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ABSTRACT

This paper addresses the problem of quality estimation of digitally coded video sequences. The topic is of

great interest since many products in digital video are about to be released and it is thus important to have robust

methodologies for testing and performance evaluation of such devices. The inherent problem is that human vision

has to be taken into account in order to assess the quality of a sequence with a good correlation with human

judgment. It is well known that the commonly used metric, the signal-to-noise ratio is not correlated with human

vision.

A metric for the assessment of video coding quality is presented. It is based on a multi-channel model of human

spatio-temporal vision that has been parameterized for video coding applications by psychophysical experiments.

The visual mechanisms of vision are simulated by a spatio-temporal �lter bank. The decomposition is then used

to account for phenomena as contrast sensitivity and masking. Once the amount of distortions actually perceived

is known, quality estimation can be assessed at various levels. The described metric is able to rate the overall

quality of the decoded video sequence as well as the rendition of important features of the sequence such as

contours or textures.
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1 INTRODUCTION

Quality assessment of digitally coded pictures and image sequences nowadays becomes a very important issue

and receives a large attention from the signal processing community. The point is that a new generation of

products is about to reach the consumer market. It is based on digital representation of image and video and

addresses applications such as television, personal video communications and multimedia. However, the testing

procedure of analog equipment cannot be used for such devices and new methodologies have to be designed. Few

works did address the problem. For now, testing equipment consists in pattern generators

1
or bitstream veri�ers.

2

However, a lot of work remains to do in objective quality assessment. The generic metric currently used is the

signal-to-noise ratio (SNR), which is known to be uncorrelated with the human visual system and cannot be
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trusted for this purpose. Some work has been carried out in the �eld of still-picture quality evaluation,

3{5

however no metric really existed for moving pictures.

This work uses a complete spatio-temporal model

6
of the human visual system (HVS). The latter is used

as a front end to several proposed quality metrics. A multi-measurement scheme is introduced into which the

distortions of several features of the scene are evaluated. The paper is divided as follows: the human visual system

is presented in Sec. 2 and an e�cient way of modeling it is the subject of Sec. 3. The metrics are described in

Sec. 4 and Sec. 5 presents some simulations. Finally, Sec. 6 concludes the paper.

2 THE HUMAN VISUAL SYSTEM

The level of description that is of interest is at the cortex level. The formalism is that of psychophysics

where, the human visual system is modeled as a system characterized by a transfer function. The model is based

on the following considerations: electro-physiological experiments showed that cells of the primary visual cortex

are tuned to bands in spatial frequency and orientation.

7
Such data have been con�rmed by psychophysical

experiments, showing the presence of several mechanisms of vision that divide the frequency plane into frequency

and orientation bands.

8
Temporal perception has been studied as well and there is considerable evidence for

the existence of two di�erent mechanisms of temporal vision. The �rst mechanism is sensitive to low temporal

frequencies and is called sustained mechanism, whereas the second, termed transient mechanism, is band pass.

Such concept will be further developed in Sec. 3. Perception is mainly governed by two key concepts that are

contrast sensitivity and masking. The �rst phenomenon accounts for the perception of single wavelength, or

stimuli. The second quantizes the interactions between several stimuli.

It is well known in the video community that the human eye is less sensitive to higher spatial frequency than

to lower and this fact has been used in the design of video equipments. Indeed, the human eye has a spatial

frequency response that is bandpass with a peak frequency around 4 cycles per degree (cpd). This has been

quantized as the contrast sensitivity. More precisely, a signal is detected by the eye only if its contrast is greater

than some threshold de�ned as the detection threshold. The detection threshold varies as a function of spatial

frequency. The sensitivity is de�ned as the inverse of the detection threshold and is thus a function of spatial

frequency. The term contrast sensitivity function (CSF) is usually used to denote this function. A typical CSF is

illustrated in Fig. 1.
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Figure 1: Illustration of the sensitivity of the human

eye as a function of spatial frequency.

Figure 2: Model of the masking phenomenon.



More generally, the eye sensitivity varies as a function of spatial frequency, orientation and temporal frequency,

de�ning a contrast sensitivity surface. It is commonly admitted that the sensitivity is larger to horizontal and

vertical patterns than to diagonal ones and more to moving objects than to still ones.

The other dominant characteristic of human vision is its response to the combination of several signals. A

stimulus will be perceived di�erently as a function of the background onto which it lies. Both signals (the

foreground and the background) will indeed interfere and their relative perception will be modi�ed. In actuality,

the detection threshold of the foreground will be modi�ed as a function of the contrast of the background. This

is known as masking. The phenomenon is a key aspect in engineering since it will de�ne the quality of rendition

of a scene: any distortion introduced by a physical device can be thought of as a stimulus onto a background

(the original scene). The perception of the distortion can be (according to its nature) either strongly visible,

attenuated or completely masked by the scene.

Masking has been intensively studied. It has been shown that its e�ect is maximum when the stimulus and

the masker are closely coupled (in terms of orientation, spatial and temporal frequency) and decreases rapidly as

the distance between the considered signals increases in the spectral domain. A common model of masking is a

non linear transducer as illustrated in Fig. 2. Consider two stimuli, the \signal" and the \masker" that are closely

coupled. Let CT0 denote the detection threshold of the signal measured in the absence of masker (as obtained

from the CSF), CT the detection threshold of the signal in the presence of a masker and CM the contrast of the

masker. Three regions can be identi�ed:

� At low values of CM , the detection threshold remains constant, that is CT = CT0.

� As CM gets closer to CT0, the detection threshold slightly decreases, and presents a dipper (this phenomenon

is neglected in Fig. 2).

� Finally, as CM increases, CT increases as a power of the contrast masker. This function is linear in a log-log

graph and its slope is denoted ".

The actual detection threshold, CT is computed on this basis as:

CT =

(
CT0 if CM < CT0

CT0

�
CM
CT0

�"
otherwise;

where " is termed slope of the masking function as illustrated in Fig. 2.

3 MULTI-CHANNEL MODEL OF HUMAN VISION

Both the physiological and psychophysical experiments carried out on perception gave evidence of the bandpass

nature of the cortical cells' response in the spectral domain and of the well de�ned structure of the peak sensitivity

positions and the bandwidths of the cells' response. The human brain seems therefore to possess a collection of

separate mechanisms,

9
each being more sensitive to a portion of the frequency domain. This suggests a �lter bank

approach to the modeling of vision. The �lter bank is then the approximation of the various mechanisms of vision

and decomposes the visual data in a collection of signals that are band-limited in orientation, spatial frequency

and temporal frequency. Such band-limited signals are termed channels. The structure of the mechanisms has

been actively studied by means of psychophysical experiments.

The pro�le of the cortical cells is extremely similar to Gabor function

9
and some authors associate this to

an optimal encoding that would be performed by the brain (since Gabor patches are the functions that are the

most compact both in spatial or temporal and frequency domain). The Gabor shape can be a problem for some



applications since the resulting �lter bank will not guarantee perfect reconstruction, however it is possible to

approximate such �lter bank using suboptimal solutions.

5

The spatial frequency domain is divided in four to eight bands in a logarithmic partition and there exists

about the same number of orientation bands, although the division is linear. The temporal frequency axis seems

to be covered by two to three channels.

10{12
Many studies give controversial opinions onto the existence of the

third temporal frequency mechanism (that would only exist at very low spatial frequency). Recent studies tend

to con�rm the common concept of the existence of only two temporal mechanisms (transient and sustained).

13
In

this work, the spatial �lter bank is made of 17 �lters as illustrated in Fig. 3.

5
All �lters have a Gabor pro�le. One

of the �lters is isotropic and centered around the spatial frequency of 0. Its bandwidth is 2 cpd. The frequency

plane is then divided in radial frequency and orientation. Four orientation bands have been chosen, at 0, �=4,

�=2 and 3�=4 radians. There are four frequency bands as well, dividing the frequency axis according to an octave

band division. The four �lters respectively have peak frequencies of 2, 4, 8 and 16 cpd and respective bandwidth

of one octave. The bank is illustrated in Fig. 3. The temporal �lter bank simulates the sustained and transient

mechanisms of human vision. It has two �lters and is illustrated in Fig. 4.
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Figure 3: The spatial �lter bank, featuring 17 �lters

(5 spatial frequencies and 4 orientations). The magni-

tude of the frequency response of the �lters are plotted

on the frequency plane. The lowest frequency �lter is

isotropic.

Figure 4: The temporal �lter bank accounting for two

mechanisms: one low pass (the sustained mechanism)

and one band pass (the transient mechanism). The

frequency response of the �lters is plotted as a function

of temporal frequency.

It has been previously stated that masking of one stimulus by another is higher the more the stimuli are

coupled and decreases as the distance between the stimuli (in terms of localization in the frequency domain)

increases. The consequence of this is that channels are considered to be independent one from the other. It is

known that it is not exactly the case and some researchers now model inter-channel masking.

14,15
In this model,

complexity has been restricted to intra-channel masking only.

Another important issue is separability. Separability can be considered at two di�erent stages of the model:

the contrast sensitivity function and the �lter bank. The spatio-temporal contrast sensitivity function is clearly

non-separable as pointed out by many studies.

10,11
For example, the perceptual temporal characteristics of

moving objects are dependent on their spatial properties: the temporal dependence is band pass at low spatial

frequencies and low pass at high spatial frequencies.

As far as spatial vision is concerned, it has been pointed out that the mechanisms of vision are tuned in

frequency and orientation. They thus have a polar structure, which makes the �lter bank not separable in

Cartesian spatial coordinates. For the temporal aspect, two schools of thoughts exist to explain the interaction



between spatial and temporal perception. According to the �rst one, this would be due to a dependence of

the peak sensitivity of the temporal �lters with spatial frequency. This is referred to as the sensitivity scaling

hypothesis. The other school relates this dependency to a spatio-temporal covariation in the temporal properties

across the population of �lters, which constitute the covariation hypothesis. The sensitivity scaling hypothesis

means that a �lter bank separable in the temporal and spatial domains can be used. The covariance hypothesis

would yield a more complex �lter bank. The recent study performed by Hess and Snowden

11
con�rms results of

previous studies, promoting the sensitivity scaling hypothesis. This result has been assumed for the present work

and the variation in the �lter gains is modeled at the level of the CSF that is a non separable function of spatial

and temporal frequencies.

The model has been parameterized by means of psychophysics.

6,16
The goal of the experiments was to measure

the CSF. The psychophysical experiments have been performed to study speci�cally perception of coding noise.

This has been done in the following way: �ve subjects took part to experiments where they have been asked to

assess the visibility of stimuli. White noise �ltered by a perceptual channel has been used as stimuli as it will

represent a signal close to coding noise �ltered by the same channel. The experiment was a two alternatives

forced choice discrimination task.

17
The level of the stimuli were adaptively decided on the 
y by a modi�ed

PEST procedure.

18
Details of the experiment are reported in another work.

16
They resulted in the estimation of

the spatio-temporal CSF.

4 METRICS

This section describes the metrics. It explains how using the above knowledge about the human visual system,

a model suitable for image processing purposes is built. The general structure of the model is presented in Fig. 5

and the various building blocks are described hereafter.
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Figure 5: Block diagram of the quality metrics. The thick lines represent a set of perceptual components. The

thin lines represent sequences.

The steps involved in the computation of the metric are the following: �rst of all, a coarse segmentation

of the original sequence is computed. The original and coding error sequences are decomposed into perceptual

components by the �lter bank. Contrast sensitivity and masking are considered in each of the channels. This is

done by computing, pixel by pixel, the actual detection threshold, considering that the original sequence will be a

masker to the distortion. The masking strategy then consists of dividing the �ltered error signal by the detection

threshold. This expresses the data in units above threshold also referred to as just noticeable di�erences (jnd's).

Finally, the data is pooled over the channels to compute the distortion measures.

The segmentation that is used is fairly simple. It segments the sequence into uniform areas, contours and

textures.

19
Basically it proceeds as follows: the input images are parsed and processed block by block. The



variance of each elementary block is computed, as well as the variance in the horizontal, vertical and diagonal

directions. This data will be used to assess the nature of the center pixel of the block. If the global variance

is below some threshold, the pixel is considered as belonging to a uniform area. If the variance is above the

threshold and more or less isotropic, the pixel is set as texture. Otherwise, i.e. if there is one direction of very

low variance compared to the others, the pixel is considered to be lying on a contour.

Masking the output of the perceptual channels predicts the response from the cells of area V1 of the cortex.

The data has then to be gathered together to account for higher level of perception, which is termed pooling.

This work proposes a multi-measurement scheme, into which not only a global quality measure is computed for a

sequence but some detailed metrics as well. This section presents a global quality metric as well as more detailed

metrics that measure rendition of three basic components of images: uniformareas, contours and textures. Pooling

will be slightly di�erent for the global metric than for the detailed metrics.

Human observers are never looking at the whole picture at the same time but rather at regions. This is due

to both the focus of attention and the viewing distance. To take those facts into account, the global metric will

be computed over blocks of the sequence. Such blocks are three-dimensional and their dimensions are chosen as

follows: the temporal dimension is chosen to account for persistence of the images on the retina. The spatial

dimension is chosen to consider focus of attention, i.e. the size is computed so that a block covers two degrees of

visual angle, which is the dimension of the fovea. The distortion measure is computed for each block by pooling the

error over the channels. Basically, the magnitude of the channels' output are combined by Minkowski summation

with a higher exponent to weight the higher distortions more. The actual computation of the distortion E for a

given block is computed according to Eq. (1):

E =

0
B@ 1

N

NX
c=1

0
@ 1

NxNyNt

NtX
t=1

NxX
x=1

NyX
y=1

je[x; y; t; c]j

1
A
�
1
CA

1

�

; (1)

where e[x; y; t; c] is the masked error signal at position (x; y) and time t in the current block and in the channel

c; Nx, Ny and Nt are the horizontal and vertical dimensions of the blocks; N is the number of channels. The

exponent of the Minkowski summation is � and has a value of 4, which is close to probability summation.

10
This

metric is termed moving pictures quality metric (MPQM).

Pooling for the detailed metrics is slightly di�erent. Once the masked error signal is known, a Minkowski

summation is directly computed region by region (for textures, uniform areas and contours). This directly

constitutes the distortion measure for each of the features.

The distortion E computed in Eq. (1) has to be expressed on some known scale to be signi�cant. Two

solutions are proposed. As engineers are used to work with decibels (dB's), the distortion could be expressed on

a logarithmic scale. The metric, that by analogy to the work of Comes,

5
can be named MPSNR (masked peak

signal-to-noise ratio), is then computed as:

MPSNR = 10 log10

255

2

E2
:

This scale does not have the exact same meaning as the known dB's, hence we refer to it as \visual decibels"

(vdB's). Another solution is the use of a quality scale that has often been used for subjective testing in the

engineering community.

20,21
It is a scale from 1 to 5, as described in Tbl. 1.

The quality rating on this scale is obtained using the normalized conversion

21
described in Eq.(2):

Q =

5

1 +N E
; (2)

where Q is the quality rating and E is the measured distortion. N is a normalization constant. This constant is

usually chosen so that a known reference distortion maps to a known quality rating. In the case of a perceptual



Rating Impairment Quality

5 Imperceptible Excellent

4 Perceptible, not annoying Good

3 Slightly annoying Fair

2 Annoying Poor

1 Very annoying Bad

Table 1: Quality rating on a 1 to 5 scale.

metric as MPQM, the choice of N has to be made on the basis of the vision model. N has been estimated in

the following way. Assume a sequence that only has an error of one jnd in only one channel, at a single pixel of

a single block. This is the smallest error that could theoretically be perceived. Hence the quality rating of that

sequence should be extremely close to the highest quality level. We considered that such an error would yield a

quality rating of 4:99 and solved for N in Eq. (2). The value of N then turns out to be:

N = 0:623:

5 SIMULATIONS

This section presents quality assessment on some compressed video sequences. It presents results on two

main applications: high bitrate broadcasting for which the considered coder is MPEG-2

22
and very low bitrate

communications, using the recommendation H.263.

23
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Figure 6: MPQM quality assessment of MPEG-2 video

for the Mobile & Calendar sequence as a function of

the bit rate.

Figure 7: MPQM quality assessment of MPEG-2 video

for the Flower Garden sequence as a function of the bit

rate.



5.1 Characterization of MPEG-2

Three common sequences have been used for simulations. They are Mobile & Calendar, Flower Garden and

Basket Ball. The sequences have been encoded with a software simulator of the test model 5 of MPEG-2.

24
The

sequences have been encoded as interlaced video, with a constant group of picture structure of 12 frames and

2 B-pictures between every P-picture. The video bu�er veri�er size was set to its maximum allowed size. The

dimension of the search window for motion estimation was 15 pixels for P-frames, 7 pixels for backward motion

estimation in B-frames and 3 pixels for forward motion estimation in B-frames. Coding has been performed on

the range of bit rates that MPEG-2 typically addresses.
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Figure 8: MPQM quality assessment of MPEG-2 video

for the Basket Ball sequence as a function of the bit

rate.

Figure 9: ŝ quality assessment of MPEG-2 video for

the Basket Ball sequence as a function of the bit rate.

Figures 6, 7 and 8 present the quality assessment by MPQM for the three sequences. The important result

that can be extracted from the graphs is the saturation in quality at high bitrates, meaning that, at some point,

increasing the bitrate is a waste of bandwidth since the end user does not really perceive an improvement in

quality. It can also be seen that Basket Ball is the sequence that is most di�cult to encode among the three. Its

quality saturates much more slowly than the others. The values obtained with MPQM are very consistent with

collected subjective data.

20
As it is shown in other works,

25
MPQM performs much better than other metrics

developed for video. This is illustrated by Fig. 9, showing quality assessment for Basket Ball by a metric known

as ŝ.26 Clearly, ŝ has a dynamic that is much too small and over-estimate quality in the lower range of MPEG-2

bit rates.

5.2 Characterization of H.263

Simulations are now presented in a very low bit rate framework. Coding quality of the recommendation H.263

23

was studied with a software simulator.

27
Encoding has been performed in variable bit rate mode, without the PB-

frames and syntax-based arithmetic coding options but with unrestricted motion vectors and overlapped motion

compensation. Two sequences have been used for the experiment. One is the Carphone sequence, and the other is

the LTS sequence.

28
Comparison of the MPSNR and PSNR metrics are shown in Fig. 10 and 11 for the Carphone

sequence and in Fig. 12 and 13 for the LTS sequence. The saturation e�ect in perceived quality can again be

observed. The latter is however completely missed by the PSNR, since it does not consider any aspect of vision.
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Figure 10: MPSNR quality assessment for the

Carphone sequence as a function of the bitrate.

Figure 11: PSNR quality assessment for the Carphone

sequence as a function of the bitrate.

Finally, as an illustration, the MPQM rating for both sequences is shown in Fig. 14 and 15. The aspect of

the curves are identical to the MPSNR curves which clearly shows that the saturation observed in the graph is

measured by the metric and is not a side e�ect of the mapping function in Eq. (2). The quality rating of the

sequences remains pretty low whatever the bitrate is since the estimation has been performed on the very critical

part of both sequences.

5.3 Detailed Metrics

The work on testing methodology

1
for digital codecs proposes synthetic test patterns. One of the patterns,

namely a test sequence meant to study the rendition of edges, is now used to illustrate the detailed metrics. The

sequence consists in a rotating square. It has been used as input to the MPEG-2 encoder. Input format was CIF

and the bitrate was 700 Kbits/sec. Figure 16 presents quality curves for the various features of the sequence,

along with the global quality curve obtained with MPQM. The measured features are contours, textures and

uniform areas. All curves are close to and consistent with the global quality curve. However, it can be seen that

contour rendition is highly variable (the test sequence was meant to fully test this e�ect by presenting edges in

various orientations). Uniform areas have a behavior that is very similar to the general quality curve. Eventually,

textures areas have the lowest quality (due to block DCT coding) and exhibit a drop in quality as time goes

on. This e�ect is due to the level of occupancy of the video bu�er veri�er of the coder. As the later gets full,

quantization becomes coarser and textures are very sensitive to this e�ect.

6 CONCLUSION

This paper presented quality metrics for digitally coded video. They are based on a model of the human

visual system. The model accounts for spatial and temporal aspects of human vision and their interaction. It has

a multi-channel structure and predicts the response from the neurons of the primary visual cortex. The metrics

then consist of a pooling of such prediction data to account for higher level of cognition. A general quality metric

for video, termed MPQM (moving pictures quality metric) is proposed. It showed to be consistent with subjective
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Figure 12: MPSNR quality assessment for the LTS

sequence as a function of the bitrate.

Figure 13: PSNR quality assessment for the LTS se-

quence as a function of the bitrate.

rating of coded video. Other metrics are proposed. They are meant to evaluate the rendition of basic features in

a video sequence, namely contours, textures and uniform areas.
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Figure 16: Detailed metrics for the edge rendition synthetic test sequence. Dotted line is the MPQM, solid line
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