
In R. Stadler and B. Stiller (Eds.),Active Technologies for Network and Service Management—Proc. 10th IFIP/IEEE International
Workshop on Distributed Systems: Operations & Management (DSOM’99), Zurich, Switzerland, October 1999. LNCS 1700:164–178,
Springer, Berlin, Germany, 1999.

ment

ard
tomer
use of
les
eb

ach,
ork
HTTP
that
the

oud,
HTTP
pplets
far of
nable
e to
JAMAP: a Web-Based Management Platform
for IP Networks

Jean-Philippe Martin-Flatin, Laurent Bovet and Jean-Pierre Hubaux

Institute for computer Communications and Applications (ICA)
Swiss Federal Institute of Technology, Lausanne (EPFL)

1015 Lausanne, Switzerland
martin-flatin@epfl.ch
http://icawww.epfl.ch

Abstract. In this paper, we describe JAMAP, a prototype of a Web-based
management platform for IP networks. It is written entirely in Java. It
implements the push model to perform regular management (i.e. permanent
network monitoring and data collection) andad hocmanagement (i.e. temporary
network monitoring and troubleshooting). The communication between agents
and managers relies on HTTP transfers between Java applets and servlets over
persistent TCP connections. The SNMP MIB data is encapsulated in serialized
Java objects that are transmitted as MIME parts via HTTP. The manager consists
of two parts: the management server, a static machine that runs the servlets, and
the management station, which can be any desktop running a Web browser. The
MIB data is transparently compressed withgzip , which saves network
bandwidth without increasing latency too significantly.

1 Introduction

Web technologies have proved very attractive to Network and Systems Manage
(N&SM) for several years. In July 1996, a special issue ofThe Simple Times
summarized the different ways of integrating HTTP, HTML and applets with stand
IP network management platforms. Whereas most of the industry, as far as a cus
could see, and most of the press then limited Web-based management to the sole
Web browsers to display Graphical User Interfaces (GUIs), this collection of artic
had the merit of widely advertising the wide range of possibilities opened up by W
technologies in N&SM. The most radical approach came from Wellens and Auerb
who suggested to embed not only HTTP servers but also applets in netw
equipment, and who based the communication between managers and agents on
instead of SNMP [16]. The common belief, then, as exposed by Bruins [3], was
HTTP was useful to initiate the interactive dialog between the administrator and
agent, but that further interactions should be based on SNMP.

Since then, the industry has trumpeted its adoption of Web technologies very l
but the real achievements that we can see on the market today are more modest.
servers are now routinely embedded by many router vendors, but management a
are not. Configuration management has probably been the main beneficiary so
the recent adoption of Web technologies: several management platforms now e
administrators to run Java applications on the manager (the cheap alternativ
© Springer 1999

165 J.P. Martin-Flatinet al.

st of
ent

or
se is
Java

lling
s in

ctive
es at
nal
tems),
the

5]
and

1]
ile

area

ach’s
all

s and
rewrite
vlet
, we
[10],
va

oded
n of

MP
to a
data,
bject
ork

alues.
sing
ing
M
-ons
tron
u.v,
ies

cific
downloading an applet from an agent) in order to configure agents. But to the be
our knowledge, all the main players in the IP systems and network managem
market (HP Openview, IBM/Tivoli Netview, Cabletron Spectrum...) still use SNMP f
communication between managers and agents once the configuration pha
accomplished. We have attended demonstrations by several vendors of
applications that included an SNMP stack in order to perform standard SNMP po
behind the Web interface, which proves that the full potential of Web technologie
N&SM has still not spread across the entire industry.

Despite this slow pace of the industry, the research community has been very a
in the meantime, leading to a growing understanding of the issues and challeng
stake. If we ignore the revolutionary approaches that depart entirely from traditio
SNMP-based management (e.g., Java-based mobile agents and multi-agent sys
we still have a lot of literature witnessing that we have gained experience in
integration of Web technologies with traditional N&SM. At the end of 1996, Deri [
described possible mappings between URLs and command line interfaces,
Harrisonet al. proposed the HTTP Manageable MIB [7]. In 1997, Maston [1
described the basics of network element management with HTML, wh
Kasteleijn [8], Barillaudet al. [2] and Reedet al. [13] reported their experiences with
building management prototypes respectively for ATM backbone networks, local-
networks and PC systems. More references will be presented in Section 7.

In 1998, we proposed an architecture that goes beyond Wellens and Auerb
[9, 10]. In addition to embedding HTTP servers and management applets in
managed devices, and to using solely HTTP to communicate between manager
agents, we suggested to push management data from agents to managers and to
the managers entirely in Java, thereby leveraging on the simplicity of ser
programming. In this paper, we present the low-level design of this architecture
indicate the design decisions which were made among all the candidates listed in
and we report progress on the building of a prototype called JAMAP (JA
MAnagement Platform). In particular, we describe how data is structured and enc
inside HTTP messages (Wellens and Auerbach only gave a high-level descriptio
HTTP-based management data transfers).

In the IP world, the advantages of our architecture over the classic SN
management frameworks (v1, v2c and v3) are fourfold. First, by going from a pull
push model, we decrease significantly the network overhead of management
because the manager no longer has to keep requesting the same OIDs (O
IDentifiers) to the same agents at every polling cycle. This almost halves the netw
overhead, because the description of the OIDs takes a lot more space than their v
Second, by grouping all the MIB data of a push cycle together and by compres
them with gzip , we reduce even more the network overhead without increas
latency too significantly, which has a positive effect on the scalability of the N&S
system. Third, by adopting Java, we free vendors from the burden of porting add
like CiscoWorks from one management platform to another (HP OpenView, Cable
Spectrum, etc.) and from one operating system to another (Windows x.y, Solaris
Linux a.b, etc.). Fourth, by using only well-known and pervasive Web technolog
instead of SNMP technologies, we prove that N&SM need not rely on domain-spe

JAMAP: a Web-Based Management Platform for IP Networks 166

s
uted
and
other
run
ifi-
ators.

t an
ced
plets
ement
work.

e IP
rmed
cribe
ents.
ager
r a
vals,

ause
the
ms,
the

stru-
we

ased
gents,

sfer
nt to
the

s the

ions

ager
ts;
skills (SNMPv1, SNMPv2c, SNMPv3, SMIv1, SMIv2, BER...). N&SM application
are just another case of distributed applications, and can rely on standard distrib
technology. Therefore N&SM platforms can be maintained by less expensive
easier-to-find Java programmers, and can reuse components developed for
application domains. By combining these advantages with the “write once,
anywhere” claim of Java, the price of N&SM platforms can be driven down sign
cantly, and site-specific developments can be rendered much easier for administr

The remainder of this paper is organized as follows. In Section 2, we presen
overview of the architecture of JAMAP. In Section 3, we introduce three advan
technologies used in JAMAP. In Sections 4, 5 and 6, we describe the different ap
and servlets run by the agent and the two constituents of the manager: the manag
station and the management server. In Section 7, we present some related
Finally, we conclude in Section 8 with some perspectives for future work.

2 Architecture of JAMAP

Our architecture integrates push and pull communication models to manag
networks [9, 10]. For regular management, i.e. when tasks are repetitive and perfo
identically at each time step, we use the push model and the publish-subs
paradigm. Initially, managers subscribe to some MIB data published by the ag
Later, the agents push this data at regular time intervals, without the man
requesting anything else. Forad hocmanagement, i.e. when tasks are performed ove
short time period (e.g. troubleshooting), we use the pull model for one-shot retrie
and the push model otherwise (e.g. short-term monitoring).

For the information model, we keep SNMP MIBs unchanged in the agents bec
we believe that they constitute the main achievement of SNMP. It took years for
industry to define and deploy these MIBs in all sorts of network devices and syste
and it would not make sense to change them. Their main limitation is that, due to
SNMP management frameworks, most (all?) of them are confined today to the in
mentation level, that is, offer low-level semantics. But there is no reason why
should not see higher level MIBs appear in the future. From standard SNMP-b
management, we also borrowed the organizational model, with managers and a
but we changed the SNMP 2-tier architecture into a 3-tier architecture.

The main novelty demonstrated by JAMAP is that it uses a push model to tran
management data (i.e., data extracted from SNMP MIBs at the agent) from the age
the manager. Fig. 1 depicts push-based monitoring and data collection, while
handling of notifications is represented on Fig. 2. The push model, also known a
publish-subscribe paradigm, involves three phases:

– publication: each agent announces the MIBs that it manages and the notificat
that it may send to a manager;

– subscription: agent by agent, the administrator (the person) subscribes the man
(the program) to different MIB variables and notifications via subscription apple
the push frequency is specified for each MIB variable;

167 J.P. Martin-Flatinet al.

the
ith

push
ns

d
sh
ented
ent.
r to
nish

st,
ork

lic-

have
– distribution: at each push cycle, the push scheduler of each agent triggers
transfer of MIB data from the agent to the manager; unlike what happens w
traditional polling, the manager does not have to request this data at each
cycle; the transfer of notifications is triggered by the health monitor; notificatio
and MIB data use independently the same communication path.

Our main motivation for developing of JAMAP was to prove the feasibility an
relative simplicity of our design innovations. The core of JAMAP, that is, the pu
engine and the communication between the agent and the manager, was implem
in only two weeks, thereby demonstrating that our design was simple to implem
The different servlets and applets depicted in Fig. 1 and Fig. 2 took a lot longe
write and debug, as expected, and we had to make a number of simplifications to fi
the first version of JAMAP in time to demonstrate it internally in March 1999. Fir
the persistence of data (MIB data, log of events, agents’ configuration files, netw
topology, etc.) currently relies on flat files. Eventually, it will be ensured by a pub
domain RDBMS (Relational DataBase Management System, e.g.msql) accessed via
JDBC (Java DataBase Connectivity), as represented on the figures. Second, we

Fig. 1. Push-based monitoring and data collection

MIB data
dispatcher

Agent

HTTP
server

MIB data
formatter

Management server

Event
handler

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Mgmt station

servlet

Pushed data
collector

Pushed data
interpreter

JDBC
client

Data server

General
purpose data
repository

JDBC
server

Administrator
or Operator

PagerEmail Telephone

Network map
registry

network
monitoring

Pushed data
filter

data collection

Siren

MIBs

Push
scheduler

Push definitions and
schedules repository

HTTP
client

servlet

servlet

HTTP
server

so
ck

et

JAMAP: a Web-Based Management Platform for IP Networks 168

e an
a

file
the
rd-

e a

rent
strate
d the
data

rrows
These
not yet written a network map GUI applet. Instead, as illustrated by Fig. 3, we us
event notification applet that simply displays incoming events, line by line, in
window. For the future, we plan to generate automatically a network map from a
describing the network topology, and to change the color of the icons according to
events received. Third, our event correlator is still very simple, with many rules ha
coded on anad hocbasis. We are currently investigating whether we could integrat
full-blown event correlator written in Java by another research team.

Fig. 3 and Fig. 4 are synthetic views of the communication between the diffe
Java applets and servlets running on the agent and the manager. They both illu
our 3-tier architecture with the management station, the management server an
agent. The push arrow between the MIB data dispatcher servlet and the MIB
subscription applet represents the path followed by MIB data retrieved forad hoc
management. The other push arrows depict regular management. The dotted a
represent the applet-to-servlet dialogs that take place at the subscription phase.
figures will be explained in detail in Sections 4, 5 and 6.

Fig. 2. Push-based notification handling

Agent

HTTP
server

Management server

Event
handler

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Mgmt station

servlet

Notification
collector

JDBC
client

Data server

General
purpose data
repository

JDBC
server

Administrator
or Operator

PagerEmail Telephone

Network map
registry

Notification
filter

Siren

HTTP
client

servlet

HTTP
server

Notification
dispatcher

Notification
generator

Health
monitor

sensors

servlet

so
ck

et

169 J.P. Martin-Flatinet al.

ased

mote
nt
to

d to
e an
lient.
lient.
3 Advanced Technologies Used in JAMAP

In this section, we describe three advanced technologies used in JAMAP: MIME-b
push, Java servlets and Java serialization.

3.1 MIME multipart and MIME-based push

Unlike other distributed application technologies such as sockets and Java Re
Method Invocation (RMI), HTTP offers no native support for bidirectional persiste
connections [9]. With HTTP, a connection is always oriented: it is not possible
create a persistent connection in one direction (from the client to the server) an
send data afterward in the opposite direction (from the server to the client). Befor
HTTP server can send data to a client, it must have received a request from this c
In other words, an HTTP server cannot send unsolicited messages to an HTTP c

Fig. 3. Communication between Java applets and servlets:
monitoring and data collection

Fig. 4. Communication between Java applets and servlets: notifications

Agent

Management station

Event notification
applet

Rule edition
applet

MIB data subscription
applet

Event manager
servlet

Pushed data collector
servlet

MIB data dispatcher
servlet MIB

Management server

push push

push push

Agent

Management station

Event notification
applet

Rule edition
applet

Notification subscription
applet

Event manager
servlet

Notification collector
servlet

Notification dispatcher
servlet

Management server

push push

push

JAMAP: a Web-Based Management Platform for IP Networks 170

ts a
lient

er
cannot
TP.

by
r be
data
TP
These
ta, is
e the

and
ew

sh
ager
, we
r is

ger
ntly.
ratio
the

and
over

hat
va
rver
et. At
en a
This is an important difference between SNMP and HTTP. SNMP implemen
generalized client-server communication model, whereby the request from the c
can either be explicit (e.g., pull-basedget andset operations) or implicit (e.g., push-
basedsnmpv2-trap operation). Conversely, HTTP implements a strict client-serv
model: all its methods adhere to the request-response paradigm, and the request
be implicit. As a result, the implementation of the push model is not natural in HT

A simple and elegant way to circumvent this limitation was proposed
Netscape [12] in a different context: How can a GUI displayed by a Web browse
automatically updated by an HTTP server? Netscape’s idea was to initiate the
transfer from the HTTP client, and send an infinitely long response from the HT
server, with separators embedded in the payload of the response (see Fig. 5).
separators enable the HTTP client to work out what, in the incoming stream of da
the data for a given push cycle. To achieve this, Netscape recommended to us
multipart type of MIME (Multipurpose Internet Mail Extensions [6]).

We proposed to do the same in Web-based network management [9],
implemented it very simply in JAMAP. At every push cycle, the agent sends a n
MIME part including a number of {OID, value} pairs, as specified by the pu
scheduler. A MIME separator delimits two consecutive push cycles; the man
interprets it as metadata meaning “end of push cycle”. In the case of notifications
encode only one notification per MIME part. In this case, the MIME separato
considered by the manager as metadata meaning “end of notification”.

MIME parts transferring MIB data are compressed withgzip (MIME content
transfer encoding). This saves a lot of network bandwidth when the mana
subscribes to many MIB variables, and does not increase latency too significa
MIME parts carrying notifications are not compressed because the compression
would be poor for so little data, and the increased latency would not be worth
meager savings in network overhead.

3.2 Java servlets

JAMAP relies heavily on HTTP-based communication between Java applets
servlets. Servlets [4] only recently appeared on the Web; they are an improvement
the well-known CGI (Common Gateway Interface) scripts. Unlike the CGI scripts t
are typically written in a scripting language like Perl or Tcl/Tk, servlets are Ja
classes loaded in a Java Virtual Machine (JVM) via an HTTP server. The HTTP se
must be configured to use servlets and associate a URL with each loaded servl
startup time, one servlet object is instantiated for each configured servlet. Wh

Fig. 5. TCP payload of the infinite HTTP response

gzip ’ed data MIME separator ...MIME part header

HTTP header MIME message header MIME part header gzip ’ed data MIME separator

171 J.P. Martin-Flatinet al.

the
ent

ost
refore
g of

ely in
also

ing
2.1,
the
t we

and the
In the
ood

lex
the

ning
ts are
te

able

on

lets
g. 4):

e any
s it
tatic:
the
data
the
e via
request is performed on a servlet URL, the HTTP server invokes a method of
servlet depending on the HTTP method used by the request. All servlets implem
one method per HTTP method. For instance, thedoGet() method is invoked when
an HTTPGET request comes in for the corresponding URL.

Modern operating systems generally support multithreading. As a result, m
HTTP servers now support concurrent accesses. Several HTTP clients may the
invoke concurrently the same method of the same servlet. This allows the sharin
the same servlet by multiple persistent connections. We used this feature extensiv
JAMAP when we tested it with several agents. Like any URLs, Java servlets can
leverage on the general-purpose features of HTTP servers (e.g. access control).

As we write this paper, servlet environments are still in constant evolution. Dur
our work, Sun’s specification of the servlets changed from version 2.0 to version
but public-domain implementations remained at 2.0. For JAMAP, we first used
Apache HTTP server version 1.3.4 and the Apache servlet engine Jserv 0.8. Bu
had problems because Jserv 0.8 did not support concurrent accesses to servlets
response stream was buffered (both problems were later corrected in Jserv 1.0).
meantime, we switched to another HTTP server, Jigsaw 2.0.1, which offered g
support for servlets.

3.3 Java serialization

Serialization is a feature of Java that allows the translation of an arbitrarily comp
object into a byte stream. In JAMAP, we used it for ensuring the persistence of
state of an object and for transferring objects over the network. Objects contai
references to other objects are processed recursively until all necessary objec
serialized. The keywordtransient can be added to the declaration of an attribu
(e.g. an object reference) to prevent its serialization.

For network transfers, instead of defining a protocol, one can use serializ
classes dedicated to communication. Such classes offer awriteObject() method
on one side, and areadObject() method on the other. For persistence, serializati
proved very useful to store rules and agents configurations.

In the next three sections, we will describe the different applets and serv
running on the different machines of the management system (see Fig. 3 and Fi
the management station, the management server and the agent.

4 Management Station

The management station is the desktop of the administrator or operator. It can b
machine (a Linux PC, a Windows PC, a Mac, a Unix workstation, etc.) as long a
runs a Web browser and supports Java. Unlike the management server, it is not s
the administrator can work on different machines at different times of the day. In
subscription phase of the push model, he/she configures the agent via the MIB
subscription applet and the notification subscription applet. The rules used by
pushed data collector and the event manager servlets can be modified at any tim
the rule edition applet. Events are displayed by the event notification applet.

JAMAP: a Web-Based Management Platform for IP Networks 172

des
ased

l);

or

MIB

tiple
of

the
evel.
ed by

nd

ately
.) For

a MIB
that
be

t an

reter
over
x, as
and
t the

ount
ata
4.1 MIB data subscription applet

The MIB data subscription applet communicates directly with the agent. It provi
the subscription system for regular management. It is also used to perform push-b
and pull-basedad hoc management. Its main tasks are the following:

– browse MIBs graphically;

– select MIB variables or SNMP tables and retrieve their values once (pull mode

– select MIB variables and monitor them for a while (text fields, time graphs
tables);

– monitor some computed values (e.g. interface utilization); and

– subscribe to MIB variables or SNMP tables and specify a push frequency (per
variable).

Computed values are typically the results of equations parameterized by mul
MIB variables. We implemented a sort of multiplexer to support them. This kind
simple preprocessing could be delegated to the agent in the future.

4.2 Notification subscription applet

Similarly, the notification subscription applet also communicates directly with
agent. It enables the administrator to set up a filter for notifications at the agent l
Notifications that have not been subscribed to by the manager are silently discard
the agent.

4.3 Rule edition applet

The rule edition applet controls the behavior of two objects:

– the pushed data interpreter object living in the pushed data collector servlet; a

– the event correlator object living in the event manager servlet.

The administrator can write rules in Java via the applet, or can edit them separ
and apply them via the applet. (Java is used here as a universal scripting language
instance, an event can be generated by the pushed data interpreter if the value of
variable exceeds a given threshold. A typical rule for the event correlator would be
if a system is believed to be down, then all applications running on it should also
down, so events reporting that NFS (Network File System) is not working or tha
RDBMS is not working should be discarded.

More complex rules can easily be written. For instance, the pushed data interp
can check if the average value of a given MIB variable increased by 10% or more
the last two hundred push cycles. In fact, these rules can be arbitrarily comple
there is no clear-cut distinction between what is in the realm of offline data mining
what should be performed immediately, in pseudo real-time. The trade-off is tha
pushed data interpreter should not be slowed down too much by an excessive am
of rules, otherwise it might not be able to apply all the relevant rules to incoming d
between two consecutive push cycles.

173 J.P. Martin-Flatinet al.

vents.
form.
und
d to

eens.

cation
ily be
the

dy a
erent
ware

lus a
data

ere it
d data
, the
istent

hat
lls

t (that
ator

ther
vice
gainst
ail.

“as
ecks,
ta

ely.
ly, an
will

end
uld
4.4 Event notification applet

The event notification applet is connected to the management server to receive e
We use it as a debugger, as we do not manage a production network with our plat
This applet displays a simple list of events and manages a blinking light and so
system to grab the operator’s attention in case of incoming events. It is intende
remain permanently in a corner of the administrator’s and operator’s desktop scr
Eventually, it will be complemented by the network map GUI applet.

5 Management Server

The management server runs three servlets: the pushed data collector, the notifi
collector and the event manager. In principle, this management server could eas
distributed over multiple machines if need be (e.g. for scalability reasons), as
communication between servlets relies on HTTP, and the data server is alrea
separate machine. For instance, we could run the three servlets on three diff
machines, and data mining on a fourth. But so far, we have only tested our soft
with a single management server.

5.1 Pushed data collector servlet

The pushed data collector servlet consists of three core objects (see Fig. 1), p
number of instrumentation objects not represented on that figure. The pushed
collector object connects to the agent upon startup, and enters an infinite loop wh
listens to the socket for incoming data and passes on this data “as is” to the pushe
filter object. If the connection to the agent is lost, e.g. due to a reboot of the agent
pushed data collector immediately reconnects to it so as to ensure a pers
connection [9].

The pushed data filter object controls the flow of incoming data. If it detects t
too much traffic is coming in from a given agent (that is, from a given socket), it te
the pushed data collector object to close permanently the connection to that agen
is, the collector should not attempt to reconnect to the agent until the administr
explicitly tells it to do so). The rationale here is that a misbehaving agent is ei
misconfigured, bogus, or under the control of an intruder pursuing a denial of ser
attack, and that the good health of the management system should be protected a
this misbehaving agent. When this happens, the administrator is informed via em

If the pushed data filter object is happy with the incoming data, it passes it on
is” to the pushed data interpreter object. The latter unmarshalls the data and ch
MIB variable by MIB variable, whether it was subscribed to for monitoring, da
collection or both.

In the case of data collection, the MIB variable is not processed immediat
Instead, it is stored in a persistent repository (an NFS-mounted file system current
RDBMS in the future) via a logger object. We assume that an external process
process it afterward to perform some kind of data mining (e.g., it could look for a tr
in the variations of the CPU load of an IP router to be able to anticipate when it sho
be upgraded).

JAMAP: a Web-Based Management Platform for IP Networks 174

hed
le. If
hich
nt and

. We
ring

and
. The

the
tem,
time
s any
ime.
rule is
ion of

in
mber
ules
cially
The
ule
ction

ore
ata,
hat

ject.
the
ata
istent
otifi-
over
t are
ger

(one,
are
In the case of monitoring, the MIB variable is processed immediately. The pus
data interpreter object applies the rules relevant to that agent and that MIB variab
it notices something important (e.g., a heartbeat is received from an IP router w
was considered down), the pushed data interpreter object generates an urgent eve
sends it via HTTP to the event correlator object living in the event manager servlet
took special care for the case where the same MIB variable is used for both monito
and data collection. The data is then duplicated by the pushed data interpreter.

A nice feature of our rule system is that rules may be dynamically compiled
loaded in by the servlet. Dynamic class loading is a feature of the Java language
core API provides a method to instantiate objects from a class by giving its name in
form of a string. The class loader of the JVM searches the class file in the file sys
and loads it into the JVM’s memory. This enables the servlet to load a class at run
without knowing its name in advance. Once a class is loaded, it behaves just a
other class. We are limited only by the fact that a class cannot be modified at runt
This means that if a rule is already registered under a certain class name and that
modified by the administrator, another class name must be used for that new vers
the rule.

To solve this problem, we implemented a simple technique that consists
postfixing the class name with a release number and incrementing this release nu
automatically. As a result, the administrator can create, modify and debug r
dynamically. The drawback is that the memory used by loaded classes (espe
those corresponding to the “old” rules) is freed only when the JVM is restarted.
administrator should therefore be careful not to fill up the memory in the r
debugging phase. Clearly, this feature should be used with special care on a produ
system; but it proved to be particularly useful for debugging rules.

5.2 Notification collector servlet

As depicted in Fig. 2, the notification collector servlet consists in principle of two c
objects, the notification collector and the notification filter. Contrary to pushed d
we do not need an interpreter for notifications because we know already w
happened: we do not have to work it out.

The notification collector object works exactly as the pushed data collector ob
The notification filter object also works as the pushed data filter object. In fact, in
current version of JAMAP, the notification collector servlet and the pushed d
collector servlet are just one single servlet. This enables us to use a single pers
connection between the agent and the manager for transferring MIB data and n
cations. (Note that this would not be the case if we were to distribute the servlets
several machines.) Notifications received by the pushed data interpreter objec
currently passed on “as is” to the event correlator object living in the event mana
servlet, without any further processing.

5.3 Event manager servlet

The event manager servlet connects to one or more pushed data collector servlets
in the case depicted in Fig. 3 and Fig. 4) and waits for incoming events. Events

175 J.P. Martin-Flatinet al.

ation
ce, if
shed
ded
ents

d to
l of
erface
siren,

and

r, the
tion
duler
call
uler
tter
tter

ailor-
ds it

and

nt’s
ill not

for

tion
s not
bject
ther
he
gent
nitor
t via
processed by the event correlator object. This object performs a simple correl
with regard to the network topology, in order to discard masked events. For instan
a router is down, all machines accessed across it will appear to be down to the pu
data interpreter. Based on its knowledge of the network topology (which is hardco
in the current version of JAMAP), the event correlator is able to keep only those ev
that cannot be ascribed to the failure of other equipment.

When an event is not discarded by the event correlator object, it is transmitte
the event handler object corresponding to its level of emergency (this leve
emergency is encapsulated inside the event). Each event handler is coded to int
with a specific notification system (e.g., an email system, a pager, a telephone, a
etc.). In our prototype, we only implemented an email-based notification system.

6 Agent

The agent runs a lightweight JVM [9] and two servlets: the MIB data dispatcher
the notification dispatcher.

6.1 MIB data dispatcher servlet

The MIB data dispatcher servlet consists of three core objects (the push schedule
MIB data formatter and the MIB data dispatcher) plus a number of instrumenta
objects not represented on Fig. 1. During the subscription phase, the push sche
object stores locally the subscription sent by the MIB data subscription applet (we
it the agent’s configuration). Later, during the distribution phase, the push sched
object uses this configuration to trigger the push cycles. It tells the MIB data forma
object what MIB variables should be sent at a given time step. The MIB data forma
object accesses the in-memory data structures of the MIBs via some proprietary, t
made mechanism, formats the MIB data as a series of {OID, value} pairs, and sen
to the MIB data dispatcher object. The latter compresses the data withgzip ,
assembles the data in the form of a MIME part, pushes the MIME part through
sends a MIME separator afterward to indicate that the push cycle is over.

In the future, the MIB data dispatcher servlet will be able to retrieve the age
configuration from the data server via the management server. Thus, the agent w
necessarily have to store its configuration in nonvolatile memory, a useful feature
bottom-of-the-range equipment.

6.2 Notification dispatcher servlet

The notification dispatcher servlet consists of two core objects (the notifica
generator and the notification dispatcher) plus a number of instrumentation object
represented on Fig. 2. During the subscription phase, the notification generator o
stores locally the subscription sent by the notification subscription applet. In o
words, it sets up a filter for notifications coming in from the health monitor. During t
distribution phase, the health monitor checks continuously the health of the a
based on input from sensors. When a problem is detected, the health mo
asynchronously fires an alarm to the notification generator object in the servle

JAMAP: a Web-Based Management Platform for IP Networks 176

ter if
rm is
v2

it in
ds a

re
e fire,
the

the
ieve

: the

that
w
ent

me
ible
cifi-
].
rce
its
plit
ated
s are
ur
pull

by
r

nted
ut is
es to
ug-

f CPU
ence
rt for
for
ise,

t a
some proprietary mechanism. The notification generator object checks with the fil
this alarm should be discarded. If it was not subscribed to by the manager, the ala
silently dropped. If it was, the notification generator object formats it as an SNMP
notification and sends it to the notification dispatcher object, which, in turn, wraps
the form of a MIME part, pushes it to the management server via HTTP, and sen
MIME separator afterward to indicate that this is the end of the notification.

As we do not manage a real-life network with JAMAP, the notifications that a
generated by the health monitor are all simulated. Instead of using real sensors, w
from time to time, one notification taken in a pool of predefined notifications;
selection of this notification is based on a random number generator. As with
previous servlet, the notification dispatcher servlet will eventually be able to retr
the agent’s notification filter from the data server via the management server.

7 Related Work

In the recent past, two very promising contributions came from industrial research
Web-Based Enterprise Management (WBEM) initiative and Marvel.

WBEM came to life in 1996, by making sensational marketing announcements
it would unify (at last) N&SM by defining a new information model and a ne
communication model. By obsoleting all existing technologies and managem
frameworks, it did not gain much credibility. In1997, the WBEM Consortium beca
more realistic: it adopted HTTP as its transfer protocol, selected the Extens
Markup Language (XML) to structure management data, and delivered the spe
cations for a new information model: the Common Information Model (CIM) [15
Then, the WBEM initiative was taken over by the Distributed Management Task Fo
(DMTF) and integrated into its more global work plan—a guarantee of
independence toward any particular vendor. A lot of work is currently under way, s
across 14 Technical Committees. Apart from CIM, whose specifications were upd
several times already and are now fairly stable, most of the technical specification
still ongoing work, e.g. the definition of CIM operations over HTTP. Several of o
proposals could fit into this framework, such as the use of push rather than
technologies and the encapsulation of XML into MIME parts.

The most interesting prototype freely available to date is probably Marvel
Anerousis [1]. The main difference with JAMAP is that Marvel relies on RMI fo
manager-agent communication, and builds on it to offer a distributed object-orie
N&SM platform. This enables a very elegant architecture and a clean design, b
exposed to a well-known criticism: can we reasonably expect all managed devic
support RMI in the future? For the Jini camp [14], which advocates universal pl
and-play based on Java, the answer is clearlyyes. We have doubts about it: bottom-of-
the-range devices are very price sensitive, and despite the decreasing prices o
and memory, the extra cost of embedding Java software still makes a differ
today—enough to win or lose customers. For top-of-the-range devices, the suppo
Java RMI makes perfect sense. But if we want to have a unified N&SM framework
all devices, we should be careful not to have too stringent requirements—otherw
our proposals will simply be rejected by the industry. Our requirement tha

177 J.P. Martin-Flatinet al.

can
un’s

. It
nent

and
sistent

that
the

ement
is

t

ment:
of the
t costs
and
sier
tform
etter

ent
s of

ution
rk is
ort to

and
SNMP
oth
t to

ation

uring

RS)
this
ava
lightweight JVM be embedded in all devices seems to be the farthest we
reasonably go for the next couple of years. It should be noted that S
EmbeddedJava technology might bring an answer to this question in the future.

8 Conclusion

We have presented JAMAP, a prototype of N&SM platform written entirely in Java
implements the push model to perform regular management (i.e. perma
monitoring and data collection for offline analysis) andad hoc management (i.e.
temporary monitoring and troubleshooting). The communication between agents
managers relies on HTTP transfers between Java applets and servlets over per
TCP connections. The SNMP MIB data is encapsulated in serialized Java objects
are transmitted as MIME parts via HTTP. The manager consists of two parts:
management server, a static machine that runs the servlets, and the manag
station, which can be any desktop running a Web browser. The MIB data
transparently compressed withgzip , which saves network bandwidth withou
increasing latency too significantly.

Our approach offers many advantages over traditional SNMP-based manage
it reduces the network overhead of management data transfers; it delegates part
processing overhead from the manager to the agents; it reduces the developmen
of management software for both equipment and N&SM platform vendors (
consequently the cost of the N&SM platform for the customers); and it makes it ea
to find engineers with the expertise necessary for customizing a management pla
to specific sites. Other advantages not developed in this paper include the b
potential for distributing management with mobile code, the simplicity to implem
low-level security, the potential for high-level semantics, and the usual advantage
3-tier over 2-tier architectures. The main disadvantage is the slow speed of exec
of Java code, especially JDBC, which may cause scalability problems. More wo
necessary to assess if we can work around these difficulties, or if we have to res
alternatives to manage large production systems and networks.

For future research, we plan to investigate different schemes to structure
encode management data, instead of serializing Java objects that encapsulate
MIB data. Our objective is to get a higher level of semantics while keeping b
network overhead and end-to-end latency reasonably low. In particular, we wan
study the pros and cons of going from a string-based to an XML-based represent
of MIB data, and to measure the effects ofgzip compression in both cases. It would
also be useful to perform a detailed performance analysis of these different struct
and encoding schemes, and to compare them with SNMP.

Acknowledgments

This research was partially funded by the Swiss National Science Foundation (FN
under grant SPP-ICS 5003-45311. We wish to thank H. Cogliati for proofreading
paper. We are also grateful to AdventNet, IBM and R. Tschalär for making useful J
classes freely available to academic researchers.

JAMAP: a Web-Based Management Platform for IP Networks 178

”. In
&

s”.

SA,

nt

e

A,

. In

SA,

”. In

SA,
References

1. N. Anerousis. “Scalable Management Services Using Java and the World Wide Web
A.S. Sethi (Ed.),Proc. 9th IFIP/IEEE Int. Workshop on Distributed Systems: Operations
Management (DSOM’98), Newark, DE, USA, October 1998, pp. 79–90.

2. F. Barillaud, L. Deri and M. Feridun. “Network Management using Internet Technologie
In A. Lazar, R. Saracco and R. Stadler (Eds.),Integrated Network Management V, Proc. 5th
IFIP/IEEE Int. Symp. on Integrated Network Management (IM’97), San Diego, CA, U
May 1997, pp. 61–70. Chapman & Hall, London, UK, 1997.

3. B. Bruins. “Some Experiences with Emerging Management Technologies”.The Simple
Times, 4(3):6–8, 1996.

4. J.D. Davidson and S. Ahmed.Java Servlet API Specification. Version 2.1a. Sun
Microsystems, November 1998.

5. L. Deri. HTTP-based SNMP and CMIP Network Management. Internet draft <draft-deri-
http-mgmt-00.txt> (now expired). IETF, November 1996.

6. N. Freed and N. Borenstein (Eds.).RFC 2046. Multipurpose Internet Mail Extensions
(MIME). Part Two: Media Types. IETF, November 1996.

7. B. Harrison, P.E. Mellquist and A. Pell.Web Based System and Network Manageme.
Internet draft <draft-mellquist-web-sys-01.txt> (now expired). IETF, November 1996.

8. W. Kasteleijn.Web-Based Management. M.Sc. thesis, University of Twente, Enschede, Th
Netherlands, April 1997.

9. J.P. Martin-Flatin.The Push Model in Web-Based Network Management. Technical Report
SSC/1998/023, version 3, SSC, EPFL, Lausanne, Switzerland, November 1998.

10. J.P. Martin-Flatin. “Push vs. Pull in Web-Based Network Management”. InProc. 6th IFIP/
IEEE International Symposium on Integrated Network Management (IM’99), Boston, M
USA, May 1999, pp. 3–18. IEEE Press, 1999.

11. M.C. Maston. “Using the World Wide Web and Java for Network Service Management”
A. Lazar, R. Saracco and R. Stadler (Eds.),Integrated Network Management V, Proc. 5th
IFIP/IEEE Int. Symp. on Integrated Network Management (IM’97), San Diego, CA, U
May 1997, pp. 71–84. Chapman & Hall, London, UK, 1997.

12. Netscape.An Exploration of Dynamic Documents. 1995. Available at
<http://home.mcom.com/assist/net_sites/pushpull.html>.

13. B. Reed, M. Peercy and E. Robinson. “Distributed Systems Management on the Web
A. Lazar, R. Saracco and R. Stadler (Eds.),Integrated Network Management V, Proc. 5th
IFIP/IEEE Int. Symp. on Integrated Network Management (IM’97), San Diego, CA, U
May 1997, pp. 85–95. Chapman & Hall, London, UK, 1997.

14. Sun Microsystems.Jini. Available at <http://www.sun.com/jini/>.

15. J.P. Thompson. “Web-Based Enterprise Management Architecture”.IEEE Communications
Magazine, 36(3):80–86, 1998.

16. C. Wellens and K. Auerbach. “Towards Useful Management”.The Simple Times, 4(3):1–6,
1996.

	JAMAP: a Web-Based Management Platform for IP Networks
	1 Introduction
	2 Architecture of JAMAP
	3 Advanced Technologies Used in JAMAP
	3.1 MIME multipart and MIME-based push
	3.2 Java servlets
	3.3 Java serialization

	4 Management Station
	4.1 MIB data subscription applet
	4.2 Notification subscription applet
	4.3 Rule edition applet
	4.4 Event notification applet

	5 Management Server
	5.1 Pushed data collector servlet
	5.2 Notification collector servlet
	5.3 Event manager servlet

	6 Agent
	6.1 MIB data dispatcher servlet
	6.2 Notification dispatcher servlet

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

