diploma

in computer science from the University of Kaiserslautern

in 1992 and a PhD from the EPFL in 1999.

Sebastian Staamann is cofounder and co-CEO of Xtradyne

Technologies, a company specializing in security middle-

ware for extranets. From 1997 to mid 1999, he led several

research projects related to security in middleware-based

service platforms in the EPFL’s LSE at Lausanne. His

research interests are security and high availability.

Levente Buttyan is a research and teaching assistant and a PhD

student in the Institute for Computer Communications

and Applications (ICA) in the Computer Science Depart-

ment of the EPFL. He received an MSc in computer sci-

ence from the Technical University of Budapest in 1995.

Readers may contact the authors at Wilhelm@w9f00992.dmst02.

telecom.de and {Sebastian.Staamann,Levente.Buttyan}@epfl.ch.

