
1

1

Abstract

1 Introduction

Accessing OSI Managed Objects from ANSAware

guy.genilloud@di.ep
.ch dgay@cs.berkeley.edu

MOs

adapter

speci�cation translation interaction

translation

Guy Genilloud David Gay

Computer Engineering Department Computer Engineering Department

EPFL-DI-LIT EPFL-DI-LIT

Swiss Federal Institute of Technology Swiss Federal Institute of Technology

CH-1015 Lausanne, Switzerland CH-1015 Lausanne, Switzerland

This paper presents a mechanism allowing an ODP compliant distributed system, ANSA, to access OSI network

management objects as if they were ANSA objects. It de�nes a mapping from the OSI object model to the

ANSA object model, and it speci�es how an adapter implements this mapping.

ANSA stands for `Advanced Networked Systems Architecture'; it represents an architecture for distributed systems that is very

close to the `Open Distributed Processing Reference Model' developed jointly by ISO and ITU-T (formerly CCITT) [22, 23, 24].

ANSAware is a simple realisation of that architecture. The terms `ANSA' and `ANSAware' are used interchangeably in this paper.

Management of networks and management of distributed systems are interrelated; there is often a need for a

network manager to manage part of a distributed system or application, and conversely, for a distributed system

manager to manage the underlying network.

Both the OSI network management framework [16] and the ANSA distributed system [8, 2] are object oriented.

Unfortunately, the management objects of both systems live in di�erent worlds, with no way of communicating.

Our contribution in the Esprit III project SysMan is to provide bridges between these worlds, one to allow man-

agement of OSI managed objects () from ANSA applications, the other to make ANSA objects appear in the

OSI world [3, 5]. Two separate mappings are necessary because of the signi�cant di�erences in approach taken by

both systems, an attempt at �nding a common subset would exclude most, if not all, existing objects. A special

gateway, called an , sits on each bridge and provides translations between the worlds.

We do not wish merely to provide access from each system to the other, we want objects from each world to

appear as transparently as possible on the other side of the bridge. For instance, OSI management objects could be

managed from ANSA simply by providing access to the standard OSI network management protocol, CMIP [19].

But this would not allow MOs to be handled like ANSA objects.

In related work, a group called JIDM (Joint Inter-Domain Management Working Group), composed of experts

from X/Open and the Network Management Forum is aiming at providing access to MOs from a CORBA envi-

ronment and the reverse [9, 6, 7]. JIDM divides its work in two parts: and

. Speci�cation translation covers the static translation of GDMO speci�cations in CORBA IDL, and the

reverse. Interaction translation covers the dynamic translation of the actual messages exchanged for interaction.

Currently, JIDM's speci�cation translation is nearly completed while interaction translation is at the early stages

of development.

We already presented our work on the mapping from ANSAware to OSI network management in [3] and [5]. We

present here our work on the reverse mapping, from OSI network management to ANSA. We speci�cally address

an audience interested in network and systems management. Thus, we assume that the reader is familiar with the

concepts of OSI network management and we do not introduce those concepts here. We do not assume that the

reader is familiar with either ODP or ANSA.

This paper is organised as follows: �rst, we brie
y introduce the ANSA model; then, we present our design goals

and we introduce our approach for making MOs appear as ANSA interfaces; we then discuss the provision within

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2

INOUT

2 The ANSA model

In ANSAware 4.1, there can be only one user de�ned termination per operation.

Object:

Interface:

Operation:

Operation signature:

Termination signature:

Interface type:

Server:

Client:

Interface reference:

Trading service:

operations

references interfaces

operations

signature

terminations

operation signatures

interface

interface type

interfaces

ANSA interface CORBA object ANSA object

ANSA interface type CORBA interface CORBA interface type

oneway operation announcement

interrogations

attributes

ANSA of agent-level and object-level operations in more detail; we terminate with a very short discussion comparing

our speci�cation translation with the speci�cation translation proposed by the JIDM group.

In this section, we introduce the main concepts of ODP [24] and ANSA [11]. Since most readers are probably

more familiar with CORBA, we compare brie
y the ANSA/ODP concepts with those of CORBA. We discuss our

mapping between ANSA and OSI network management in the remaining sections of this paper.

a unit of (distributed) program modularity having state, and for initializing , accessing and

updating that state. Objects may contain to the of both the object itself and other

objects.

a view of an object as an abstract service. An interface is speci�ed as a set of to be invoked

by a client object. An object may have multiple interfaces.

part of an interface. An operation has a and a body which de�nes the outcome from an

invocation of the operation.

a speci�cation of the name of an operation, the number and (data or interface) types of

the argument parameters and, optionally, a set of which specify the possible outcomes for the

operation .

a speci�cation of a possible outcome from an operation invocation. It consists of the

name for the termination and the number and types of its parameters.

a set of . An interface satis�es an interface type if it supports all the opera-

tions listed in that type.

in the context of an interaction, the object which provides the interface containing the operation being

invoked.

in the context of an interaction, the object which invokes the operation.

a name that unambiguously identi�es an . Interface references are never reused to

identify another interface.

A \yellow page" name service [12] provided by one or several objects.

The trading service maps a description of a service (an , and named properties associated with

the service, e.g. \location" and \quality" for a printer) to providing that service.

An corresponds to a . There is no direct equivalent of an in CORBA.

The reason is that encapsulation is absolute in ANSA: all interactions with an ANSA object must occur through

one of the interfaces of that object.

An corresponds both to a and to a . So the statement

\a CORBA object may have multiple interfaces" only means that a CORBA object satis�es an interface type and

its supertypes as well. Similarly, an ANSA interface may satisfy more than one interface type.

An ANSA object may have multiple interfaces independently of typing considerations: two interfaces on a same

object may be instances of the same interface type or of di�erent interface types. Each interface on an object has

operations to access or update the state of that object, but not necessarily all its state. Indeed, an interface may

have some state associated with it; this state, a part of the state of the object, is only accessed through operations

on that interface.

An ANSA operation corresponds to a CORBA operation. An important di�erence is that parameters do

not exist in ANSA. An ANSA operation may have several terminations, but these correspond to the normal results

and to the exceptions of a CORBA operation. A CORBA is called an in ANSA;

normal operations are called . Note that an interrogation has exactly one response which is one of

its terminations; multiple replies are not allowed in ANSA nor in CORBA.

Some operations are de�ned as in CORBA. The concept of attribute does not exist in ANSA nor in

ODP.

2

3

4

3

4

�

�

�

myServer

interface identi�ers

3 Design Goals

4 Overview of the Mapping

interface references object

references

dynamic invocation interface

Interface reference should not be confused with , which are variables (or constants) which a programmer uses

to denote interfaces. Interface identi�ers are names chosen by a programmer, and are therefore simple unstructured names (e.g.

).

A usability study of XMP, the standard application programming interface for CMIS, concluded that XMP was extremely di�cult

to use [1]. We think that this can be attributed both to XMP and to CMIS.

As CORBA operations, ANSA operations can have interfaces as parameters | these interfaces are passed by

reference. This is achieved in practice by passing (by copy) names called in ANSA and

in CORBA; these names are invisible (in principle) to application programmers .

The ANSA trading service is a \yellow page" name service that allows a client to �nd servers given the identi�cation

of a trading context and a description of the characteristics of that service. The trading service is in several respects

similar to the CORBA naming service [10].

An important di�erence between ANSA and CORBA is that ANSAware provides no .

This implies that an ANSA object can only invoke an operation of which it knows the signature at compile-time.

Our aim is to provide access to OSI network management [17] objects from the ANSA distributed system. The

simplest method is to provide an access to the CMIS [18] service which is the standard way of accessing such

objects. However this approach has several disadvantages:

It requires the programmer to learn a new and complex object model [17, 20], with a new object notation,

GDMO [21].

He or she must also learn to use CMIS [18], the service that gives access to MOs. Being de�ned independently

of the object classes, CMIS is complex to use .

The MOs are not accessed via ANSA interfaces, so no standard ANSA services and mechanisms may be used

with them (for instance they may not be placed in a trader).

We propose an approach that attempts to circumvent most of these problems. The di�erences in approach and

modelling taken by the two systems make this quite di�cult, so any solution is imperfect. But at least the

programmer's job can be made easier.

Our design has been guided by several con
icting criteria:

1. Simplicity: complex solutions are di�cult to understand, take a long time to implement and have subtle

bugs.

2. Ease of use: we want to simplify the access to OSI network management. If our proposal is more complicated

than using CMIS directly, nobody will use it.

3. Completeness: within the bounds imposed by the previous two constraints, we want to provide complete

access to the facilities o�ered by an OSI agent.

Our approach is not without disadvantages. In particular, it is not possible to hide all the speci�cities of OSI

management, so the programmer will still have to learn about some of its aspects. It is not possible to provide

full features and simple use, so we needed to make trade-o�s. For example, we chose not to support operations on

multiple OSI objects.

Our approach and the tools we provide will be very useful for building specialised managers that know before

runtime the types (or the supertypes) of the MOs they will be dealing with. However, they will be of little use for

building very general managers, such as a \network object browser". In that case, it is better to use the CMIS

service directly.

ANSA objects access services or information provided by other objects by invoking operations at their interfaces.

This is not the case in OSI, where all access to MOs is mediated by an agent. We chose to hide the participation

of the agent by representing an MO as an interface in the ANSA world; the actions and attributes provided by an

MO become operations of its corresponding ANSA interface.

3

CMIS

CMIS

Notifications

CMIS

Agent
interface

OSI object
interfaces

OSI Agent

Adapter
(proxy−agent)

However, we cannot completely hide the role of the agent in ANSA; there are agent-level operations, e.g. creation

of objects and subscription to noti�cations, that we need to make available in the ANSA world. These operations

are explicitly provided by an adapter which is thus acting as a proxy agent in the ANSA world. We chose to have

an adapter per agent.

Figure 1: Adaptation architecture

An adapter is also the ANSA object which owns the interfaces that correspond to the MOs in its associated agent.

This is of no concern to ANSA managers; for them, everything happens as if these interfaces were on the MOs

themselves. All the ANSA managers need to know is that it is the adapter which gives out the references to those

interfaces.

The architecture of our adapter is illustrated in �gure 1, while our basic mapping is summarised in the following

table:

OSI ANSA

agent adapter

managed object interface

managed object class interface type

A typical interaction between an ANSA manager and an MO would thus proceed as follows:

1. The manager �nds the desired proxy-agent using the trader.

2. It requests a reference for the interface associated with the desired object. The type of this interface is de�ned

with ANSA concepts but it provides access to the functionality of the object, as speci�ed in its GDMO class

description.

3. The manager makes a request on this interface.

4. The proxy-agent converts the request to CMIS, sends it to the real agent and waits for the result. It converts

this and returns it to the ANSA manager.

5. The manager uses the returned result.

4

5

5

�

�

�

�

�

5 Agent-level Operations

Agent

Agent Create Delete

Agent

GetInterface

4.1 Restrictions Imposed by the Mapping

5.1 Creation and Deletion of Objects

5.2 Discovery of Interfaces Associated to MOs

GetInterface : OPERATION [type : ObjectClass;

name : OSIName;

permanent : BOOLEAN]

RETURNS [interface : ansa_InterfaceRef];

It is possible to convert ASN.1 recursive types into IDL types, as shown in [4]. But this process is quite complex and does not always

produce very clear types. As most management applications do not contain very complex types, the inclusion of this transformation

does not seem necessary.

To keep the complexity of the mapping within manageable bounds, the following restrictions were selected:

All interactions are with single MOs. There is no scoping or �ltering.

No action may have multiple replies.

No access control.

Some options present in CMIS are ignored, and some of the results (such as the current time) are not returned

by the adapter.

Only a subset of ASN.1 can be translated to IDL. The restrictions are mainly due to the nature of the Interface

De�nition Language (IDL) of ANSAware, but some were selected to keep things simple. For example, we do

not support circular (recursive) type de�nitions , the type REAL and value de�nitions.

These restrictions are somewhat arbitrary, and any of them could be removed without fundamentally changing the

mapping. But some changes would make it much more complicated.

Agent-level operations are provided by a special interface on the adapter, whose type name is . This interface

provides operations for creating and deleting MOs, for discovering the interfaces of the MOs, and for subscribing

to noti�cations.

When associated with an agent, each adapter registers this interface with the trader, with an attribute containing

the agent's OSI address. It can therefore be found easily by all the ANSA objects that wish to access this agent.

There is no general object creation facility in the ANSA model to which the CMIS create and delete services may

be mapped. There is a standardised service, the `Factory' [2], but its model of object creation is not su�ciently

close to warrant creation of MOs as requests on a pseudo-factory service that would be provided by the adapter.

Instead, the adapter's interface proposes operations and which are directly mapped from

the corresponding CMIS services. As a consequence, the attribute values must be encoded in BER [15], i.e., as

sequences of bytes.

An adapter can provide an interface to any MO in its associated agent. When an MO supports allomorphic classes

(i.e., the MO has several di�erent interfaces), the adapter may have several interfaces of di�erent types that refer

to that same MO.

ANSA managers can discover these interfaces by invoking an operation of the adapter's interface called

. Given the OSI name and the GDMO class of an object, this operation will return its associated

interface.

The name of the MO that we use is its local distinguished name. The MO class is indicated by its ASN.1 object

identi�er. The indication of the class is necessary because an ANSA manager may specify the true class of the

object or one of its allomorphic classes. The interface that is returned is the one that corresponds to the class

requested: it provides explicit ANSA operations generated by translation from the GDMO speci�cation of the

MO. If that class is not supported by the MO, or if it has not been translated in IDL, an error is returned to the

manager.

5

6

7

8

6

7

8

referential integrity

6 Object-level Interactions

5.3 Subscription to Event Noti�cations

OSI names reliable

formal type

interface

5.2.1 Naming Considerations

5.2.2 Typing Considerations

permanent GetInterface

GetInterface

ansa InterfaceRef

GetInterface

Agent

RegisterEvent

GetInterface

RegisterEvent

RegisterEvent : OPERATION [event_type : EventType;

filter : OSIFilter;

callback : ansa_InterfaceRef]

RETURNS [RegisterEventResult];

Reliability of interface references, or as it is called in CORBA, is an essential property of pure object-based

systems because interface references may be part of the state of an object.

We call \formal type" the type of a formal parameter, and \actual type" the type of an actual parameter.

We consider a type to be a subtype of itself.

When an interface is passed (by reference) as a parameter of an operation in ANSA, an interface reference is passed

(by copy) instead. Interface reference are therefore quite similar to names used for denoting MOs in network

management (we call those names). However, interface references are , i.e., they always refer to

the same interface or to no interface at all if that interface is not available (probably because it was deleted). OSI

names are not reliable because they may be reused when an object is deleted.

The adapter's interfaces contain OSI names; the adapter uses these names to forward operation invocations to its

associated agent. Since OSI names may be reused, there is a danger that the reliability of interface references be

violated. There is no perfect solution to this problem unless the agent participates, but this would also require

an extension of the CMIP protocol [19]. We must therefore content ourselves with an approximate solution: the

proxy-agent associates an interface reference with an OSI name only if its corresponding MO exists; it invalidates

an interface reference when it is noti�ed that its associated MO has been deleted. This allows the adapter to

discover most of the reuses of OSI names on time, but not all of them (because a noti�cation is only sent after an

object is deleted, or because no noti�cation may even be sent if the agent is overloaded). Nevertheless, we think

that this solution is acceptable because OSI names are typically reused in situations where it is reasonably safe to

do so.

An MO may be deleted and later another MO may be created with the same OSI name, but a manager may wish

to consider that it is the same MO. When this is the case, the parameter of may be used

to tell the adapter to ignore all noti�cations of deletion of the MO.

Passing an interface by reference is di�erent than passing a name and an actual type for that interface because an

interface parameter in an operation has a . The point is that formal types of parameters allow type

checking to be performed at compile time: they ensure (together with sound subtyping rules) that any received

interface is a subtype of the parameter formal type .

can return an interface reference of an arbitrary type, the only valid return type is therefore

(which has no operations and is therefore a supertype for all interface references). The callers

of must cast this back to the correct type.

A similar solution is used for the trading function in ODP [24, 13].

This solution can be considered \type safe" because binding to an ANSA interface denoted by an OSI name is only

possible after the adapter has checked that no typing errors will occur as a result of that binding, i.e, that the MO

supports the requested class.

ANSA managers can subscribe to event noti�cations by using an operation of the adapter's interface called

. They pass as parameters a valid callback (the same typing considerations as with

apply here) and the speci�cation of a �lter. Callback interfaces are further discussed in section 6.2.

A �lter speci�cation may contain values of any type, so it has to be speci�ed in BER. Since this makes the use of

rather cumbersome, we provide an alternate way of requesting events from a particular object. See

section 6.1.3.

There are two kinds of interactions with objects: operations (operations on attributes and actions) and noti�cations.

6

9

9

f g

6.1 Object-level Operations

6.1.1 Actions

6.1.2 Attributes and Attribute Groups

6.1.3 Subscription to Event Noti�cations

RegisterFire : OPERATION [filter: OSIFilter;

callback: Premises_callback]

RETURNS [RegisterEventResult];

Actions with multiple replies are very rarely speci�ed in GDMO, probably because a manager may decide not to handle multiple

replies.

GetInterface

WITH INFORMATION SY NTAX

REPLY SY NTAX INFORMATION SY NTAX

REPLY SY NTAX Null

GenericError

GenericError

Colour

GetColour ReplaceColour ReplaceWithDefaultColour AddColour RemoveColour

Get ReplaceWithDefault

Colours GetColours ReplaceWithDefaultColours

GetColours Colours

Get

GenericError

RegisterEvent

Register Event

F ire MO Premises

As selection of multiple objects is not supported, an ANSA manager can select an MO by using its ANSA interface

reference; it can obtain that reference by using the operation, but it can also receive it from other

ANSA objects.

Operations of the ANSA interface allow an ANSA manager to invoke any actions supported by its associated

MO. In addition, they allow the invocation of all the operations that are de�ned on the MO attributes and the

subscription to all the events of the MO.

In general, actions on MOs may yield multiple replies, but unfortunately, this is only speci�ed in the action's

behaviour, i.e., in English text. It is therefore not possible for an automatic tool to know this. The adapter

indicates its refusal to handle multiple replies at connection-establishment time, so it can ignore this problem .

An action is therefore mapped to an ANSA interrogation. The IDL argument types of the interrogation are obtained

by the translation of the construct of the action template. The results are

mapped similarly, from the construct. If the is omitted, the

operation has no argument. If the is missing, is used; an action is never mapped to

an announcement so that errors can be returned. These are represented by a type; this keeps the

interfaces simple to use (unless the ANSA manager has to handle errors e�ectively).

The use of GDMO parameters (PARAMETERS templates) for specifying arguments and results is very complex,

and it is not recommended except for extensions [14, 14.3.8, pp. 68]. Because of this, we do not handle GDMO pa-

rameters in the GDMO/ASN.1 to IDL speci�cation translation. The adapter can cope with the GDMO parameters

that are part of the request or reply arguments of an action, but it does not transform them. As a result, ANSA

managers must handle them in encoded form (BER). As indicated above, error parameters are treated similarly

but are included in the type.

Since ANSA does not have a notion of attribute, operations on attributes have to be translated into operations. For

example, an attribute called will be translated into the following IDL interrogations, provided its de�nition

speci�es them: , , , , and . We

use variant records for carrying the values of attributes speci�ed in GDMO conditional packages; a discriminant

indicates whether the value is present or not. To avoid de�ning a very large number of operations, and for simplicity,

we do not de�ne any operation operating on more than one attribute.

Only and operations are expected on attribute groups, so for an attribute group called

, we generate at most the two operations and . The result of

the operation is a record which contains the values of 's member attributes.

In fact, allomorphismmakes things a bit more complicated. An MO always applies an attribute group operation to

all the attributes which are members of that group, without consideration for the class that has been requested [20].

Thus, a reply to a operation may include values for attributes which are not speci�ed in the class that applies

to the operation (in this case, the class speci�ed by the adapter). Since an ANSA object cannot receive values that

it does not expect, the adapter translates only those attribute values that are expected, and discards the others.

The GDMO parameters of an attribute must be error indications. As for actions, they are represented in ANSA

by the type.

Since the generic operation is rather cumbersome to use, we provide in each translated interface a

operation specialised to each type of event that can be emitted by the MO. For instance if there

is a event in an of type , this operation is:

7

10

10

6.2 Noti�cations

callback interfaces

7 Comparison with the JIDM Speci�cation Translation

Ideally, the GDMO notation should be extended to indicate when multiple replies are possible.

x

RegisterEvent F ire; objectInstance x and filter; callback

F ire x

F ire x

RegisterF ire

RegisterF ire

RegisterF ire RegisterEvent

Calling this operation on an interface that represents an MO named is equivalent to calling

(=). This requests noti�cation of all events of type

that occur on object and which match the �lter (in most cases, the empty �lter can be passed, thus

requesting forwarding of all events which occur in).

Note that the type of the callback interface is speci�ed in the operation . This allows to check at

compile-time that the invoker of passes an appropriate callback interface. The possibilities of errors

are therefore reduced when using instead of .

Noti�cations of events that occur in MOs are sent by agents to interested managers. ANSA does not contain a

corresponding mechanism, so it must be modeled explicitly.

ANSA interfaces may only de�ne operations that are invoked by a client on a server, and not noti�cations emitted

by a server. An ANSA manager needs therefore to support one or more to receive noti�cations.

A callback interface is specialized to the MO class that emits the noti�cation: its type is obtained by translating

the GDMO speci�cation of the MO class; it contains operations which are direct translations of the GDMO event

speci�cations.

The adapter is responsible for forwarding a noti�cation from the OSI world to an ANSA manager. It creates an

`event forwarding' object on its behalf, receives the noti�cation, works out an equivalent ANSA operation, and

invokes it on the callback interface of the ANSA manager.

Since event noti�cations contain no indication of what �lter sent them, the adapter uses a di�erent OSI forwarding

address on each event discriminator that it creates; this allows it to determine on which callback interface it should

invoke the \noti�cation operation".

Our speci�cation translation from GDMO/ASN.1 to ANSA IDL is very close to the translation de�ned by JIDM

for CORBA IDL [6]. In particular, our handling of attributes, noti�cations and GDMO parameters is similar to

that of JIDM. However, there are a few di�erences. For example, JIDM does not currently provide a simpli�ed

way to subscribe to the noti�cations of an MO.

A more important di�erence concerns actions. JIDM considers that it must support actions with multiple replies,

so it translates every action as if it has multiple replies (JIDM contemplates using the CORBA event channel

to transmit multiple replies to a CORBA manager). The drawback of this approach is that it makes the large

majority of actions more complicated to use than they need to be. ANSA does not support event channels, and

we favour simplicity, so we simply ignore the problem by refusing to handle multiple replies. The best approach

would probably be to let an operator specify which actions need to be translated di�erently because they may yield

multiple replies .

JIDM does not translate attribute groups; instead, it contemplates providing a function that could be used for all

the attribute groups of an MO. Because it would be generic, this function would not decode the attributes in a

group and would shift the work to the programmer. We feel attribute groups deserve better support so we take a

di�erent approach: we translate every attribute group into an action with the attributes of the group as its results.

There is however a problem with our approach: because of subtyping, an actual attribute group may contain more

attributes than are expected by an ANSA manager. Our solution is to have the adapter discard all the attributes

that are not speci�ed in the MO class known to the ANSA manager. We think this is acceptable because an ANSA

manager would not know what to do with those attributes anyway (remember that we do not intend to satisfy all

managers).

JIDM de�nes complex algorithms to avoid clashes due to name translation. For instance, name clashes may

occur when a GDMO attribute and a GDMO action are translated into operations: the translation may yield two

operations with the same name! For the sake of simplicity, we decided to let an operator resolve these clashes by

modifying the names in the original GDMO speci�cations. Modifying an action or an attribute name in a GDMO

speci�cation has no consequences on interaction since an ASN.1 object identi�er is used instead of that name during

interaction.

Translation clashes may also result from multiple inheritance. In GDMO, an MO class may inherit an action (or

an attribute or a noti�cation) from two superior classes; it is clear that it is one and the same action because of

its object identi�er | it cannot be an accidental clash of names. Object identi�ers are not used in ANSAware and

8

8 Conclusion

References

CMIPRun

ANSAware 4.0 Application Programmer's Manual

Proceedings of the Fifth IFIP / IEEE International Workshop on Distributed Systems: Operations and

Management (DSOM'94), Toulouse

Proceedings of the ACM Workshop on

Interface De�nition Languages

Proceedings

of the Second International Workshop on Services in Distributed and Networked Environments (SDNE'95),

Whistler, Canada

Inter-Domain Management Speci�cations: Speci�cation

Translation (Draft)

Inter-Domain Management Speci�cations: Preliminary

CORBA/CMISE Interaction Translation Architecture

IEEE Network

The Common Object Request Broker: Archictecture and Speci�cation (1.1)

Common Object Services Speci�cation

Technical Guide for OSI Management

ITU-T Recommendation X.209 (1990) | ISO/IEC International Standard 8825:1990, Open Systems Inter-

connection - Speci�cation of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)

CORBA, so their inheritance rules impose that all operations be originally de�ned in a single class: an operation

may be inherited multiple times, but indirectly, it is inherited from at most a single superior class. Clearly, a

straightforward translation of GDMO speci�cations will break the ANSA or the CORBA inheritance rules. JIDM

solves this problem by modifying the inheritance tree to avoid the clash. Our strategy is di�erent: we translate every

action, attribute and noti�cation into a single operation in a distinct ANSA interface; these \pseudo" interfaces

are then inherited by the real ANSA interfaces. In that way, every operation is indirectly inherited from a single

class.

This paper has shown a simple, but reasonably complete, mapping of MOs into interfaces in the ANSA world.

This mapping is not perfect, but its implementation is quite feasible. Indeed, our work in the Esprit III project

SysMan demonstrates this. Also, the resulting ANSA interfaces are much more easy to use than any general

purpose interface to CMIS.

Most of the restrictions introduced in the name of simplicity can be removed if necessary, at the expense of greater

complexity of use and implementation.

[1] Wade Allen. Experiences gained from the cmipWorks project. , 3(2), 1994.

[2] Architecture Projects Management Ltd., Cambridge (UK). ,

mar 1992.

[3] Karrim Berrah, David Gay, and Guy Genilloud. Accessing ANSA objects from OSI network management.

In

, 1994.

[4] David E. Gay. Interface De�nition Conversions: Recursive Types. In

, pages 101{110. Carnegie Mellon University, jan 1994.

[5] Guy Genilloud and Marc Polizzi. Managing ANSA objects with OSI network management tools. In

. IEEE Computer Society Press, 1995.

[6] Joint Inter-Domain Management Working Group.

. X/Open and Network Management Forum, apr 1995.

[7] Joint Inter-Domain Management Working Group.

. X/Open and Network Management Forum, apr 1995.

[8] Andrew J. Herbert. An ANSA overview. , pages 18{23, jan 1994.

[9] Object Management Group. , dec

1991.

[10] Object Management Group. , mar 1994.

[11] The ANSA Project. Mapping ANSA concepts to C++. ANSA Technical Report TR.036.00, Architecture

Projects Management Ltd., Cambridge (UK), feb 1993.

[12] R.J. van der Linden. The ANSA naming model. ANSA Architecture Report AR.003.01, Architecture Projects

Management Ltd., Cambridge (UK), feb 1993.

[13] Andrew J. Watson. Revising the DPL type system. ANSA Request for Comments RC.339.02, Architecture

Projects Management Ltd., Cambridge (UK), jun 1992.

[14] John Westgate et al. . NCC Blackwell, Manchester - Oxford, 1992.

ISBN 1-85554-187-4.

[15]

.

9

[16]

.

[17]

.

[18]

.

[19]

.

[20]

.

[21]

.

[22]

.

[23]

.

[24]

.

10

ITU-T Recommendation X.700 (1989) | ISO/IEC International Standard 7498-4:1989, Open Systems Inter-

connection - Basic Reference Model - Part 1: Management Framework

ITU-T Recommendation X.701 (1992) | ISO/IEC International Standard 10040:1992, Open Systems Inter-

connection - Systems Management Overview

ITU-T Recommendation X.710 (1991) | ISO/IEC International Standard 9595:1991, Open Systems Inter-

connection - Common Management Information Service De�nition

ITU-T Recommendation X.711 (1991) | ISO/IEC International Standard 9596-1:1991, Open Systems Inter-

connection - Common Management Information Protocol - Part 1: Speci�cation

ITU-T Recommendation X.720 (1992)| ISO/IEC International Standard 10165-1:1993, Open Systems In-

terconnection - Structure of Management Information: Management Information Model

ITU-T Recommendation X.722 (1992)| ISO/IEC International Standard 10165-4:1992, Open Systems In-

terconnection - Structure of Management Information - Part 4: Guidelines for the De�nition of Managed

Objects

Draft ITU-T Recommendation X.901 (1995) | ISO/IEC Draft International Standard 10746-1:1995, Open

Distributed Processing - Basic Reference Model - Part 1: Overview

ITU-T Recommendation X.902 (1995) | ISO/IEC International Standard 10746-2:1995, Open Distributed

Processing - Basic Reference Model - Part 2: Foundations

ITU-T Recommendation X.903 (1995) | ISO/IEC International Standard 10746-3:1995, Open Distributed

Processing - Basic Reference Model - Part 3: Architecture

