
Abstract

1 Introduction

An Analysis of the OSI Systems Management Architecture

from an ODP Perspective

Guy Genilloud

Swiss Federal Institute of Technology, Lausanne

Computer Engineering Department

EPFL-DI-LIT

CH-1015 Lausanne, Switzerland

email: guy.genilloud@di.ep�.ch

This paper analyses the OSI Systems Management

Architecture (SMA) in terms of the RM-ODP concepts

and architecture. It explains why ISO and ITU are

considering new modelling techniques for implement-

ing distributed systems management. In the informa-

tion viewpoint, these new techniques might be inspired

from GDMO. The paper also examines the use of auto-

matic translation tools (GDMO to CORBA IDL trans-

lators) to integrate existing management agents within

the future Open Distributed Management Architecture

(ODMA).

Until recently, network or systems management ap-

plications were typically centralized; they were dealing

essentially with the management of individual network

elements or other non-distributed resources within

networked systems. Today, management applications

are more and more concerned with the whole network

and with distributed applications. Thus, new man-

agement applications tend to be distributed and they

manage distributed systems. For that reason, telecom-

munications operators want to make their manage-

ment systems and models evolve towards the archi-

tecture de�ned by the ODP-RM (Open Distributed

Processing Reference Model) [3, 8, 9]. The TINA

(Telecommunications Information Network Architec-

ture) [1], developed by the TINA consortium, and

more speci�cally the ODMA (Open Distributed Man-

agement Architecture) [21], developed jointly by ISO

and ITU-T, are examples of this evolution.

Telecommunications operators may also be encour-

aged to embrace the ODP architecture because of their

interest for the CORBA technology [13, 12]. CORBA

standards (e.g. the interface de�nition language and

the de�nition of interface references) are indeed much

better accepted than OSI standards by the IT commu-

nity. Their application to implement a system confor-

mant to the ODP architecture is also more straight-

forward than OSI standards.

However, signi�cant investments have already been

made on the basis of the OSI SM (OSI Systems Man-

agement) standards. Such investments should be pre-

served; current implementations, or at least current

speci�cations, should be reused, even though they may

need to be enhanced or modi�ed. This will be possible

if the SMA (OSI Systems Management Architecture)

[14, 15, 16, 17, 18, 19, 20] is well integrated within

the ODMA. In this context, the joint work of X/Open

and the Network Management Forum on inter-domain

management speci�cations is of great relevance [6, 7].

To integrate the SMAwithin the ODMA, it is essen-

tial to have a clear understanding of the SMA and of

its relation with the ODP-RM. In the �rst part of this

paper, we analyse the SMA in terms of the ODP con-

cepts and architecture. We conclude that the main de-

�ciency of the SMA for implementing distributed sys-

tems management lies in its modelling technique. We

also show that MOs (Managed Objects) can be consid-

ered as information viewpoint objects. In the second

part of the paper, we look at new designs for man-

agement agents so that they can be accessed through

ODP/CORBA �RPC� protocols. More speci�cally,

we compare the redesign of an agent produced by

human designers to that obtained automatically by

GDMO to CORBA IDL translators. We then draw

some conclusions.

We speci�cally address an audience interested in

distributed systems and in network and systems man-

agement. We assume that the reader is at least

vaguely familiar with the ODP-RM and the OSI SMA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3.1 The SMA in the ODP Computational
Viewpoint

2 Interpretation and Use of ODP

Viewpoints

3 Analysis of the SMA

enterprise informa-

tion computational engineering technology

the

control or monitoring of resource usage

The ODP-RM introduces the concept of viewpoint,

which is an abstraction, i.e., a model, that focuses on

particular concerns within a system [3, clause 8.1.1] [8,

clause 3.2.7]. The ODP-RM speci�es that �ve view-

points are necessary to specify a system conformant

to the ODP architecture: the ,

, , and view-

points [9]. Today, there is a wide agreement within

the ODP community both on the interest of using

viewpoints and on the speci�c �ve that have been se-

lected by the ODP architecture. However, there is

still debate regarding the precise scope of the view-

points (see for example the discussion in [4]). This

section presents our views on that topic and explains

the main reasons why our study is essentially made in

the information and the computational viewpoints.

The enterprise viewpoint is �a viewpoint on an

ODP system and its environment that focuses on the

purpose, scope and policies for that system�. We con-

sider an enterprise model to be a way to record all

the requirements on a system or a component within

that system; an enterprise model may thus be used

to record the purpose and rationale of an MO de�ni-

tion. Unfortunately, the OSI SM standards generally

do not include the requirements or the rationale that

lead to their development. Thus, we consider that the

OSI SM standards did not make use of the enterprise

viewpoint and do not address it further in this paper.

The information viewpoint is �a viewpoint on an

ODP system and its environment that focuses on the

semantics of information and information processing�.

We consider an information model to be the result of

the analysis of a system: ideally the model describes

everything the system does without mentioning any-

thing about how it does it (so as not to constrain im-

plementations). Perhaps more restrictively, we also

consider that an information model provides its user

(e.g. a designer of a larger system) with all the neces-

sary information to use the system. This implies that

all the assumptions made about the environment of

the system need to be speci�ed explicitly.

The computational viewpoint is �a viewpoint on

an ODP system and its environment which enables

distribution through functional decomposition of the

system into objects which interact at interfaces�. We

consider a computational model of a system (exclud-

ing its environment) to be a con�guration of objects,

all with computational interfaces (i.e., either signal,

stream or operation interfaces); this con�guration may

be seen as a re�nement of the system in the informa-

tion model, and is behaviorally compatible with it.

The behaviour of each object in the computational

model is unconstrained, and it may be speci�ed by

any means deemed appropriate [11]. One possibility

amongst others is to consider each computational ob-

ject as a system and to apply the viewpoints recur-

sively to it; its behaviour is then speci�ed in an infor-

mation viewpoint model.

The engineering viewpoint is �a viewpoint on an

ODP system and its environment that focuses on the

mechanisms and functions required to support dis-

tributed interactions between objects in the system�.

Clearly, the OSI communications infrastructure can

ful�ll a large part of this. However, because of the

di�erences in modelling used by ODP and OSI, it is

very di�cult to relate precisely the OSI-RM concepts

to those of the ODP engineering viewpoint. We avoid

the di�culty by encapsulating OSI associations within

computational binding objects: since we know how to

create such objects (OSI associations), we do not need

to model them in the engineering viewpoint.

The technology viewpoint is �a viewpoint on an

ODP system and its environment that focuses on the

choice of technology in that system�. We are in prin-

ciple not much concerned by this viewpoint because

the ODP-RM imposes nothing regarding technology.

However, we assume that the systems management

community will adopt the CORBA IDL, which is a

future ODP standard.

To apprehend the OSI SM standards, it is neces-

sary to �rst consider their purpose and scope, namely

the speci�cation of the communication protocols to

be used for the management of OSI networks, and the

speci�cation of the management information carried

by those protocols. Since only interworking reference

points may be imposed by OSI standards, total free-

dom must be left as to how real open systems are

implemented. Moreover, the algorithms to be used for

performing management are in principle not standard-

ized. Thus, the OSI SM standards focus on a �core

management capability � which is centered around

.

The SMA speci�es a few rules for the construc-

tion of distributed management systems [15]. Because

these rules pertain to the distribution of the manage-

ment system, they are best explained in the computa-

tional viewpoint.

Basically, we see the SMA as an architecture which

rules that any computational object be of one of two

Manager Agent

Client Operation Interface

Server Operation Interface

MIS Binding Object

MIS User Object

MIS User Objects MIS Binding Objects

M M

M

A

A A

A A A

A

M

M = Manager role A = Agent role

M M

1

1

MIS object

MIS-User

object

roles

Manager roles

Agent roles

forwarding announcements and maintaining their

order of delivery

As for any computational object, it is possible to re�ne an

MIS-User object into a composition of computational objects.

The SMA does not impose anything regarding this point (so an

agentmaybe distributed). As forMOs,we will show in the next

section that they are information objects, not computational

objects.

object types: an MIS (Management Information Ser-

vice) type or an MIS-User type. An models

the communication support provided to two MIS-User

objects; it is therefore a binding object. An

models a complete real open system (except the

communication software and hardware which are ab-

stracted within MIS binding objects); it is an ordinary

computational object . Figure 1 shows the computa-

tional model of a very simple system conformant to the

SMA: it comprises only two MIS-User objects bound

by an MIS binding object. Figure 2 gives a more com-

plex example of a management organization with two

�top peer managers�, each managing other systems in

a hierarchical way.

Figure 1: A manager bound to an agent

The SMA is very prescriptive regarding the be-

haviour of MIS binding objects: their behaviour is

fully speci�ed in the CMIS (Common Management

Information Service) de�nition [16]. It is important

to note that this behaviour speci�cation implies that

two MIS-User objects bound by anMIS binding object

must assume two distinct with respect to each

other: one must assume a manager role, the other an

agent role. have a management mis-

sion; they issue management operation requests and

they receive noti�cations. perform the

management operations that they receive, and emit

noti�cations of signi�cant events towards managers.

Figure 2: Example of a management organization

An MIS object is therefore an asymmetrical binding

object.

However, being not concerned with portability, the

SMA does not prescribe in detail the interfaces that

are to be supported by an MIS binding object: any

set of interfaces that is compatible with its behaviour

is acceptable. Figure 1 illustrates a possible way to

model a MIS binding object using exclusively compu-

tational operation interfaces; tables 1 and 2 give the

signatures of those interfaces (we do not fully spec-

ify the arguments of these announcements, but those

can easily be deduced from the CMIS or the CMIP

speci�cations). Using such interfaces, the behaviour

of an MIS binding object may be roughly summarized

as

. Note that we do not use interroga-

tion operations because the SMA allows operations to

have zero, one or more replies, whilst interrogations

have exactly one. Note also that we ignore all actions

related to the instantiation and the deletion of MIS

binding objects; for the sake of simplicity, we do not

model the set-up and control of associations.

In the way we presented them, the interfaces of an

MIS binding object are apparently very simple: they

contain very few operations. However, the arguments

of those operations may be very complex and their val-

ues and types can di�er a lot from one invocation to

SMA modelling

technique

3.2 Agents are Modelled in the Informa-
tion Viewpoint

M-Get ANNOUNCEMENT(InvokeId, BOC, BOI, ..., AttributeList)

M-Cancel-Get ANNOUNCEMENT(InvokeId, GetInvokeId)

M-Set ANNOUNCEMENT(InvokeId, Mode, BOC, ..., ModificationList)

M-Action ANNOUNCEMENT(InvokeId, Mode, BOC, ..., ActionType, ActionInfo)

M-Create ANNOUNCEMENT(InvokeId, MOC, MOI, ..., AttributeValueList)

M-Delete ANNOUNCEMENT(InvokeId, BOC, BOI, ..., Synchronization)

M-Event-Report-rsp ANNOUNCEMENT(InvokeId, MOC, ..., EventReply, Errors)

M-Get-rsp ANNOUNCEMENT(InvokeId, ..., CTime, AttributeValueList, Errors)

M-Cancel-Get-rsp ANNOUNCEMENT(InvokeId, Errors)

M-Set-rsp ANNOUNCEMENT(InvokeId, ..., AttributeValueList, CTime, Errors)

M-Action-rsp ANNOUNCEMENT(InvokeId, ..., CTime, ActionReply, Errors)

M-Create-rsp ANNOUNCEMENT(InvokeId, ..., AttributeValueList, CTime, Errors)

M-Delete-rsp ANNOUNCEMENT(InvokeId, ..., MOC, MOI, CTime, Errors)

M-Event-Report ANNOUNCEMENT(InvokeId, Mode, ..., EventTime, EventInfo)

Table 1: Announcements invoked by a manager on an agent.

Table 2: Announcements invoked by an agent on a manager.

another. Moreover, di�erent agents may respond to

a same announcement (by issuing further announce-

ments) in quite di�erent ways. Indeed, CMIS does

not specify the semantics of most of the arguments

that are exchanged by managers and agents. Some

of these arguments (e.g. AttributeValueList, Action-

Info, EventInfo) change so much between invocations

that the only practical way to declare them to the

MIS binding object is as sequences of bytes. Encod-

ing and decoding must then be performed within the

MIS-Users, possibly by a special layer. Event though

an application may not need to perform encoding or

decoding itself, it may have di�culties to specify or to

interpret an argument. Moreover, encoding arguments

amounts to escaping the computational type checking

mechanisms; so these mechanisms would be useless to

catch most errors. For these reasons, APIs (applica-

tion programmatic interfaces) for CMIS are di�cult

to use.

The SMA imposes very little regarding the be-

haviour of MIS-User objects: the main requirement is

that they use MIS binding objects to exchange man-

agement information among themselves. Fundamen-

tally, this is not an overly restrictive requirement be-

cause two MIS-User objects may be bound by two MIS

binding objects in opposite directions (see �gure 2). In

this way, both MIS-User objects assume both a man-

ager and an agent role w.r.t. each other; both objects

are thus capable of invoking any operation on each

other (the SMA imposes little semantic constraints on

M-Actions), just like they would be able to do if MIS

binding objects were not imposed! In other words,

what can be done with CORBA may also be done

with CMIS.

The SMA is independent of the missions attributed

to management systems and of the resources to be

managed. Thus, it does not de�ne the behaviour of the

MIS-User objects nor even the universe of discourse

between them; this is the role of OSI SM standards.

However, the SMA proposes a modelling technique, to

be used by OSI SM standards, for specifying the uni-

verses of discourse of MIS connections. This technique

includes a notation called GDMO (Guidelines for the

De�nition of Managed Objects)[20].

From an ODP perspective, the

consists in specifying an agent role: the uni-

verse of discourse of the MIS connection is then the

de�nition of all the messages that can be received or

emitted by the agent on that connection. The SMA

modelling technique thus consists in a partial speci�-

cation of an MIS-User (only the part of the behaviour

that is relevant to management, and speci�cally to

the agent role, needs to be speci�ed). Moreover, it

imposes that only the pieces of speci�cation that are

2

2

A

A

A

A

A

managed objects

MOs

A B

A B

A

MO A A

B

MO Act

A

B

Act B

B B

MO

B MO

MO

3.2.1 Limitations of the SMA Modelling

Technique

The SMA, in particular [18], uses the term �agent� to refer

to the entity (it would not call it an object) which interacts

directly with the MOs. We prefer to use the term �dispatcher�

to avoid confusion with the agent role of an MIS-User.

directly relevant to the universe of discourse of the

MIS association be formally speci�ed; the rest may

be speci�ed informally in a natural language. Since

the SMA intends not to constrain the implementation

of an MIS-User, it only requires an information view-

point speci�cation of its agent role.

The SMA de�nes a modular approach to specify

the behaviour of an agent according to the managed

resources that it contains; this approach is based on

special information objects known as

or . For specifying the behaviour of these MOs,

the SMA suggests a method that is very compatible

with the information viewpoint: it uses terms such as

�invariants�, �preconditions�, �postconditions�, �con-

sistency constraints� and �relationships� [18, clause

5.1.2.4].

The information model of an agent behaviour is

given by a con�guration of MOs, and by an extra ob-

ject that is only speci�ed implicitly by the SMA. We

call this extra object the �dispatcher� . The function

of the dispatcher object is to handle MIS communica-

tions, to resolve object names, and to dispatch opera-

tions towards MOs. The dispatcher also sends replies

and noti�cations to managers which expect them. Im-

portantly, it is allowed to discard noti�cations when it

is overloaded. All other information objects, i.e., the

MOs, are speci�ed by OSI SM standards.

An ODP viewpoint model requires that the envi-

ronment of a system be speci�ed. GDMO allows to

model the environment of an agent in an implicit way:

the environment is any system that can invoke op-

erations on the agent, and receive its replies and its

noti�cations. The signatures of the agent operations

and noti�cations are therefore an integral part of its

information speci�cation. It is important to note that

these signatures are only partially speci�ed in GDMO;

CMIS speci�es a few additional arguments (e.g. cur-

rent time, access control) that can be very important.

The SMA modelling technique and its associated no-

tation, GDMO, are adequate for their purpose, i.e.,

specifying the universe of discourse of CMIS associ-

ations. However, they are not suited for specifying

systems in general. This is perhaps not obvious be-

cause one might choose to use GDMO for specifying

a distributed system and still produce a good design.

But that is because GDMO allows to use natural lan-

guage, and everything can be said in natural language!

The problem with GDMO is that its formal part is bi-

ased towards specifying agent behaviours; this leads

to biased or unbalanced speci�cations.

As we noted already, the SMA modelling technique

has very limited power to specify the environment of

a system. It is thus inadequate for specifying systems

which have non-trivial contracts with their environ-

ment. Since a system designed in this way cannot

rely on its environment for its proper functioning, one

might argue that the SMA modelling technique is bi-

ased towards good design. Still, there are cases when

this is an unacceptable limitation.

A more important �aw of the SMA modelling tech-

nique is that it is only adequate for specifying the

behaviour of an interface (i.e., an abstraction of an

object behaviour [8]) corresponding to an agent role.

The problem is that the behaviour of an interface may

be of little use to determine the complete behaviour

of an object. Indeed, it is not su�cient to specify the

behaviour of the other interfaces since inferring a be-

haviour from several of its abstractions can be a very

di�cult task. On the other hand, the opposite (i.e.,

deducing the behaviour of an interface from that of the

object) is relatively easy. For that reason, the unit of

speci�cation should be the object, not the interface.

The above argument is very abstract. The follow-

ing example illustrates the problemmore precisely and

more concretely. We consider the speci�cation of a

management mission to be performed in collaboration

by two MIS-Users, say and ; the management mis-

sion can be any kind of mission that needs and to

collaborate, e.g. the performance of a series of tests on

the communication links between them; we are more

speci�cally interested in the information speci�cation

of .

The mission may be speci�ed by putting an MO,

say , within ; a manager (it may be itself, or

, or yet another MIS-User) would initiate the mission

by invoking an action on , say . Since this

mission is collaborative, needs, on several occasions,

to send intermediate results to , and to request it to

perform some parts of the mission. Using the replies

to for doing this is not possible because is not

necessarily the invoker of the action. Using noti�ca-

tions is not adequate because there is no guarantee

that they will be delivered to , and because can-

not reply to directly. The best solution is to

specify other MOs within , and to let invoke

operations on these MOs. Unfortunately, this can only

be speci�ed within in natural language: there

A

B

4 The SMA in the ODMA

4.2.1 Interfaces and Operations

pro-

grammatic reference points

4.1 The ODMA

4.2 Evolution of Computational Models

is no formal way in GDMO to specify or to reference

the signature of the operations that are invoked by an

MO. It is thus likely that the information speci�cation

of will not stand by itself, and that the information

speci�cation of will be needed for understanding it.

So, a designer will be tempted to misuse noti�cations

to avoid this problem.

In summary, the operations invoked by an MO (on

other agents) are as important as the operations per-

formed by that MO; both kinds should thus be treated

equally, or not treated at all (GDIO [4], an information

speci�cation notation proposed by ITU SG15, consists

in GDMO with all its �operation aspects� removed).

As for noti�cations, it is important to understand their

semantics. The designer of a subsystem should never

assume that they will be received by anyone, even

though it might be desirable that they are received

and acted upon. For example, a printer may send no-

ti�cations that it is out of paper (there is nothing it

can do about it), but it should invoke operations on

a font server if it needs to load fonts when printing a

�le.

The ODMA suite of standards is at an early stage

of development, and it is di�cult to predict in detail

what it will be. However, it is already clear that the

ODMA standards will extend and modify the SMA

modelling techniques and notations, so as to fully

cover the needs of management. They will propose no-

tations for expressing models in the enterprise and the

computational viewpoints. An example of the latter is

the TINA-ODL notation [10]. Regarding the informa-

tion viewpoint, it is likely that the ODMA standards

will extend or modify the GDMO and GRM notations

so that they can be used for specifying the behaviour

of any system, and not just agent roles. A rationale for

this choice is that it should facilitate the reuse of exist-

ing MO speci�cations. Examples of adapted GDMO

notations are GDIO [4] and Quasi-GDMO+GRM [2].

The ODMA will also recognize the existence of

managing objects, in addition to MOs. That is, some

ODM standards will explain how to structure and dis-

tribute managing applications.

The ODMA will probably recognize all the classes

of ODP reference points, in particular the class of

. This is important because

considering the functionality of an application pro-

grammatic interface can shade a new light on some

issues such as naming and allomorphism (see our dis-

cussion of naming and typing issues below). Also, the

bindings of the computational notation to program-

ming languages become an important issue.

The ODMA standards will probably standardize

the way existing management systems will be inte-

grated within the more general ODMA framework.

Indeed, ISO and ITU are already planning to recog-

nize and use the standards being developed by JIDM

for that purpose: the speci�cation translation between

GDMO and CORBA IDL, and the interaction transla-

tion between CMIP and the CORBA protocol. Auto-

matic translation and related tools (e.g. gateways) will

ease the transition. However, an alternative for ISO

and ITU would be to re�ne manually their �MO stan-

dards� and to standardize the operation interfaces [9]

to be supported by managed systems.

In the reminder of this paper, we are interested in

evaluating the pertinence of using translation tools; we

want to compare the CORBA IDL speci�cations they

can produce with those that may be produced man-

ually by designers. For this mini-study, we consider

the re�nement of an agent so that it can be accessed

through ODP/CORBA protocols rather than or in ad-

dition to CMIP. We assume that an ODP/CORBA

system is available on the agent; thus, gateways are

not an issue.

Figure 3 illustrates the transformation that we in-

vestigate. Considering a system which has a single

CMIS interface, we change it so that it o�ers opera-

tion interfaces in addition to or in replacement of that

CMIS interface. Since we are interested in the capa-

bilities of automatic tools, we only consider the signa-

tures of the new interfaces exhibited by the agent; we

do not consider the internal design of the agent. We

limit our study to operations which are invoked on a

single MO.

MOs de�ne operations that can be invoked on an

agent. Considering the function of the dispatcher ob-

ject, an agent should logically o�er a server interface

for each MO; this interface would contain all the at-

tribute and action operations that may be invoked on

the MO, plus optionally other operations (e.g. sub-

scription to the noti�cations of the MO [5]).

GDMO and CORBA IDL allow operations to be de-

�ned as attributes. Because of di�erences in the inher-

itance rules, automatic translation maps all GDMO

attributes to IDL operations [6]. A designer would

probably use some IDL attributes, but this does not

really matter. The translation of attributes proposed

in [6] is therefore a good design.

Agent

CORBA Interfaces

Managed Objects

Dispatcher

MIS Binding Object

current time

�lter

4.2.2 CMIS Arguments

Figure 3: Transformation of an Agent for using CORBA

Many actions have a single reply; they are thus in-

terrogations and they should appear as such in the

interface. Other actions do not return any informa-

tion and may be invoked in con�rmed mode or uncon-

�rmed mode. Considering the use of an �RPC proto-

col�, automatic translation can map them all to inter-

rogations. Indeed, an interrogation termination is the

only way for a client to �nd out about communication

problems since it knows nothing about connections.

A few actions may generate one or several replies.

In this case, a good idea is to translate the operation

into an interrogation with a normal termination to be

used when there is a single reply, and an alternate

termination (exception) to be used otherwise: the al-

ternate termination indicates that there will be mul-

tiple replies; call-backs are then used to carry those

replies [6]. An input argument in the action may in-

dicate to the agent which call-back interface to use.

Interrogations which may send call-backs are much

more complicated to invoke than other interrogations,

so only those actions which may send multiple replies

should be translated in this way. In GDMO, the use

of multiple replies can only be indicated in the be-

havioural description of the action, i.e., in natural

language. Thus, an automatic tool cannot translate

actions in an optimal way.

All operations on MOs invoked through CMIP inherit

some CMIS arguments which are not always useful,

but which can sometimes be necessary.

The argument might be useful in sev-

eral circumstances, for example when receiving mul-

tiple replies. The argument might be necessary

5 Summary and Conclusions

ManagedObjectClass

Allomorphs

reliable

referential integrity

4.2.3 Typing Issues

4.2.4 Naming Issues

to allow a manager to invoke an operation while spec-

ifying a precondition on the state of the MO. More

importantly, security should be considered with great

care. One cannot be sure now that the access control

argument will never be needed, e.g. for deciding pre-

cisely whether an operation should be authorized or

not.

A designer may decide which of the CMIS argu-

ments are useful for a given operation. An automatic

tool needs to always include these arguments, thus

cluttering many operations unnecessarily. The trans-

lation proposed in [6] currently does include CMIS ar-

guments for noti�cations, but it does not for opera-

tions.

The OSI SMA uses a complicated mechanism, called

allomorphim, to allow the substitution of an MO of a

given class for an MO of a superclass of that class (in-

dependently of inheritance considerations). In ODP,

an operation interface supports automatically all the

supertypes of its type. Thus, there is no need to

use the OSI mechanisms on top of the ODP/CORBA

mechanisms.

In ODP and CORBA, an interface generally does

not provide operations returning the name of its ac-

tual class, and even less the names of its superclasses.

This is not necessary and is even considered highly

undesirable by ODP. Thus, designers should carefully

consider whether they should put operations to read

the values of the attributes and

. They should only include these opera-

tions if they have a requirement to do so. Of course,

automatic translation will either always include those

operations or never.

MOs can pass names of other MOs as arguments of

operations. A translated argument can be a name too,

but it can also be an interface; in both cases, the ar-

gument carries a reference to an interface. Regarding

typing, the di�erence is that the type of an interface

argument is the type of the interface (the actual inter-

face � the principal interface in CORBA � has to be a

subtype of that type) while the type of a name argu-

ment is just the datatype of that name. This di�erence

matters because the types of interface arguments can

be used for signature-based type checking.

Designers of an MO certainly know whether they

want to pass a name or an interface as the argument

of an operation. Usually, they also know the types of

the MOs that can be passed as arguments of an oper-

ation. Thus, they would often decide to use interface

arguments rather than names when using CORBA-

IDL. Automatic translation cannot make this kind of

decision; moreover, it cannot determine the type of

interface arguments.

In ODP, when an interface is passed by reference as

an operation argument, an interface reference is passed

by copy instead. Interface references are , i.e.,

they always refer to the same interface or to no inter-

face at all if that interface is not available (probably

because it was deleted). This reliability property �

called in CORBA � is an essential

property of object-based systems because interface ref-

erences are part of the state of an object.

MO names, as de�ned in the OSI SMA, are not

reliable because they may be reused when an object

is deleted. They are nevertheless very useful because

they can be read by humans and because they can be

compared for equality (i.e., it is possible to determine

whether two MO names refer to a same MO or to two

di�erent MOs). For example, an MO name rather

than an interface argument should be used to indicate

the origin of a noti�cation.

ODMA will therefore need to de�ne a naming

framework comprising both kinds of names. This

framework should in particular explain which nam-

ing servers (e.g. ODP traders, the X.500 directory, or

the agents themselves) can be used to obtain interface

references given an MO name.

Regarding automatic tools, the lack of reliability

of OSI names is a problem for building gateways; it

is indeed impossible in general to build an interface

reference by encapsulating an OSI name within it [5].

In the �rst part of this paper, we analysed the OSI

SMA in terms of the ODP concepts and architecture.

We concluded that the main de�ciency of the SMA for

implementing distributed systems management lies in

its modelling technique. New modelling techniques,

as outlined in the ODP-RM, are therefore needed ur-

gently. In the information viewpoint, these new tech-

niques might be inspired from GDMO and GRM. In-

deed, MOs can be considered as information viewpoint

objects.

In the second part of the paper, we looked at new

designs for OSI management agents so that they can

be accessed through ODP/CORBA �RPC� protocols.

We compared (aspects of) a good redesign of an agent

with that produced automatically by a GDMO to

CORBA IDL translator. We showed that automatic

translation lacks sometimes information which is im-

References

Acknowledgments

Draft ITU-T Recommendation X.901 (1995) |

Draft ISO/IEC International Standard 10746-

1:1995, Open Distributed Processing - Reference

Model - Part 1: Overview

ETSI, Transmission and Multiplexing

(TM) � The Application of ODP to the Manage-

ment of a Transport Network, Draft

Proceedings

of the Sixth IFIP / IEEE International Workshop

on Distributed Systems: Operations and Manage-

ment (DSOM'95), Ottawa

Inter-Domain Management Speci�ca-

tions: Speci�cation Translation (Draft)

Inter-Domain Management Speci�ca-

tions: Preliminary CORBA/CMISE Interaction

Translation Architecture

ITU-T Recommendation X.902 (1995)

| ISO/IEC International Standard 10746-2:1995,

Open Distributed Processing - Reference Model -

Part 2: Foundations

ITU-T Recommendation X.903 (1995)

| ISO/IEC International Standard 10746-3:1995,

Open Distributed Processing - Reference Model -

Part 3: Architecture

Com-

puter Networks and ISDN Systems

Common Object

Services Speci�cation

CORBA V2.0

ITU-T Recommendation X.700 (1989)

| ISO/IEC International Standard 7498-4:1989,

Open Systems Interconnection - Basic Reference

Model - Part 1: Management Framework

ITU-T Recommendation

X.701 (1992) | ISO/IEC International Standard

10040:1992, Open Systems Interconnection - Sys-

tems Management Overview

ITU-T Recommenda-

tion X.710 (1991) | ISO/IEC International Stan-

dard 9595:1991, Open Systems Interconnection -

Common Management Information Service De�-

nition

ITU-T Recommendation X.711 (1991)

| ISO/IEC International Standard 9596-1:1991,

Open Systems Interconnection - Common Man-

agement Information Protocol - Part 1: Speci�-

cation

ITU-T Recommendation X.720 (1992)| ISO/IEC

International Standard 10165-1:1993, Open Sys-

tems Interconnection - Structure of Management

Information: Management Information Model

portant to produce a good design in the spirit of ODP

or CORBA.

In the light of these results, ISO and ITU should

consider whether to use automatic translation tools

for producing standards for operation interfaces, or

whether to ask working groups to specify those inter-

faces manually using CORBA IDL. A combined ap-

proach is possible; it might also be desirable. More

urgently, ISO and ITU should strongly encourage all

working groups currently involved in the de�nition of

new management standards to specify operation in-

terfaces in CORBA IDL (at least in a non-normative

annex of their standard).

This work was funded by the Esprit III project

SysMan through the OFES, and by the Swiss PTT-

Telecom.

[1] Martin Chapman and Stefano Montesi. Overall

concepts and principles of TINA. TINA Baseline

TB_MDC.018_1.0_94, Telecommunications In-

formation Networking Architecture Consortium,

feb 1995. Version 1.0 � Publicly released.

[2] H. Christensen and E. Colban. Informa-

tion modelling concepts. TINA Baseline

TB_EAC.001_1.2_94, Telecommunications In-

formation Networking Architecture Consortium,

apr 1995. Version 2.0 � Publicly released.

[3]

.

[4] ETSI.

, sep 1995.

Work Item No: DTR/TM-2221.

[5] Guy Genilloud and David Gay. Accessing OSI

managed objects fromANSAware. In

, 1995.

[6] Joint Inter-Domain Management Work-

ing Group.

. X/Open

and Network Management Forum, apr 1995.

[7] Joint Inter-Domain Management Work-

ing Group.

. X/Open and Network

Management Forum, apr 1995.

[8]

.

[9]

.

[10] B. Kitson, P. Leydekkers, N. Mercouro�,

and F. Ruano. TINA object de�nition lan-

guage (TINA-ODL) MANUAL. TINA Baseline

TR_NM.002_1.3_95, Telecommunications In-

formation Networking Architecture Consortium,

jun 1995. Version 1.3 � Publicly released.

[11] Elie Najm and Jean-Bernard Stefani. A formal se-

mantics for the ODP computational model.

, 27(8):1305�

1329, 1995.

[12] Object Management Group.

, mar 1994.

[13] Object Management Group. , jul

1995.

[14]

.

[15]

.

[16]

.

[17]

.

[18]

.

[19]

.

[20]

.

[21]

, jul 1995. Output

of the Ottawa collaborative meeting.

ITU-T Recommendation X.721 (1992)| ISO/IEC

International Standard 10165-2:1992, Open Sys-

tems Interconnection - Structure of Management

Information: De�nition of Management Infor-

mation

ITU-T Recommendation X.722 (1992)| ISO/IEC

International Standard 10165-4:1992, Open Sys-

tems Interconnection - Structure of Management

Information - Part 4: Guidelines for the De�ni-

tion of Managed Objects

ITU-T | ISO/IEC Open Distributed Management

Architecture, Workinfg Draft 3

