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Resumo

Nesta tese apresenta-se um modelo estrutural de avaliacao de ativos contingentes baseado
em |Goldstein et al.|[(2001). Neste tiltimo, assume-se que a empresa é detentora de um projeto,
cujo resultado operacional (i.e. resultado antes de impostos e juros) segue um movimento
Browniano geométrico. A empresa entra em incumprimento na primeira vez que este pro-
cesso toca numa barreira definida endogenamente. Os acionistas, obrigacionistas e o governo
sdo considerados como tendo um ativo contingente na performance do referido projeto. O
mesmo acontece com os custos decorrentes da faléncia da empresa, os quais sdo considerados
como pertencentes a um agente ficticio. A este modelo acrescentam-se agora dois aspectos.
Em primeiro lugar, considera-se que a variavel de estado é o fluxo de caixa operacional, o
que permite a aplicacdo do modelo a um maior nimero de empresas, na medida em que este
é frequentemente positivo mesmo quando o resultado operacional é negativo. Esta alteracao
é possivel porque os custos com capital (capex) sdo excluidos da varidvel de estado. Em
alternativa, considera-se que os fornecedores de capital tém direito a receber um fluxo finan-
ceiro constante enquanto a empresa se mantiver em funcionamento. Este fluxo corresponde
ao investimento necessario para garantir a taxa de crescimento projetada para o fluxo de
caixa operacional. Na pratica, este principio pode ser estendido a qualquer direito sobre
um custo fixo da empresa. Para além de aumentar o nimero de empresas a que o mod-
elo pode ser aplicado, mostra-se nesta tese que a introducao explicita de custos fixos leva a
um aumento da probabilidade do processo estocastico tocar na barreira, bem como cria um
efeito de alavancagem operacional que acentua o efeito de alavancagem financeira ja sobe-
jamente conhecido na literatura. A segunda inovagao desta tese consiste na introducéo da
possibilidade de um salto stubito de dimenséo fixa na varidvel de estado. A introdugao deste
termo permite replicar melhor os spreads observados na pratica, especialmente no caso de
obrigacoes e credit default swaps de curto prazo. Para além de fornecer um formuldrio para
a avaliacdo de agoes, obrigacbes e credit default swaps, esta tese analisa algumas questoes
fundamentais da literatura de corporate finance, como sejam a estrutura étima e o custo
de capital, e fornece formulas quase fechadas para o preco de opgoes sobre acoes de estilo
Europeu. A literatura financeira tem quase exclusivamente tratado estes ativos de forma
separada dos restantes. No entanto, esta separacao é inconsistente, potencialmente levando
ao surgimento de oportunidades de arbitragem que podem ser exploradas com modelos do
tipo aqui apresentado. Esta separacao é também ineficiente, na medida em que o preco das

opgodes fornece informacédo valiosa para a calibracdo deste tipo de modelos.

Palavras chave: Modelos estruturais, Financas empresariais, Avaliacdo de opgoes.
Cédigos JEL: G13, G32.



Abstract

This thesis presents a structural model of contingent claims in the spirit of|Goldstein et al.
(2001). In the latter, the firm is assumed to hold a project whose earnings before interest and
taxes (EBIT) follow a geometric Brownian motion with default occurring at the first time the
state variable falls below an endogenously determined barrier. Shareholders, debtholders, the
government and distress costs are then considered as claimants on this project. The model
in this thesis adds two elements to this setup. First, the cash flow from operating activities
(CFO) is considered to be the state variable. This allows the application of the model to a
greater number of firms since the CFO is often positive, even when EBIT is negative. This
change is possible because capital expenditures (capex) are excluded from the state variable.
Instead, they are treated as a contingent claim belonging to an external claimant, the capex
suppliers, who hold the right to receive a fixed stream of cash flows corresponding to the
investments needed to assure the forecasted project growth rate. In practice, this principle
can be extended to any claim on a fixed stream of cash flows. In addition to enlarging the
number of firms for which the model can be applied, the introduction of fixed costs such as
capex is shown to increase significantly the probability of the stochastic process hitting the
barrier; and to create an operating leverage effect, which accentuates the financial leverage
effect frequently referred in the literature. Second, the possibility of a sudden negative jump
of fixed size in the state variable is added. The introduction of this term improves the
capacity of the model to replicate the observed credit spreads, especially in the case of short
term bonds and credit default swaps. In addition to providing pricing formulas for equity,
bonds and credit default swaps, this thesis analyzes some important questions in the field
of corporate finance, such as the optimal capital structure and the cost of capital, and gives
almost closed-form formulas for pricing European-style equity options. Finance literature
has mostly treated option pricing and the pricing of all other securities contingent on the
firm’s capital structure as separate research areas. This separation is inconsistent, potentially
leading to arbitrage opportunities that can be exploited using models of the type presented
here. This separation is also inefficient since option prices can be extremely valuable for

model calibration.

Keywords: Structural models, Corporate finance, Option pricing.
JEL Codes: G13, G32.



1. Introduction

Structural models of credit risk were a major breakthrough when they were first proposed
in the seventies. For the first time it was possible to have probabilities of default and losses
given default derived in a single theoretical setting. In addition, since default in these models
is directly related with the firm capital structure, market information on share prices could
be used for model calibration. This contrasts with the methods used at that time, notably,
Altman Z-scores and Logit models, where default is seen as an exogenous statistical process
with no clear economic cause. They were also a big step forward in the fields of asset pricing
and corporate finance. Also for the first time, it was possible to have in a single framework
the price of all claims that are contingent on the firm. This provided a solid setting to analyse
corporate finance theories such as the trade-off theory of capital structure.

Though theoretically appealing, the early enthusiasm around structural credit risk models
decreased in late eighties. On the one hand, the empirical applications of the first generation
of these models had disappointing results with the models failing to accomodate the observed
bond spreads and explaining their time variation. As discussed in the literature review, there
are several reasons for this. On the other hand, following [Jarrow and Turnbull| (1995)), a
new class of credit risk models emerged. These models, which were termed ’reduced-form’,
attracted practioners and researchers attention as they were able to use the information
available in bond prices in a more tractable way. They were also able to fit better the
data. In these models default is modelled as a intensity process, which is a function of some
exogenous latent state variables. Similar to Logit models, there is no theoretical model of
the firm capital structure and default has no clear economic rationale, which limits the use
of these models.

Meanwhile, a second generation of structural credit risk models emerged. These models
tried to ovecome some of the issues that were pointed as being the causes of the poor results
obtained by the first models. Empirical evidence is still scarce, but results suggest that,
whenever the most appropriate estimation methods are used, current models are able to fit

the data significantly better. In some cases, however, this improvement came at the cost of



mathematical tractability. With nowadays computers, the latter is not essential for pricing
purposes as numerical techniques such as Monte Carlo simulations and finite differences allow
us to price even path dependent derivatives in an efficient way. Nevertheless, closed form
solutions are still useful if one wants to infer market views on latent variables (e.g. the market
value of a firm assets) based on observed market prices on contingent claims such as equity
and CDS spreads. This can be particularly useful for policy makers trying to understand
what is going on in financial markets.

This thesis presents a model that is able to provide a closed form solution for the most
important types of financial assets that are contingent on the market value of the firm,
notably, equity, bonds/CDS and European-style options (quasi-closed form in this case),
and simultaneously take into account two of the most relevant contributions to the original
Merton| (1974) model, notably, the possibility of early default and asset price jumps. This
is done in a model where the state variable is the firm cash flow from operating activities.
This thesis starts with a literature review on structural credit risk and corporate finance
models. Chapter [2] explains the model considered in this thesis and provides the reader with
some tools needed to understand the derivations in the subsequent chapters. Chapters [3| to
[7] derive the pricing of the before mentioned financial assets and discusses some important
corporate finance concepts such as the cost of capital and the trade-off theory of optimal

capital structure. Chapter [§ illustrates the model. Chapter [J] concludes.

1.1. Literature Review

Structural models of contingent liabilities were pioneered by Merton| (1974) following Black
and Scholes| (1973) and Merton| (1973). In its seminal paper, Merton considers that a firm
financed by equity and debt honours its commitments towards debtholders if the value of its
assets at maturity exceed its debt. If not, the firm declares bankruptcy and all its assets are
liquidated with all the proceeds accruing to creditors. Intrinsically, the equity holders hold
the firm, but have the right (but not the obligation) to sell it to the debtholders at debt’s
nominal value. In other words, stockholders own a put option on the firm assets with strike
equal to nominal debt. This option is given by the debtholders whose claim, at market price,
is worth the nominal debt value discounted at the risk free rate less the value of this put
option, which is interpreted as debtholders’ expected loss. Under the assumption that firm
assets follow a diffusion process known as geometric Brownian motion, the price of this option
is straightforward to compute. Alternatively, one can consider that debtholders own the firm
but shareholders have a call option on it with strike equal to the firm nominal liabilities.

This equivalence follows from the Put-Call parity.



Though revolutionary and theoretically appealing, the first empirical papers on the ap-
plication of Merton’s structural credit risk model led to disappointing results. |[Jones et al.
(1984)) is the first paper that empirically assesses the validity of the model. In this paper,
Merton’s model is applied to a set of firms with simple capital structures during the period
between 1977 and 1981. Though they found a better performance in the case of speculative
bonds, these authors concluded that in general the model overstates bond prices. They also
concluded that the model is heavily penalized by the assumption of constant interest rates.
Subsequent studies using more recent data reached broadly the same conclusions. This is the
case of Lyden and Saraniti (2001) and [Eom et al.| (2004).

The reasons behind the lack of success of Merton’s model have been extensively analysed
in the literatureﬂ The irrealistic assumption that default could only occur at debt’s maturity
was one of the issues that was first addressed. In order to overcome this, Black and Cox| (1976))
present a model where a firm financed by a single debt issue with a fixed maturity defaults
at the first time the asset process crosses a pre-specified time-varying exponential barrier.
When this happens, debtholders have the right to force reorganization of the firm, receiving
firm value at default timeE| Shareholders lose everything. The existence of this barrier
has several implications. First of all, the barrier sets the maximum loss the debt holder
may have. However, it also leads to higher probabilities of default. The consideration of a
default barrier has also important consequences for the shareholder in terms of risk taking
incentives. Differently from Merton’s model where equity is a monotone function of asset
volatility, equity is now a concave function on volatility. In this model when shareholders
take riskier projects they increase the odds of very positive outcomes, but they also have a
higher chance of losing their firm. [Black and Cox| (1976) study the impact of this barrier on
debtholders with different levels of seniority.

A fundamental question is what determines the barrier. In the first sections of their
paper, Black and Cox| (1976) justify the consideration of this barrier by the inclusion of
safety covenants in debt contracts. These safety covenants allow debtholders to demand
debt payment whenever the value of the firm goes below a certain point. This has been
named stock-based insolvency. Something similar occurs in many countries with laws giving

debtholders in general the right to push the firm to bankruptcy whenever assets breach some

IThe literature on structural models of contingent liabilities is very large and this review does not intend to
be exaustive. Among the extensions to the original Merton model that are out of this review are models
that assume a dynamic capital structure (e.g. |Fischer et al.| (1989)), models where assets follow mean
reverting processes (e.g. |Collin-Dufresne and Goldstein| (2001)) and [Sarkar and Zapatero| (2003))) as well
as models that take into acount liquidity risk (e.g. |He and Xiong| (2012)).

2Depending on how the barrier is specified, default can also occur at debt maturity. In those specifications
where default at debt maturity is virtually impossible, the loss given default becomes constant and equal
to the barrier level.



lower level. In regulated sectors, such as banks, one may also think that regulators may push
shareholders to increase capital. Whenever the latter are not able to do it, the bank may be
resolved. In any of these cases, there must be some trigger that is often defined based on
book values since the true asset value of the firm is not observable.

A second approach arises when one sets default as the result of the firm not being able
to honour its ongoing payments either through the defined payout rate or by issuing new
securities. This is usually referred as flow-based insolvency. Here we may think of three
cases. In a model where the asset value is perfectly observed by all agents, one possibility is
that the barrier is endogenously determined by the shareholders as the result of an optimal
stopping time problem. Consider that at any moment in time shareholders may inject capital
in the firm avoiding default. Shareholders will be willing to do it as long as equity value after
the capital injection is higher than the capital injection. Notice that in a model with strict
absolute priority and no problems of information asymmetry this condition remains valid
even if shareholders have no capacity to increase capital since they are better off diluted than
under defaultﬂ This was first proposed by Black and Cox| (1976) who derived the optimal
barrier in a model where the firm is financed by a perpetual bond. They showed that in this
case, the default barrier is independent of the current value of assets, proportional to the
contractual debt service (i.e. the higher the coupon payments the higher the barrier) and a
decreasing function of asset volatility. Basically, shareholders are more willing to save the
firm if they see any chances of making large profits in the future. This line of research was
pursued in several other papers as documented below. A second possibility arises when the
assumption of information symmetry falls. In this case, the firm capacity to increase capital
may depend on its shareholders capacity to inject capital. If current shareholders are not able
to do it the firm becomes dependent on external prospective shareholders assessment. This
shall lead to a default barrier above the one implied by the optimal stopping time problemﬂ
In the limit, we may have a third case where the firm may have to service debt using only
internally generated funds. Whenever the latter is not sufficient the firm defaults. This is
the case of Kim et al.| (1993).

Several years after Black and Cox| (1976) seminal paper, Leland| (1994a)) proposes a model
where a firm financed by perpetual debt continues its activity until the asset process hits a
default barrier determined endogenously by shareholders willingness to capitalize the firm.
In addition, taxes and distress costs are introduced in order to analyse the firm optimal

capital structure. They consider that the tax benefits of debt can be seen as a security that

3Implicitly, we are assuming that both current and prospective shareholders observe the current value of
assets. In reality none of them observe the market value of assets. The problem is more relevant in the
case of prospective shareholders, though.

4In this case, one may either set the barrier exogenously or model the impact of information asymmetries.



pays a constant coupon equal to the tax-shaltering value of interest payments as long as the
firm is solvent. Similarly, distress costs can be seen as a claim on assets whenever default
occurs. In their model, firm value equals the market value of assets plus the value of tax
benefits minus distress costs. Equity is then computed subtracting current debt value from
the market value of the firm. Leland| (1994a) is one of the most relevant papers in corporate
finance literature. Even so, besides the stochastic process itself, there are three issues that
deserve some comment. The first issue regards the hypothesis of asset tradability after debt
being issued. This issue is recognized in footnote 11 of the paper. A second source of criticism
concerns the fact that in this model an increase in taxes actually leads to an increase in firm
value. This results from the fact that the asset value is treated as an exogenous variable.
Finally, the assumption that shareholders pay debtholders’ coupons totally from their own
pockets (assets are not sold in this model) may lead the expected leverage ratio of the firm
to decrease as time goes by. Subsequent articles allow for asset sales. Notice however that in
this case, as noted by |Goldstein et al.| (2001), the government claim is presumed constant (a
fraction of coupon payments, which are paid as long as the firm operates) implicitly leading
to an oversestimation of shareholders dividend variation, which is not in line with empirical

findings.

Leland pursued his line of research in [Leland| (1994b) and |Leland and Toft| (1996). These
papers differ mostly on the assumptions regarding debt rollover. In [Leland| (1994b|) the firm
retires a constant fraction of the currently outstanding debt at its principal value and re-
places it by new debt so that cashflow requirements for debt service are equal to a fixed
coupon amount and a fixed sinking fund requirement. Similar to the perpetual coupon bond
case analysed in Black and Cox] (1976]) and [Leland| (1994a)), total debt has time-homogenous
cash-flows in this case, which is crucial to the computation of an endogenous barrier based
on shareholders willingness to capitalize the firm. In|Leland and Toft| (1996)) the firm contin-
uously sells a constant amount of coupon bonds with a certain maturity, which it will redeem
at par. New bond principal in then issued. In spite of each debt issue having non-constant
cashflows, aggregate debt has time-homogenous cash-flows. In a recent provocative article,
Décamps and Villeneuve, (2014) argue however that the strategic default decision problem
faced by equity holders in a model with roll-over debt has never been formulated properly.
Instead it is presented as a kind of natural extension of |Leland (1994al) infinite maturity
case. In particular, they question whether equity value can be computed by taking current
debt value out of asset value and whether equity holders’ problem ia a standard stopping
time problem with solution given by the smooth pasting condition. In their paper they prove
that equity can in fact be computed by difference. However, the smooth pasting principle is

shown to be the unique optimal shareholder strategy only under some specific conditions.



The studies referred up to now assume that absolute priority holds meaning that equity
holders receive zero when default occurs and that senior debtholders only lose capital when
equity holders and subordinate debtholders lose everything. In a case where debtholders
may not be able to push the firm into bankruptcy, shareholders may run some sort of asset
substitution (i.e. take risky projects they wouldn’t take if the firm was not overleveraged) or
try to service debt liquidating the firm assets at fire sale prices in order to gain time to see
if things go better. These agency costs may justify the violation of absolute priority rules in
practice. In this case, the barrier may arise from a game between the different stakeholders
with shareholders still receiving something in case of debt restructuring. This approach was
followed by |Anderson and Sundaresan| (1996)), who showed that unlike Leland| (1994a)), Leland|
(1994b)) and Leland and Toft| (1996), the optimal barrier, restructuing barrier in this case, is

an increasing function of liquidation costs. The higher the cost of liquidating the firm, the

greater is shareholders’ capacity to extract value from debt-holders. Other studies assume
that the absolute priority does not hold but do not model it. This is the case of
, who assume that the firm meets all its contractual obligation as long as the
market value of its assets are above a certain threhold determined exogenously. Once this
barrier is broken the firm defaults on all its obligations. Each stakeholder may then receive
something that is also defined exogenously based on empirical evidence. This assumption
simplifies the pricing of the different debt securities as one can simply use the average loss
given default observed for each type of debt security for each sector of activity.

Another source of criticism on Merton model is the assumption of constant interest rates.
The first structural credit risk model to overcome this issue is the one by Shimko et al.|(1993)
These authors assume that interest rates follow the Vasicek model. In their model the firm
is assumed to default only at debt maturity. The models by Kim et al.| (1993) and [Longstaf|
land Schwartz (1995) were the first to price risky corporate debt with stochastic interest rates

under a first passage time setting. The models differ on the way the barrier is set. While
the barrier in Kim et al| (1993)) is defined through the capacity of the firm to service debt
based only on its internally generated funds, in the case of Longstaff and Schwartz (1995))

the barrier is defined exogenouslyﬂ The consideration of stochastic interest rates is crucial
to price any fixed income security. The impact on credit spreads is not so clear, though. In
these models the drift of the asset process depends on the risk free interest rate. As result,
the higher the interest rate, the higher the drift, the lower the probability of default and

5In trueth, already foresees stochastic interest rates. In his paper, bond prices are assumed
to follow a GBM.

SIn this model the probability of default on a bond is determined by a single variable rather than the default
status of other bonds. There is no need to condition on the pattern of cash payments to be made prior
to the maturity of the bond. Thus, one can value coupon bonds as portfolios of discount bonds.



the lower the credit spread. In this setting, positive correlations between the interest rate
and the asset process tend to generate higher spreads because the two factors move in the
same directionﬂ This effect disappears when one considers that nominal liabilities and the
default barrier grow at the same rate as assets, which is equivalent to say that the firm has
a stationary capital structureﬂ Further effects may play their role in more complex models,
though. In models where the barrier is determined endogenously, an increase in the interest
rate may lead to a downwards shift in the barrier. Notice that the higher the interest rate
the more valuable is shareholders option and the longer they are willing to wait for recovery.
In contrast, under an incomplete market setting whenever rollover is introduced it makes
sense to think that an increase in the interest rate leads to an increase in the barrier simply
because shareholders wait for less time whenever borrowing costs are higherﬂ

Though the financial extensions referred were able to improve the model, empirical lit-
erature from the early twenty first century shows that these models are still unable to cor-

rectly predict spreads. Lyden and Saraniti (2001) compare (1974) and

[and Schwartz (1995) using a database composed of firms with only one bond outstanding.

Asset values were computed as the sum of firms’ equity, market value of bonds and adjusted
values for other liabilities. The results were again disappointing but the authors finish their
paper reffering that the classical model could still be correct in case the poor fit is due to
problems in asset volatility prediction. [Eom et al.| (2004) implement the models by
(1974), |Geske! (1977), [Longstaff and Schwartz (1995)), Leland and Toft| (1996) and |Collin-|
Dufresne and Goldstein| (2001) using a sample of 182 bonds from firms with simple capital
structures during the period 1986-1997. They concluded that while Merton model leads to

too low spreads, more recent models overestimate spreads on average. They also refer that

the more recent models overstate the risks coming from firms with high leverage or volatility
but underpredict spreads on safer bonds. They conclude that the major challenge for struc-
tural credit risk models is to increase spread predictions without overstating either volatility,
leverage or coupons paid. This goes in line with the general idea that structural models
underpredict spreads unless abnormal parameter values are used. This is more pronounced
in investment grade bonds but true for any rating in the case of short-term bonds. Some

studies have analysed whether this difference could be justified by a liquidity premium. This

7An increase in the risk free rate is usually associated with inflation expectations above the central bank
target which often occurs when the economy is growing fast and financial assets appreciate for this reason.
This fact justifies a positive correlation between asset returns and the risk free rate.

8This does not mean however that the firm management pursues a specific capital structure as in
[Dufresne and Goldstein| (2001).

9 Additionally, in the case of banks, higher interest rates are associated with the possibility of banks funding
their assets at below the risk free rate through deposits. This is something that tends not to be possible
when interest rates are at or near the lower bound.




is the case of |Perraudin and Taylor| (2003), Longstaff et al| (2005) and Huang and Huang
(2012)). Though these studies suggest that non-default issues can justify a significant part of

corporate bond (investment grade) spreads vis-a-vis sovereign bonds, they were not enough

to explain the empirical shortcomings of structural models. More recently, some studies have
argued that the poor performance of structural models is closely related with the estimation
methods used and state that independently of the model, the results obtained are signifi-
cantly better whenever the parameters are estimated through maximum likelihood. This is
the case of |Li and Wong] (2008)), who calibrate Merton| (1974)), Longstaff and Schwartz (1995)
and |Collin-Dufresne and Goldstein| (2001) models using the maximum likelihood estimator
first proposed by (1994). In contrast with [Eom et al] (2004), these authors conclude

that these structural models are very useful for pricing medium and long term bonds but

they are not able to replicate the observed prices on short-term bonds. Similar conclusions
are reached by [Wong and Choil (2009)), using the [Brockman and Turtle| (2003) model, and by
[Forte| (2011]) and [Forte and Lovretal (2012)), using a slightly modified version of
model. The last two studies estimate the barrier parameter iteratively, thouth

Despite the improvements achieved by the already referred models, the current consensus

is that structural models poor performance is maily due to the assumption of a pure diffusion
process. Under a diffusion process, the time of default is accessible meaning that there is an
increasing sequence of stopping times that converges to the default time and thus ’foretells’
the event of default. In other words, the probability of assets falling substantially goes to zero
as one approximates debt maturity. In addition, the light tails of the Normal distribution
circunvent the firm from defaulting unless it is already near financial distress. This is in strong
contradiction with the observed data. In order to solve these issues, and following
(1976]) seminal article, considers a first passage credit risk model where firm
assets follow a jump-diffusion process with jump amplitudes from a Lognormal distribution.
In this case, default can occur both in an expected way, due to the diffusion process, or
unexpectedly due to jumps. The model is able to generate credit spreads in line with the
ones observed. Unfortunately, the proposed model has no closed form solution.

(2002)) extend (1994a) model to the case where the market value of firm assets

faces only downward jumpsﬂ The authors did not reach a closed form solution but debt

prices can be computed numerically without too much pain. [Cathcart and El-Jahel (2003)

propose a first passage time structural model where default can occur in an expected manner

101t is interesting to note that the estimates produced by the iterative procedure proposed by
are very close to the results that come out from the application of the smooth pasting
condition.

11 As referred by the authors downward jumps are more likely than upward jumps. In addition, this assump-
tion simplifies the problem considerably.
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through the diffusion process or unexpectedly at the first jump event determined according to
a stochastic hazard rate. Their paper distinguishes from most of the literature by specifying
that default occurs depending on the dynamics of a signaling variable. The authors argue
that this approach is more flexible as it may be applied to issuers that do not hold a clearly
identifiable set of assets such as sovereigns. Moreover, their model considers that the risk free
rate follows the Cox-Ingersoll-Ross (CIR) process. The latter is assumed to be uncorrelated
with the asset process but affect the hazard rate of the jump event. Absolute priority is
assumed to be violated. Despite providing almost closed-form solutions to bond prices this
paper does not provide any guidance on equity value, which limits model calibration. More
recently, several papers (e.g. |Chen and Koul (2009), Huang and Huang] (2012))) have proposed
the use of the double exponential distribution instead of the Normal distribution to model
jump sizes. Besides having heavier tails, this distribution has the advantage of having a
closed-form solution.

The introduction of jumps in the asset process has not been the only way proposed in
the literature to account for the fact that spreads tend to zero as debt approaches maturity.
Moodys-KMYV is probably the most successful commercial application of structural models.
Under their model the normalized distance between asset values and the default barrier (i.e.
distance to default) is first computed and then evaluated in Moodys proprietary database
instead of using the Normal distribution. JPMorgan, Goldman Sachs, Deutsche Bank and
the RiskMetrics Group (see [Finger et al.| (2002))) consider instead that the default boundary,
though constant, is uncertain. This turns default into an unpredictable event enabling the
model to produce non-zero short-term spreads even for investment grade bonds. A third
alternative is to consider that the volatility term is not constant. This approach has been
followed by [Fouque et al.| (2006). In this paper, it is shown that when asset volatility follows
a fast mean-reverting process short term spreads increase significantly. A fourth possibility
is to leave the assumption that the market value of the firm is observed. This is what
occurs in Duffie and Lando| (2001)). In their model, investors observe at each moment in time
that the firm has not defaulted and noisy accounting reports, on which their assessment on
the market value of assets is based. The two values are then assumed to be joint Normal
distributedE Based on this assumption, they compute the distribution of the true asset value
conditional on the available information. They show that for an issuer with conditionally
unbiased reported assets, a kind of Jensen effect implies a lower debt price as compared with
the perfect observation case. In addition, with imperfect information, credit spreads remain

bounded away from zero as maturity goes to zero. Finally, in the last years the IMF has used

12This results from the fact that the difference between the logarithm of the true market value and the
observed being assumed to be normally distributed.
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in its macrofinancial risk assessments structural models with Gram-Charlier expansions (see
Jobst and Gray| (2013)). The latter is an approximate density function that differs slightly
from the standard Normal distribution by introducing potentially non-zero skewness and

excess kurtosis.

1.2. Contribution to the literature

This thesis presents a structural model of contingent claims that builds on the literature of
first passage time models. The paper most similar with this thesis is the one from |Goldstein
et al.|(2001). In the first part of their paper, it is assumed that the firm holds a project whose
earnings before interest and taxes (EBIT) follows a geometric Brownian motion with default
occurring in the first time the state variable falls below a certain level. Stakeholders on the
firm receive their payoffs based on the value of this project, which in contrast with most
structural models of corporate liabilities, is seen as a non-tradable asset. The implications
of abandoning the tradability assumption are analysed here. This thesis further elaborates
in this model by adding mainly two additional features. First, the cash flow from operating
activities (CFO) is considered to be the state variable and a fixed cost parameter is intro-
duced. The latter corresponds to the capital expenditures (capex) needed to mantain the
current project growth rate. However, any type of fixed cost can be considered as long as the
state variable is redefined in accordance. It is shown that this additional parameter leads to
an operational leverage effect that increases firm volatility in bad times. In addition, under
fixed costs the barrier level that maximizes the smooth pasting condition is not the one that
maximizes firm value ex-ante. Second, the possibility of a sudden negative jump of fixed size
in the project’s capacity to generate earnings is added as in [Realdon (2007)E The empirical
observation that negative jumps are more likely than positive jumps justifies this choice. Ex-
amples of negative jumps include the discovery of substantial accounting misgivings that lead
investors to suddenly reduce their estimates of the true value of the firm assets (e.g. Enron,
Parmalat, Salad oil), natural disasters (e.g. Tepco), accidents (e.g. BP, Spanair), terrorist
attacks (PanAm) or even redenomination risk (e.g. euro area sovereign debt crisis). Some
negative events do not lead firms to default but hamper their financial capacity significantly

leading default risk to soar. As such, the inclusion of this term contributes to the prediction

13Realdon| (2007) derives a closed form solution for a first passage time structural model with constant interest
rate where default occurs either at the first time the process hits an exogenous barrier or at the first jump
of a compounded Poisson process with fixed negative amplitude. All outstanding debt is assumed to have
equal priority in case of default. Equity is then computed subtracting total debt value and distress costs
value from asset value as in |Leland| (1998).
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of more realistic short term spreads without risking model tractabilityE

In addition to providing pricing formulas for equity, debt with different levels of seniority
and credit default swaps, this thesis analyzes some important questions in the field of corpo-
rate finance, such as the optimal capital structure and the cost of capital, and gives almost
closed-form formulas for pricing equity options. Finance literature has mostly treated option
pricing and the pricing of securities in the firm’s capital structure as separate research areas.
This separation though convenient is inconsistent potentially leading to arbitrage opportuni-
ties that can be exploited using the model presented here. In addition, for model calibration,
the highest the amount of information the best. Stock price information is seldom enough to
properly calibrate highly parameterized models. This is particularly true when one leaves out
the assumption that it is possible to trade on the firm asset, which is the case in this thesis.
Stock options complement the information set potentially leading to a significant improve-
ment in model estimationE Notable exceptions in the literature are the papers by |Geske
(1979), Toft and Prucykl (1997)), |[Ericsson and Reneby| (2003 and |[Realdon| (2003)). Geske
uses Merton’s model with finite maturity zero coupon debt to price options as compound
options on the firm assets. Doing so, the variance of the stock returns becomes a function
of the firms’ leverage. In particular, when equity goes down, the debt-to-equity increases
leading to a higher variance of returns, which is in line with the observed volatility skew.
Toft and Prucykl (1997)) also treat equity options as compound options on assets but under
Leland| (1994al) model. In this case, equity options are options on a down-and-out call option
that expires whenever the market value of asset falls below an endogenous barrier. These
authors show that the barrier level significantly affects option values and sensitivies. For
example, an increase in asset volatility leads to an increase in option value due to the usual
convexity in option pricing. However, in the case of an endogenous barrier it may also shift
the barrier downwards further contributing to increase option value. |[Ericsson and Reneby
(2003) consider the case where default is triggered either by the barrier or the inability to
repay debt at maturity. |[Realdonl (2003) extend |Toft and Prucyk]| (1997)) to the case where
equity retains value even after assets hitting the barrier and shows that this feature can be
very relevant for the pricing of out of the money put options. This thesis aims to help closing
the identified gap.

14 According to Leland the probability of investment grade firms jumping directly to default is low. See
http://www.haas.berkeley.edu/groups/finance/ WP /LECTURE2.pdf.

15General formulas for computing CDS spreads with any seniority structure are rarely provided in published
papers. These can also be very relevant for model calibration.
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2. The model

2.1. The asset process

Consider a firm that holds a single project that generates a certain amount of cash flow
according to the following Lévy process under the physical measure P:

% = psdt + ocdW,* — jdNY, (2.1)
where p5 is the instantaneous growth rate of the project cash flows (exogenously determined),
o is the instantaneous volatility of the cash flow growth rate, {WtP st > O} is a standard
Wiener process, j is the relative cash flow change when a sudden jump occurs and finally
{NgP> > 0} is a Poisson process with hazard rate A. j is a constant meaning that jumps
have fixed size. It is assumed that W;* L N} and 0 < j < 1 meaning that the cash flow
decreases after the sudden jump but remains non-negative. Jq is the cash flow of the firm
at time 0, the initial time of the process. d; is interpreted as the cash flow from operations
(CFO) at time t. However, one can also interpret d; as the EBITDA without any change
in the model. The CFO excludes any capital outflows related with investments in capital
assets. Capex is nevertheless needed to justify a positive growth rate in the project cash
flows. For this reason capex suppliers are seen as claimants on the projectB The process is
assumed to continue indefinitely. However, it is considered that either at time 7, the first
time the process hits a lower boundary 4, or at time 7, when N; = 1, whichever occurs first,
the firm ceases to exist and the project is sold to a competitor firm. This time is denoted as
799l As further discussed in the next section, distress costs are incurred (or not) depending

Solv

on whether §; is below or above ¢ at 75°¢. Shareholders are assumed to manage this firm

but they are not allowed to change the project risk profile nor the amount of liabilities and

1As further developed in Section capex suppliers are seen as having a continuous fixed claim on the
project. In practice, any fixed cost can be treated in this way as long as the state variable is defined in
accordance. In contrast with |Goldstein et al.| (2001)), this model can thus be applied even to firms with
negative EBIT.
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capex expenditure required to mantain the project. Agency problems are thus ignored. The
solution to equation (2.1 is given by Proposition

Proposition 1. The process given by equation has solution equal to

5, = Goelns—0-50%)tho W/ +in(1—j) Ny (2.2)

Proof. Consider f (z) =In(x). Applying Lévy-Itd’s lemma, we have

din (6,) = 5tu5§ltdt _ "2253 %th 4 %&adWF + [ (1= )6, ) — In (5, )] ANF s
= (us — 0.50%) dt + odW; +1In (1 — j) dNy.
Integrating,
In (6;) = In (do) + (s — 0.50%) t + oWy +1n (1 — j)N; . (2.4)
Taking the exponent in both sides of equation one obtains equation .
O

Consider the existence of a security, A;, capturing the market value of this project at each

moment in time, whose value at time 0 and dynamics are given by Proposition

Proposition 2. The value of security A; at the beggining of the process is given by

Ag = % , (2.5)
pa—g

where g = pug — A\j is the expected CFO growth rate including jumps. Ay dynamics are given
by

A
i psdt + o adWy — jadNy . (2.6)

where o4 and ja correspond to o and j, respectivelyﬂ

Proof. Since the § process is assumed to live infinitely we have that

+oo
Ay = E¥ /e_“Asésds Fol, (2.7)
0

2The two notations are used throughout this thesis.
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where the discount rate 4 is assumed to be constant for mathematical tractabilityﬂ Fi is
the filtration generated by the §; process.

Now, rewrite §; process in martingale form

dé

5, = (s = Aj)di + odW,F — jdMY, (2.8)

where M, is the compensated Poisson process associated with Nf:
dM; = dN; — \dt. (2.9)

Solving equation (2.8) and substituting the solution in equation (2.7)), one obtains

“+o0
AO — 50 / EIP’ [e—(uA—ua+0.502+)\j)s+oW£)—1n(1—j)Mf ]_-0] ds. (2-10)
0
Taking the expectation and then rearranging
+oo
A = & / e~ (Ba—Hs NS g (2.11)
0

Computing the integral on the right-hand side of equation (2.11)) one arrives at equation
E3)-
Since A; is a function of §; one can derive the dynamics of A; by applying Lévy-Ito’s

lemma. Consider

x
flx)= .
(=) HaA —9g
Applying the lemma,
1
HA — g
Substituting dd; according to equation (2.1)),
0.
dA, = ; L [psdt + odWF — jdNT] . (2.13)
=

Substituting §; by A; (14 — g) one obtains equation (2.6)).

3 Accoring to|Goldstein et al.|(2001)) this result can nevertheless be obtained in a model with a representative
agent with a power-utility function.
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O

In contrast with most corporate finance models, the growth rate of A; is independent of
the discount rate p4. Also, as time passes, A; generates d; but its value does not decrease
as a result of this. This occurs because A; is not really a security, and thus, its value is not
affected by any payoutﬂ In line with |[Ericsson and Reneby| (2002)), A; should be thought as
a fictive security insteadﬂ Something that is not really a security cannot be claimed to be
traded as in most structural model setups. However, for illustrative purpose, this assumption
will be adopted in the next paragraphs. It is then explained what is new when A; is not
traded.

Black and Scholes revolutionized the entire derivatives industry by showing that when
the underlying asset follows a continuous process such as a geometric Brownian motion one
could form a risk free portfolio using only the underlying asset and one derivative. Since this
portfolio is instantaneoulsy risk free it should earn the risk free rate. This finding allowed
them to derive a partial differential equation describing the dynamics of the option contract
for the case of a geometric Brownian motion. They then solved this equation with the
boundary condition associated with a European call option arriving at the famous Black-
Scholes call option formula. A similar argument was followed by Merton| (1973)). In his
paper, Merton considers forming a self-financing portfolio containing the common stock, the
option and a riskless bond with the same maturity as the option contract. Since this portfolio
requires zero investment one must have that under no arbitrage opportunities, the expected
return on this portfolio must equal zero. The two approaches are equivalent with this section
folowing the first approachﬁ When A; dynamics are given by equation 7 it is evident

4In order to compute the project return one has to add &; to the asset growth rate

dA; + O¢dt . dA; Odt

Ay A Ay
_dA A(pa—g)dr
Ay A, ‘

Substituting % according to equation 1} and then cancelling pus,

dA¢ + 6¢dt .
tTt = psdt + o adW{ — jadN{ + (pa — g)dt
= (1A + Xja) dt + o adW{ — jadN{

= padt +0’Ath]P —jAdMlP.

5 According to|Ericsson and Reneby] (2002) if this was not the case we would have two types of securities with
conflicting claims over the same cash flows. On the one hand, we would have the holders of this asset. On
the other hand there would be shareholders and debt holders that receive dividends and coupons based
on the same cash flows.

6The contribution from each of these authors to the development of the so-called Black-Scholes-Merton

17



that it is impossible to form a risk free portfolio since there are two sources of randomness
(i.e. the Wiener process and the Poisson process) but only one asset in addition to the risk
free asset. The market is clearly incomplete. Nevertheless, one may complete the market by
adding a second traded derivative Contractm I will now formalize this idea.

Consider a market composed by A;, a risk free bond, B;, and two traded derivatives
(e.g two European options on the stock), which we will call xg and xs. For simplicity,
assume that these derivatives have no payouts. Further, assume that the price processes
of these instruments, I1¢ (¢) and II° (¢), are given by some functions only of ¢ and A; with
0% (T) = G(T, Ar) and 1° (T') = S (T, Ar). Our goal is to find how these functions, denoted
as G and S, must look like in order for the market [A;, By, X&, xs| to be arbitrage free.

Applying Itd’s formula to G (¢, A¢) and S (¢, A;) the price dynamics of xg and yg are

obtained
dié
o = aodt + ocdW{ — jadN{
¢ (2.14)
dHtS P P
Hts = agdt + JSth 7deNt s
where the drift terms are
N Gt + aaAG, + 0.504 A%G,,
G p—
G (2.15)
St + aaAS, +0.50%4 A%S,,
ag = S y
the diffusion terms are
oA AG,
og = ——
G
o o4 AS, (2.16)
S = S y

model is not completly clear from reading the cited papers as each paper benefited from the other. Taking
Merton’s words when interviewed in 2013, Black and Scholes “had the fundamental insight of undertaking
a dynamic trading strategy in the underlying stock and the risk-free asset to hedge the systematic risk of
an option position, and thereby create a portfolio of stock, risk-free asset, and option whose Capital Asset
Pricing Model (CAPM) equilibrium expected return would equal the risk-free interest rate. In addition
to naming it the Black-Scholes model, my most significant contribution to the model was to show that if
you go to shorter and shorter trading intervals, their same dynamic strategy rules will eliminate all the
risk, which has the implication that you have a way to synthesize the option, even if the option does not
exist. By following a set of rules for trading the stock and the risk-free asset, I could create a portfolio
that produced exactly the same payoff as the option.”

"Notice, however, that in the general case where jump sizes are random we will need to add as many assets
as the possible states of the jump size distribution in order to complete the market. For a continuous
jump size distribution this is impossible, turning the model incomplete.

18



and, finally, the jump terms correspond tcﬁ

G(A-) -G =j)A-)

Ja = GiA
S (A-) =S ((1—4) A-) (2.17)
Js = S, _

Following Bjork| (2009)) notation, a4 indicates the drift of the asset under consideration
minus any payout, k, which in the case of A; is 0 and thus a4 = us.
Consider a portfolio composed of A;, x¢ and xgs. Denoting the relative portfolio weights

by wa, wg and wg the following portfolio dynamics are obtained:

dV;
7t = (wa (aa +ka) +we (ag + kg) + ws (as + ks)) dt + (waoa + wgog + wsog) AWy
t
— (waja + wgje +wsjs) dN;
(2.18)
where wa + wg +wg =1 and kg = kg = kg = 0.
One may then build a risk free portfolio by choosing portfolio weights so that
wa + wag +wg =1
WAC A + wgog + wgos = 0 (2.19)

waja +waje +wsjs =0
This system has the solution

oGgjs —0sja
0Ggjs —0sjc +0ajag —0Ajs +0sja —0gja
wg = — TSI TAl5 : (2.20)
0GJSs —05JG +04)Jc —04)s +05Ja —0GJA
oAjc —0GjaA
0Gjs — 0sja + oaja — 0ajs + 0sja —oGia

wp =

ws =

Since this portfolio is risk free, no arbitrage implies that
WA + weag + wsag =T, (2.21)

where r denotes the risk free interest rate.

8 As further discussed in Sections and [4.2] in this model the value of the derivative contract after the
jump is not simply G ((1 — j) A,—) because the liquidation of the firm leads to a reorganization of each
claimant rights. In this section, however, A; is treated independently of this fact.
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Substituting the optimal weights in equation (2.21)) and rearranging one obtains

: (as—r)—os(ag=r) ; .
ap —jaZe gcjsfgzjc;c —"_ _Jc (ag —1) —js (g —) (2.22)
oA 0Gjs — 0sJG ’

where the right-hand side of equation does not depend on any parameters relative to
the underlying. Rearranging in the same way for G and S one obtains similar expressions
where the right-hand side does not depend on the correspondent parameters. In addition,
it is possible to prove (see Appendix that under no arbitrage both the term on the
right-hand side of equation and the term multiplying the jump term on the left-hand
side are equal for the two derivatives and the underlying. In Appendix it is shown that
the term multiplying the jump is its hazard rate in the risk neutral measure. For this reason,
it is denoted as . This leads to the conclusion that under no arbitrage, and similar to the
no jump case, the excess return (adjusted for the possibility of a jump) per unit of volatility

risk must be the same in the underlying and in the derivativesﬂ

aAfjAXfria(;fjgxfriozsfjsxfr. (2.23)

TA oG gs

In addition, since a4, o4, ja, A and r are assumed to be constant the excess return per
unit of risk must be also constant across time.

Substituting a4, ag, 0g and jg on the first equality of equation , and rearranging,
one obtains the following integro-differential equation (see Appendix H

Gi+ (r+jaX) AGy + 0503 A%Gow — N[G (1 — j) A=) — G (A-)] =G =0.  (2.24)
The price of x¢ can then be found by solving equation (2.24)) subject to

% (T) = G(T, Ar) . (2.25)

As first noted by |Duffie (1988), one may alternatively use Feynman-Kac theorem in order

to obtain a stochastic representation formula:

G(t,x)=e "TVEQG(T, Ap)], (2.26)

91n the case where k # 0 we have to substitute g, ag and ag by pa, pg and ps.

10Notice that when X = 0 and the derivative contract has no explicit time dependence the term G vanishes
and equation becomes an ordinary differential equation (ODE). The resulting ODE is similar to
equation 3 in |Leland| (1994a) except that here it is assumed that G has no payout, while in the case of
Leland| (1994a) the derivative is assumed to have a constant payout.
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with the dynamics of A; given by

dA,

- = (r+jaX) dt + o adW2E — jadN2. (2.27)
t

The latter can also be written in martingale form as

dA

Ttt = rdt + oadWE — jadM2. (2.28)
Equation (2.26) is the usual risk neutral valuation formula applied to derivative xg. It

states that the market price of x¢ is simply the expected value of its payoff at time 7" (under

some probability measure usually denoted as Q) discounted at the risk free rate. Since this

probability measure is the one used throughout this thesis it is convenient to give it a formal

definition.

Definition 1. The probability measure Q is a probability measure equivalent to the original
probability measure P such that the discounted value of any asset payoffs (i.e. the asset
price plus any dividends expressed in units of the numeraire money market account) is a
martingale. Mathematically, for T >t and considering a generic financial asset X one may

write

Xt _ @[XT
Bt E Br

Ft} , (2.29)

where B, = €" is the value of the money market account at time t.

Substituting the term correspondent to the value of the money market account on equation

(2.29) one obtains
EC[X¢| F) = eV X,, (2.30)

and it is clear that measure Q assumes that any financial asset generates a rate of return
equal to the risk free interest rate.

The derivation just done is very useful to show how equation emerges. As an alter-
native, one can start with equation and use the Girsanov theorem for jump diffusion
processes in order to change the probability measure to measure Q. This is known as the
martingale approach and it is explored in Appendix The partial differential equation
(PDE) approach and the martingale approach are broadly seen as equivalent, though their

equivalence have only been proved under some conditions on model parameters, which the
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model here considered fulfills (Heath and Schweizer| (2000))["] Once the characteristics of

each derivative are taken into account, the PDE approach has the advantage of simultane-

ously providing the reader the so-called hedging portfolio. The latter can be very useful if

one wants to use this model for capital structure arbitrage.

Up to now it has been assumed that A; is traded. What if it is not traded? Is it
still possible to price derivative contracts using no-arbitrage arguments? Can we obtain an
equation similar to equation ? The answer to these questions is yes. However, as pointed
in , arbitrage pricing is always a case of pricing a derivative in terms of the price
of some underlying asset. If A; is not traded we do not have enough underlying assets. One
can, however, add a third derivative. Consider xr with price process II (t)F = F(t,A;) and
with II¥ (T) = F (A7). For simplificity, let’s assume that xr has no dividends. Further

assume that A, is observable[l?| As for other derivatives we have that

_ Fy 4 apAF, + 0505 A%Fy,

afp

F

op = UA?FQC (2.31)
- F(A-) - F((L—J) A-)

o FAr) |

Proceeding as previously, it is possible to find risk weights so that we are again able to

build a risk free portfolio. Since this portfolio is risk free, no arbitrage implies that
wrop +wgag + wsag =T, (2.32)

Substituting the optimal weights into equation (2.32)) one obtains

OzF—jFX—T aG—ij—T Ozs—jsx—r
mt: = = .
OF oG gs

(2.33)

Equation (2.33)) leads to two very important conclusions. First, though the underlying
asset is not traded, the excess return adjusted for the jump per unit of volatility risk must

be the same for all derivatives. This is a consistency condition in order to avoid arbitrage

1In trueth, based on the first fundamental theorem of asset pricing, equation is valid as long as
arbitrage opportunities are ruled out. However, according to the second fundamental theorem of asset
pricing, there is no unique equivalent martingale measure if the market is not complete. Please see
[Harrison and Kreps| (1979)), [Harrison and Pliska] (1981 and [Harrison and Pliska] (1983)).

12This thesis leaves unanswered the delicate question of whether the asset value is de facto observable. The
latter implies that, in addition to r and dg, agents must also be aware of m, us, o, A and j.
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opportunities between the derivatives. Second, though under no arbitrage the excess return
adjusted for the jump per unit of volatility risk must be equal for all derivatives, it does
not need to be constant as in the case where A; is assumed to be traded. In turn, m; is
a stochastic process, which is not specified within this model. The only thing we know is
that m; is some function of ¢t and A;, whose value affects the price of all derivative contracts
on the firm. In order to determine 77; one needs an equilibrium asset pricing model where
agents preferences are modelled. As argued in footnote 2, one convenient assumption is
that asset prices are determined under a representative agents model with a power-utility
function. In this case, m; = m is in fact constant, which considerably simplifies the analysis.

All derivations taken in this thesis hereafter assume that 77 is constant.
Substituting ag, o and jg in equation (2.33)) as previously and rearranging, one arrives

at

Gy + (s —mo) AGy + 0.504A%G oy — G — X[G (1 — ja) Ay ) — G (A,-)] =0.  (2.34)

Equation (2.34)) is similar to equation (2.24) but with ps —70 4 instead of r+j4\. Again,
one can use Feynman-Kac theorem to obtain a stochastic representation formula

G(t,z) =e "TVEQG(T, Ar)]. (2.35)

This time the dynamics of A;, under the martingale measure Q, are given by

dA,

4, = (hs —moa)dt +o4dW — jadN, (2.36)

or equivalently, using the compensated Poisson process,

dA -

,T: = (5 — Nja — o) dt + o adWR2 — jadM2, (2.37)
Solving equation ([2.37)) as in Proposition |1, one obtains

A, = Aoe(ug—XjA—EUA—O.5Ui)t+UAWP+1n(1—jA)M9. (2.38)

Equation (2.37) is equal to equation (3) in |Goldstein et al.| (2001) when A = 0. While

Goldstein et al.| (2001)) arrives at equation (2.37)) following a martingale approach, a partial

differential equation approach is followed in this thesis. The martingale approach is useful

to clarify one aspect that is not completely clear so far, notably, the relation between 4 ,
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m and . From the first fundamental theorem of asset pricing it is known that

+00 +oo
Ay = EF /e*#Aszssds Fo| = EC /efrsasds Fol, (2.39)
0 0
where
do - Q_ i n@
Al (s — mo)dt + cdW,~ — jdN,~. (2.40)

Solving the above stochastic differential equation and substituting in equation ([2.39)), one
obtains
do

Ag = —— . (2.41)
r4+mo+ A\j — s

Summing and subtracting Aj in the denominator, one arrives at

do

Ag = — .
0 r—i-ma—i-()\—)\)j—g

(2.42)

Thus, ua = r + mo + (X — )\)j meaning that the expected return on the project can be
decomposed in three components, the risk free rate, a premium 7 per unit of volatility risk
and a premium (X - )\) per unit of jump risk. As will be shown in Sections and a

similar result is obtained for equity and debt.

Before ending this section, it is important to compare the equations obtained here with
those obtained in the literature when the state variable is the market value of the firm’s
asset. Except for the jump term, equation is equal to equation 1 in [Leland| (1994a))
after changing to the risk neutral measure. The latter assumes that the firm generates a
return of p4 and that shareholders pay interest from their own pockets. Since p 4 is positive
this model implicitly assumes that the firm is expected to deleverage as time goes byE
By assuming that A; is a traded security, however, this ends up having no effect on equity
and debt valuations. Decreasing leverage and shareholders paying debtholders continuously
are unreasonable assumptions, though. In order to overcome these issues, several models
assume that a constant fraction k of A; is continuously sold with shareholders putting any
additional value in case it is optimal to do it. When k is below (above) pa the firm is

implicitly assumed to deleverage (increase leverage). Though k ends up affecting debt and

13The same occurs in the model presented in this thesis whenever ps > 0.
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equity valuations through the probability of default, again the assumption that A; is traded
turns p 4 irrelevant for pricing purposes.

Though challenging, leaving the hypothesis of asset tradeability seems thus wise. In this
case it can be shown that pu, and m affect equity and debt valuations. The higher is pa
the lower the probability of default and the higher the debt value. Computing equity by
subtracting debt value from asset value as it is done in most papers may lead to counter-
intuitive conclusions, though. For instance, the higher is p4, the lower is the probability
of default of the firm, the higher is debt value for the same A; and thus the lower is the
equity value. One alternative is to price equity directly as the present value of all future
dividends. Doing this there is no guarantee, however, that the asset value equals the sum of
equity and debt value unless this is imposed during estimation. The latter occurs because
1a and Ay are not set jointly in the same model. It adds that the joint estimation of p4 and
A; is particularly difficult. A convenient and reasonable hypothesis in this case is to assume
that & = pa, which means that the firm distributes all its returns. In this case, the asset
drift becomes 0 under the physical measure and debt value ends up not depending either on
wa and k even when the asset is non-tradable. Equity and debt continue to depend on 77,
though. It occurs that the asset process obtained in this case is exactly equal to equation
when p1s = 0 and X\ = 0. This is not a surprising result since the way the model is set
we are intrisically assuming that all the cash flow is distributed, which is tantamount to say
that ua = k. The approach followed in this thesis brings, however, two major advantages
vis-a-vis simply assuming that the latter terms cancel out. First, by setting A; as a function
of §;, A; becomes a function of something that is observed. Second, A; is now computed in
a way consistent with WE Additionaly, this model setup allow us to better value the effect

of taxes, distress costs and fixed costs. These features are discussed in the next section.

2.2. Contingent claimants and the default barrier

Traditionally, structural models of corporate liabilities assume A; as the state variable. Tak-
ing [Leland| (1994a) as reference, the value of the firm then corresponds to A; plus the tax
shield arising from debt minus distress costs. As pointed by |Goldstein et al.| (2001) this ap-
proach is inconsistent in the sense that an increase in the tax rate leads to an increase in the

value of the firm. In addition, the assumption that government’s revenue is a constant share

1Someone that does not agree with equation (2.7)) can still estimate A; as a latent process. In this case, one
can ignore Chapter [3|and compute equity by difference.
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of the coupons paid, and thus constant, is not consistent with the empirical observation.
Instead, in this model it is considered that the cash flows generated by the project have five
claimants, notably, shareholders, debtholders, the government, capex suppliers and distress
costs. Each of these claimants have very different payoffs depending on the project cash
flows and the firm capacity to stay in operation. As long as the firm mantains its activity
shareholders are considered to receive the cash flows generated by the project minus any
payments to debtholders, government and capex suppliers. Payments to debtholders and
capex suppliers are ﬁxedE The government receives a fixed share of shareholders payoff,
which is not constant, and a fixed share of debtholders’ coupons, which are constant. As

established in most tax regimes, shareholders returns are taxed twice (first at the firm level,

oo , and then at the investor level, wa). As referred in Section the firm is closed at
time 79° = Min {r,7} where 7 is the first passage time of &, through & and 7 is the time

of the first jump. 7 can also be defined as the first hitting time of A; through v, which
is the project value associated with 6. Once the firm activity is over, two cases may occur
depending on whether A soiv > v. If A _sow > v, which can only occur when the collapse
of the firm is triggered by a sudden jump, distress costs are not incurred and the firm re-
ceives A _son. 399 correspond to equity and debtholders share on the project when
this is sold. One possibility is to assume that this corresponds to their current share. In this

B0l can be easily found iteratively. The remaining (1 — ﬁs‘)ld) A sotv is considered to

case
belong to external claimants on the project (see Chapter [5)). The usual pecking order then
applies to 85 A_s.i, meaning that debtholders receive the minimum of nominal debt and
the recovered value. Shareholders only receive something if S99 A sore > L. If A 500 < 0,
the firm is considered to be economically non-viable and distress costs are incurred. This cor-
respond to costs with lawyers and value destruction caused by fire sales and loss of intangible
value. In this case, the project is again sold for A, s.» but only S5 A_s.1. accrues to the
firm. It is assumed that 0 < gBenk < p99ld  The difference between 3¢ and BB%"* times
the project value at the time the firm closes corresponds to distress costs. External claimants
in this case hold (1 - ﬂs"ld) A_sorw plus these distress costs. S22 may be estimated using

market prices.

As already explained, shareholders receive at each moment in time the difference between
the CFO generated by the project and their duties towards other claimants. While govern-

ment claim is assumed to fluctuate with the project returns, the costs with debtholders and

150ne may claim that capex is not a fixed cost since the firm may adjust it during a crisis period. This shall
affect the operating cash flows growth rate and the project value, though. As referred in footnote 1 of this
chapter, as long as one defines the state variable in accordance one can consider any type of fixed costs.
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capex suppliers are considered fixed meaning that whenever the cash flows generated are not
enough, shareholders have to inject capital in the firm in order to avoid default. The obvious
question is for how long are they willing to do it. By answering this question one can arrive
at an endogenous default barrier. As first showed by [Black and Cox| (1976|) the answer to
this question is given by solving a standard optimal stopping time problem. As explained in
Leland| (19944) this is the case because the above described liability structure is compatible
with an environment where debt securities are time independent. The latter is essential to
arrive at a closed form solution for an endogenous default barrier resulting from an optimal
stopping time problem. According to Leland|(1994b)), this occurs only in three cases, notably,
when debt is perpetual, when debt is retired at a constant rate and continuously replaced by
new debt so that the cash payouts are constant and when a firm continuously sells a constant
amount of new debt with the same maturity, which is then redeem at par upon maturityE
In this thesis, the first case is followed. Nevertheless, the computation of bond prices with
arbitrary finite maturity is straightforward, based on the formulae given in Chapter It is
assumed that each type of debt security is initially sold at par entitling its owner to a certain
coupon, which is pre-determined according to the firm’s risk. The latter is in contrast with
Leland! (1994a)), which assumes the that coupon payments are chosen by the shareholders
when optimizing the firm’s capital structure. The coupon level is thus seen as a synonym of

debt in his model. content

2.3. The distribution functions

Chapters [3 to [7] of this thesis derive the price of equity, debt, credit default swaps and
European-style options on stocks following a probabilistic approach. This is done by inte-
grating the joint density of the asset process, the time to hit the barrier and the jump time
appropriately. Since the Brownian motion is assumed to be independent from the Poisson
process, the joint distribution of A; with 7 > t is treated separately from the jump distribu-
tion. The derivation of these probabilities is presented in Sections and 2.3:2]

16Décamps and Villeneuve| (2014) show, however, that the last two cases do not correspond to standard
stopping time problems and that extra assumptions are required to ensure that the smooth pasting
condition leads to an unique optimal stopping time.

17In this case one must be aware that the usual balance sheet identity is not respected anymore as the
model becomes internally inconsistent. In addition, the endogenous barrier derived in Section [3-4] is not
compatible with an enviroment with rollover debt.
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2.3.1. The joint distribution of A; and 7 > ¢

In this section, the joint distribution of A; and 7 > t is derived ignoring the possibility of
jumps. Though A; follows a geometric Brownian motion, it is instructive to start with the
simpler case where X; is a stochastic variable that follows an arithmetic Brownian motion.

In this case, the joint distribution of X; with its minimum above y is given by Proposition [3}

Proposition 3. IfdX; = vdt—&—othQ wherev € R, o > 0, and {W;Q, u > 0} 1s a Q-measured

standard Brownian motion such that Wé@ =0, then forx >y

. -yt vt 20y y+ ot
X%< g, X9 > ylFy ) =N (2 ) UZN( )
Q( i _xoiriét( u)_y‘ 0) < oVt ¢ oVt

_N(—x+vt) +eﬁf;N(—x+2y+vt>
oVt oVt

(2.43)

and

Q (X? edz, inf (Xi?) > y‘ .7:0) =n (w;vt; 0\/5) — 2t (gg; 2y + vt; U\/i) , o (2.44)

0<u<t

where N (.) and n (.) stand for the standard normal distribution and density functions, re-

spectively.

Proof. See Appendix O

Ignoring the Poisson process in equation (2.36) and applying It6’s formula to f (z) =

In (A—) one obtains
0

A
dIn <At) = (s —Moa — 0.50%) dt + o4dW 2. (2.45)
0
Taking Proposition [3| with X; = In (ﬁ—;), y=In (A%) and v < Ap and further noting that
Q (m (%) <z, inf (m (j‘T)) > In (T) ’ ]-"o) -Q (1n (;‘L) <zr> t’ ]-"o) thus leads
0 O<u<t 0 0 0
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to

_ * 2v*1;(R) *
Q(ln(At><x,T>t‘}‘o):N<m(R)m>_e # N(l(RHt)
Ao oAVt oAVt
N (—x+v*t) —&-e%%;(mN <—x—|—21n(R) +U*t)
oAVt JA\/E
N (_ln (R) —v*t) _ gy (ln (R) —l—v*t)
oAVt oaVt
T — v*t —x—|—2ln(R)+v*t)
- N(- +R2“N<
( oaVt ) oavt

(2.46)

and

A
Q <ln (At) cdx, > t’ ]-'0> =n (x;v*t;aA\/i) — R*'n (Jc;QIn(R) + v*t;UA\/%) , (2.47)
0

* — 2 _ 0 _ v
where v —ug—mUA—O.E)UA,R—A—Oanda—F.

In Chapters [3] to [7] we are mostly interested in the asset distribution rather than the
asset return distribution. It is well known however that whenever asset returns follow an
arithmetic Brownian motion, the asset itself follows a geometric Brownian motion, whose

joint distribution with 7 > ¢ is presented in Proposition [

Proposition 4. If dA—“it = vdt + O'AdWP where v € R, 04 > 0, and {Wf?,u > 0} s a

Q-measured standard Brownian motion such that Wé@ =0, then

Q(A; <z, 7 >t|Fy) = N (hl(x,t)) + R**N (hy (x,t)) — N (hy (0,t)) — R?**N (hy (v,1))
(2.48)

QA ede, 7>t Fy) = %N (h1 (z,s)) + RQG%N (ha (z,s))
P [0 (ha (2, 1) = R*n (h (x,1))],
and
d — 2a d —
Q(redulFy) = %N (h1 (v,u)) + R %N(hz (0,u)) (2.50)
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ln(R%)-&—v*s

where hy (z,8) = In(%)—v's and hy (z,8) = W

O'A\/g

Proof. The proof is based on equation (2.47) and the total probability theorem.

By integrating the density function (2.47)) on all possible values of X; above In (Aio) one

obtains the probability of X; being above In (ﬁ) and simultaneoulsy the process not hitting

v up to time t. This equals

Q(A; =z, 7>t Fy) = / n (m;v*t;aA\/f) — R*'n (x;2ln (R) +v*t;a,4\ﬁ)

In (4 ) —v*t In(-%)—2In(R) —v*t
(2:)ﬁ e (D) o

=1 N (hy (2,1)) — RN (hy (z,1)).

(2.51)

Notice that when x = v, this is basically the probability of the process not hitting the

barrier up to time ¢

Q(7 >t Fo) =Q(A: > v, 7 > t| Fo)

(2.52)
=1— N (hy (v,t)) — R*N (hy (v,1)).
Using the total probability theorem
Q(r =t Fo) =Q(As <z, 7 21| Fo) + Q(As >, 7 > t] Fo) . (2.53)
And thus
Q(As <z, 72 t[Fo) = Q(7 21| Fo) — Q(As >, 7 2 t]| Fo). (2.54)

Substituting equations (2.51)) and (2.52) on equation (2.54), and rearranging, equation
(2.48)) is obtained. Differentiating leads to

QA edx, 7>t Fy) = %N (hy (z,t)) + R2“%N (ha (z,t)) (2.55)
= i n T — R%*n T
_mﬁ[w@m R**n (hy (z,1))]. (2.56)
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The probability of the process hitting the barrier up to time ¢ is given by

Q(7 <t|Fo) =1-Q(7 > t[ Fo)

(2.57)
= N (hy1 (0,t)) + R**N (hs (3,1)).
Taking the derivative of equation (2.57)) one obtains equation (2.50]).
O

2.3.2. The jump time distribution

The probability distribution that describes the time between events in a Poisson process is the

exponential distribution, whose density and distribution functions are given in Proposition

Bl

Proposition 5. The density and distribution functions of an exponentially distributed ran-

dom variable correspond, respectively, to
Q (7 € dt|Fy) = he (2.58)

and

Q(F<a|F)=1—e?" (2.59)

Following from equation ([2.59), the probability of a jump not occurring up to time @

equals

Q(F > a|Fy) =e (2.60)

2.4. Further mathematical tools

Throughout this thesis several integrals involving the standard Normal distribution function
are computed. This section presents three mathematical results that are recurrently used for
this purpose.
Z2
The first integral we are interested is [ 2L N (hy (z, s))dz. This appears several times

zZ1
and can be computed using Proposition [6] below.
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Proposition 6. For any s > 0 we have, for every z1 > 0 and z2 > 0,

/x%N (ln(:zr) 01;1\(;45) - U*s) dr — Ae(v"+0.50%)s [N (h3 (22,5)) = N (h3 (21,9))], (2.61)

21

where hs (z,8) = WG

Proof. For any a € R and b > 0 we have, for every y>0,

[ty (B0, [ (le)re) 1,

0 0

Yy
1 1
X / n<n(fﬂl>)+a> " .
0
1 h 1 (1 (2)+ )2
1 n(x)+a
9 e 2\7 dz.
| v
0
Taking w = In (),
/ d In(x) 1 e 1
n(z)+a L ware
—N| =L \de == w 2( 4 )d
0 — 00
In(y) . .
- 1 e,%(wwﬁ#)dw

2mh?
In
_l(a27b4+2ab2—a2) v 1 3 (w-b2+a)
=e ? v / 5 er 2 dw
V2mr

(2.63)
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Taking a = —In(A) — v*s and b = 044/, we obtain

z

Fd In(z) — In(A) — v*s 0.50% s-+In(A) 0" In(z2) — In(A4) — v*s — 0% s
=N _ ,0.50%s+In vis | N
/xdac ( o5 dx =774 o5
N In(z1) — In(A) — v*s — o%s
oay/'s
_ eln(A)-‘r(v*-i—O.Sai)s |:N (ID(ZQ/A) B (U* + 0'124)8)

oay/s
In(z1/A) — (v* +0%)s
o (M)
= Ae(V" 05905 [N (hy (22, 5)) — N (hs (21, 5))] -

(2.64)

Z1

O

z2
We are also often interested in | x%N (ho (z, s)) dz, which can be computed using Propo-
21

sition [71

Proposition 7. For any s > 0 we have, for every z; > 0 and zo > 0,

/miN (—ln(x) + In(Rv) + v*s) _ AR2 (0 +050%)s N (ha (22,5)) — N (ha (21, 8))].

dx oa\s
21
(2.65)
2 v 402 )s
where hy (z,8) = W.
Proof. Procceding as in equation (2.62)) one obtains
[ d In(z) + In(y) + a + b2
—In(z)+a 2 —In(y) +a
—_N — 0.5b +aN ) )
[ (b ) e (b ) (2.66)

Taking a = In(Rv) + v*s and b = 044/,
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z

/ZICZ;N <ln(9:) J;Ln\(/é{v)+v*s> -

z1
— 6045013+111(R17)+U*s N —In (22) +1In (R@) +v*s + 01%18
O'A\/g
N(= In(z1) +In(Ro) + v*s + o%s
O'A\/g

In (Ri) + (v +0%) s

21

v * 2
_ 04501243—1n(A)+1n('D2)+U*3 In (Rzz) + (U + UA) S B
= e N N
oAvVs T3
v (v*40.50%)s
- Ze A [N (h4 (2278)) _N(h4 (2175))]

— AR%e(v' +0.50%)s [N (h4 (22,8)) — N (ha (21,5))] -

T
The last result of this section is used to compute integrals such as [ e®* LN (h; (z,s))ds
0

T
and feWS%N (ha (z,8))ds. This can be done using Proposition |8 below. As this type of
0

integral appears in different forms throughout this thesis, the referred proposition defines a

general function to compute it, which is called F (a,b,c,y).

Proposition 8. Let a,b,c € R satisfy b < 0 and c® > 2a. Then, we have for every y > 0

(a,c) g*(y) + QF (a,¢) b (y),b>0
(a,c) g~ (y) +Q (a,c) h™(y),b <0
(2.68)

bl

y
d b—cx Q
F(a,b,c,y) :/e‘”N( )dm {
d Q
/ x N3

Q] eF
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where [

+ _ —+—Vc2—2aFc
G (a,0) = Formar
Qi (a,¢) = :|:i7\/2C ;Q_ﬂ;ﬁac
. _JZ2a
gt (y) = eTOVE (ae) (;b \/ﬁ Zay .00
10\ — FbUE(ac) Fb+Vc2—2ay '
BE(y) = TV (O N (ERE
V¥ (a,¢) = Fe—Ve2—2a
UE (a,¢) = Fe+ Ve —2a
Proof. For b < 0 see Bielecki et al.| (2006). For b > 0 notice that
b—cx —b+cx
N{———])=1-N
()= ()
Denoting
b* = —b
= —c
and substituting, one obtains
[ ond (b [ owd b — "
—cz —c*x
W _—_N|——)dx= @ — 1 1=N|—F+—
[ () e [ o ()]
0 0
” ] - (2.70)
—c*r
= fer ZN (22,
/ ¢ < Vi >
0
Since b* < 0 one can apply the result proved in [Bielecki et al| (2006).
O
In the referred particular cases this leads to
T
d In (3) v*
“s—N (h ds=F |w,—2, —T
[ e SN (50 ds <w, ) v )
0
. ] i (R2) (2.71)
n(R>) v*
“S—N (h ds=F 22— T|.
[ e SN (ha 50 ds <w, =)z )

0

18The =+ signal reflect whether we are in the case that b > 0 or b < 0. This thesis does not provide a
closed-form solution for the case where b = 0.
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2.5. Basic Securities

All securities priced in this thesis can be computed as a combination of five basic securities.
These basic securities have some similarities with some type of call or put option. Neverthe-
less, they cannot be really seen as options for a number of reasons that differ case by case.
For this reason they are called pseudo-options in most cases. This section shows how each of

these basic securities can be computed.

Pseudo-asset or nothing "no liquidation" call: AN (s)

Consider a security whose price today is given by AN (s) = E© [A51{7>57+>5}|]:0]. Ba-
sically, this security pays Ag if the firm has not been closed up to time s. This security
resembles a down-and-out call option with maturity s, exercise price 0 and barrier v but with
two differences. First, in addition to the barrier this option only pays Ay if a negative jump
has not occurred up to time s. Second, the expected payoff in this case is not discounted.

The time-0 price of this security corresponds to

“+00 +00 400
AN(s):///xQ(ASEdwﬁedu,%edM}'o)

v s s
400 +00 +o0

:///x@(%edm]-“o)Q(AsEdaz,7€du|}"o) (2.72)

v s s
—+o0

= /x@(%ZsLFO)Q(AS edx, 7> s|Fp).

v

Using equations (2.60) and (2.49)), then

+oo

AN (s) = / ey [(ij(hl (x,s))JrRQ“%N(hQ (z,5))| dz. (2.73)

v

36



Using Proposition [6] and [7]

AN (s) = Agel” 57472 Tim (N (ks (2,5)) = N (h3 (5, 5))
a=r+00 (2.74)
+R* 2N (hy (2,5)) — N (ha (5,5))]} -

Given that lim N (h3(z,s)) =1and lim N (hyg(z,s)) = 0, this simplifies to

T—+00 T—r+00

AN (S) — Aoe(v*+0‘50,247X)s [1 _ N(h3 (77,8)) — R2at2) (h4 (1778))] (2'75)

Pseudo-Digital "no liquidation" call: Dig (s)

Define Dig (s) = E? [1{;54 7553 Fo|. Dig (s) is similar to AN (s) except that the payoff
now is the monetary unit instead of the underlying asset. As the expected payoff is not

discounted, Dig(s) corresponds to the probability of the firm surviving up to time s.
400 o0
Dig (s) = / / Q (7 € du, 7 € da| Fy) dadu

s (2.76)
=Q(7 > s,7>s|Fo)
@

(7C>S|F0)Q(T>S|.F0).

Using equations (2.60) and (2.52)), one obtains

Dig(s) = e [1 = N (hy (8, ) — RN (hy (5, 5))] . (2.77)

Digital down-and-out "no jump" put with rebate: DigHit (s)

Define DigHit (s) = E2 [e™""1{; <5 +>7}|F0]. DigHit (s) can be seen as the non-deferable
rebate of a put down-and-out with maturity s, exercise price and barrier equal to v and re-
bate equal to 1 that only pays off if a negative jump does not occur up to maturity. Notice
that the probability of this option ending up in the money is zero and thus the value of this

option comes exclusively from the rebate. Mathematically,
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DigHit (s) = //6_7'“(@ (r €du,7 €di|Fy)
0 u

://e’”(@(%eda\fo)(@(fedw}"o)
0 wu

S

:/e*T“Q(TEdu|F0)Q(%2u|f0).

0

Using equations (2.50) and (2.60)), then

S

du

DigHit (s) = / e UM <C;iN (hy (5,0)) + B2 N (s (17,u))> du.

Using Proposition (8] and denoting w = —(r + A

N

1 * 1 -
Digmt(s):%w’ n<R>,v7s> L R (m n(R)’_”7S>_

(2.78)

(2.79)

Remark 1. Consider that DigHit* (s) = E [e ™" 1, <4 +5-}|Fo]. DigHit* (s) is given by

equation replacing @ by —\.

Pseudo-range asset or nothing down-and-out "jump" call: AN Jump (17 u, s) Con-

sider that AN Jump (Z, w, s) = EQ [e*’"%Affl{kAki<H ot +<S}|}"0 .

This security value is

very similar to an option with maturity s that pays the underlying value (just before the

jump) if the jump occurs, the asset before the jump lies between | and @ and, finally, if the

barrier has not been hit previously. However, in this case we are discounting the payoff from
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the moment the jump occurs and not from time s.

AN Jump (1,7, s) ://xe*”“/Q(Aﬁ €de,r € du, € di|Fy)
03 @
://xe—fﬂ/Q(%edmfo)@(Aﬂedaz,Tedmfo) (2.81)
07 @
://xe_mQ(%edaU-'o)Q(Aﬂedx,72ﬂ|]-"0).
0 7

Substituting the jump density from equation (2.58|) and using equation (2.49)),

AN Jump (1,7, 5) = X / /u g (rHH) (dzv (hy (2,2)) + B2-L N (hy (, a))) dadz.
) )

dx dx
I
(2.82)
Using Propositions |§| and @ and denoting w = v* + 0.50% — 7 — A,
AN Jump (1,7, 5) = 3y / ¢t [N (hs (7, 0)) — N (hs (I, )
(2.83)

0
+R**2 [N (hy (@, @) — N (ha (I,0))] } dit.

Integrating by parts

AN Jump (Z,E, s) = {eum [N (hs (w,@)) = N (h3 (Zv a))] f)

0 . (2.84)
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Using Proposition [§]

AN Jump (17, 8) = 20 (e (N (hy (7,)) N (s (1. 5)))

— N (hs (@, 0)) + N (hs (1,0))

+ R2a+2 [ews (N(h4 (u,s)) — N (h4 (Z, 5)))
— N (h4 (w,0)) + N (h4 (1,0))

Rv i)
’ oA oA ) )

(2.85)
Remark 2. Consider that AN Jump* (Z, u, s) = EQ [A+ 1{Z<A+<ﬂ >t +<s}|]:0} . AN Jump* (Z, u, 8)

is given by equation replacing w by w* = v* + 0.50% — .

Pseudo-range digital down-and-out "jump" call: DigJump (17 u, s)
Finally, consider DigJump (Z, u, s) = EQ [€7T%1{2<AA<5 ot +<s}\f0] This security is
very similar to AN Jump (Z, , s) except that the payoff is the monetary unit and not the

underlying asset. The value of this security can be derived as follows.

DigJump (Z,E, s) = //e‘m /Q(Aﬂ €dx, 7 € du,7 € di|Fy)
0 /
0/

Substituting the jump density from equation (2.58)) and using equation (2.49)),

l u

(2.86)

/eira/@(%edﬁ|Fo)Q(Aﬁ €dx, T €dulFp).

l u

DigJump (1,7, 5) :X//e—(T@?1 leN(hl (z, 1)) +R2adiN(h2 (z,4))| dadz. (2.87)
X X
07
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Integrating and denoting w = —(r + A),

Diggump (1a,5) =X [ e [N (b1 (o, 0)If + B N (ha (@, 0))[f] da

(2.88)

Integrating by parts,

DigJump (Z, u, s) = — {eml [N (hy (@,0)) — N (hl (Zv ﬁ))] |(S)

0 7 ‘ (2.89)

Using Proposition [8]

DigJump (1%, 5) = 2 {e=* [N (hn (,)) ~ N (s (i, 5))]

— N (hl (ﬂ, O)) + N (hl (Z, O))

— i
1 u * hl(*) *
_F<w,n(‘4),v ,s)—i—F(w, 4 ,—U .S
oA oA A gA

+ R** [e™* [N (ha (1, s)) — N (ha (1,5))]
— N (h2 (w,0)) + N (h2 (1,0))

In (B2 * In (@> *
_F (w,n(u)’UwS) +F (w,l’v7s
oA OA OA oA

Remark 3. Consider that DigJump* (Z, , 5) = FQ [1{Z<A+<E,7—>+,+<s} \.7:0} . DigJump* (Z, u, 5)

(2.90)

is given by equation replacing w by —\.
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3. Equity

Chapter [2] presented the stochastic process governing the project cash flow generation and
a fictive security representing the market value of the project. In the next sections, we will
derive the price of equity, debt, CDS and European-style stock options as contingent claims
on this project. Starting with equity, its value in this model corresponds to the sum of two
components: 1) the after-tax present value of all future dividends up to the moment the
firm stops its activity (i.e. (1 — fEff)Divo); and 2) the proceedings from selling the project

Solv

at T whenever these are enough to comply with all the firm liabilities after taking into

account all external claimants on the project (i.e. EgRecy). Mathematically,

Ey = (1 — ZEff) Divg + EqRecy, (3.1)

where (1 — fEff) = (1 - fcorp) (1 — EDW).

The first two sections of this chapter cover the contribution from these two components
to equity value. The third section derives the dynamics of the equity process and presents
the concept of cost of equity. This chapter ends with the derivation of shareholders’ optimal

default barrier.

3.1. Dividends

As explained in Chapter [2] the project owned by our firm continuously generates é;. The
project requires a continuous investment of ¢, though. In addition, the firm must pay
debtholders coupons and government taxes. At each moment in time, depending on whether
d; is enough to cover coupons and capex, shareholders either receive the difference or inject
capital in the firm in order to avoid bankruptcy. In the latter case it is assumed that a tax

provision is created. Mathematically, the before-tax present value of all future dividends
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received by shareholders equals

T
Divy = lim e "B [(6s — cL — q) 15555} |Fo0] ds
0
T T
_ . —rs Q R . . —rs Q R
TLITOO e "E® [6s1ir5s 355 Fo] ds — (cL +q) TETW e " E® [1{755,755}|Fo] ds.
0 0

(3.2)

Noticing that 65 = (ua — g) As, we have that the first and second expectations correspond
respectively to (ua — g) times AN (s) and Dig (s):

T T
Divg = (ppa — g) lim e " AN (s)ds — (cL +¢q) lim e "*Dig (s) ds, (3.3)
T—+o00 T—+o00
0 0
where the first term corresponds to the discounted sum of all future cash flow as long as the
firm exists and the remaining terms are the discounted sum of all future interest and capex
costs as long as the firm exists. For this reason, these terms are called Payoutl, Couponl
and Capexl
Divy = lim [Payoutg — Couponl — C’apexg] . (3.4)

T—+oo

Starting with Payoutl, substituting AN (s) by equation (2.75) and denoting w = v* +

0.502 — r — X\, one obtains

PayoutT = (j14 — g) Ay / ¢ [(1— N (hs (3,5))) — RPN (ha (5,5))] ds.  (3.5)
0

Substituting Ag by m %0 7 and integrating by parts,

T
5 d
Payout! = ;0 e [1 = N (hs (3,5))]|g + /e“’S%N (hs (v,s)) ds
0
- (3.6)
R N (@) [ TN (b (8,9) ds

0
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Applying Proposition [§]

Payoutl = % {e‘”T [1—N(hs(9,7))] — 14+ N (h3 (v,0)) + F (w, ,

In (R)

(3.7)

Given that N (hs (v,0)) =0 and N (hy (v,0)) = 0, equation (3.7) can be simplified intdﬂ

* 2
Payout! = % {6“’T [1—N(hg(v,T))]—-14+F (w, In (R), vte ,T>
w o o

In(R) v*+ o2 (3:8)
—R2+2 {e“’TN (ha (0,T)) — F <w, ,— T>] } .
o o
Considering that T goes to infinity and that w < 0, then
N P T
Payouty := Tgr}rloo Payout;
S 1 * 2 1 * 2
=% 4 [F <w, n(R) v+o ,T) + R2at2p (w, n(f) v+o ,T) 1} .
w T+ o o o o
(3.9)
Finally, computing the limits as explained in Appendix [A-4] one obtains
5 * 2 10 (w o* to2
Payouty = = {QE <w,v to )R‘I’\I’h( = )
w o
(3.10)

* 2 *+0_2
ey (U e ) ).
(2

Coupond can be computed in a similar way. Replacing Dig (s) by equation (2.77) and

denoting @ = —(r + \), one obtains:
T
Couponl = cL/ews N (h1 (v,5)) — R*N (hs (v, 5))] ds. (3.11)
0

INotice that

hﬂaO)—lMW—nm@ lim O /5o oo = N (hg (5,0) =0

s—0 TVS 5 s—0 VS s—0
In(R)+(v*+ . In(R +
ha (5,0) = lim D00 — iy 10D . i LE2) /5 = —o0 = N (ha (5,0)) = 0
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Integrating by parts and noticing that N (h; (v,0)) =0 and N (hy (v,0)) =0,

Couponl = % {ews [1 — N (hy (v,5)) — R**N (hy (2, s))] 4
T
- /ewsd% [1— N (hy (,5)) — R**N (ha (3,5))] ds
0
Z{e®T [1= N (b (8,T)) — RN (hy (8, T))] — 1

T .[d _ 2 @ —
" / o= [ JoN (b (0.9) + TN (ha (5.9)]

Using Proposition [}

Couponl = % {eT [1 = N (hy (3,T)) — R*N (he (8,T))] — 1

g

1 * 1 *
+F <w7 H(R)’U7T> +R2aF (w7 n(R),_’U’T)}'
o o

Considering that T goes to infinity, then

Coupong := lim Couponl
T—4+oc0

(3.12)

(3.13)

* * (314)
b {F (w, In(R) ”,T> + R%F (w, IH(R),—”,T) — 1} .
ag g

w T—+oo (o

Finally, taking the limit (please see Appendix |A.4)), one obtains

L - I . I
Coupong = = |:Q; (w, U) REV (=) o Q, (w,_v) Rt (w2t
w g g

Doing the same for Capexg, one obtains

Capexy ;== lim Capexg
T—+oo

w
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3.2. Recovered value after closing the firm

When the firm closes, the project is sold. This may occur because the project value hits the

barrier or due to a jump. Thus,
EqRecy = EqRecHity + EqRecJumpy, (3.17)

where EqRecHity and EqRecJumpg are the respective contributes to equity value.

3.2.1. Recovered value after hitting the barrier

In the case that the firm hits the barrier, it is assumed that the firm incurs in distress costs
and recovers only P%*A_. Since debtholders have priority over shareholders they only

receive something when v > ﬁBLﬁ Mathematically,

lim E° e ™ (BB — L) 1rempsry | Fo] 0 > gBEnk

EqRecHity = { T—too
0,0< 53%
(3.18)
) (8Bank5 — L) TE)I}:OO DigHit (T),v > ﬁB%"k
0,0< BB%
DigHit (T) is given by equation (2.80). Taking the limit, one obtains
1 * 1 *
lim DigHit(T) = lim {F <w, n(k) o T) + R¥™F (w, n(R) U,Tﬂ
T—~+o0 T—~+oo g g g g (3 19)

0 <w) RV (=%) | Rreg- <w,_v> (=),
o o

The above limits can be computed with the help of equations (A.61)) and (A.62) in Appendix
with @ replacing w and - instead of %

3.2.2. Recovered value after a jump

When the firm closes after a jump, depending on whether A; is above or below v, the firm

recovers 599 A or incurs distress costs and recovers only AP%"* A.. This difference turns

2In this model, this should be seen as the special case of a firm with a very low level of debt and high fixed
costs. In this case, the barrier might be higher than

L
5Bank .
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the analysis substantially more complex and thus the two cases will be treated separately.

EqRecJumpy = EqRecJumpBankqg + EqRecJumpSoldy (3.20)

The firm is liquidated with distress costs: FqRecJumpBankg

The firm is liquidated with default costs when the project value stays below the barrier after

the jump (i.e. A;- € [U, 1%]} ). In this case, there might be two types of payoffs. These will
depend on the relation between the recovered value, 359" (1 — j) A;-, and the amount of

liabilities. Mathematically, the nominal recovered value equals

_ L

0,v <kA%7 < gEank (A=) i . (3.21)
Ban ]

Fret (1 =) As- = L gramy < Ai- < 1

EqRecJumpBank; = {

; o > L L v : .
Since there is no guarantee that v < FEER(1=7) and FEa (1)) < 1%] the following cases

may emerge:

i T < - L v
First case: 7 < FEa T} < =
EqRecJumpBank
= lim EQ efrf' Bank 11— A‘?i 1 F
T—+o0 [5 ( 7 ] {WM<A+,<%,T>+,+<T} 0
I B (3.22)
Bank . : v
= 1— | AN T
B ( j)TiToo Jump(ﬁBm(l_jyl_j, >
L v
— L lim Di T];
I, PigJump (ﬁBank 1—j)y1-j ) ’
Second case: B‘B#(l—y) <v< %

EqRecJumpBanky = lim E® {e‘ﬁ [BBa"k (1—4)A: — L] 1{17<A, PR TIEA +<T}‘f0]
R ) )

T—4oc0

Bank . : = v
= 1—j) lim AN —.T
7 (1) lim AN Jump (v, T )

— L lim DigJump <17, Y ,,T> ;
T—+o0 1—3

(3.23)
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Third case: 7 < 15 < Wm
In this case shareholders know that they will receive nothing after a sudden jump if

distress costs are incurred.

The limits above can be computed using equations (A.65) and (A.68) in Appendix

The firm is liquidated without distress costs: EqRecJumpSoldy

The firm is liquidated without distress costs when the project value stays above the barrier af-
ter the jump (i.e. A;- € [ﬁ’ +oo} ). Again, two types of payoffs may emerge. Shareholders
either recover 0 or the difference between the firm recovered value and nominal liabilities.

L
0, 125 < As- < gy (3.24)

EqRecJumpSold; =
{ BSld (1 — j) A, _L7BS%(1—J‘) < A;- < +o0

Two cases may emerge depending whether % is lower than W(lﬂ) or not:

First case: % < /35%(1—]) < 400

EqRecJumpSoldy
= lim EQ e—r% Sold 1— 34 A7:— 11 F

T—+o00 [ﬁ ( 7 ] {75&)15(1,]-)<A+7<+°°’T>‘?f<T} 0

(3.25)

=B (1 —4) lim ANJ L w,T
75 ( _j) Hri_ ump BSOZ 1 _ u,
LuTlgr}roongJump(BSold >
Second case: 619%(1—]) < 7’]. < 400

EqRecJumpSoldy = lim EY |:6_7'+ [ﬁsozd (1—4)As- — L] 1{%<A+_ <+0077>+7%<T}‘ ]:o}

T—+oco

:550ld(1_j) lim ANJump(lij,uyT>

w,T—+o00

u,T—+oc0o

— L lim DigJump <1U],u, T> ;
(3.26)
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The limits above are given by equations (A.76)) and (A.77)) in Appendix

Before finishing this section, it is important to emphasize one feature of this model. While
in the case where the process falls below (or hits) the barrier is justifiable to compute equity
as the positive difference between the recovered value and liabilities, in the opposite case
this is only motivated by mathematical tractability. Notice that the alternative would be an
equity process with an indeterminate number of jumpsﬂ In these cases, we are assuming
that the firm is being liquidated, which is something that would not occur if the same value
of Ay would have been reached through diffusion. By doing this, whenever 39°?A. stays
above the barrier we are inappropriately eliminating shareholders’ option to have a positive
payoff in the future if the project perspectives improve. The size of this problem depends
crucially on j. When j is sufficiently high, the probability of the project value falling below
the barrier is very high eliminating the problem. However, unless j = 1 there is always
a residual probability that A; stays above the barrier after the jump. It is reasonable to
think that the largest the value of j the lowest should be the value of A (i.e. the largest
the size of the jump the less probable it is). By setting j too high the analyst ignores
the possibility of a large range of jump sizes that are virtually impossible under diffusion
and whose probability may be significantly higher than the one associated with the chosen
level of j. The analyst faces thus a trade-off between setting j very high and A\ very low
minimizing this error or, alternatively, setting a lower value of j and a higher value of A
potentially increasing this pricing error but better capturing the risks faced by the project.
In this context it is important to have an idea of the potential size of the error that arises

from assuming that the shareholder receives the maximum of zero or the intrinsic value of

his claim. Define EqRecJumpSoldy as the correct equity recovered value when the project
stays above the barrier after a sudden jump and E ((1 — j) A+-) as the correct equity pricing

function evaluated at the project value just after the jump event. In this case we have

EqRecJumpSoldg = lim_ E? [eiwf((l —J)A+-) Lica, <toorsipcr}] (3.27)
where [ corresponds to % independent of the relative position vis-a-vis BS%(I*J) Assuming
that 1) the barrier value is independent of whether the shareholder receives an option over
the project or the maximum of zero and the intrinsic value of shareholders’ claim and 2)
in case of a second jump the shareholder effectively receives the maximum of zero and the

intrinsic value of his claim on the project (i.e. his option to continue running the firm is lost

3Equity value in this circunstance can be computed using Fast Fourier Transforms as proposed for the case
of Normally distributed jumps by [Carr and Madan| (1999). There is no literature on the pricing of options
in this case, though.
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after a second jump even if the project value stays above the barrier), E (A;) corresponds to

our equity pricing function, E (4;), given by equation (3.1]). Thus,

BqRecTumpSoldy ~ lim B [e—"*E«l “ DA Yica ciormriery] - (328)

Procceding as in equations ([2.81)) and ( -7

EqRecJumpSoldy ~ A hm //E (1—=y)= e~ (riA)a <ddN (h1 (z,0))
+R2“iN (ha (=, a))) dadz.
dz

Unfortunetly, it is not possible to apply Propositions [6] and [7] because this time the
derivative of the Normal function is multiplied by a function of z instead of z. To the

best of my knowledge the only way to compute the above integral is thus numerically. The

difference between EqRecJumpSoldy and EqRecJumpSoldy gives the analyst a good idea
of the pricing error that arises from the assumption that the firm closes after the jump even

if the project value stays above the barrier after the jump.

3.3. The equity process and the cost of equity

Sections [3.1] and [3:2] showed how to price equity as a contingent claim on the firm’s cash
flows. Equally interesting is to look at the stochastic process governing equity value. In the
presented model, it has been shown that equity is a function only of A;, with its dynamics
under the physical and risk neutral measure given by equations and , respectively.
Taking the latter, applying Ito’s lemma to function F (A;) and dividing by E;- one obtains

dE; 0B A, O

aly _ or At — jp dNZ 3.30

Tt = (0~ mo) GE o + 0550k ) e o dWE N (330
where

_9E A

75T 9AE, T
o E(At_)fmax{[gBankl{(l_jA)Aﬁg}+ﬁsold1{(1_“mﬁ>ﬁ} (1—ja) Ay fL,O}
s E(A-) |

(3.31)
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In the above application of Ito’s lemma, notice that E ((1 —j) A;~) was replaced by
mazx{B°°4 (1 —j) Ay — L,0}. This occurs because the firm is assumed to be closed and
thus equity value after the jump is not equivalent to replacing A; by (1 — j) A; in the equity
functionﬁ Substituting N; by M;+ Adt one arrives at the following martingale representation:

dE, OE A, 2E A?

4B, _ (W o) LA BB AL AjEt) dt + 0w, dWE — jp,dME. (3:32)
t— t— t—

Equation (3.32) requires the computation of the first and second derivatives of the equity
function. One can avoid the computation of the second derivative by using measure Q
definition, though. Following Definition [T} any financial asset generates a rate of return equal

to the risk free interest rate under measure Q. In the case of equity, its return corresponds

to
dE 0y —cL —q)dt dE 0 —cL —q)dt
1+ (O —cl—q)dt _dE, | (0 —cL—g)dt (3.33)
Ey Ey Ey
dE;
= — + kg, dt .34
Et + B, 00, (3 3 )
Hence, under measure Q, dé?:f must have a drift equal to r — kg,, implying tha
OF A ’FE A2 , .
—mos) =——= +05——=—0% — \jg, =7 — kg,. 3.35
(H(S mUA) 9A Et— + HA2 Et— 04 JE, r E ( )
Equation (3.32)) can thus be rewritten as
dE .
ﬁ—t = (r —kp,)dt + op, dW2 — jg,dM2, (3.36)

where only the first derivative of the equity function is required to compute og,. This

corresponds to

) _eff\ 0Div  OEqRec
9B _ (1= ) 3.37
o1~ (7)1 + = (3.57)
Starting with the derivative of the dividend function and using equation ((3.4)),
dDiv  OPayouty  9dCoupong  0Capexg (3.38)

9A ~ 9A  9A  9A

4The difference between E ((1 — j) A,—) and maz{3°°¢ (1 — j) Ay — L, 0} corresponds to the pricing 'error’
incurred by assuming that the firm is closed after the jump even if the value of the project stays above v.
5The validity of the above equation was confirmed numerically.
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The derivatives above follow from equations (3.10)), (3.15) and (3.16). The derivative of

the Payout function is given by

OPayoutg _pa—g [ ( v —|—0') %Q;(w7”*+2

0A
o ( L) e () ]

( ) A N ( .l 2) (3.39)
A — v 4o Ly (w2t
L la—g)A [a (w, ) R
g (o) Gt

where

QR%\IJ’I (w ) _ 7l\1}h (w’ v*:‘,;o' ) <A>—1—\P ( +o )

0A v v (3.40)

1y (g, vite?
_ \I/h (CU, p )RIJF o ( 2)

and

\
[\)
IS}

\

\

|=
S

=
/N
&
\
<
*
al+
Q
N
N—
=y
o
IS
+
w
+
Sl
—
i
Bl
~—

(3.41)

The derivative of the coupon function is

9Coupong _ cL [Q; (w, 1:;) iR%‘I’Z( =) +Q; (w,”a*) 9 Y prat+iv; (=) 7

0A Cw 0A 0A
(3.42)
where
_1gy- vt
O prug(=2) _ M RLHAT; (.2) (3.43)
0A v
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and

T

9 pratieg(wm-u) _ o ) o142y (w ) (3.44)

0A v

Doing the same for the capex,

OCapery _ g [Qh (m U*) 9 pivi(=%) Lo- (w, _”*> 9 protiv; (=)
g g

0A w 0A 0A
(3.45)
For the recovered value after the firm closing, we have that
OEqRecy _ OFEqRecH ity n 8EqRecJump0. (3.46)
0A 0A 0A
The derivative of the equity recovery hit function (3.18)) corresponds to
OEqRecHit, | (87— L) & Llim  DigHit (T),0 > g
94 0,v < BB%
(ﬁBank— _ L) {Q}: (w7 %) G%R%‘I’;(Wv%) (347)
={ +o; (w’ 7%) B%RzaJr%\I/Z(wf%)} > BB[‘W )
0,v< ,33%
where the above derivatives are given by equations (3.43]) and (3.44]).
For the derivative of the equity recovery jump function, equation (3.20]), we have
OEqRecJumpy  0EqRecJumpBank n OEqRecJumpSold (3.48)

0A 0A 0A

For the first term above, it is necessary to derive either equations , or zero
(case 3). For the second term above, it is required to derive either equation or .
In all cases, one needs to compute the derivative of the limits of the AN Jump (Z, u, T) and
DigJump (Z, u, T) functions. These are given by equations and , for the case
where only T goes to 400, and by equations (A.82) and (|A.84)) for the cases where both @
and T go to +o0o. Both are presented in Appendix

Notice that when A = 0, equation is very similar to the one obtained in the Black-
Scholes model. However, in contrast with the GBM process, it does not exhibit constant

OE A,

volatility because 5% &
-

is not constant. Since there is still only one source of uncertainty

53



(i.e. the Brownian motion) the process is usually referred to be locally stochastic.

Taking the derivative of o, in order to A; one observes a negative relation (i.e. equity
volatility increases as the asset and stock prices decrease.). This is known in the literature as
the leverage effect. Notice, however, that in constrast with models whose state variable is A,
(e.g. |Toft and Prucyk| (1997)) here o, is locally stochastic even if the firm has no liabilities.
This occurs because the leverage effect results not only from financial leverage (i.e. debt)

but also from operating leverage due to fixed costs such as capex expenditures.

Corporate managers frequently have to take decisions on whether to take or not a project.
These decisions are usually called capital budgeting. In doing so they must compare the
expected return on the project and their cost of capital (i.e. the rate of return stakeholders
expect from them). Whenever managers take projects with rates of return below these
expectations, they are intrinsically destroying value. But how much is that rate? Firms have
two main classes of financial stakeholders, notably, shareholders and debtholders. Each one
requires a different rate of return depending on risk. These are called the cost of equity and
the cost of debt, respectively. Mathematically, these correspond to the drift of each of these
assets under measure P plus the respective payouts. Taking equation and changing

the probability measure through Girsanov theorem one obtains

dE — . )
—Etf = (r— kg, + mop, + (A= N) jg,) dt + o, dW; — jp,dM;. (3.49)
and thus the cost of equity equals r +mog, + (X — )\) JE,-

Notice that, similarly to equation (2.42)) regarding the asset rate of return, the cost of
equity is simply equal to the risk free rate plus a premium per unit of volatility risk and a

premium per unit of jump risk.

3.4. The endogenous barrier

At each moment in time, whenever the cash flow generated by the project is not enough to
pay all duties, shareholders must inject capital in the firm. In a model with no information
issues and where shareholders face no liquidity constraints, it is plausible to think that equity

holders choose the default time 7 strategically by solving the following stopping time problem:

sup o (1), (3.50)

TET[0,+ 0]
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where Ej (1) is given by equation as a function of 7. According to |Décamps and Vil-
leneuve| (2014]) it can be shown that this time-homogenous property implies that the optimal
stopping time solution to this problem is a barrier strategy 7* = inf {s (0 < 3} where ¢ is a
positive constant, which can be determined by the classical smooth-pasting condition. More
recently, [Kyprianou and Surya| (2007)) prove that in the case of Lévy processes this depends

on whether the process has unbounded variation leading to the following theorem.

Proposition 9. Consider that Ay = AgeXt, where X, is a spectrally negative Lévy process.
If Xi has unbounded variation so that 0 is regular for the lower half-line (—o0,0), then the
bankruptcy-triggering asset level v satisfies the condition of smooth pasting; that is to say

that v is chosen to satisfy
o8| _,
0A| % o

Proof. See |Kyprianou and Surya/ (2007)). O

As the process here considered satisfies the conditions described in Proposition [9] the
optimal barrier is derived in the usual way. First take the derivative of equation , then
substitute A; by v and finally equate to 0. Based on equation , the first derivarive of
equation is simply the derivative of the payout function minus the derivatives of the
coupon and capex functions plus the derivative of the equity recovery function.

The first is given by substituting equations (3.40) and (3.41)) into equation (3.39). Then,

replacing A by v one obtains

OP t _ * 2 * 2
cgﬁ)uo :MAwg[Qh<wa,U —;U)—l—Qh(w,—U 1—0)_1]
A=v
1q,— v o2
L lha=gv | vt —n (“” o )
w hA W 7 (3.51)
* 2\ —2a—2— %\IJ; (w,—”*i‘#)
+Qy (w,—v o ) -
o v

The latter simplifies to

_ * 2 1 * 2
e o () o (1)
AT w o o o
* 2 1 * 2
+Qh<w,—v +0>{—2a—1—\11h(w,—v to )]—1}.
g g g

dPayouty
0A
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Replacing equations (3.43]) and (3.44) into equations (3.42) and (3.45) and then replacing

A; by v, one obtains the correspondent terms for the coupon and capex functions:

0Coupong _cL _EQ* v* o= v*
0A Ay U o "\ n\% 7, (3.53)
_ v* 1__ v* '
+y | w,—— ) |—2a— =¥, (@, ——
o
0Capex _q 1 v* _ v*
T4 | wo {‘th (w’ a) U (“ U)
= (3.54)

o (-2 -2 (2]}

The derivative of the equity recovery function corresponds to the sum of the derivative

of the equity recovery hit function and the equity recovery jump function. Starting with the

hit function, substituting equations (3.43) and (3.44) into equation (3.47) and replacing A
by v one obtains

(3t =) [0 (=) @ (=)
OEqRecHity _ | + (—2@ — 1y, (w, —£>) Q, (w, —%)] 02 ,gBL:;,nk
0A

0777<ﬂ3Lm

The derivative of the equity jump recovery term is given by summing either the derivative

of equations (3.22)), or zero (case 3) with the derivative of either equation (3.25)) or
(3.26). As already referred, this requires the computation of the derivative of the limits of

the AN Jump (Z, u, T ) and DigJump (Z, u, T) functions with two cases emerging depending
on whether only T goes to +00 or both w and T go to +o0.

Only T goes to +o00

The derivative of AN Jump (Z, w, T) evaluated at A = v when only T goes to 400 is
computed taking equation (A.78) and replacing A by @ﬂ

6Notice that I and @ are always bigger than @ for all cases we are interested.
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74 le)r}rloo AN Jump (l7 u, T)

I
IS
\
—_
\
=)
S|
/N
&
=
-
N >4
*
_|_
Q
[ V)
N
N——
+
=)
T
&
=)
/
S|~1
N—
<
*
_|_
Q
(V)
N

— — 1
= 1 u * 2 In z * 2
AV _i lim F |w, n(v) v to T _;'_i lim F |w, ( >7W,T
w 0A T—+o 0A TS+ o o

T—+o00 g (o2

a2 W (2)  o* 4 o2 1n() . 2
N gl B [ F(w,n(“) _vte ,T>+ lim F | w, ks

_|_

: In(g) v +o0° 2 . hl( ) v* 4 o2
_3AT1—1>I—EooF<w’ c o T +87AT1—1>1}-100F YT T g T

(3.56)

where the first two limits are given by equation (A.66]), replacing A by v, and the second two
limits are given by equation (|A.67)) replacing R by 1. The derivatives are, respectively, given
by equations (A.79)) and (A.80)), again replacing A by v and R by 1.

Doing the same for the derivative of DigJump (Z, u, T) when ony T' goes to —|—oo

lim DigJump (Z, u, T)

8714 T—+o0

B _ 1

o (E . In (f> *

_A _9 lim F |, n(v),v—,T —s—i lim F | w, - ,v*,T

w 0A T—+oc0 o o 0 T—+oo o o

_ T 3.57)

_9 In (& * In <j> * (

+fa — lim F(w,n(“),v,T> + lim F w,il ,fv—,T
o T4 00 o o T—+o00 o o

(2 ln(%) v* 0 . ln(%) v*
N aATLlTooF<w’ - ”T>+6ATL1TOOF @ T

"Notice again that [ and @ are always bigger than o for all cases we are interested.
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where the first two limits can be computed using equation Ii replacing w by w, ”*j;gz
by % and A by v and the second two limits are given by equation doing the same
replacements (this implies replacing R by 1). The derivatives are obtained doing the same

substitutions in equations (A.79) and (A.80) -

Both w and T go to +oco
For the derivative of AN Jump (Z, u, T) when both @ and T go to +o0, substituting

equations (3.41)) and (A.83) into equation (A.82) and replacing A by ©, one obtaing?|

0 L _
aA u’]'l'gr-lkooANJump (ﬁSold(_j)’u’T>

A=v

— v*+o2 19— v 402
A “ s ) B v* 4+ o2 7 A (‘*’7_ )
G )() w5 (-55) (7)
- gt (o, we) gy - (o 2520
AU + o ) l o 7
(e ) ()
(e 2 (o +a) [y )
U 1 v
N O ¢17 ;(w’fv = )97 w_v*+o- —2a—2—l\11 ( v +0>
1 h A\ o v
(3.58)

Cancelling 7 on the last three expressions and factoring out, one obtains

0
8—AaTlgr_1FOOANJump (l u, T) .

_ —i\II+(w v*+02>
A n v* 4 o2 7R e N v* 4 o2
= Q (w, > ) ( ) {1 + ;\I/h w, — (3.59)

v o\ (o7 (5 1 v* +o?
+Q, (w,— ) () [1—2@—2—\1’; (w,— )}
o l o o

Noticing that € (w, ”*‘;7‘72> =0, (w ( _v +<7 ) and ¥ ( v*+02) 7 (w, _v*+02>

ST

o

8Notice that I is always bigger than @ for all cases we are interested.
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one can factor out further:

94 ﬁ’llljf«lkoo AN Jump (l, 1, T)

A=v

1 (w,222%) 2
o o 2 *
L\If; <w,” j" ) +2a+2} .

- iQ; <w, UUFUZ) <l)
w g v

(3.60)

Finally, for the derivative of DigJump (L u, T) when both w and T" go to +o0, substituting
equations (A.85) and (3.44]) into equation (A.84]) and replacing A by v, one obtains

9] . . -
94 mlfioo DigJump (l7 u, T)

a3 Q;(wvf)i‘l’i(m”%

1= 30 (w, %)
) (3.61)

Multiplying and dividing the first term by v and simplifying the expression yields

a4 lim  DigJump (Z,E,T)

u, T —~+o0

(3.62)
B L
()T () [ i ()]
Finally, noting that QZ (w, ”(:) = Q. (w,—%) and \I'Z (w, i) = v, (w,—%),
then
O im  DigJump (i, T)
54 o DigJump (1,7, -
o (3.63)

; I\ (=)
)\ * l o h 2 *

Taking the derivative of the equity function, equating to 0 and then solving it numerically,
one obtains shareholders’ optimal default barrier.
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4. Debt

The value of debt corresponds to the sum of the market value of all the firm debt issues,
which in this model are assumed to be perpetual. In order to simplify model presentation,
most articles in contingent claim analysis assume a liability structure where all debt claims
have the same level of seniority. However, for model calibration it is very useful to take
seniority into account. For most firms, considering a liability structure with one or two types
of debt issues is a good approximation of reality. For larger firms, however, we may have
several layers of priority. For instance, in the case of banks, we may think of covered bondsﬂ7
deposits (below and above the levels defined by deposit guarantee schemes), unsecured senior
bond holders, subordinate debtholders or even preferred equity. Though absolute priority is
not always respected in practice, the pecking order should be taken into account while using
market information to calibrate model parameters. For this computation one only needs to
know the amount of liabilities that are senior to the one being considered. We will denote it as
X. Debt value can then be computed as the sum of two components: 1) the present value of
all future after-tax coupons up to the moment the firm stops its activity ((1 —fDEbt)Coupong);

and 2) the recovered value whenever the firm closes (DbRecf). Mathematically,

—Debt

D} = (1 —1 ) Coupong + DbRecy. (4.1)

The present value of all future coupons up to the moment the firm stops its activity is given

*

by equation with the specific issue coupon rate replacing c. * is used as superscript
to differentiate from the case where the entire debt of the firm is considered. The value of
the remaining component is given in the first section of this chapter. Similar to Chapter [3]
the debt process and the cost of debt is then analysed in the second section of this chapter,

which ends up with the derivation of the probability of default in this model.

1n the case where the firm has only one covered bond issue we can think of this covered bond as the most
senior claim.
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4.1. Recovered value after closing the firm

Similar to EqRecy, DbRecy corresponds to the sum of the contributions from the cases where

the project value hits the barrier and when the jump occurs.

DbRecy = DbRecH it + DbRecJumpy. (4.2)

4.1.1. Recovered value after hitting the barrier

We may have three mutually exclusive cases depending on the relationship between the
recovered value at the barrier, the amount of liabilities that are senior to the considered debt
classes and the size of the debt issue. The first case arises when the recovered value at the
barrier is smaller than the amount of senior liabilities. In this case, all the recovered value
accrues to senior debtholders, implying that subordinate debtholders receive nothing. The
second case arises when the recovered value at the barrier is sufficient to pay all debtholders
that are senior to the one being priced but is not enough to cover all nominal liabilities. In
this case, the debtholder under consideration receives the difference. Finally, whenever the
recovered value is enough to cover X and L*, the contribution to the value of our debt issue

is simply the discounted nominal value. Mathematically, these three cases correspond to

0’ BBankl—) < X
TS 3 Bank 5 —rT Bank 5
DbRecHit; = TETOO (6 anky — X) EQ [e Lrers>r) |]-'0] , X < pPery < X 4+ L*
L*EQ [e_TT1{7-<T,‘F>T} |]:0] 7ﬂBank@ > X+ L*

0,88mkp < X
= TETOO (BBenky — X)) DigHit (T), X < pBkp < X + L*
L*DigHit (T), Py > X + L*
(4.3)

where T]iIJIrl DigHit (T) is given by equation 1) The limits of F'(.) are computed using
—>+00

equations 1) and lb in Appendix with @ instead of w and 2 replacing %

4.1.2. Recovered value after jump

Depending on the relation between the asset value after the jump and the barrier, we may

have two cases:

DbRecJumpy; = DbRecJumpBank{ + DbRecJumpSoldy. (4.4)
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The firm is liquidated with distress costs: DbRecJumpBankg

When the project value stays below the barrier after the jump, meaning that A;- € [ﬁ, %}
there might be three types of payoffs. These will depend on the relation between the recov-
ered value, 389" (1 — j) A, the amount of senior liabilities and the size of the debt issue

considered. Mathematically, the nominal recovered value equals

0,7 < As- < grami—p
DbRecJumpBank; = BBank (1 - j) Af-— - ,.)(7 BB%M < A.,*—— < ﬁB§+(Ll*—j) . (45)
L*, groctip < A+ <15
However, there is no guarantee that BB%“—J) > v and that 11:13‘ > BJ‘3§+(L]*—3) In

addition, it may occur that % < ﬂ[g%(lﬂ) and U > ﬂ[;(ffki%ﬂ) As a result, six cases may

emerge depending on the parameter values. I will start with the most general case where all
payoffs are possible. I will then move to the two cases where two types of payoffs are possible

and finish with the three extreme cases where only one type of payoff may occur.

X < _ X+4L* o}
BBa"k(l—j) = BBa"k(l—j) —= lfj
In this case, all payoffs are possible depending on the asset value when the event occurs.

First case: v <

Therefore,
DbRecJumpBank
= lim E9|e " [BBoF (1) A;- — X]1 . Fo
T—+00 4 { BB@,”),S(F]) <A._< Bij,jcflij) ,T>+,+<T}

+L* lim E%|e "1
T—4+oco {

XA L* A 2 7, 7<T ]:0
< +’<1Tj7T>T7T<

X X+ L T)
ﬁBank (1 _ ])7 BBank (1 _ j)’

= pBank (1 ) Tlirilm AN Jump <

X X +L
— X lim DigJump( = - ,T>
T—+o0 pBank (1 —j)" pBank (1 — j)
X+ L* v
L* lim DigJ T).
+1* timDaduny (o 757)

(4.6)

X < U < __X+L*
BEek(I=y) = T—j = BPer* (1))
Two types of payoff are possible. The debtholder either receives the discounted recovered

Second case: T <
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value (after senior debtholders share) or nothing. Hence,

DbRecJumpBank]
o Q | ,—r# [pBank .
B T1—1>I£oo BE e[ (1-5)As- = X] 1{W<Ar <1%j,7'>‘f',f'<T} Fo wn
= Bk (1~ ) lim ANJump ( X - v _ T)
T—5+o00 pBank (1 —4) 1 -3’
— X lim ngJump( X v - T> .
A B (1= ) 1)

. X * 5
Third case: WM<USW(1])S1TJ'
Again, two types of payoff are possible. This time the debtholder either receives everything

or the discounted recovered value (after senior debtholders share):

DbRecJumpBanks

= lim EQ |7 [pPF (1 - j) A, — X|1 F
T—+00 [ﬂ (1=J) 45 ] {17}<A+_<BB%I{:7],),T>%,+<T} 0

+ L TEIJIrloo B GT%I{X*L*<AA_<“' T>% +<T} Fo
pBank(—j ~Trm ST=7 TS (4.8)
= pBank (1 —j) hm AN Jump < m T)
— XTl_lg_loo DigJump ( ﬂBa)i:— L j)’T)
+ L T1—1>I4r-loo DigJump (5337(”:_ L ' fj T)

< pam— < gt
=i —j = BBank(1—j) = pBank(1—j)
In this case, the debtholder knows beforehand that it will always receive nothing after a

Fourth case: 7 <

sudden jump if distress costs are incurred. Thus,

DbRecJumpBankj = 0.

i . X V< X+L*
Fifth case: spamtg—z <V < 125 < gran(1—j

In this case, the debtholder knows that it will always receive the discounted recovered
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value:

DbRecJumpBank = lefoo EC [e*ﬁ [ﬂB“”k (1—4)As- — X] 1{6<A+_<%7T>%,%<T}’]:0}

Bank : : =~ v
= 1—7) lim AN —T
T (1-j) lim AN Jump <v7 - >

<

— X lim DigJ 5 T).
T Y “mp(”’l—j’ )

i . X X+L* = T
SlXth case: ﬁB‘”L’“(l—j) S ﬁB“"k(l—j) S v S 1*j
In the last case, the debtholders know that they will always recover everything, meaning

that their investment has no credit risk:

DbRecJumpBankl = L* lim E° [efﬁl{ﬂ<Ahi<

i syexta<ry| 7o

T—

; (4.10)

All limits presented can be computed using either equation (A.65)) or (A.68]) in Appendix
A4

The firm is liquidated without distress costs DbRecJumpSold

Again, there might be three types of payoffs depending on the relation between the asset
value before the jump event, the amount of senior liabilities and the size of the debt issue
considered. The intervals considered for each type of payoff are nevertheless different since

distress costs are not incurred in this case. Thus,

0,755 < Ar- < ity

) 1_]
DbRecJumpSolds =< (1 —j) Aff,ﬂs%(lfj) <Ai- < 5555?7&,” . (4.11)
L*, gord(r—gy < Az~ < 409

Once more, there is no guarantee that 65%(1—1) > % In addition it can occur that

% > ﬂsff;%(’i_n Notwithstanding, we know that BS”"d)il—j) < Bsi‘;j(?_j) < BSDML@—]‘) and

thus this time we have only three cases.

s .U X X+L*
First case: 15 < BSold(1—5) < BSeld(1_5) < +o0

64



Depending on the project value when the jump occurs, all payoffs are possible. Therefore,

DbRecJumpSoldy,
— i B | e (851 - ) As — X]1 * "
oo [( ) | { Ty <ae <t morrer
+L* lim E® | e X4 L* s o
T—+oco {W<A+_ <+OO7T>T7T<T}

X X +L*
__ nSold 4 1
—,6 (1 ])TEIEOOANJUWP (ﬁs’old (1—j)75501d (1_]')7 )

' . X X +L*
— XTI_1>1{J]£1Oo DigJump <6Sold (1 —j) pSold (1 — j)7T>
. ' X+L  _
L L* E%E&_w DigJump <BS°ld(1—j)’ U,T) .
(4.12)

Second case: BS%O—J) < % < ﬁsfflj‘ié_]) < 400

In this case, the debtholder knows beforehand that his payoff will be either the nominal

debt value or the discounted asset value after deducting the senior debtholders payoff:

DbRecJumpSold]

T—+o0

= lim EQ 677‘% Sold 11— Af_f _x]1 F
[(6 ( j)) ] {1E-f<A+*<;aS#(Llij>’T>+’+<T} 0

+L* lim E%|e "1
T—4o00 {

_XELE A <too,r>F,A<T Fo
BSold(1_;) ~“+ ’ ’ (4.13)

Sold N v X+ L
= 1-— 1 AN T
B ])T:}Eoo Jump<1_j’6Sold(1_j)’

v XA+L*
1—j7 poeld (1 —j)

. : X+L*  _
+ L H,Tlgr}&-oo DigJump (ﬂSold(lj)’u’T) .

— X lim Di
Tirilw igJump (

. X X+L* 0
Third case: FSoTE (1) < BS"“T(Ifj) < 1%] < 400

In the third case the debtholder knows that his payoff will be always equal to the nominal
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debt value. Hence,

DbRecTumpSold; = L* Tim E® [ 1o 4 o] o]
T—5 = ) ’

T—4+oco

. (4.14)
=L* lim DigJump <1 ) T)
Jj’

u,T—4o00

Again, all limits presented can be computed using equation (A.77)), (A.65) and (A.68) in
Appendix [A74]

Similar to equity, the simplifying assumption that the firm is closed after a sudden negative
jump, even if the project value is above the barrier, affects debt pricing. Again, it is not
possible to have a precise number for the impact of this assumption. However, under the
hypothesis that 1) the barrier is independent from this fact and 2) the firm is liquidated

after a second jump, no matter the project value, one can have an idea of the impact of this

assumption. Define DbRecJumpSold, as the correct debt recovered value when the project
stays above the barrier after a sudden jump and D (A) as the correct debt pricing function
for each value of A;. Approximating D (A) with D (A), which is given by equation (4.1)),
then

DbRecTumpSoldy ~ lim E[e™" D (1= 1) A ) 1ies ciormrrery] - (415)

Procceding as in equations ([2.81)) and ( -7

DbRecJumpSoldy ~ A _lim / / D((1—j)z)e (rtA)i (N(hl (z, 1))

T, u—00 dx

d
+R2“%N (ha (x,ﬂ))) dadz.

Similar to equity, to the best of my knowledge the only way to solve this integral is

numerically. The difference between DbRecJumpSoldy and DbRecJumpSoldy gives the
analyst a good idea of the pricing error that arises from the assumption that the firm closes

after the jump even if the project value stays above the barrier after the jump.
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4.2. The debt process and the cost of debt

Similarly to Section the dynamics of debt can be derived by applying It6’s lemma to the

debt function. In this case, one obtains

dD oD A 9D A2 - .
D—t = <(u5 —moa) 87AD7t + 0.5ﬁD—tai - )\th> dt + op, dW2 — jp,dMR2, (4.17)
t— t— t—
where
9D A,

7P = 94D, A
D (A,-) — min{ ,BBa”’“l{(l_jA)Arg} + ﬁSOZdl{(l_jA)Ar ~5) (1—3ja) A — X, L*}

Jp, = DA,
(4.18)
Alternatively, one can rely on measure Q definition. In this case, we have that
‘l% = (r —kp,) dt + op,dW2 — jp,dM2, (4.19)
where
kp, = Cf)‘ft. (4.20)

Using equation (4.19) one avoids the computation of the second derivative of the debt
function. For the first derivative, and using equation (4.1]), we have that

9A

oD ( 7Debt> 0Coupong n 0DbRecy

— 4.21
L=t 0A A (4.21)

where the first term in equation (4.21) is given by equation (3.42) and the second term

corresponds to

0DbRec  0DbRecHity n 8DbRecJumpo. (4.22)

0A 0A 0A

The derivative of the debt recovery hit function is
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07ﬁBank,D < X

ang;into _ (ﬂBank,L—) _ X) B%TLH}: DigHit (T) ,X < BBankl—) <X+ L* 7 (423)
L* 2 TETOO DigHit (T), 3B*s > X + L*
where

OA T—=Yoo 0A ’
(4.24)

9 Vm DigHit(T) = (w, ”> Zpe¥ (=) 1o (w, ”) O prartu (o)
g g

with the above derivatives given by equations (3.43) and (3.44).

For the derivative of the debt recovery jump function, using equation (4.4]), we have that

ODbRecJumpy  0DbRecJumpBank n dDbRecJumpSoldy

0A 0A 0A

(4.25)

Similarly to the derivatives of the equity recovery jump function, the above terms require the
computation of the derivative of the limits of the AN Jump (Z, u, T) and DigJump (Z, w, T )
functions, which are given by equations (A.78) and (A.81]) for the case where only T goes to
+00 and equations (A.82)) and (A.84) for the cases where both @ and T' go to +o00. Both are
given in Appendix [A75]

Changing the probability measure to P and summing kp, to the drift in equation (4.19)
one obtains the cost of debt, which corresponds to r + mop, + (X — )\) D,

4.3. The probability of default

The first two sections of this chapter presented formulas for computing the market price
of debt issues. This was done by summing the present value of all future coupons with
the present value of the recovered values. Both under measure Q. As further explained
in Chapter [6 the difference between the nominal promissed value and the recovered value
is interpreted as the expected loss. A common standpoint in credit risk literature is to
decompose the expected loss between the probability of default and the loss given default.
This decomposition can be very useful to understand the firm’s credit risk profile. This

section shows how the probability of default can be computed in this model under measure
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Q, so that this decomposition can be made. For someone interested in the true probability of
the firm defaulting on its obligations, one should use measure P instead. This can be easily
obtained replacing v* = us — mo — 0.502 by v* = us — 0.50% and X by A in Propositions
and It is interesting to note that in both cases the probability of default depends on risk
pricing parameters through the project value.

Before all else, it is important to define default. In this model, it is considered that the
firm defaults if the debtholders receive less than L when the firm closes its business. Notice
that default does not need to imply distress costs. In the case where the asset jumps to below
L but stays above v the firm defaults but there is no default costs. As in previous sections

we will decompose the probability of default in two components:
PD(T) = PD™(T) + PD/“™P(T), (4.26)
where PDH(T) and PD’"™P are, respectively, the probability of the firm defaulting after

the process hitting the barrier and after a sudden jump up to time 7.

4.3.1. Probability of default after hitting the barrier

Regarding PDH#(T), it is clear that this is 0 whenever v > /35% In this case, diffusion is
not able to lead the firm to default. Thus, we have that

PDHit(T) _ 0,02 ﬁBL“”k (4.27)
Q T<T,7A'>T|.7:o),17<53LW
0,0 > g
_ ?}—.BB R L (4.28)
DigHit* (T),v < BBank

where DigHit* (T) is given by equation ([2.80)).

4.3.2. Probability of default after a jump

Regarding PD7%™P(T), one should consider two cases: 1) default with distress costs; and

default without distress costs. Therefore,

PDJu’mp(T) — PDJu’mpBank(T) + PDJUMPSOM(T>. (429)

2The terms DigHit* (T) and DigJump* (Z, w, T) in equations 1}1} must then be computed accord-
ingly.
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These correspond to the cases where shareholders do not receive anything after the jump.

The formulae for the probability of default is thus straightforward if one follows the opposite

logic to Section [3.2.2)

Probability of default with distress costs

Similarly to Section [3:2:2] we may have three cases here.

i o< ——L v
First case: v < FEank (1=3) < T

PDJumpBank(T) =0Q (U < A;.— <

= DigJump* <6,

L = T
o < < -
Second case FEaE =) =V S 15

In this case, the probability of default is always 0.

. .= v ___L
Third case: ¥ < 1= < grami )

In this case the firm always defaults after incurring distress costs and thus

pp7umpBank (1) = Q (a <Ap- < %,T >7,7< T)
—J

= DigJump* (T), LJ T) )
1—j

Probability of default without distress costs

Following again Section [3:2:2] we may have two cases here.

First case: ﬁ < ﬁs%(lﬂ) < 400

v L
pp7umpSeld(r) — g (” <A < g T > A < T)
=2 FSA (T =)
v L
= DigJump* < -, . ,T> .
1—j’ gSold (1 — )
Second case: /33%(1—]) < % < 400

In this case, the firm never defaults without distress costs.
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5. External claimants, firm value and the

optimal capital structure

Chapters [3] and [ presented formulas for computing shareholders and debtholders’ claims
on the project. These are not the only agents whose payoff depends on the latter. The
government payoff increases with the value of the project. Also, capex suppliers are better
off when the firm is running than after bankruptcy. In contrast, distress costs only occur when
the firm goes bankrupt. The first section of this chapter presents formulas for computing the
value of these external claims. The second and third sections of these chapter discuss two
very important corporate finance concepts, notably, the optimal capital structure and the

cost of capital.

5.1. External claimants

Our project has three external claimants, notably, the government, capex suppliers and
distress costs. Government and capex suppliers receive a continuous stream of cash flows as
long as the firm exhists. In the case of the government, this is a variable stream (taxes). In
the case of capex suppliers, it is a fixed stream. In contrast, distress costs only occur when
it is optimal for the shareholders to close the firm. Notice that whenever the firm closes,
the project is sold for the project value at that time with the firm receiving S%°?A_soi..
Depending on whether distress costs are incurred or not (i.e. whether the project value is
lower or equal to v), the firm loses ([35"“ - ,BB‘””“) A sotv due to distress costs. As referred
in Section these correspond to costs with lawyers and value destruction caused by fire
sales and loss of intangible value. Since the project continues, in either case there is a residual

claim that does not belong to the firm; it belongs to external claimantsE] This corresponds to

IThe hypothesis that the project continues forever might look strange at first sight. However, one may
look to any project as being composed by tangible and intangible assets. While the intangible assets may
be destroyed when the firm closes, tangible assets such as land, buildings or machinery continue in the
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(1 —p° "ld) A sov. As already referred, these external claimants are the government, capex
suppliers and distress costs. The latter are still a claimant because the project buyer can
close its activity, too. By splitting (1 — ﬂs"ld) A soiv to each of these claimants we obtain the
fundamental accounting identity. In other words, the value of the project equals the value

attributed to all its claimants. The way this value is split is not of interest for us, thoughﬂ

The government, capex suppliers and distress costs claims correspond, respectively, to

T
GovClaimo = lim TEff/e_TsEQ (05 — cL — q) 1rss 755y [ Fo] ds
0
1 (5.1)
+ Tl_l}il TDebt/e_mEQ [cLl{T>Sﬁ>s}\]:o] ds + GovZ,
0

o (Payouty — Coupong — Capexg) + TP Coupong + GovZy,

CapClaimg = Capexg + G2y, (5.2)

and

DCClaimg = (B¢ — pBenk) TEIEOO [E® [e™ 0l cps5ny | Fo ]

+E© [e*r‘?’ (1-4) A%—1{5<A+_< v T>+,+<T}‘f0H +DCZ,

—j°

= (%! — gBn) lim |0DigHit (T) + (1 — j) AN Jump (u, V,T)]
T—+00 1—y

+DCZ,,
(5.3)

where Z is external claimants share on the discounted expected value of the project when

market indefinitely.
20ne possible way to split this residual claim is to consider that the government, capex and distress costs

share in the firm that buys the project equals the one in the firm under consideration. In this case one
can simply run the model once with some initial values and then substitute by the ones obtained.
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the firm closes and Gov, ¢ and DC' are the correspondent shares of Zy. Z; corresponds to

Zy = (1 - o) Tl_igloo {E® e 0l (st 25y | Fo]

+EQ |:e—7"‘f' (1 _j)Af71{5<A+,<L

—j°

T>+,+<T} ‘]:0}

+EQ |:€_’I'T (1 — j) Af?l{l%j<A+7<+OO,T>7A',7A'<T} ‘ fo] } (54)
— _ pSold\ |5 1 . . - . _ v
= (1= 5% [0 i _Digttit (@) + (- ) i ANump (5,12 7)

w,T—~+o00

+(1—75)_ lim ANJump(&,u,T)],

where lim DigHit (T) is given by equation (3.19), lim ANJump (T), %,T) is given
T—+oo T—+co J

by equation (A.65)) and, finally, 7Tlim AN Jump (%j,ﬂ, T) is given by equation (A.76)).
w, T'—+o00

5.2. Firm value and the optimal capital structure

The question of whether there is an optimal capital structure and its determination has been
at the core of corporate finance literature since the early days. What is known as the modern
theory of capital structure began with Modigliani and Miller| (1958)) paper. The latter sets the
conditions under which the capital structure is irrelevant for firm valuation. Currently, three
theories dominate bookshelves, notably, the trade-off theory, the pecking order theory and
the market-timing theory. The trade-off theory postulates that debt is able to increase the
value of the firm because it is tax deductible. However, the higher the debt level the higher
the probability of bankruptcy and distress costs. The optimal debt level is the one where
the marginal tax benefit equals the marginal cost arising from bankruptcy costs. In contrast
with the trade-off theory, the pecking order theory does not set an optimal capital structure
level. Instead, it asserts that the firm maximizes its value by choosing to finance new projects
with the cheapest source of funding with this depending critically on information asymmetry
issues. Internal funding is considered to be the cheapest form of financing, followed by debt
and then equity. Finally, market-timing theory indicates that firms may create value by
issuing equity when this is seen as overvalued and issue debt when equity is undervalued.
Again, there is no such thing as an optimal leverage ratio in this theory.

Among the referred theories, the trade-off theory is thus the only one that suggests an
optimal leverage ratio. Following this theory, we are interested in choosing what is the level of
L that maximizes firm value, which corresponds to the sum of shareholders and debtholders

claims on the project. Since the project value is invariant to the choice of L, the level of L that
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maximizes firm value is also the one that minimizes external claimants value. In addition,
since debt is issued at time 0, this is also the value of L that maximizes shareholders claim.
Notice that at time 0 shareholders hold the firm and any proccedings from issuing debt
are distributed as an extraordinary dividend. So, the higher value of debt, the higher the
dividend received. In principle, the optimal value of L can be found by differentiating equity
and debt functions in order to L, summing and equaling to zero. However, this turns out
to be particularly difficult to do because, differently from |Leland| (1994a)), we have no closed

form solution for v, which depends on L. Chapter [§] provides numerical solutions, though.

5.3. The firm process and the cost of capital

The firm value corresponds to the sum of shareholders and debtholders’ positions. Sections
and [£.2] derived the dynamics of these claims by applying Ito’s lemma to the equity and

debt functions, respectively. Doing the same for the value of the firm, one obtains

# =(r—ky,)dt+ O'vtdW;Q — thdMé@, (5.5)
a
where
0 —q
ky = — 1 5.6
v, v (5.6)
OV A
vooav (5.7)
_ (9B, 9D\ A |
“\84 94 ) v,
and
VD) = (B a5  aasn) (-0 A
Ve D (4,-) '

It is clear from the above equations that neither the drift, the volatility or the jump terms
are constants. Instead, they are functions of the underlying stochastic process. Changing
the probability measure to P and summing ky, to the drift in equation one obtains the
cost of capital, which corresponds to r + moy, + (X — )\) IV,
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6. CDS

A credit default swap (CDS) is a contract by which the seller of the CDS agrees to compensate
the buyer in case of a credit event. In return, and as long as the underlying entity does not
default, the buyer of the CDS makes a series of payments to the seller, the CDS spread. These
streams of cash flows are usually called the protection leg and the coupon leg, respectively.
All CDS contracts have a notional value. When a credit event occurs, the CDS contract must
be settled, which may happen either physically or in cash. When the CDS contract is settled
physically, the protection buyer delivers a bond to the seller in exchange for the par value of
that bond. If the protection buyer simultaneously holds the underlying debt obligation and
CDS contracts with the same notional value he is basically eliminating the credit risk from
his portfolio. In this case, CDS works as an insurance mechanism. In practice, however,
there are many more CDS contracts then bond holdings. In order to solve the problem, it is
usually organized an auction. This auction has two phases. In the first phase, those willing
to settle physically place orders for the company’s debt. The range of prices received is then
used to calculate the, so called, inside market midpoint (IMM). The IMM is used to set how
much protection sellers have to give to protection buyers on the second phase. For those
contracts settling in cash, the protection buyer must receive from the protection seller one

minus the IMM on the par value.

The CDS spread (cds) for a contract with maturity ¢°**, nominal value L°* and underly-
ing debt security L* corresponds to the coupon value that turns the coupon leg equal to the
protection leg. In this model, this coupon is assumed to be paid continuously. Thus, there

is no accrued interest. Mathematically, the coupon leg equals

thS

CouponLeg (ths,LCdS) = cds x L°% / E© [ 155,555} [Fo | ds. (6.1)
0
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Following the same steps as in the case of Couponl’, equation (6.1)) can be rewritten as

)= cds x Leds {

CouponLeg (t°*, L% = 1= N (b (9,1°%)) = RN (ha (,t°%))] — 1
In(R) v*

1 *
,,ths> +R2CLF <w7 H(R)’_v7t0ds)},
o

g (o

+F <w,

g

(6.2)

which corresponds to equation (3.13]) substituting L by L°¥, ¢ by cds and T by 4.

The protection leg value corresponds to the expected loss, which is the difference between
the promissed value L% and the recovered value (in case of default) discounted from the
default time. The recovered value depends on the seniority of the debt issue that underlies
the CDS contract. As previously, the expected loss can be computed as the sum of the
contribution from the case where the asset process hits the barrier and the case where the

sudden jump occurs. Thus, the expected loss between now and t°** corresponds to

BLY" = ELHit)" + ELJumpt" . (6.3)
The expected loss up to time t°* when the process hits the barrier equals
. pods cds Q [ —r7 [cds L tods
ELHity =L“E®[e " 1{;<peas 357y F0] — 7R60H1t0
ods ) (6.4)
= L** DigHit (") — = RecHit§"

where RecH ithds can be computed using equation 1' replacing T' by t°® while not taking
the limit.

Regarding the expected loss up to time t°4* when the sudden jump occurs, we have to

consider two cases:

ELJumpBCdS = ELJumpBank;éCds + ELJumpSoldéCds, (6.5)
where
teds cds 7Q —r7 LCdS teds
ELJumpBanky, = L°““FE [e 1{6<A+<13j,7>%,+<thS} |]-'0} I RecJumpBank;
= Lcds eds
= L DigJump <5, 1 ij,t0d5> ~Ix RecJumpBank} ! ,
(6.6)
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and

cds

L cds
\]:0} — —— RecJumpSold}, ‘

tcds o d. Q b
ELJumpSOldO =L""F e TTl{L<A+<+oo,‘r>f'7‘f'<th5} L*

1—35

U—r—+00 L*

cds  1; . v — ycds LCdS teds
=L lim DigJump 1 -, U, t - RecJumpSold;, .

(6.7)

RecJ umpBankf)Cds can be computed using equations 1) to 1} given in Sectionm

DigJump (v, 1%]" teds ) is given by equation (2.90). RecJ umpSoldf)Cds can be computed using
equations (4.12) to (4.14)) in Section 4.1.2[7 while replacing T by t°** and not taking the limit.
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7. European Call and Put options

7.1. Call options

Typically the time 0 value of a European call option on a stock corresponds to the discounted
expected value under measure Q of the maximum of zero and the stock price minus the
strike price at maturity. In this model, however, the equity process may stop before the
option maturity either because the asset process hits the barrier or due to a sudden jumpE]
In these cases, equity value corresponds to the recovered value as presented in Chapter
Mathematically,

Co (Bs, K, 8) = ™" {E? |(Bs = K) 11, oy 1 F0 ]

(7.1)
+EQ |:(EqR€CTSoLv — K) 1{K<EqRecTSolv’TSnlv<S} |f0} } >

where Fg can be computed using the F function derived in Chapter [3] replacing A by Ag.

The next two subsections calculate the two terms above.

7.1.1. The firm closes after option maturity

Consider the following function that gives the intrinsic value of a call option at its maturity:
IVC(As) = Es(As) — K. (7.2)

The call option is in the money for IV (Ag) > 0. Substituting on the first term in equation

(7.1), then

Q — rQ
E [(ES - K) 1{ES>K,TSOZU>S} ‘]:0] =F [ESI{IVO(A5)>O,T>S,'?>S} |]:0:| (7 3)

— KQ(IVC (4s) > 0,7 > 8,7 > S| Fy) .

Tt is assumed in these cases that the equity value does not change between 75°/ and S.
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Define AC as the value of Ag that solves IVC(Ag) = 0. We are basically interested in
the values of Ag > max (ﬁ,F) The first term in equation 1| can thus be rewritten as

+oo “+00 +o00
B [Bsly o, oo Fo| = / / / Es (As)Q(As € da, 7 € du,# € dit|Fo )
maz(ﬁ,AT) s s
+oo
_ / Es (As)Q (7 > S1F0) Q (As € da, 7 > S |Fo),
ma (.77)
(7.4)

where AC can be determined numerically

Using equations (2.60]) and (2.49) we end up with an expression that can be solved easily

numerically:

Q
E {Esl{zvc >0,7>5,7>S} |‘7:0}

—+oo

— S / ;\//%Es(m [n (k1 (2, 8)) = B**n (ha (, 5))] d.

max (E,AC)

(7.5)

Doing the same for the second term,
400 +oo+4oo
KQ(IV® (As) > 0,7 > 8,7 > S| Fy) = K / / / Q(As € dw, T € du, 7 € di|Fp)
ma;c(ﬁ,ﬁ) 5§
+00
=K / Q7> 85Fo)Q(As e dz, 7 > S|Fo)-
maw(i,T)
(7.6)

2Notice that we need to restrict Ag to be higher than @ because, under certain parameter values, shareholders
may still recover something when the process hits the barrier. It is thus possible that AC < .
3Since IVC ™" is a monotone function of the intrinsic value we have that TVC " (+00) = +o0.
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Using equations (2.60) and (2.49)) and then taking the integral,

KQ(IVY (Ag) > 0,7 > S,7 > S| Fo)
400 p p
—-AS 2a
=e YK / —de (h1 (z,5))+ R —dmN (ha (x,9))dx

maz (5,A°) (1)
=5 { lim N (2.5) - N (i (ma (0.37) . 5) )+

+R2 [ lim N (hy (z,8)) — N (hg (ma:c (@,F) S))} } .

T——+00

Finally, taking notice that lim N (hy (x,S5)) =1and lim N (hy(z,S)) =0,

z—+o00 z—+o0
KQ(IVE (45) > 0,7 > 8,7 > 8| Fo) = ¢ ¥ K [1 = N (hy (max (7,47),5))
—R*™N (hg (maz (6,F> ,S))} .

7.1.2. The firm closes before option maturity

(7.8)

The firm may close before option maturity either because the asset process hits the barrier

or due to a sudden jump. As a result,

EQ [(EqReCTsozv — K) 1{K<EqRecTsoer,TS°l”<S} |.7:0}

= E° [(EqRecHit, — K)1

{K<EqRecHity 1<8,+>7} |‘7:0]

+ EQ [(EqRecJump+ - K)1 ) |]-"0} .

{K<EqRecJump;,7>+,7<S

The asset process hits the barrier before option maturity

In the case where the asset process hits the barrier,

EQ [(EqRecHit, — K) 1{k<pqrectit, r<8,7>}| Fo)

_ { BC [ [(53%1% - L) - K] 1{T<S,+>r}| -7'—0} U 2> IBLB-FWKk
0,7 < BL;ﬁ’fk

B { (B 5 — L - K)Q(7 < 8,7 > 7| Fo) 0 > 525 (7.10)
0,7 < Fathe

B { (8B — L — K) DigHit*(S),v > 45
0,

-~ L+ K
v < BBtnk'

80



A sudden jump in asset value occurs before the option maturity

When the firm closes due to a sudden jump, we must distinguish two cases depending on

whether distress costs are incurred or not:

EQ [(EQRBCJU’I’I’Z]%— - K) 1{K<EqRecJump+,T>’f,‘f'<S} ’ ]:0]
= EQ [(EqReCJumpBank’F - K) 1{K<EqRecJu7anank+,T>?,?<S}| ]:O} (711)
+EQ [ (EqRecJumpSold: — K) 1{k < BgRecsumpSolds ,v>#,7<S} | Fo) -

When distress costs are incurred we may have three cases depending on the relative

position of the barrier.

L+K < v

First case: 7 < sgo— < %
— 53’””1"(1—]) 1,]

EQ [(EqRecJumpBank; — K) 1{k < pqRecumpBanks r>#,7<S} ’ Fol

il LG R B

K A < T >77<S Fo
pBank (1) = ST )

pBank(1—j)

__ RBank - Q
= 1—j)E® | As-1 K F
p ( 7) { Lt <A <% 7T>'?,+<S} 0

~(L+ K)Q( grttig; < A < {Zm > £,7 < 5| R)

= BB (1~ ) AN Jump® (gt 155, 8) = (L+ K) DigJump* (ot 15, 9)

(7.12)

IN

N 25 SR
Second case: griii—;; < U < 15

EQ [(EqRecJumpBank; — K) 1{k < pqRreciumpBanks r>#,7<s}| Fo]
= B[ [[85 (1= j) s = L) = K| Lfpen <5 osscs)| Fo

= pBank (1 - j) EQ [A+*1{5<A+,<l%j,r>%,%<$} Fo (7.13)
~(L+K)Q (7 < A5 < 15,7 > 7,7 < S| o)

= Bk (1 — j) AN Jump* (@, = S) — (L + K) DigJump* (?7» = 5) :

—J

: L < B < __LtK
Third case: 7 < — = FBank(1-7)

EQ [(EqRecJumchmk% - K) 1{K<EqRecJumpBank.,~.7T>%,%<S}’ fO] =0. (714)
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When distress costs are not incurred we may have two cases.
v L+K

First case: ey < W(l—]) < +o0
EQ [(EqReC']umpSOld% - K) 1{K<EqRecJumpSold+,T>f,%<S}| ]:O}
= EX[([B%" (1= j) As — L] = K) I{g<psota(i—j A, —L,r>t7<5} [ Fo]

= g% (1—j) E? | Azl |Fo
{Ap#ffn;»ﬂs}
L+ K

755(%(1 ) T>T, T<S‘.7:0>

L+ K
— Sold 1 — 1 1 AN *
A7 (1 -g) lim ANJump FEAI (=)’ a, S

. , L+K
— (L +K)ﬂll)lllooDZgJUmp* (ﬂSold(lj)’u’S) .

(7.15)
- (L+K)Q <A+ >

Second case: HSOLZ%&(]) < 155 < oo

EQ [(EqRecJumpSold; - K) 1{K<EqRecJumpSold.f,T>%,7°<S} | fO]
=E° [([ﬁsom (1—J)As - L] - K) 1{A+>%,r>+,+<s} ‘]:0}

__ pSold . Q N
_ﬁ (1 ‘])E |:A71{A+>1”j,7>+,+<s} |]:0:|

1
ij,7>%,%<5’]-‘o> (7.16)

S(L+K)Q<A+> .

=5 (1 —4) lim ANJump* ( Y -, U, S>
U—+oo 11—y

—(L+ K) lim DigJump* (ﬁj,u, S) )

UuU——+o00

7.2. Put options

The procedure for determining the price of put options is similar to the one for call options.

Again, we have to consider both the hypothesis that the asset process stops after and before

the option maturity:

P (E57Ka S) = e—?”S {EQ |:(K B ES) 1{ES<K,7‘SOlv>S} |]:0:|

(7.17)
+E9 [(K — EqRec sotv) ]‘{K>EqRecTSozv7TS°l”>S} |-7:0] } .
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The next two sections cover how these two terms can be computedﬁ

7.2.1. The firm closes after option maturity

Consider the following function that gives the intrinsic value of a put option at its maturity:
IVP(As) = K — Es(Ag). (7.18)

The put option is in the money when IVF(Ag) > 0. Substituting on the first term in

equation ([7.17), we obtain:

EQ [(K—Es)l }:KQ(IVP(AS)>O,T>S,%>S|f0)

sz 10 (7.19)

- B¢ [Esl{sz(As)<o,r>s,+>s} |f0} ’
The strategy to compute these terms is very similar to the one for call options. This time,
however, we have to take into account that the intrinsic value of the put option can never be
higher than K, which occurs when Fg is zero. The latter can only occur when A; approaches
the barrier or never occur depending on the barrier value. Define AP as the value of Ag that
solves IVF(Ag) = 0. Taking this into account, the first term in equation equals

KQ(IVF (As) > 0,7 > 8,7 > S| Fo)

“+o00 +o00
//Q(’f‘Gdﬁ|f0)@(ASde,TGdUU:Q)
S S

o (7.20)
max(f),A )
_K / Q¢ > S|F)Q(As € de,7 > S |Fo).
Again, using equations (2.60) and ([2.49)), then
KQ(IV” (As) > 0,7 > 5, > S| Fo)
- max(ﬁ,AP) p p (721)
_ =S el 2a
— MK / LN (I (,8)) + RN (s (2, 5))do.

v

Solv

4Similar to call options, it is assumed that the recovered value stays constant between 7 and S whenever

rSolv < g,
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This leads to
KQ(IV? (As) > 0,7 > 5,7 > S| Fo)
= e KN (hy (maz(5,47),8)) = N (s (5, 8)+ (7.22)
+R2 [N (hy (max(5,47),5)) = N (h2 (5,5))] }

The computation of the second term is very similar to equation ([7.5)):
max (B,T
X 1)z o
B Bs1, o IR = / s @) [0 (@.8)) — B (2.9))]do.

v

(7.23)

7.2.2. The firm closes before the option maturity

Again, the firm may close before option maturity either because the asset process hits the

barrier or due to a sudden jump.

EQ [(K — EqRec, sotw) 1{K>EqRecTsozmTS°l"<S} |}—0}

= E°[(K — EqRecHit,)1 |Fo] (7.24)

{K>EqRecHitr,7<S,#>7}

+ E© [(K — EqRecJump;)

1{K>Eq1?,ec,]u,mp+,r>+,+<s} I‘/—-b ] .

The asset hits the barrier before the option maturity

In the case where the asset process hits the barrier

EQ[(K — EqRecHit;) 1k EqRecHit, r<S,7>r}| Fo)
0,7 > Frie

={ EQ HK _ (5Bank@ _ L)] 1{T<57+>T}|}'0] ’ BBQM <5< ﬂLBtﬁ
EQ [K1(r<s257y| Fo] 0 < goemr
0,7 > Fri

=1{ (L+ K= pP%) Q(r < 8,7 > 7| Fo), goear <0< o
KQ(7 < 8,7 >7|F0),0 < gremr
0,0 > Fatie

=4 (L+ K — BP0) DigHit*(S), gramr <0 < Foar
K DigHit*(S),0 < gpamr

(7.25)
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A sudden jump in asset value occurs before the option maturity

When the firm closes due to a sudden jump, we must distinguish two cases depending on

whether distress costs occur or not:

E@ [(K - EqReCJumpf') 1{K>EqRec.]ump+,'r>'f,i’<S} ’ ]:0]
= EY [(K — EqRecJumpBank:) 1{ x> BqRecsumpBanks ,+>#+<5}| Fo] (7.26)
+EQ [(K — EqRecJumpSold:) 1{ k> pqreciumpSolds,+>#+<s}| Fo) -

When distress costs are incurred we may have three cases depending on the relative

position of the barrier.

First case: © S WH E

EC [(K - EqRecJumchmkf) 1{K>EqRecJumpBank+,T>€-,%<S}| ]_—O}

=EQ | [K — [Pk (1—j)A;- — L]] 1{

_ LK Fo
V<A, <BBTH,T>T,T<S}

:(L+K)Q(75<A+f <63ﬂ7{§_j),7>w<s‘fo)

pBank (1—j)

_ pRBank s Q
1 E¥ | A1 F
b (1= {5<A+,<¢,T>%,%<S} 0

= (L+ K) DigJump (5, gt §) = B2k (1= ) AN Jump® (0, 5okt 5)
(7.27)
. L+K — ol
Second case: Bf‘%(l—y) <v< fd
EQ [(K - EqReCJumpBanki’) 1{K>EqRecJumpBank.,:,‘r>f',f'<S}| fO] =0. (728)
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Third case: 7 < % < LK -

EQ [(K - EqR€CJumpBank'?) 1{K>EqRecJumpBank+,7'>-?—,%<S}| ]:0]

= E° [ [K - [5Bank (1—j)As- — LH 1{7?<A?,<13j T>#,7<S} ’ ]:0}
:(L+K)Q(T;<A%_<%,T>%,%<S}'O (7.29)
_BBank (1 — ]) ﬁ:‘Q |:A7A'71{’L7<A+7<137».,7'>7A',7A'<S}‘ ]:0]

— (L + K) DigJump"* (17, =, S) — BBank (1 _ §) AN Jump* (@, o S) .

1=3
When distress costs are not incurred we may have two cases.
: . T L+K
First case: =5 < FSola(1=5) < 400

E® [(K — EqRecJumpSold:) 1{xs pqrecsumpSolds »>#+<S} | Fo]

=FEQ | (K - [p%M (1 —j)A; — L)1 F
(K — [ (1 - j) 1) {13_7<A+7<Bsﬁz{f,j>,T>+,+<s}‘ 0

v L+ K

(L+K)Q(,<A

+ < g, T > T %<S>
= FRITEr M.

(7.30)

7 #= S gSold(1_;)

—(1—4)E% | A:1 F
(-3 {1EV<A» <LK,,T>%,%<S}| 0

v L+ K
= (L+ K) D1 * S
(L+ X) Diglump (1—j’ﬁS°ld<1—j>’>

v L+ K
_ Bsold (1 _J) ANJ'Lme* ( v + >

L—j" psetd (1—j)’

LK 5
Second case: ﬁSozdL(l,j) < 5smj(1ﬂ-) < 155 < +oo

EQ [(K - EqRecJumpSold+) 1{K>EqRecJumpSold.;,T>%,%<S} | ‘FO] = 0. (731)
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8. Numerical analysis

The previous chapters presented the valuation model and have shown how to price contingent
claims. In this chapter the model is illustrated through comparative statics. This chapter is
divided into five sections. The first three sections address corporate finance issues, notably,
the value of each claimant holding, the optimal capital structure and the cost of capital.
The fourth section turns to credit risk metrics such as the probablity of default, the recovery
rate and the term structure of credit spreads. The effect of seniority on CDS spreads is also
studied. The last section compares the option prices produced by this model with those
obtained in the Black-Scholes model.

8.1. Project valuation and stakeholders holdings

As the base case, consider the following parameter values: 69 = 400, usg = 0.04, o = 0.15,
A =001, j = 0.6, L = 1200, ¢ = 100, » = 0.01, g% = 0.4, gBk = 0.3, m = 0.4,
A=) =0.012,§ = 0.50, Gov = 0.45 and DC = 0.05 In addition, consider that 77" = 0.28,
77 = 0.28 and 1777 = 0.21. So, £7// = 0.43. Table shows the value of each claim
in the base case and for several other parameter values. Table provides key information
to understand the results obtained, notably, p, which corresponds to the optimal barrier
normalized by L, the distance to the barrier, the recovery rate at the barrier, the optimal
coupon rate and earnings before taxes (EBT) when the barrier is hit[]

Starting with the base case, the project under analysis is split 40% — 60% between firm
investors and external claimants. This is in line with the assumption of 354 = 0.4E| The

risk pricing parameters, 7 and A — ), have a very significant impact both on the project

1Several of the numbers presented as our base case are rounded numbers obtained from financial documents
of a real firm in Portugal. 85°!4 was chosen to be 0.4 after running the model once with a different value.
Distress costs in the literature are often referred as 20% of the asset value. For this reason SB"% was
considered to equal 0.3. The analyst can however take better estimates either doing more research on the
firm, looking to sector data or calibrating the model to market prices, if possible.

2EBT was computed as the operating cash flow minus the interest expense minus the fixed capex expenditure.

3This split is stable for most of the parameter values considered. The exceptions are ¢ = 50 and ¢ = 150.

87



Table 8.1.: Contingent claims on the project

Asset Equity Debt Capex Gov DC
Eur Eur % Eur % Eur % Eur %  FEur %
Base case 9259 2516 27.2 1200 13.0 2760 29.8 2618 283 166 1.8
m=0.3 14184 4775 33.7 1200 85 3746 264 4291 302 172 1.2
m=0.5 6873 1500 21.8 1200 17.5 2137 31.1 1853 27.0 183 2.7
A=A=0 11111 3192 287 1200 10.8 3387 305 3138 282 194 1.7
A—=A=0.024 7937 2021 255 1200 151 2326 29.3 2241 282 148 1.9
oc=0.1 17241 6129 355 1200 7.0 4464 259 5272 30.6 176 1.0
o=0.2 6329 1360 21.5 1200 19.0 1853 293 1737 274 179 28
A=0 13333 3977 298 1200 9.0 4166 31.2 3757 282 233 1.7
A =0.02 7092 1702 240 1200 169 2054 290 1997 282 139 2.0
j=04 10309 2914 283 1200 11.6 3101 301 2913 283 181 1.8
j=0.8 8403 2215 264 1200 14.3 2449 29.1 2362 281 177 2.1
r=0 12048 3471 288 1200 10.0 3734 31.0 3415 283 228 1.9
r=0.02 7519 1904 253 1200 16.0 2170 289 2110 281 135 1.8
8o = 300 6944 1373 19.8 1200 173 2391 344 1779 256 201 2.9
8o = 500 11574 3698 31.9 1200 104 3026 261 3498 30.2 153 1.3
ps = 0.03 7519 1767 235 1200 16.0 2320 309 2055 27.3 177 24
s = 0.05 12048 3778 314 1200 10.0 3349 27.8 3557 295 164 1.4
g =50 9259 3157 341 1200 13.0 1759 19.0 3043 329 99 1.1
q =150 9259 1984 214 1200 13.0 3532 381 2293 248 250 2.7
L = 1000 9259 2680 289 1000 10.8 2794 302 2634 284 151 1.6
L = 1400 9259 2352 254 1400 151 2723 294 2601 281 183 2.0
pBank =025 9259 2475 26.7 1200 13.0 2748 29.7 2613 282 223 24
pBamk =035 9259 2553 276 1200 13.0 2771 299 2623 283 113 1.2
"~ 023 9259 2682 290 1200 13.0 2760 29.8 2452 265 166 1.8
"~ 033 9259 2349 254 1200 13.0 2760 29.8 2785 30.1 166 1.8
P —023 9259 2543 275 1200 13.0 2768 29.9 258 27.9 162 1.8
PP — 033 99259 2484 26.8 1200 13.0 2750 29.7 2655 28.7 170 1.8
9P~ 016 9259 2667 288 1200 13.0 2760 29.8 2467 26.6 166 1.8
9P~ 026 9259 2364 255 1200 13.0 2760 29.8 2770 29.9 166 1.8

The first row corresponds to the base case where: §o = 400, us = 0.04, 0 = 0.15, A = 0.01, j = 0.6, L = 1200,
¢ =100, r = 0.01, g5 = 0.4, gBank = 0.3, m = 0.4, A\ — A = 0.012, g = 0.50, Gov = 0.45 and DC = 0.05,

P — 0.8, 1

—Debt

=0.28 and ¢t

—Corp

mentioned parameters changed.
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Table 8.2.: Endogenous barrier and the optimal coupon rate
p  A/u  Recovery rate at v (%) Coupon rate (%) EBT at v

Base case 1.89 4.08 56.7 3.0 -38
m=0.3 2.22 5.33 66.5 1.9 -48
m=0.5 1.75 3.28 52.4 4.6 -33
A=A=0 2.09 4.43 62.8 2.5 -40
A—A=0.024 175 3.79 52.4 3.6 -38
oc=0.1 2.87 5.01 86.0 1.5 -38
o=02 1.58 3.34 47.4 5.7 -49
A=0 2.35 4.74 70.4 2.1 -21

A =0.02 1.67 3.54 50.1 4.2 -52
j=04 1.99 4.31 59.8 2.4 -36
j=0.8 1.92 3.65 57.6 4.4 43
r=0 2.04 4.92 61.2 1.3 -35
r=0.02 1.80 3.47 54.1 4.7 42
8o = 300 2.01 2.88 60.2 3.7 -40
8o = 500 1.83 5.27 54.9 2.7 -37
ps = 0.03 1.78  3.52 53.4 4.0 -34
s = 0.05 2.08 4.84 62.3 2.2 44
g =50 1.20 6.45 35.9 3.0 -24

g =150 2.55 3.03 76.5 2.8 -51

L = 1000 2.11 4.39 63.3 2.7 -35
L = 1400 1.75 3.78 52.5 3.3 41
gBank — (25 1.94 3.98 48.4 3.3 -39
pBank — 035 1.85 4.18 64.7 2.7 -37
" —0.23 1.8 4.08 56.7 3.0 -38
" —0.33  1.89 4.08 56.7 3.0 -38
PP — 023 1.86 4.15 55.7 2.8 -37
72033 1.93 4.01 57.8 3.2 -39
9P — 016 1.89 4.08 56.7 3.0 -38
" — 026 1.89 4.08 56.7 3.0 -38

The first row corresponds to the base case where: §o = 400, us = 0.04, o = 0.15, A = 0.01, j = 0.6, L = 1200,
q =100, r = 0.01, g5 = 0.4, gBank = 0.3, m = 0.4, A\ — XA = 0.012, § = 0.50, Gov = 0.45 and DC = 0.05,
P = .28, 17 = 0.28 and 1°°P

mentioned parameters changed.

= 0.21. All remaining rows correspond to the base case with only the
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value and on the way it is split. A lower price of risk increases project value and equity
holders get a higher absolute and percentual claim both on the project and on the firm. The
same occurs with the government. Debt value stays the same for all parameter values since
it is sold at par. However, its stake on the project and on the firm decreases with a lower
level of risk aversion. Capex suppliers and distress costs claims increase in absolute value but
their relative stake decreases. The distance to the barrier increases substantially even though
the barrier itself increases, leading to a higher recovery rate at the barrier. As a result of a
lower probability of default and lower LG D, the coupon rate decreases. The opposite occurs
when the price of risk increases. However, all effects tend to be significantly smaller except
in the coupon rate, where the opposite occurs (i.e the effect is stronger when the price of risk
increases).

Similarly to the price of risk parameters, volatility has a very significant negative effect on
the project value. In addition, a lower volatility level leads to a higher equity and government
stake in the project. This is in sharp contrast with the original Merton model where an
increase in volatility leads to a higher equity value due to its standard call features. Again,
the distance to the barrier increases despite the barrier increasing leading to a higher recovery
rate at the barrier. This is in contrast with [Leland| (1994a) where a decrease in volatility
does not affect the asset value but shifts the barrier upwards, thus decreasing the distance to
the barrier. The coupon rate decreases when volatility decreases. The opposite occurs when
volatility increases, with a very significant asymetric effect being observed.

The effect of the jump hazard rate is similar to the volatility, though less significant in the
case considered here. It is noteworthy that the distance to the barrier decreases whenever
the jump hazard rate increases, independently of the jump risk being priced or not (the latter
is not shown in Table . It is also surprising that an increase in the jump hazard rate
actually leads to a lower distress costs claim. This occurs because the negative effect on the
project value dominates the positive effect arising from a higher default probability and a
lower recovery rate at the barrier. This does not occur when project volatility increases. In
this case, a slight increase in distress costs is observed. Multiplying the current project value
by 1 —j and comparing with the barrier value one can better understand the reason for this.
For a jump size of 0.6, it is highly probable that the jump does not push the project value
below the barrier. In this case, distress costs are not incurred.

Decreasing the jump size increases the project value but has little impact on the way this
value is split. The barrier level is unchanged, though the distance to the barrier increases
as a consequence of a higher project value. The coupon rate decreases, though the effect
is much stronger in the opposite direction. It is interesting to note that changes in j have

slighly more effect on the capex suppliers than on equity holders. This occurs because equity
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holders leave the project immediately after the jump, often with zero value due to limited
liability. In contrast, capex suppliers still hold a percentual claim on the project value after
the jump since the project continues.

The interest rate has an effect similar to the price of risk. The lower the interest rate the
higher the project value. It is remarkable that 1p.p. change in the risk free rate produces
a variation of 20% — 30% in project value. This emphasizes the importance of models with
stochastic interest rates when the project value is endogenous. The use of the current short
term interest rate, though theoretically appealing, may lead to significant overvaluation (or
undervaluation) of the project value whenever this is far from its long-term mean. The lower
the interest rate the lower the coupon rate and the higher the equity claim. This goes in
contrast with models that assume traded assets where a decrease in the risk free rate decrease
the asset drift leading to a higher probability of default and a lower equity value. Similarly
to equity, a decrease in the interest rate leads to an increase in government’s claim. However,
in contrast with changes in the price of risk, this time governments’ relative share decreases
because a reduction in the interest rate leads to a lower tax revenue on coupons. As for risk
pricing and risk parameters, the effect of increases and decreases in the interest rate is not
symmetric. This occurs besides the effect on the coupon rate being of equal size, which is in
contrast with the latter. The reason for this is that equity is intrinsically a leveraged way of
being exposed to the risk of the project. So, in addition to the coupon rate effect, we have
that the higher the interest rate the higher the advantage of not having to hold the entire
project. This mitigates the negative impact on equity value arising from positive changes in
the coupon rate, leading to a non-symmetric effect.

Negative changes in §y decrease the project value significantly, affecting especially share-
holders and the government. In the case of shareholders, their claim falls from 2516 to 1373
as consequence of a 1) decrease in project value, 2) an increase in the coupon rate and 3)
a subsequent decrease in the distance to the barrier. So, a 25% decrease in initial operat-
ing cash flow leads to a reduction of 45% in equity value. This huge reduction is closely
related with the perpetual debt assumption and the fact that the process here considered is
both Markovian and non-mean revertingﬁ This turns the equity value very sensitive to the
current operating cash flow 1eve1E| In addition, it contributes to profitability levels close to

the barrier that are likely above those observed in practiceﬂ The opposite occurs when Jg

4When the coupon rate and the barrier are kept unchanged equity value falls 42%.

5Whenever the current operating cash flow is affected by one-off effects it may be wise to adjust it. For
a model with mean reverting EBITDA see [Sarkar and Zapatero| (2003). The latter does not allow for a
trend in earnings.

6There are other factors that may justify this. Examples include stiky costs, the need to rollover debt at
a likely higher rate and debtholders potential preference for renewing loans instead of pushing the firm
to default. Regarding the first, notice that a simultaneous increase in §g and ¢ of 100 leads EBT at the
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increases. However, in contrast with changes in the price of risk and the risk free rate, an
increase in dg produced an impact of similar absolute size for the parameters considered.

The CFO growth rate, ug, has an impact symmetric to the risk free rate on the project
value, meaning that a decrease in the ps decreases the project value and decreases equity
holders stake. The effect on equity valuation is much stronger in this case, though. This
occurs besides the interest rate having a much stronger effect on the coupon rate than us.
Notice that while interest rate reductions mitigate the benefit of leverage, increases in s
amplify this benefit.

Fixed costs such as those with capex suppliers have no effect on the project value. They
have clear distributive effects, though. Equity holders and the government increase their
stake with a lower level of capex. The effect is slightly asymmetric. Capex expenditures have
a very strong impact on the barrier level. The lower the capex, the lower the barrier because
shareholders are willing to inject capital in the firm for a longer period of time hoping that
the project goes well. In consequence, the recovery rate when default effectively materializes
is the lowest observed under the tested parameter values. Besides this significant decrease in
the recovery rate, the coupon rate is unchanged, signaling that the probability of default and
the recovery effect cancel out. The opposite occurs when capex costs increase. This time,
however, the coupon rate decreases despite the distance to the barrier decreasing significantly.

Similarly to capex expenditures, firm liabilities have no impact on the project but change
each claimant holdings. A decrease in L increases equity value as interest expense declines.
Government and capex suppliers claims increase slightly as the firm is expected to stay more
years in operation. In the case of the government, notice that an increase in L leads to less
taxes on coupons but more taxes on dividends. These cancel out since i — et

Regarding distress costs, Table considers the case where these correspond to 15% (i.e.
0.40—0.25) and 5% (i.e. 0.40—0.35) of the project value. Since the firm value is around 40%
of the project value, these correspond to 37.5% and 12.5% of the firm value, respectively. In
none of the cases distress costs have a sizable impact on the contingent claims value except
for the distress costs fictive holder. This low impact should be the result of a low probability
of default on a reasonably long horizon of time. In spite of this, the coupon rate increased
0.3p.p. and the barrier value increased.

Taxation has no impact on the project value but affects the way this is distributed in an
obvious way. Except for EDebt, other taxes have no impact on the distance to the barrier,
coupon rate and recovery at the barrier. This would not be the case in a model where the

firm may lose its tax shields. Taxes on debt coupons have a slight effect on the coupon rate

barrier to fall from —38 to —63. This suggests that the model can be improved by an in depth analysis
of the expenditure profile.
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and on the barrier. The lower the tax level, the lower the coupon rate and the lower the

barrier.

The current model assumes that the firm is closed after a jump even if the project value
is higher than the barrier. As argued in Section this assumption simplifies tremendously
all computations. However, we are deliberately misestimating the recovered value in case
of a jump. In addition, whenever this misestimation affects significantly debt value, the
produced estimates on the coupon rate are also erroneous, affecting shareholders decision
over the endogenous barrier. It is thus important to have an idea of the impact that arises
from this assumption. Figures [8:I] and [B:2] show the difference between the recovered value
assumed in the model and the numeric estimates produced by equations and
divided by equity and debt values. This is done for each level of j between 0.2 and 1 in
the base case, §p = 200 and §y = 600. The barrier and the coupon rate are not reestimated
after computing the numeric estimates. Starting with the base case, surprisingly, a positive
difference is obtained for most of the considered values of j both in the case of equity and
debt. Differences are significantly higher in the case of debt. This result can be understood
with the help of Figures and which compare the intrinsic value of shareholders and
debtholders claims on the project (with and without distress costs) with the value given
by the equity and debt pricing functions derived in this thesis. This is done for several
values of ¢ under the base case (i.e. the barrier and the coupon rate used correspond to the
values obtained when dy = 400). These figures show that, despite equity and debt pricing
functions producing always values above the intrinsic value of these claimants holdings when
distressed costs are taken into account, this is not always the case when distressed costs
are not deducted. This occurs because shareholders have no possibility to close the firm
without distress costs. So, their optimal stopping time is based on SB*"*A_s., and not
(994 A _so1.. For a sufficiently high level of distress costs and A;— > 1%]., by considering that
shareholders receive Max {6SOZdATstv — L, O} instead of Max {ﬁBankATSol'u — L, 0} after a
jump, we are more than compensating the loss of their option to continue running the firm.
Regarding debtholders, after a jump, they typically hold a perpetual debt security whose risk
is not totally reflected in the coupon rate. Recovering Min {35%"* A s, L} is thus typically
better than holding the debt security. Receiving Min { BN A o1, L} is even better. When
§ = 130, the latter is worth 56% more than a risky debt security with a coupon rate of
3.01% (as set when &g = 400). This difference decreases for values of § near the barrier and
near 400. The large difference observed is closely related with the assumption that debt is
perpetual and the relatively low interest rate level assumed.

The significant differences observed in debt values for a large class of § values suggest
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Figure 8.1.: Difference in equity recovered
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that it is important to check the impact of the assumption that the firm is always closed
after a sudden jump on the coupon rate and the barrier. Unfortunetly, a closed form solution
for the equity value has not been obtained for the case where the shareholder may continue
running the firm after a sudden jump and thus it is impossible to solve for the smooth pasting
condition. Figure [8:3shows, however, that for reasonable parameter values, shareholders are
almost indifferent between recovering the intrinsic value of their claim (without subtracting
distress costs) and an option to continue running the firm. This suggests that it is reasonable
to compute the optimal barrier as previoulsy but adjusting the coupon rate to reflect the new
expected loss value. Figure shows the difference between the equity value assumed in the
model and the numeric estimates resulting from reestimating the coupon rate, the barrier
and the recovered value after a jump for each value of j. Figure shows the impact on
the barrier and the coupon rate in the base case. The impact on the barrier and the coupon
rate when dp = 200 and Jy = 600 is presented in Figures and The difference in
equity price is very small for most values of j (always smaller than 2.5% in absolute terms).
It is interesting to note that the relation between the difference in equity valuation and j
is clearly non-monotonic. In the base case, this difference is very small for low and very
high values of j and increases slighly for medium values of j. This was already expected
based on Figure Besides the small differences observed in equity valuations, Figure
points to non-negligible differences in terms of the endogenous barrier and the coupon rate
when j < 0.8 in the base case. This implies an underestimation of the probability of default
whenever j is set below O.SE] This problem only occurs for j < 0.5 when dg = 200 and it is
slightly intensified when §y; = 600.

"For the base case the new p is 1.96. Using this value, the 10-year probability of hitting the barrier under
measure P increases from 0.04% to 0.05%.
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8.2. The optimal capital structure

The previous section computed each claimant value for several parameter values. As it is
clear from Chapter[2] financial debt in this model does not affect the project value. However,
in line with the trade-off theory of capital structure, it affects the way this is distributed.
Table [8.3] presents firm value with no debt and at optimal debt level, the difference between
the two (debt benefit), the optimal debt-to-equity level, interest expense over operating cash
flow at the optimal debt level, the optimal debt level and the maximum amount of debt the
firm can issue. Depending on parameter values, debt is able to increase firm value between
5% (when 7" =023 and 17 = 0.33) and 13% (when A = 0). These values are significantly
below those reported by [Leland| (1994a)), though for a significantly lower corporate tax rate
and risk free rateﬁ It is interesting to note that lower prices of diffusion risk decrease slightly
debt capacity to create value while a lower price of jump risk do the opposite. The same
occurs with risk parameters (i.e. lower volatility reduces debt benefit but lower jump risk
increases). Also interesting, reductions in j lead to almost no change in debt benefit vis-a-vis
the base case but higher values of j produced one of the highest percentual increases in firm
value. These effects should be related with the assumption that the firm is closed even if the
project value stays above the barrier (see Figure [8.4). The lower is dg and ps the higher is
the benefit of debt, though the optimal L is substantially lower due to the lower project value

—Debt

effect. The same occurs with ¢ but this time the optimal L is higher since the project

value is not changed. The opposite occurs with ¢, SB*"*, 21 and 79°7.

Table presents two leverage measures, notably, the debt-to-equity ratio and interest
expense over operating cash flow. The latter can be seen as a proxy for the inverse of the
EBITDA interest coverage ratio. The first adjusts for changes in prices while the second is
based only on nominal figures. Debt-to-equity values at optimal debt values ranged from 3.9
(in the case of ¢ = 150) to 1.3 (when ¢ = 50 and BB%"* = 0.25). Diffusion risk aversion
showed a positive relation with optimal debt-to-equity while jump risk aversion had almost
no impact. Higher risk parameters produced slightly higher debt-to-equity levels, though L
is lower in all cases. The same occurs with r, g, BB"F, 2 and 19°F . Tn contrast, lower dg,
s and et produced higher debt-to-equity values. Interest expense share on operating cash
flow ranged from 27.6% when 2% = 0.25 to 52% when $P%"* = 0.35. Most parameters
had an impact on this metric similar to the one observed in the debt-to-equity ratio. The
only exceptions are risk and risk pricing parameters. An increase in diffusion and jump risk

aversion produced a reduction in interest expenses over operating cash flow. The same occurs

8Leland| (1994a)) refers that under reasonable parameter values debt can increase firm value by 25% to 40%.

Taking r = 6%, SB"* = 0.2, 199" = 35% and g = 0 in this model (i.e. parameters in line with those
assumed in the referred paper) debt is able to increase firm value by 18%.

97



after an increases in o and .

The last column of Table presents figures on the maximum amount of financial debt
the firm can issue at time 0. Notice that as L increases the default boundary also increases,
eventually reaching the current project value. Since it is not possible to have Ay < v, this sets
the maximum amount of debt the firm can issue. On average, the optimal level of debt tends
to be around 80% of the firm maximum debt capacity. This figure varies from a minumum
of 71% (q = 50 and BPe"* = 0.25) to a maximum of 88% (¢ = 150). As a rule of thumb, the
higher the debt benefit the lower the slack between the optimal and maximum debt levels.
Goldstein et al.|(2001)) shows that whenever it is possible to issue further debt in the future,
optimal leverage tend to be smaller. The same occurs when the firm has to roll-over its
debt (see [Leland and Toft| (1996))). In this model, however, the fact that the firm only issues
perpetual debt once is probably pushing up the optimal debt level. The small slack between
the two is a signal that the optimal debt level suggested by the model is probably too high.

Figure [B.9] shows firm value, capex, goverment and distress costs claims for several debt
values using base case parameters. Figure[8.10| provides additional information on the default
boundary and the coupon rate for each debt value. Except for very low levels of debt, firm
value increases gradually up to the optimal level. As predicted by the trade-off theory, this
increase occurs amid a decrease in the government’s claim and an increase in distress costs
claim. It is interesting to note that, in addition to the government’s claim, capex claim also
decreases. The higher the debt value the higher the default barrier and the probability the
firm being closed. Since, in this case, capex suppliers only receive a share of the project
value at the time of liquidation, they are typically worst off in case of liquidation. In contrast
with the government’s claim, which is almost monotonic on the debt level, the capex claim
rises initially before starting a gradual decrease. In addition, for very high levels of debt
(and thus project value very near the barrier), the capex claim rises again, signaling that
capex suppliers are better off with a fixed share over the recovered value on the project than
with a risky claim on a fixed stream. Notice that in the latter case, there is a non-negative
probability of a negative jump, in which case capex suppliers would receive even less. The
initial increase in the capex claim is related with the decrease in the endogenous barrier. For
low levels of debt, interest expenditure is low and the decision to either continue running
the firm or closing it is mostly determined by fixed costs like capex expenditure. In spite
of the distress costs involved, for sufficiently high levels of fixed costs, the shareholder may
be better off closing the firm at an early stage and still recover something than waiting to
see whether the project improves. When this occurs, equity value near the barrier may be
significantly above zero. When the firm starts issuing debt, shareholders optimal barrier falls

because debtholders have priority whenever the firm closes. This turns the hypothesis to
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Table 8.3.: Optimal and maximum leverage

V (no debt) V(LOP*) Debt benefit (%) D/E cL/dy (%) LOPt [Maz

Base case 3 594 3 896 8.4 2.1 37.4 2640 3320
m=0.3 5 888 6 285 6.7 1.6 40.8 3890 5220
m=0.5 2 541 2 792 9.9 2.5 35.7 1990 2420
A=A=0 4 244 4 692 10.6 2.1 38.7 3190 3990
A—\=0.024 3108 3 332 7.2 2.1 36.8 2260 2850
o=0.1 7 230 7 662 6.0 2.0 45.0 5090 6490
o=0.2 2 383 2 623 10.1 2.2 36.8 1800 2240
A=0 4 993 5 653 13.2 2.1 39.9 3830 4780

A =0.02 2 791 2 973 6.5 2.2 36.9 2030 2560
j=04 4 022 4 329 7.6 2.2 35.8 2960 3650
j=0.8 3237 3 600 11.2 2.3 41.8 2500 3060
r=0 4611 4 967 7.7 2.0 33.9 3310 4240
r=0.02 2 950 3214 9.0 2.2 39.6 2200 2 740
8o = 300 2 439 2 682 10.0 3.2 42.1 2040 2380
8o = 500 4785 5153 7.7 1.6 33.9 3200 4280
ps = 0.03 2 820 3 086 9.4 2.4 36.2 2170 2660
s = 0.05 4 882 5 238 7.3 1.8 39.3 3360 4400
g =50 4220 4 502 6.7 1.3 32.1 2570 3600

g =150 3101 3 439 10.9 3.9 44.0 2740 3100
pBank — (.25 3 548 3 770 6.3 1.3 27.6 2150 3040
pgBank — (.35 3 648 4 060 11.3 3.3 52.0 3110 3630
P —0.23 3789 3992 5.3 1.4 29.9 2360 3320
v~ 0.33 3 400 3 816 12.3 2.9 43.5 2830 3320
P — .23 3 594 4 008 11.5 2.5 40.6 2860 3430
P — .33 3 594 3 790 5.4 1.6 31.8 2330 3220
9P — 0.16 3772 3 983 5.6 1.5 30.4 2380 3320
79 — .26 3417 3 823 11.9 2.8 42.8 2810 3320

The first row corresponds to the base case where: §o = 400, us = 0.04, o = 0.15, A = 0.01, j = 0.6, L = 1200,
¢ =100, r = 0.01, gS°d = 0.4, gBank = 0.3, m = 0.4, A\ — XA = 0.012, § = 0.50, Gov = 0.45 and DC = 0.05,

P — 0.8, 1

zDebt

=0.28 and ¢t

mentioned parameters changed.

—-Corp

= 0.21. All remaining rows correspond to the base case with only the
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wait and see more tempting vis-a-vis closing the firm. However, shareholders shall receive
almost nothing in case they decide to close the firm. This should justify the lower slope in
firm value for low levels of debt. Nothing of this occurs when ¢ = 0; in this case the barrier

starts at 0 and increases as the coupon rate increases.
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Figure 8.9.: Contingent claims for several = Figure 8.10.: Default barrier and coupon
values of L. rate for several values of L.

8.3. The cost of capital

Table [B4] presents the cost of equity, debt and capital for different parameter values at time
0. The volatility, jump size and payout terms are also supplied. The cost of equity ranges
between 7.7% when o = 0.1 and 18.0% when ¢ = 0.2. Changes in project volatility produced
the highest movements in terms of cost of equity followed closely by changes in the market
price of diffusion risk. Significantly smaller differences were observed for all other parameters.
Regarding the cost of debt, values between 1.3% and 4.7% were observed. As expected, the
cost of debt is lower than the coupon rate due to the probability of default. Volatility
and its market price were also the parameters with more impact (between 1p.p. and 2p.p.).
However, this time there were other parameters that produced variations of almost the same
size. This is the case of the risk free rate and the jump hazard rate. Increases in the latter,
independently of being priced or not, lead to significant increases in debt volatility with effect

on the cost of debt. It is interesting to note that most parameters had a more significant
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impact, at least in relative terms, in the cost of debt than in the cost of equity. The most

BB and L, as a result of sizable changes in debt volatility (in the first

notable cases are j,
two cases absolute changes in debt volatility were higher than equity volatility). In the case
of an increase in j, jp moves from 0 (no imminent risk of losses resulting from a jump) to a
potential loss of 58%. In the opposite direction, changes in ¢ produced substantially higher
variations in the cost of equity than in the cost of debt.

Table presented the impact of changing the initial operating cash flow value, g, on
the required return, volatility and jump size of equity, debt and the firm. Nevertheless, d;
is a stochastic process and it is thus interesting to have a look on the impact of variations
of d; in the cost of capital. In this case, the coupon rate and the barrier are kept constant.
The results are presented in Figures [8.11], B.12]and [B.13] As expected, the cost of equity and

the cost of debt are very high for low levels of §. In these cases, small increases in 0 lead

to very significant reductions in investors required return. For very large values of ¢ (in this
case, above 600) the cost of equity and the cost of debt become very stable. The cost of
capital (i.e. the rate of return firms should use to discount their projects) is relatively stable
until very close to the barrier, ranging between 8.5% and 10%. For § < 130 we observe a
very steep rise in the cost of capital, though. Notice that the cost of capital is a weighted
average of the cost of equity and the cost of debt. In spite of these two figures increasing as ¢
decreases, debtholders own an increasing share of the firm avoiding a steeper increase in the
cost of capital until very close to the barrier. There is a point, however, where the increase
in the cost of equity is so high that the cost of capital soars.

Figures [8.12) and [B:I3] help us understand better the cost of capital behaviour by looking
at its determinants. Starting with volatility, reading the graph from the right to the left,
we observe a gradual increase as J decreases. This was already expected and resembles
what is known in the literature as a leverage effect (i.e. volatility increases as the stock
price decreases). It is interesting to note that even for 6 = 1000, oy is above o despite
the probability of incurring in distress costs being null in this case. This occurs due to the
fixed costs with capex. Only for very high levels of d, these fixed costs are diluted and
the volatility of the firm converges to the volatility of the project. This suggests that in
addition to a leverage effect, this model is able to capture a kind of operating leverage effect.
As ¢ decreases the probability of incurring distress costs increases and the already referred
operating leverage effect becomes more relevant leading to an increase in og, op and oy .
This occurs up to 6 = 212. At this point, oy starts decreasing suggesting that at this level
the fact that debtholders hold an increasing stake of the firm dominates. For values of § next

to the barrier firm volatility explodes, thoughﬂ

9When gBank = gSold ynd simultaneously ¢ = 0 the volatility of the firm returns is close to 0.15 for very
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Figure 8.11.: Cost of equity, debt and capital for different values of 4.
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Table 8.4.: Drift, volatility and jump terms of the equity, debt and firm processes

Required return Volatility Jump Payout

TEqy Do (A% OE, 0Dg Vo on jDo jVo kEo kDo kVo
Base case 126 27 94 026 0.04 019 0.89 000 0.60 60 22 6.4
m=0.3 87 1.6 7.3 0.23 002 018 078 0.00 062 33 14 4.0
m=0.5 170 43 114 030 0.06 0.19 1.00 0.08 059 9.3 33 88
A=A=0 112 23 87 025 0.03 019 082 000 060 48 1.8 54
A—A=0.024 141 32 101 027 0.06 019 097 000 061 7.2 26 74
o=0.1 77 13 6.6 015 0.01 012 075 000 062 26 1.1 3.2
o=0.2 18.0 4.7 11.8 040 0.09 025 1.00 0.16 0.60 9.7 4.1 9.3
A=0 109 1.9 88 025 0.02 020 0.77 000 059 39 15 46
A =0.02 144 39 101 028 0.07 0.19 1.00 0.05 061 83 31 8.2
j =04 11.8 21 9.0 025 0.03 019 056 000 040 53 1.7 58
j=08 130 36 9.7 027 0.05 019 1.00 058 0.85 6.4 31 6.9
r=0 108 1.5 84 025 0.04 019 079 000 059 47 09 5.1
r=0.02 144 40 104 028 0.05 019 1.00 000 061 7.3 34 76
8o = 300 151 35 9.7 032 0.06 020 1.00 007 057 64 27 6.1
8o = 500 113 24 91 023 0.03 0.18 0.82 000 062 57 19 6.5
ps = 0.03 136 33 94 028 0.06 0.19 1.00 000 059 81 29 8.0
s = 0.05 115 2.1 92 024 0.03 019 0.81 0.00 0.61 4.1 1.6 4.8
q =50 108 2.7 86 022 0.04 017 091 0.00 066 57 22 6.3
g =150 146 25 100 031 0.04 021 0.8 000 053 62 20 6.2
L = 1000 121 24 94 025 0.03 019 0.82 000 060 58 1.9 6.4
L = 1400 130 31 93 027 0.05 019 097 000 061 61 24 6.3
gBank — 025 127 3.0 95 0.27 005 020 089 0.00 060 60 24 6.4
gBank — 035 124 25 93 026 004 019 089 0.00 061 59 20 6.3
" = 0.23 125 2.7 95 026 0.04 019 0.90 0.00 0.62 6.0 22 6.1
P = 0.33 126 27 93 026 0.04 019 0.88 000 058 59 22 6.7
% —023 125 27 94 026 004 019 0.89 000 060 60 22 6.3
P —033 127 27 94 026 004 019 0.89 000 060 60 22 6.4
9P~ 016 125 27 95 026 004 019 0.89 000 062 60 22 6.5
97 — 026 12,6 27 9.3 026 004 019 088 000 058 59 22 6.2

The first row corresponds to the base case where: §o = 400, us = 0.04, 0 = 0.15, A = 0.01, j = 0.6, L = 1200,
¢ =100, r = 0.01, g5 = 0.4, gBank = 0.3, m = 0.4, A — A = 0.012, g = 0.50, Gov = 0.45 and DC = 0.05,

P — 0.8, 1

—Debt

mentioned parameters changed.

— 0.28 and 1°°™P

= 0.21. All remaining rows correspond to the base case with only the

high levels of § and decreases slightly to around 0.14 as it approaches the barrier. Volatility then explodes
next to the barrier.
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Moving to Figure [B:I3] again from the right to the left, jp increases as § decreases. For

L
values of ¢ such that A; < FET(—5)

to this point. This occurs because when 6 = 1000 debt is clearly above par (the coupon rate

(i.e. 6 < 324), jg equals 1. In contrast, jp decreases up

was defined with 6 = 400). A jump represents thus a big loss for debtholders. As § approaches
400, jp goes to 0 meaning that in case of a jump debtholders recover the full amount of their
investment. For values of § between 400 and 324, jp continues decreasing, reaching negative
numbers, which means that debtholders are better off after the jump. This occurs because
debtholders recover the full amount invested despite debt being below par value. jp starts
then increasing as ¢ decreases because debtholders recover gradually less after a jump. When
A; falls below ﬁ (i.e. § < 245), jp increases drastically because at this level a jump leads
to default costs. jp continues then increasing gradually up to 0.6. Regarding jy, this starts
at broadly the same level as jg. However, similarly to jp, jy decreases gradually, though
at a lower pace. For § < 400 we have that j, < 0.6, meaning that external claimants are
proportionaly more afected by the jump than the firm. This changes when § < 130 because
distress costs become a reality after a jump. jy then continues decreasing reaching 0.6 near

the barrier.
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Figure 8.13.: Jump size of equity, debt and firm returns for different values of ¢.
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8.4. Credit risk

This thesis presented three credit risk metrics, notably, the probability of default, the recovery
rate and the CDS spread. These are computed in this section. Starting with the probability
of default, this is presented under measure P in Table Measure Q is later analysed when
the lights turn to credit default swaps. As previously argued, PP is the correct probability
measure for someone interested in the true probability of a debtor defaulting. The latter
is decomposed between the probability of defaulting after hitting the barrier and after a
jump. Except for the case where o = 0.2, the probability of the process hitting the barrier
is always very near zero in the first 5 years. Even in the 10-year maturity, only ¢ = 0.2 and
do = 300 produce cumulative default probabilities above 0.5%@ This was already expected
since we are assuming a constant debt level and a positive CFO growth rate. The fact
that shareholders are the ones who chose the default point may also help explain the results
obtained, though. Figure [8.14] presents the coupon rate, the probability of default and the
probability of default after hitting the barrier for several values of p. The optimal barrier
is indicated with a small circle. The figure shows that shareholders’ optimal decision is to
set the barrier at a low level despite paying a significantly higher coupon rate in exchange
(almost the maximum level in the figure). Why is the barrier set so low? Figure helps
answering this question. The latter shows equity value as a function of p before and after debt
issuance. In contrast with [Leland| (1994b)), choosing p = 1.89 does not maximize equity value
ex-ante but is the optimal default point based on the smooth pasting conditionE Suppose
shareholders convince debtholders that they will leave the firm whenever ¢ reaches 108 (i.e
at the level that maximizes the equity function ex-ante, which is p = 2.08). By doing this
the coupon rate falls slightly from 3.01 to 2.96. It occurs that when § approaches the agreed
value it is optimal for the shareholder not to respect his commitment and wait a little bit
more. Figure shows that the p value that maximizes equity value when ¢ is close to
108 is extremely close to the initial solution to the smooth pasting condition (i.e. p = 1.89).
As § decreases they will become equal. The same occurs with any level of p different from

1.89. Debtholders know this. Thus, unless they have a mechanism to force shareholders to

10Moody’s attributes a rating of Ba2 to the firm that served as inspiration for the base case. Their report
acknowledges the firm strong profitability margin and strong cash flow generation but it is also referred
that the firm faces risks coming from low product diversification and parent company reliance on a constant
dividend flow. Standard and Poor’s emphasizes the same issues. On a stand-alone basis the firm credit
profile is seen as BB+ but the rating is capped at BB based on the overall group credit profile. No
reference has been found regarding the effect of country based rating caps, which suggests that these are
not binding. Notice that the type of risks faced by this firm are probably better captured by a jump term
than a diffusion term.

HThis is justified by the introduction of fixed costs. Despite the value of p that maximizes equity value being
higher than the one that comes out from the smooth pasting condition, this does not imply that fixed
costs lead to a decrease in the barrier. Table showed exactly the opposite.
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abandon the firm whenever the pre-agreed level has been reached, they will charge a coupon
rate in line with the smooth pasting condition. In the real world, these mechanisms are often
introduced through debt covenants in the contracts. In this model, the latter are able to
reduce the firm interest burden but they are not optimal to shareholders. However, this may

not be the case in a model where agency costs are considered.

The low probability of default after hitting the barrier contrasts with the probability of
default after a jump. Even for the 6-month maturity, a non-annualized default probability
near 0.5% is observed in several cases. A and j are the parameters with stronger impact.
Notice that in the base case with A = 0.01 and j = 0.6 the firm is able to resist a negative
jump at time 0. When X increases the project value decreases substantially turning the firm
vulnerable to a jump. When j = 0.8 the project decreases a little but the high jump size
turns default almost certain after a jump. In addition to these, several other parameters
lead to sizable variations in the probability of default. In particular, it is interesting to note
the strong effect of risk aversion even under measure P. This occurs because the higher
the risk aversion the lower the project value and the lower the distance to L. As a result,
when m = 0.5 the 10-year cumulative probability of the jump leading to default increases
more than 3p.p.. Summing the terms relative to the probability of hitting the barrier and
the probability of the jump leading to default, one obtains the total probability of default,
which is clearly dominated by the latter. This may not be true, however, throughout the firm
lifetime as illustrated in Figure [8.16] which shows the probability of default after hitting the
barrier and after a jump in the base case for several values of . For values of § below 180
the probability of hitting the barrier in 10 years is higher than the probability of defaulting

after a jump.

Credit default swaps and recovery rates are presented in Table together with the
probability of default under measure Qm For all parameters considered, an upward shape
term structure is observed as a result of lower recovered values and a higher probability of

hitting the barrier for longer maturities. For most parameter values, the spreads start at 0

12 As expected, the probabilities of default are substantially higher in this case. Even so, the probability of
the process hitting the barrier is very close to zero up to 5-years. The only exception is again o = 0.2.
The 10-year figures are substantially higher, reaching values above 5% in the case of m = 0.5, §o = 300,
q = 150 and above 20% in the case that o = 0.2

13The reader might fell tempted to compare the 10-year CDS spread with the coupon rate presented in Table
[B2] Notice that the coupon rate presented is the value that the firm spends with coupon payments. This
includes the risk free rate and the associated spread received by the debtholder but also taxes that must
be then deducted to compute debtholders claim on the project. This contrasts with C' DS spreads, which
are assumed to be free of taxation. So, in order to compare the values obtained in Table @ with those

obtained in Table one needs to add the interest rate and then divide by 1 — et
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Table 8.5.: Probability of default (PD) - Measure P
PD P-measure Hit (%) PD P-measure Jump (%)

Time 0.5 1 2 5 10 0.5 1 2 ) 10

Base case 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 048 1.17
m=0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10
m = 0.5 0.00 0.00 0.00 0.01 021 043 0.78 1.37 278 4.54
A-A=0 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 012 0.43
A—A=0024 000 0.00 000 0.00 0.07 0.09 022 051 134 252
o=0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0c=0.2 0.00 0.00 0.00 036 278 047 088 1.59 3.35 5.68
A=0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

A =0.02 0.00 0.00 0.00 0.00 0.11 0.77 137 240 4.86 7.88
j=04 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.06
j=038 0.00 0.00 0.00 0.00 0.10 0.50 1.00 1.98 4.74 8.52
=20 0.00 0.00 0.00 0.00 0.010 0.00 0.00 0.00 0.06 0.27

r =0.02 0.00 0.00 0.00 0.00 0.14 022 043 0.83 187 3.25
do = 300 0.00 0.00 0.00 0.04 053 042 0.75 1.32 2.68 4.39
do = 500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.34
ns = 0.03 0.00 0.00 0.00 0.01 024 023 045 0.88 2.05 3.74
ns = 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.19
g =50 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.10 048 1.17
q =150 0.00 0.00 0.00 0.02 0.38 0.00 0.03 0.13 0.55 1.28
L = 1000 0.00 0.00 0.00 0.00 0.02 0.00 0.00 001 0.12 0.43
L = 1400 0.00 0.00 0.00 0.00 0.07r 0.09 022 051 134 2.52
pBank = 0.25 0.00 0.00 0.00 0.00 0.05 0.00 0.02 0.10 048 1.17

pBank = 0.35 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.10 048 1.17

7" =023 000 0.00 000 000 004 000 002 010 048 1.17

2 ~0.33  0.00 0.00 0.00 000 0.04 0.00 0.02 0.10 048 1.17
—Debt

=023 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.10 048 1.17
2" — 033 0.00 0.00 000 0.00 0.05 000 0.02 010 048 1.17
9P — 016 0.00 0.00 0.00 0.00 0.04 0.00 0.02 010 048 1.17
—Corp

t =026 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 048 1.17

The first row corresponds to the base case where: §o = 400, us = 0.04, o = 0.15, A = 0.01, j = 0.6, L = 1200,
g =100, r = 0.01, g5°4 = 0.4, gBank = 0.3, m = 0.4, A\ — XA = 0.012, § = 0.50, Gov = 0.45 and DC = 0.05,
P — 0,28, 17 = 0.28 and T°°"P

mentioned parameters changed.

= 0.21. All remaining rows correspond to the base case with only the
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and increase gradually. The only exception is j = 0.8. In this case the 6-month spread is
already 128 b.p. rising only to 145 b.p. in the 10-year maturity. The model did not generate
an inverted term structure in any case. This is not completely surprising since an inverted
term structure signals that default is highly probable in a short period of time. But when
this occurs the firm is not able to issue debt. This does not mean thus that the model is not
able to generate all types of term structures during the C DS lifetime. Figure shows the
term structure of C'D.S spreads in the base case for different values of § that may be observed
after time 0. For values of § close to the barrier (i.e. § = 98) the CDS term structure becomes
inverted.

Table procceeds the analysis by looking to the term structure of a C'DS contract that
grants protection over the firms’ subordinated debt, which is assumed to be 700. So, senior
debt amounts to 500. As expected, C'DS spreads increase significantly as a consequence of a
lower recovered value. This pattern is more pronounced for medium-long maturities. In the
case of short term maturities the difference is smaller as the recovery rate is very similar in
most cases. The most relevant exception is j = 0.8, which produces a recovery rate of only
2% that is in contrast with 42% in the non-subordinated case for the 6-month maturity. This
is the only case under analysis that produces a slightly inverted (humped) term structure
of spreads (though it rises again in the later years). Increasing capex to 150 has a strong
impact on the recovery rate. This already occurred in Table [B:6] though at a lesser extent.
The fact that the barrier value, in this case, is the second highest considered suggests that
even though the probability of hitting the barrier is low, the probability of the jump leading
the firm to distress costs is higher, resulting in a lower recovered value. Notice, however,
that the CDS spread is near 0 due to the low probability of default. ¢ = 0.1 and o = 0.2
also present significant differences vis-a-vis the no-subordination case at the 6-month horizon
time, though for different reasons. While for ¢ = 0.2 this should be caused by the higher
probability of reaching lower asset values, in the case of ¢ = 0.1 this should be motivated by
the same reason that justifies the strong capex effect. In this case, despite the barrier being
the highest in this study, the lower volatility leads to a recovery value higher as compared to

the capex case.
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Figure 8.14.: Coupon rate and the cumulative 10-year probability of default under measure
P for different values of p.
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Figure 8.15.: Equity value for different values of p and § before and after debt issuance.
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Figure 8.16.: Probability of default after hitting the barrier and after a jump for different
values of ¢ in the base case (10-year cumulative).
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Figure 8.17.: CDS term structure for different values of 6 when the barrier and the coupon
rate are set in the base case.

110



‘poSueyd siojeowreied pouorjuLaW Y1 AJUO [IIM 9SBD 9sk( 9} 01 puodsariod

duopt PUB 8T0 = o 2 °8°0 = ,,,1 ‘G0°'0 = Od PU® GF'0 = 209 ‘09°0 = b Z10°0 = X — X 70 = U ‘€°0 = yungt

P00 = progd ‘T0°0 =+ ‘00T =D ‘002T =T ‘90 = L7000 =YX ‘ST'0 =2 ‘F0°0 = 97 ‘00 = 09 :0I0YM osed 9seq oY) 0} SPUOdsolIod MOI JSIY Oy ],

smol Sururewal [y 1g°0 =

0€'0 010 ¢o0 100 000 ¥IL SI8 L06 S¥6 996 888 ¥9¢ 80 600 T00 9I'0= g,0,¢

0€'0 010 €00 100 000 ¥IL SI8 L06 S¥6 996 L88 ¥9¢ 80 600 100 9¢0= g,,t

o 1ro ¢oo 100 000 60L €18 906 ¥¥6 996 €06 99¢ S0 600 100 €€0= .7
6¢0 00 ¢00 T00 000 ZLTL ¢e8 606 976 996 GL'8  ¥9¢ 80 600 100 €60= .7
0¢'0 0T'0 <00 7100 000 ¥IL 8I8 L06 G¥6 996 L&8 ¥9¢ 80 600 100 €C0= gt
0€0 010 <00 TO0 000 ¥IL SI8 L06 G776 996 88 ¥9¢ 80 600 T00 €co=,,*

ad-
620 600 200 100 000 €G. €8 TI6 S¥6 996 1.8 F9CT SF0 600 100 S€0= yuogd
9¢'0 ¢TI0 €00 T00 000 999 T6L 668 €¥6 996 806 G9C SF0 600 T00 ST0= yurgt
V0 g0 010 S00 ¢00 TO0L L08 068 LT6 166 eS€l ¢S 69T 890 G20  00FI =17
LT0 700 000 000 000 GTL TT8 T6 996 LL6 CI'S T0T 0O 000 000 0001 =17
090 €20 600 €00 100 L69 TL9 00L €TL S€. L6E€l ¢g€ L0 ¢TI0 100 0gT =D
60 800 €00 000 000 T8L €98 ¥I6 SF6 996 €L €9C 870 600 100 0g ="
800 TO0 000 000 000 LFL 6€8 8T6 €96 08 I8¢ 670 €00 000 000  G0'0=*"
FL0 €60 AT0 010 L00 G99 SLL VLS LT6 €¥6 8981 169 <¢C CCl 890 €00 =1
IT0 200 000 000 000 6'G. 6¢8 €€ 196 846 L6€ 6.0 F00 000 000  00G =00
€60 190 €€0 90 020 G§99 €7L VIS €98 L68 TLTC 9Y8 The T8 L60  00€ =0
660 620 ST'0 OT0 900 90L S6L 6.8 616 ¥¥6 €91 679 ¢Cre ST 190  200=4
gro To'0 000 000 000 ¥IL T'€8 LT6 €96 08 ¢9¢ €90 T00 000 000 0=
¢p'T T€T 62T STT STT 0% €T 0T 6T 0T 90CC €F0T 0€F STT 60T g0="_
L00 000 000 000 000 STL 698 676 €6 €66 1¢¢ II°0 000 000 000 po="_
ITT 0L0 SV0 €0 0£0 ¥0.L 68, ¥98 868 616 T168C GGFT 0£9 9¢€ 08T  T00=Y
200 000 000 000 000 8¢, LIL ¥IL '€ 9.6 SL0 000 000 000 000 0=Y
0T 00T SPO TFO0 LE0 €9¢ FT9 LGL €08 LTS PILE 18Tl 9%€ 20T 90T z0=0
000 000 000 000 000 S6. 0TS 0FS 8FS €¢8 800 000 000 000 000 10=20
690 €€0 SI'0 800 ¥O0 €TL 808 168 876 1'G6 OFST S8LL 89C FOT S€0 F200=Y-—Y
010 €00 000 000 000 S0L 0T 816 LG LL6 66C Sy0 €00 000 000 O0=Y-Y
90T T¢0 T€0 ¥20 120 T€9 LEL €€8 L8 968 9¢FC 168 T19€ 06T 00T g0 =w
700 000 000 000 000 LF¥L T€8 9T L96 ¥8 02T €0 000 000 000  €0=uw
060 010 _g00 100 000 PTL 8T8 L06 GF6 996 838  F9Z SF0 6000 100  9sed oseq
o0 ¢ I g0 0 ¢ ¢ I g0 01 g 4 T <0 our,

(%) peaxds §aD (%) @9eI A10A009Y (%) © omsesN - Ad
sejel £10A0091 pue ((IJ) Nneep jo seniqeqoid ‘speards gD :'9°| 9[qEL

111



Table 8.7.: CDS spreads and recovery rates - Subordinated debt
Recovery rate (%) CDS spread (%)

Time 0.5 1 2 ) 10 0.5 1 2 5 10

Base case 94.2 905 84.1 689 51.7 0.00 0.01 0.04 0.18 0.50
m=0.3 97.3 944 871 70.7 56.7 0.00 0.00 0.00 0.01 0.06
m = 0.5 822 784 714 556 385 036 042 053 086 1.77
A-A=0 96.0 925 852 679 498 0.00 0.00 0.00 0.03 0.17
A—A=0024 91.6 87.6 81.3 674 522 0.06 0.13 0.25 056 1.09
c=0.1 75.1 743 729 69.5 65.7 0.00 0.00 0.00 0.00 0.00
0c=0.2 70.4 66.2 58.8 374 256 063 0.70 082 1.66 3.45

A=0 96.0 88.6 51.0 515 53.5 0.00 0.00 0.00 0.00 0.04
A=0.02 86.1 826 76.8 642 508 051 060 0.77 1.19 1.85
j=04 98.2 953 913 756 51.6 0.00 0.00 0.00 0.01 0.13
j=038 24 34 50 83 136 215 214 211 207 224

r=0 96.5 935 875 71.0 51.5 0.00 0.00 0.00 0.04 0.20

r =0.02 904 86.1 793 652 507 011 0.17 0.26 0.50 0.99
dp = 300 82.3 765 681 53.0 420 035 043 0.56 087 1.57
do = 500 96.3 93.3 885 758 593 0.00 0.00 0.00 0.04 0.19
s = 0.03 90.2 85.7 785 624 44.0 0.12 0.18 0.28 0.56 1.23
s = 0.05 96.5 936 876 724 569 0.00 0.00 0.00 0.03 0.14

q =50 942 906 853 748 63.5 0.00 0.01 0.04 0.14 0.32

q =150 95.2 525 48.7 438 485 0.01 0.06 0.15 0.39 0.86

L =1000 95.3 91.2 823 626 45.1 0.00 0.00 0.01 0.08 0.33
L = 1400 924 88.7 829 70.0 54.0 0.04 0.08 0.15 034 0.73
pBank = 0.25 94.2 90.3 82.7 64.8 44.9 0.00 0.01 0.04 0.20 0.59
pBank =035 942 90.6 848 723 580 0.00 0.01 0.04 0.16 0.43

7" =023 942 905 841 689 517 000 001 004 0.18 0.50

7 — 0.33 94.2 90.5 84.1 689 51.7 0.00 0.01 0.04 0.18 0.50
—Debt

{ =0.23 942 905 84.3 69.7 524 0.00 0.01 0.04 0.17 0.49
PP _ 033 942 904 837 681 51.0 0.00 0.01 004 018 0.52
9P — 016 942 905 841 689 51.7 0.00 001 004 0.18 0.50
-Corp

t =026 942 905 84.1 689 51.7 0.00 0.01 0.04 0.18 0.50

The first row corresponds to the base case where: §o = 400, us = 0.04, 0 = 0.15, A = 0.01, j = 0.6, L = 1200,
q =100, r = 0.01, g5°ld = 0.4, gBank = 0.3, m = 0.4, A\ — XA = 0.012, § = 0.50, Gov = 0.45 and DC = 0.05,
P = .28, 17 = 0.28 and 1°°P

mentioned parameters changed.

= 0.21. All remaining rows correspond to the base case with only the
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8.5. Option prices

The final section of this chapter illustrates the option pricing model presented in Chapter [7]
by comparing it with the standard Black-Scholes option pricing model with dividends. In
order to compare the two models one needs to determine the dividend yield to use in the
Black-Scholes model. As suggested by Toft and Prucyk| (1997)), this can be done by solving
the equation Fy = e("~9 E, where Fy is the forward price of equity, which corresponds to
Fy=¢eTC0y(K = O)E Figure and plot call and put option values as functions of
the equity value for this model and for the Black-Scholes model. In both cases, the model
here presented leads to slightly higher option values. These differences are higher in the
case of put options. In the case of the call option, the positive difference is caused by the
higher drift in the risk neutral measure due to the jump. This can be seen in equation
replacing clM,éQ by dN;@ — . So, under the risk neutral measure equity continuously generates
a return of \jg to compensate for a potential loss due to the jump. For higher equity values
this is partially offset by a slight reduction in volatility as illustrated in Figure 812 and by
the possibility of the jump itself. In the case of the put option, the possibility of a jump
increases significantly the option value, especially in the case of far out of the money options.
In addition, as equity falls equity volatility rises leading to an increase in option value. So,
the leverage effect has a negative impact on call option values and a positive impact on
put options. The latter tend to be stronger given the non-linear relation between op and
0¢. These effects are partially offset by the already referred higher drift, which reduces the
probability of the put option ending up in the money.

Figures and compare implied volatilies obtained from 1-year call options for the
base case and the usual parameter changes except for changes in f5%"*, fDiv, P and TP
which had a very low impact on option prices. A clear volatility skew is observed in the base
case with implied volatilities ranging from 0.37 (for a strike price of 60% of equity value) and
0.26 (for a strike price of 140% of equity value). This skew was observed for all parameters
tested, though with different levels of intensity. In the case of call implied volatilities, in none
of the cases the model presented a volatility smirk. For put implied volatilities, a volatility

smirk is observed for j = 0.8]19

14 The dividend yield computed in this way is different from kg with the latter only taking into account the
current value of the state variable §;. Also notice that, in contrast with the Black-Scholes model, the
dividend yield is not a constant fraction of equity value. The latter can be either negative or positive,
exhibiting a significant level of volatility when the project value is near the barrier.

15Notice that, in this model, put implied volatilities do not match call implied volatilities because the put-call
parity does not hold with uncertain dividends. The difference is almost O for the base case, m = 0.3,
A=A=0,0=01,A=0,j=04,r =0, do = 500, us = 0.05 ¢ = 50 and L = 1000. For all other
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All parameters except § and ugs presented a positive relation with implied volatility. For
the cases under analysis, ¢ and A\ produced the largest variations while L produced the
smallest. The impact on implied volatility is asymmetric in the cases of o, A, j, d, us and q.
Except for j, this asymetric impact is only clear for far out of the money options. In the cases
of A and j, the impact is stronger for far out of the money options. The opposite occurs in
the cases of o, d, us and ¢. It is interesting to note that for A = 0 the jump effect disappears

and we are left only with the leverage effect, which is small for the values considered.

parameter values tested, put implied volatilities were always higher with differences ranging from 0.1p.p.
(in the case of ¢ = 150) and 4.3p.p. (in the case of j = 0.8) for far in the money put options.
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Figure 8.20.: Impact of changes in 7, A — A, o, A, j and r on call implicit volatilities, for
different levels of moneyness.
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9. Conclusion

This thesis presented a comprehensive model of contingent claims where the state variable is
the operating cash flow generated by the firm. The proposed model adds two elements to the
static version of (Goldstein et al.| (2001)) model. First, a fixed cost parameter is introduced
allowing the application of the model even for firms with negative EBIT. Second, negative
jumps of fixed size are introduced leading to more realistic short term spreads. Pricing
formulas for equity, debt (with any seniority level), CDS and European-style options were
then derived under the assumption that the firm is closed whenever the project value hits
a constant lower boundary or at the time of the first jump, whatever occurs first. To the
best of my knowledge, there are very few papers where all these claims are priced in a
single setting. None of them considers jumps. In addition, in none of these papers the asset
value is endogenous. Though this has not been explored in this thesis, pricing all contingent
claims under the same model opens new possibilities for capital structure arbitrage, a popular
strategy among hedge funds. The availability of closed-form formulas for all the referred
instruments (quasi-closed form in the case of options) and the fact that the state variable is
not a latent process (as in most contingent claims models) suggest that this model may be
easier to calibrate than several other models in the literature. This has not been attempted,
though.

This thesis also addressed several corporate finance and credit risk issues, such as the
determination of the optimal capital structure, the cost of capital, the probability of default
and the loss-given-default. The numerical analysis suggests that, similarly to several other
models, the one proposed in this thesis leads to leverage ratios above those observed in
practice. This result may be related with the assumption of constant perpetual debt. The
literature has pointed that leverage ratios tend to be significantly closer to those observed
in reality whenever the possibility of issuing further debt in the future is introduced. The
same occurs when debt has to be rollover. The fact that debt does not need to be rolled over
also helps justifying the low probability of hitting the barrier observed for the case studied.
Finally, the capacity of the model to capture the impact of both financial and operating
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leverage on the cost of capital was emphasized.

To conclude, in addition to relaxing the constant perpetual debt assumption, there are
at least three issues that require further research. First, the model here presented assumes
that the risk free rate is constant. This is an over-simplifying assumption in a model where
the project value of the firm is treated as an endogenous variable. In addition, this precludes
the application of the model to the valuation of financial firms. In particular, in the case of
banks, higher interest rates are associated with the possibility of banks funding their assets
at below the risk free rate through deposits. This is something that tends not to be possible
when interest rates are at or near the lower bound, significantly affecting their equity value
and shareholders willingess to inject capital. Second, the model assumes that the project
cash flows follow a geometric Brownian motion. In practice, operating cash flows in several
sectors exhibit some degree of mean reversion as result of business cycles. To the best of my
knowledge, there is no published paper considering simultaneously the possibility of mean-
reversion and a trend in cash flows. Finally, throughout this thesis agency problems and
information issues are ignored. In a world where the process characteristics are not observed

and can be changed by managers in secret, these may take an important role.
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A. Appendix

A.1. The integro-differential equation

This appendix complements the derivation of equations (2.23) and (2.24) of Chapter
Regarding equation (2.23), substituting the optimal weights given in equation (2.20]) in

equation (2.21) one obtains

(0Gjs — 0sjc) aa+ (0sja = 0ajs) ac + (0ajc — 0aja) as _ . (A1)
0Gjs — 0sjc +0aja —0ajs +0sja—o0aja

Passing the denominator from the left-hand side to the right-hand side, and then collecting

the terms,
(0cjs —osja) (@a —1) = = (05ja — 0ajs) (ag — 1) = (0ajc —oaja) (as —7). (A.2)

Factoring out 04 and ja4,

aAfT:jAO—G(OZ87r)7O—S(OZG7T) 7O-Ajg(0£5*7")*j5(ag*7‘) (A.3)
0Gjs —0sjG oGjs — 0sJG
Rearranging,
A — i oglas—r)—os(ag—r) r . .
AT JAT oGis—asia _ _Jelas—r)—js(ag =) (A.4)

oA ogjs — 0sja

Doing the same for the derivative contracts, one obtains similar equations:

. og(aa—r)—ca(as—r) . .
co—JGHETERE r jiaan)iales=) 0

fofe] 0SJA — OAjs
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and

. (og(aa—r)—ca(ag—r)) . ]
as —Js < gch—JijGG " — _]G (aA — T) —Ja (QG — T) (A 6)

os 0GjA — 0Aja

It is possible to show that the terms multiplying the jump terms are equal for the three

equations. Taking equations (A.4]) and (A.5) as example.

og(as —r)—0s(ag —r) _ os(aa—1)—0a(as—7)
oGjs — 0sja 0sjA —0Aajs

. (A7)

Moving the denominators to the opposite side,

o (s —71) — 05 (ag —7)| (05ja — 0ajs) = [05 (aa — 1) —0a(as —7)] (0cjs — osja)-
(A.8)

Applying the distributive rule,

0Gosja(as —r) —osja(ag — 1) — 0goajs (as — 1) + osoajs (ag — 1) (A.9)
= 050Gjs (aa — 1) — 0a0cjs (as — 1) — 0%jc (aa — 1) + oa0sjc (as — 1),

and collecting alike terms,

(as — 1) [0cosja — oaosjc) = (aa — 1) [os0cis — osja] + (ag — 1) [08ja — osoajs] -

(A.10)
Canceling out og and rearranging the order,
(a —7)(0gjs — 0gjc) = (as — 1) (0cja —oaja) — (ag — 1) (0gja —oajs). (A1)
Dividing by oagjs — 0sjc + 0ajc — 0ajs + 0sja — 0gja, one obtains
(a4 —1m)wa = (ag —r)ws — (ag — r) we. (A.12)

Rearranging and noting that w4 + wg + wg = 1, one arrives at equation ([2.21)), which is our
no arbitrage condition. So, the terms multiplying j4 and js are equal as long as there are

no arbitrage opportunities.

In addition, it is also possible to prove that the right-hand side of equations (A.4)), (A.5)
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and (A.6]) is also equal. Taking again the first two as example, we want to prove that

_Jalas—r)—js(ag—r)  js(aa—r)—jalas—r)
oGjs — osja 08jA —0AjJs

. (A.13)

The above equation is very similar to equation (A.7). Moving the denominators to the

opposite side, applying the distributive rule and collecting the terms one obtains:

(as — 1) [ocisia — oajsic] = (aa — 1) [jioe — jsosic] + (ag — 1) [jsogias — jioa] .
(A.14)

Canceling out js and rearranging, one arrives at equation (A.11)), which it is known to be
true as long as there are no arbitrage opportunities. This ends the proof of equation (2.23)).

Regarding equation ([2.24), and replacing ag, og and jg as given by equations (2.15]),
(2.16)) and (2.17) on the first equation in (2.23)), then

_ GitaaAGy+0503A%Gee _ G(a=nA,-)-G(A-)| .
aA,jA)\,T G G(At_)
- oA AG,
€

A
G+ aaAG, + 0504 A%G,, — NG (1 —j) A=) — G(A-)] —rG
- oA AG, '

(A.15)
Multiplying and dividing the left-hand side by AG,,

aaAGy — jANAG, — rAG, = Gy + asAGy + 0503 A2Gaw — NG (1 — §) A=) — G (A,-)]

—rG.
(A.16)
Eliminating a4 AG, and factoring out one obtains equation (2.24)).
In the case where A; is not traded, one has
_— Gy + aaAG, +0.504A%G,, — A [G (1 —j)A-) — G(A-)] — rG. (A17)

oA AG,
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Rearranging

MoaAG, = Gy + asAG, +0.505A%Grp — NG (1 —j) A ) — G (A)] —rG.  (A.18)

Substituting a4 by ps and factoring out, one obtains equation ([2.34)).

A.2. The martingale approach

As stated in Proposition [T} under measure Q the discounted value of any asset payoff is a
martingale. Thus, following the martingale approach, one just has to change the probability
measure so that that the discounted value of A; becomes a martingale. This can be done

using the Girsanov theorem for jump-diffusion processes presented below.

Proposition 10. Girsanov theorem for jump- difusion processes. Consider the filtered prob-

ability space (Q,F,P, F) and assume that {Ny,t > 0} is an optional counting process with

predictable intensity A;. Assume furthermore {Wy,t > 0} is a standard (F,P)-Wiener pro-

cess. Let hy be a predictable process with hy > —1 P-a.s. and let g; be an optional process.
Define the process L on [0,T] by

st = Ltgtth + Lt* ht (dNt - )\tdt)
Lo=1

and assume that E¥ [Ly] = 1.
Define the measure Q on Fy by dQ = LidP, meaning that Lt is the Radon-Nikodym
derivative. Then, the following holds:

AWF = gudt + dW2 (A.19)
AL = (14 hy) A (A.20)

where )\(tQ and X} are, respectively, the intensity of the Ny process under measure Q and P.

Proof. See |Bjork! (2009). O

Based on Girsanov theorem one just has to find g and h. Proposition [[1] states what is

needed in order for the discounted value of A; to become a martingale.

Proposition 11. The discounted asset process, Zt, is a martingale if and only if g and h
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are set so that
ps +oag— (L+h)\ja=r. (A.21)

Proof. Based on the Girsanov theorem (Proposition , dW{ and dM can be stated under

measure Q as

AW R = dWF —g,dt (A.22)
dMR2 = dNT — (1 + hy) X dt, (A.23)

where thQ and dM;Q are now martingales under measure Q.

Rearranging and substituting on equation (2.6), one obtains the dynamics of A; under

measure Qﬂ

dA,

- (s + 0ag — (1 + R)Nja) dt + o adW2 — jadM2. (A.24)

Consider now that f (z) = e~ "‘z. Applying Levy-Ito’s lemma to equation (A.24) we have
that

dA; = —re "t Aydt + e dA,. (A.25)
Substituting dA; by equation (A.24)), one obtains

dj%lvt = —re A dt + et [(,u,; +oag—7Ja(l+h)N) Adt + O'AAtthQ — jAAthtQ}
= (,u(; + 049 —jA (1 + h) A — ’r’) gtdt + UAZ;dWé@ —jAZ;dNéQ,
(A.26)

and thus

dA,
Tt = (s +0ag —ja(L+h) A —=7r)dt + o2dW2 — jadM2. (A.27)

t

Given that both dW; and dM; are martingales under measure QQ, we have that :4: is a
martingale if and only if us + o049 — (1 4+ h) Aja —r = 0.
O

Equation (A.21)) has two unknowns implying an infinite number of martingale measures.

1o and j were substituted by o4 and j4, respectively.
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However, one may find a similar expression for any traded derivative. In particular, in the

case of xg, no arbitrage implies that

ag+ogg— (1+h)\jg =r. (A.28)

Solving the system composed by equations (A.21) and (A.28) one obtains

g= —jalag—r)t+ja(ps—r)
7UAJ7‘“G:J§§G oG—ago . (A29)
(1 ) = Hedze)t g nco

where one should notice that (1 4+ h)A is equal to the term multiplying ja, jo and js in
equations , and of Appendix This goes in line with the previous inter-
pretation that this term was the hazard rate of the process under the risk neutral measure.
The fact that one can find unique values for g and h implies that Q is the unique martingale
measure. In addition, following the second funtamental theorem of asset pricing, this indi-
cates that the market is complete. Susbtituting g and h on equation , and denoting

A= (1+ h) A\, the drift of the A; process under measure Q becomes

—jaloc =) e (ms =) _ I (A.30)
—0a)a +JA0G

Us +0oa

Multiplying and dividing the first two terms by —oaja + jaoqa,

ps (—oajc +jaca) — oaja(ag — 1) +oaja (s — 1)

—— — jaA. A31

—0Aja +Jja0a ( )
Applying the distributive rule and factoring out,

—0AjGT + JATGHSs — 0AJA (ag—1) . (A.32)
JACG —0A)G

Substituting ag = 0@@ + je) +r as stated in equation 1'
A
—oAjer + jac — JAO — AN —71) —jacajia) -
AJG JAOGHs — JAOG (Ma JA ) JATAJGA i, (A.33)

JAOG —0Aja
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Factoring out again and then simplifying one obtains

jaog 1+ jad] —oajc [r+ja] iX— (7 + jaX] [jaoe — oajc]
. . — JAN — . . -
JACG — 0A)a JAOG — 0AjJa (A.34)

=7

Thus, the asset process has a drift equal to » under measure Q as stated in equation .

One can also use the martingale approach in the case that A; is not traded. Again, one
has to to find g and h at each moment in time such that the discounted asset price under
measure @ is a martingale. g and h are given by the system in equation replacing the

A-terms by the correspondent F-terms:

{ g= —Jjr(ag—r)tjc(ar—r)
—orjg+iFroG (A.35)
_ r(locrp—og)+(arog—agor)

(I+h)N=22E f;FijjFiG GoE

As in the case where the underlying is traded, g and h are still uniquely determined. The
fact that this measure change is unique implies a certain relation between derivative prices

but does not imply a unique price for the derivatives. Replacing the obtained solutions in

equation (A.24) one obtains

dA,

x - (s + g oa — (L+h*INja) dt + oadW, @ — jdM2, (A.36)

where ¢g* and h* correspond to the solutions to the system in equation (A.35). Equation
(A.36) is equal to equation ([2.37) with g*o4 instead of —mo 4 and (1 + h*)\ instead of .

A.3. The joint distribution of X; and 7 > ¢

This appendix proves Proposition [3] on the joint distribution of X; and 7 > ¢. The proof
follows from the Girsanov theorem and the joint distribution of a standard Brownian motion
and the first passage time. I will start by showing how to derive the latter using the reflection
principle and the total probability theorem, and only then move to the case of an arithmetic

Brownian motion.

From the reflection principle, it is known that for every sample path that hits level y
before time ¢ but finishes below level = at time ¢, there is another equally probable path that
hits y before time ¢ and then travels upwards at least y — x units to finish above level 2y — z.

Mathematically, this is equivalent to say
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Q (WtQ <z, sup (Wg) > y‘ ]F0> =Q (WtQ > 2y —x, sup (WSQ) > y‘ IF0> . (A.37)

o<u<t O<u<t

Since y>x,

Q (UWtQ > 2y —x, sup (UW;@) >y

O0<u<t

IF0> ~-Q (awg@ > 2y — x‘ ]F0> . (A.38)

Dividing the right-hand side of equation (A.38) by the standard deviation of O'WtQ,

we we 9
Q(U Co xIF())_—l—Q(U L2 xﬂ%)
(A.39)

oVt ot oVt oVt

on(B)n(52)

Using this result in equation (A.37)),

—2
Q(oWR <z sup (eWQ >y|lFy ) =N i (A.40)
t u
o<u<t 0\/%

It is also known from the total probability theorem that

Q (O’W;Q < x‘ IE‘O) =Q (JWP <z, sup (0W9) > y’ IE‘O) (A.41)
0<u<t
+Q (O’WtQ <z, sup (O’W;Q) < y‘ IFO> , (A.42)
O<u<t
where
0 B x
Q (UWt < x‘ IFO) - N <J\/z) . (A.43)
Replacing equations (A.40) and (A.43]) on equation (A.41), one obtains
— 2y
X< g, X9) < F):N(x>—N(x ) A.44
Q((xF < (0) af ) = (35) - (77 (40

fory>0and x <y.
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Applying the Leibniz rule to equation (A.44),

d
Q (JW;@ € dx, sup (O’W;Q) < y‘]P‘()) = %Q (aWéQ <z, sup (0W§) < y’F())

0<u<t O0<u<t
i z—2y
a7 !
1.2 1,2
= — e 2% du — / e 2% du
dzx / V2 V2
—00 —00
2 o 2
_ L ()’ L L (=)’ L
V2T oVt  V2rm oVt
22 z—2y)2
R b O b=

CVer V2m
=n (m; 0; 0'\/7;) —-n (m; 2y; 0\/1?) .
(A.45)

Now consider that
dX, = vdt + cdW2, (A.46)

This is equivalent to say that d.X; = O’thQ* where W2 is a Q*-measured standard Brownian

motion and

aw® = aw? + Zat. (A.A7)
g

Changing the probability measure leads to

O<u<t

o (%< sup <Xu>Sy\IFO> — |1 Fy
{Xt<z, sup (Xu)<y}
o<u<t

(A.48)
= ¥ d—Q* 1 Fo |,
dQ {UW;@* <z, sup (UW;@*)Sy}

o<u<t
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where ;(g* can be computed using the Girsanov theorem:
T . T
T [ e N I CT
agr| =" i
o A.49
— 6§W§“ 7%(%)2t ( )
—e 20’W£Q*7%:%t
Thus,

* v * U2
¢ <Xt <, sup (Xu) <y Fo) _ B oW —it
O<u<t {

Fo
UWS* <z, sup (o'Wt@* )Sy
0<u<t

(A.50)

Let z = aWLfQ*. Integrating for values of z between —oo and =,

Q <Xt <, sup (X,) < y’Fo) = ] eﬁz_%%t [n (z;O;cn/i) -n (Z;Qy;a\/f)} dz.

o<u<t

(A.51)
Applying Leibniz rule and rearranging,
v v2
Q <XiQz € dzx, sup (Xg) < y’ Fo) — Tt a3t [n (x;O;Gx/E) -n (x; 2y;a\/2?)]
o<u<t (A.52)

2vy
=n (x;vt; 0\/%) —ean (m; 2y + vt;ax/f) .
Alternatively, integrating equation (A.51)), one obtains the joint distribution function of

X;@ and sup (Xg) <y
O0<u<t

— vt 2uy T —2y—vt
X2 < o, X9 < F):N(H)— a2N(). A53
Q( t T, Sup ( u)—y’ 0 0_\/{ € O'\/E ( )

o<u<t

For the joint distribution function of X2 and inf (X2) > y, notice that

o<u<t
Q) _ _ 0
021}; (-X37) Ogifgt (X3). (A.54)
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Hence,

FO) (A.55)

X% < g inf (XQ) >y|F, ) = ~X9> 4 — inf (X9) < -
Q( t_x,ogiét( u)_y‘ 0) Q( e >, oiﬁigt( i) < -y

Consider
Zt = —Xt
T =—x
Yy=-y

Applying Ito’s lemma to Z; = —X;, then

dZy = —vdt + (—o) dW 2. (A.56)

Given equation (A.52)), one obtains

8

=Q <Z§Q >z, sup (22) <y
O<u<t

+oo
2(—v)7
T e )~ ()
7+ vt 23 y—2y+vt> (m+vt> _ 2y (Cc—2y+vt)
=N —e 2N|(=———|-N|—|+e @N|—— .
( oVt ) ( av't oVt oVi
(A.57)

Q - Q
Q (Xt Sw inf (X)) >y

=
=
\_/

Substituting T and 7, the above simplifies to equation (2.43]). Differentiating one obtains

0 .
(Xi?)Zy}=axQ {Xi@éx,ogigt(Xg)Zy]

0 —x + ot 20y 0 —x+2y+ vt
—N| — 2 —N| ——
e (o) e (5

0 x — vt 20y 0 T — 2y — vt
= —N —eo2 — N | ———

Ox (0\/5> °" or ( oVt )
=n (x;vt;o\/i) — e%yn (x; 2y + vt; aﬁ) .

Q [X;@ € dm’oi%fg

t

) (A.58)
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A.4. The limits of the F(.) function

This section shows how to compute the limits of the F' (.) function.

Before proceeding notice that

QF (a,¢) lim g% (y)+Qf (a,¢) lim AT (y),b>0

luf F(a,b,c,y) = 0 y?+°° 0 y?+°°h bo0 (A.59)
—+4o00 - — —
v g (@) lim g=(y) + &y (a,0) lim h~(y),b<

Since ¢? — 2a is always positive we have that

—b‘ll (a,e) 71; —b—y 02—2a) _

Jm ot = Jm, N (=) =0

lim ht(y) = e V(@) Jim 1\7(77“9”52 2“) — (¥ (a0))
Yy—r—+o0 Y—r+0o0

li _ b\I/ (a,c) li N (b y\/ ) _
AW g (y) L

lim A~ (y) n (@) lim ]V<b+y\/c2 2(1) \I/ " (a, c)
y——+00 y—+o00

and thus
Q+ —b\I/Jf(a,c) b>0
lim F(a,b,cy) = }i(a,c) eb o (A.60)
y—r+oo Q;, (a,c)eb¥n (@9 b <0

So, for any fixed finite value of b, lim F'(.) can be computed using equation 1'

T—+oco

In the case of lim F (w, @, ”*i"2,T) and lim F (w, @, fM,T) in equa-

T—~+o0 T—+o0 g

tion 1’ since @ < 0 we have

In(R * 2 * 2 In(R) g — () v*4o?
lim F<w7n()70 to 7T) :Q]: (wav e )6 7 \Ilh( ’ 1— )
g

T o
o 7 7, o (A.61)
—0; (w,v o )R;‘I'h (&)
g
and
In(R * 2 * 2 1y (w2 52

lim F(w, n(k) vto ,T) — 0 <w7—“ to )Rv%( ) (A62)

T—+00 ag (o) g

The same rationale applies to Tlim F (w, (R or T) and lim F< E}_R),—Q,T>

—400 o o’ T—4o0

in equation 1] with w appearing instead of w and % replacing %
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Regarding the limits of the AN Jump (L u, T) and DigJump (Z, u, T) functions, one may
have two cases depending on whether we are interested in the limit when both @ and T go

to 400 or only 7.

Only T goes to +oo

Using equation (|2.85)),

TEIEOO AN Jump (Z, u, T)
= im AR LT [N (g (7,7) ~ N (ks (7)) — N (b (7,0)) + N (hs (1,0)

= i
In (%) vt + o2 In (Z) Vvt + o2
_F<w, ,T + F W,T, pu 7j_' (A63)

)
g g

g

N
Ry * 2 ln(@ * 2
_F<w,1n(u),—” ;”’ ,T)F w, l>7—v to T)}

Since w < 0 the exponential terms disappear in the limit. In addition,

Vo> A= N (hs (z,0)) = 1 V& > Ro = N (hy (z,0)) = 0
Vo < A= N (h3(z,0)) =0 Vo < RU = N (hy (2,0)) =1 (A.64)
Ve = A= N (hs(x,0)) =05 Vo = Rv = N (hy (2,0)) =0.5

Noticing that for all intervals of interest | and u are higher than Rv, we have that
N (h4 (Z, 0)) and N (hy (w,0)) also disappear. As result,
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lim ANJump (l ,T)

T—~+o00

A

S (o) +05 < Lmy) + (Loay +05 < L_yy)

= 1]
In (% * 2 In (K) * 2
lim F( (A),W’T> + lim F wji’u’T
T—+4o0 o o T—+o0 o o

+R¥H2 | i F( IH(T),—”*+”2,T>+ lim F () e

w, T aT
T—+oco o o T—+oo

(A.65)
Following equation (|A.60]), the first two limits can be computed using
_ * SN —Lwf w,v*+”2 _
() v o (w222) (37 ) a4
Jlim F LT ) = o L (wae?) :
— 400 g o Q; (W,Uja)(%); n\w,—— 7TL<A
(A.66)

and the remaining two limits can be computed using

_ “ _ 7L\Ij w, 02
ln(})) ’U*+O'2 Qz(w_u?:oj)(%) G h( - )U<R'U
lim F O T | = ) s
T—+00 o QO (w’_u*ﬂ,z)(@);\yh( -t i > Ro
(A.67)
For Thrf DigJump (l u, T) and following the same steps, we arrive at
—
lim D T
T—1>I4I-1 igJump (l u, )
-2 L= 0.5 x 1z 0.5 x 1
g — (> ay +0.5 % Lg—ay) + {z>A} + 0.5 x {l A}
In (%) o*
— lim F (m (A),”,T> + lim F|w, 7“ ) (A.68)
T—+o0 o o T—+o0 o
o R
I (ED) o ()
+R* |~ lim F <w7 n (4) _U7T> + lim F w, ! _Ui’T ’
T—+o00 o o T Y00 e P
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where the limits can be computed using equations (A.66|) and (A.67) replacing w by w and
v* o2 by &
o Y o’

Both w and T go to +o0
Using equation (2.85)), we have that

lim ANJump (i, u, T)

u, T —+oc0

= lim

jim {e“T [N (hs (@,T)) — N (k3 (1,T))] = N (h3 (@, 0)) + N (hs (1,0))

e <1<>+T> r (W, 1n<z/A>’w+o—2,T>
g g

g o

(A.69)
+ R**T2 [T (N (hy (w,T)) — N (ha (I,T))) — N (ha (@,0)) + N (hs (1,0))

_ R®
1 Ry * 2 ln(f> * 2
F(w,n(“),v +J,T>+F o 1) v+to
o o

) 7T
g

Since w < 0 and noticing that _lim N (hg (@,0)) =1, N (hs (1,0)) = 1{Z>A}+0‘5 X 1{[*A}
uU—+o00 -
and that _lim N (hg (7,0)) = N (hq ({,0)) = 0, this simplifies t
uU—r+00

li ANJ L,u,T
L AN R (157

AA
= {1y 05 x Ly

_ i
1 u * 2 111(7) * 2
—  lim F(w,n(A),W7T>+ lim F|w 2 U F0
w, T —+o00 g

g

Rv
In (= * 2 n (f) - ?
+R2a+2 _ lim F(w, (u)’_v To ’T>—|— lim F W, : vroe
w,T—+oc0 o

(A.70)

The computation of the second and fourth limit is similar to equations (A.61)) and (A.62]).
Notice, however, that while it is known beforehand that Rv < [ for all values of | we are

| S in( 22) l
interested in, implying that —_!

1 L
< 0, we do not know whether H(UA) is positive or negative.

2All values of I and @ that we are interested are bigger than @ and thus N (hy (.,0)) = 0
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_ 1n(%) e QZ(w7vio2><%> s 4
lim F |w, , T = L rgo?
T—+oo o 0 (w v*+g2) (l>;\ph (w, =) o
h ’ o A 5
(A.71)
and
In Tﬂ) * 2 * 2 - %‘I'; (W’_#)
lim F |, (! e h(wrf)+0-><ﬁw> A7)
T 5 00 o o l

In the case of the first and third limits, one must take into account that b is not fixed.
However, we know that it is always positive in the first limit and always negative in the third
limit. So, we must be always either in the first branch or in the second branch of equation

(A59).
Since ¢? — 2a > 0, it is clear that for b > 0 (first limit) we have

_p_ Z_9
mnng:]mewmmN<bm%a>:Q
byy——+oo b,y——+o0 \/g

and thus,
bt F (a,b,c,y) = (a,c) p P (y)-

Dividing the numerator and the denominator in h™(y) by y, one obtains

—b V2 —9
lim h+(y) = lim eib‘y:(a’c)]\f <-|—yC(Z)
b,y——+o0 b,y——+o0 \/y
(A.73)
_b /2
= lim e "i@IN <“ * lc 2a> :
b,y——+o0 ﬁ
Further noticing that when b = In (%), —In (%) goes to —oo faster than y goes to +o00, then
li h+ —
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The same rationale can be applied for b < 0 (third limit). Again, since ¢ — 2a > 0 we
have that

lim ¢ (y)= lim ewg_(a’c)N<

b,y——+o0 byy——+oo

b—yvc?—2a _0
\/27 )

and thus,

lim F(a,b,c,y)=Q;, (a,c) lim h™(y).

b,y——o0 b,y—+o0

Dividing the numerator and the denominator in A~ (y) by y, one obtains

lim F(a,b,c,y) =Q, (a,c) lim h™ (y)

b,y——o0 b,y——+o0

b+ yvec? —2a
VY

5"" c2—2a>

b,y——+oo

= (a¢) b yli{lioo eMn (@I N

=, (a,c) lim eb‘Ph(a’C)N<

=8

Since b = In (£2) goes to —oo faster than y goes to +oc, we have that

u

li “(y) =0.
As a result,
1 u * 2
lim F(w, n(%) v'to ,T) —0 (A.74)
W, T—+00 o o
and
1 Ry * 2
fim F<w,n(u),” +U,T>O. (A.75)
U, T—+00 o o
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Substituting equations (A.71))-(A.75) into equation (A.70) one obtains

. _ A
H,Tlg)r-l&-oo ANJump( ,U,T) - j |:_]- + 1{1>A} + 05 X 1{2:14}

oy T\ R ()
4 v+ o l
Pl (w,a ) (A)

_ o* o
B v* + o2 1 %‘Ijh, (“’7+)
+ 1{?<A}Qh w, > 2

_ o o2
+R2a+29}: (w _U* +02> (R’lj)iqjh (UJ,— J; )

o l

Using equation 1) and taking the same procedure, with w and % replacing w and
* 2
%, respectively, one obtains

. . - A
mTh_r)I}roo DigJump (l,u,T) == {—1 + 1{l>A} + 0.5 x 1{1:A}

<i>—;wz(mf) .
2V (=%) '
(

A.5. The first derivative of the F(.) function
In this section, the first derivative of the limit of the F(.) function when T and u goes to

+00 is derived. Similarly to Appendix [A.4] we might have two cases depending on whether
both @ and T go to 400 or only T'.
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Only T goes to 400
Using equation (A.65]),

74 Tl_ig_loo AN Jump (Lﬂ, T)

A
=2 {~ Qsay + 05 x Tgey) + (17a) +05 % 1g_y)
_ 1
n(Z) o* 2 In (3 * 2
~ lim F(w, n(A)7U+‘7,T> + lim F |w, (A>7U+UaT
T—+o00 o o T—r+oo g g

T—+o0o T—+o0 o g

_ Rv
1 Ru * 2 111(7) * 2
LR¥2 | Jim F(w, n(“),—” il ,T>+ lim F (w12 U
g g

— — i
In(Z) »* 2 In (% * 2
E _i lim F (w, n(A) vt +o T “ri lim F (A) v +o T
w 0A T—+ 0A T—+oco o o

—2a —2 , In (&2 * 4 g2
+G'7R2a+3 [ lim F (w’ n( u ),71) to ,T>
o

v T—+o00 g
hl(%) v* + o2 (%) v 40
+ lim F|w, ,— T || + R%+2 lim F|w, u /o T
T—+o0 g oz T—+o0 oz o

0
— 1 F — T
+8A T5tec W o

(A.78)

The limits above are given by equations (A.66) and (A.67), while the derivatives are given
by

O0A T+ = p
of (v 252) 1 (8) F ) s

B> (& 7%) 2.2 (55) g < a (A.79)
O (w, wget) B gy d i (25) 4

| o () R (e (o)
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and

ag
* 02
o () () ) G e
— o o* ‘72
0 (10, - 22) (1) 2 (75 s

)_%‘I’I(Wv_v*ﬂaz QZ <w’ _U*+‘72) g R_%\P;(wy_#)aﬂ < Rv

(BT () et () s o

v~ 4 2 P
(E)_%\Ilh( 7_¥) 52h (" U*OUQ) %\I]:(w’;%)lzl Clr‘ljh( 1 U*;rUQ),’(_L<Bi’L_}
- *+ - v +U2 *
(5)71,‘1’;: (wv—v fz) Q, (( ), v*+02) A (“i vt ) Rl—s-*i\p; (w,—” 662))71 > Ry

The derivative 6% lim DigJump (Z, u, T) is obtained from equation (|A.68|):
T—+oco

o .. . <
94 Thm DigJump (l, u, T)

—400

By u * In l *
A0 F(w,ln(A),v ,T>+a lim F w,(A) Y

; 0A T—+

v T—+o00

_ In (B2 * ln(f_’) * 1
Ly BT F(w, n(F) v T>+ lim F|w,—t2 2

o] o (%) v, (%) v
+R 8ATL11£()()F w, , , +6AThm F | w, , , T

—+o0 o g

(A.81)

The limits above can be computed using equations (A.66]) and (A.67)), replacing w by w
and “*i"Q by % The derivatives are given by equations (]A.?QI) and (]A.8OI) also replacing w
by w and # by %

Both w and T go to +o0

Following equation ((A.76)),
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74 E,Tlﬂm AN Jump (l, u, T)

* 2 Z o h
1 105 x T+ T 0 (w0, ) (=
{i>4} {i=a} " H o A

B ’U*—l—O'Q 1 %\P;(“’v%)
Tl icay (“”0) (A)
x4 g2 N G
R (w,_” o ) (R)

o l

£ >

QA
+ o [1{Z>A}QZ (w,

_ v 4+0o2\ 9 (1
eyt (w’ a> 94 (A>
_|_
g

_ l\IJ_(w,fu*+"2) * 2 * 402
CANE 7 R W TR T N ol (A=
= Q —R U ,
7) ()5
(A.82)
where the above derivatives are given by
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and by equation (3.41]).

139



Doing the same for the derivative of equation (A.77)), one obtains
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and the last derivative is given by equation (|3.44)).
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