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Resumo
Nesta tese apresenta-se um modelo estrutural de avaliação de ativos contingentes baseado

em Goldstein et al. (2001). Neste último, assume-se que a empresa é detentora de um projeto,
cujo resultado operacional (i.e. resultado antes de impostos e juros) segue um movimento
Browniano geométrico. A empresa entra em incumprimento na primeira vez que este pro-
cesso toca numa barreira definida endogenamente. Os acionistas, obrigacionistas e o governo
são considerados como tendo um ativo contingente na performance do referido projeto. O
mesmo acontece com os custos decorrentes da falência da empresa, os quais são considerados
como pertencentes a um agente fictício. A este modelo acrescentam-se agora dois aspectos.
Em primeiro lugar, considera-se que a variável de estado é o fluxo de caixa operacional, o
que permite a aplicação do modelo a um maior número de empresas, na medida em que este
é frequentemente positivo mesmo quando o resultado operacional é negativo. Esta alteração
é possivel porque os custos com capital (capex) são excluídos da variável de estado. Em
alternativa, considera-se que os fornecedores de capital têm direito a receber um fluxo finan-
ceiro constante enquanto a empresa se mantiver em funcionamento. Este fluxo corresponde
ao investimento necessário para garantir a taxa de crescimento projetada para o fluxo de
caixa operacional. Na prática, este princípio pode ser estendido a qualquer direito sobre
um custo fixo da empresa. Para além de aumentar o número de empresas a que o mod-
elo pode ser aplicado, mostra-se nesta tese que a introdução explícita de custos fixos leva a
um aumento da probabilidade do processo estocástico tocar na barreira, bem como cria um
efeito de alavancagem operacional que acentua o efeito de alavancagem financeira já sobe-
jamente conhecido na literatura. A segunda inovação desta tese consiste na introdução da
possibilidade de um salto súbito de dimensão fixa na variável de estado. A introdução deste
termo permite replicar melhor os spreads observados na prática, especialmente no caso de
obrigações e credit default swaps de curto prazo. Para além de fornecer um formulário para
a avaliação de ações, obrigações e credit default swaps, esta tese analisa algumas questões
fundamentais da literatura de corporate finance, como sejam a estrutura ótima e o custo
de capital, e fornece formulas quase fechadas para o preço de opções sobre ações de estilo
Europeu. A literatura financeira tem quase exclusivamente tratado estes ativos de forma
separada dos restantes. No entanto, esta separação é inconsistente, potencialmente levando
ao surgimento de oportunidades de arbitragem que podem ser exploradas com modelos do
tipo aqui apresentado. Esta separação é também ineficiente, na medida em que o preço das
opções fornece informação valiosa para a calibração deste tipo de modelos.

Palavras chave: Modelos estruturais, Finanças empresariais, Avaliação de opções.
Códigos JEL: G13, G32.
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Abstract
This thesis presents a structural model of contingent claims in the spirit of Goldstein et al.

(2001). In the latter, the firm is assumed to hold a project whose earnings before interest and
taxes (EBIT) follow a geometric Brownian motion with default occurring at the first time the
state variable falls below an endogenously determined barrier. Shareholders, debtholders, the
government and distress costs are then considered as claimants on this project. The model
in this thesis adds two elements to this setup. First, the cash flow from operating activities
(CFO) is considered to be the state variable. This allows the application of the model to a
greater number of firms since the CFO is often positive, even when EBIT is negative. This
change is possible because capital expenditures (capex) are excluded from the state variable.
Instead, they are treated as a contingent claim belonging to an external claimant, the capex
suppliers, who hold the right to receive a fixed stream of cash flows corresponding to the
investments needed to assure the forecasted project growth rate. In practice, this principle
can be extended to any claim on a fixed stream of cash flows. In addition to enlarging the
number of firms for which the model can be applied, the introduction of fixed costs such as
capex is shown to increase significantly the probability of the stochastic process hitting the
barrier; and to create an operating leverage effect, which accentuates the financial leverage
effect frequently referred in the literature. Second, the possibility of a sudden negative jump
of fixed size in the state variable is added. The introduction of this term improves the
capacity of the model to replicate the observed credit spreads, especially in the case of short
term bonds and credit default swaps. In addition to providing pricing formulas for equity,
bonds and credit default swaps, this thesis analyzes some important questions in the field
of corporate finance, such as the optimal capital structure and the cost of capital, and gives
almost closed-form formulas for pricing European-style equity options. Finance literature
has mostly treated option pricing and the pricing of all other securities contingent on the
firm’s capital structure as separate research areas. This separation is inconsistent, potentially
leading to arbitrage opportunities that can be exploited using models of the type presented
here. This separation is also inefficient since option prices can be extremely valuable for
model calibration.

Keywords: Structural models, Corporate finance, Option pricing.
JEL Codes: G13, G32.
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1. Introduction

Structural models of credit risk were a major breakthrough when they were first proposed
in the seventies. For the first time it was possible to have probabilities of default and losses
given default derived in a single theoretical setting. In addition, since default in these models
is directly related with the firm capital structure, market information on share prices could
be used for model calibration. This contrasts with the methods used at that time, notably,
Altman Z-scores and Logit models, where default is seen as an exogenous statistical process
with no clear economic cause. They were also a big step forward in the fields of asset pricing
and corporate finance. Also for the first time, it was possible to have in a single framework
the price of all claims that are contingent on the firm. This provided a solid setting to analyse
corporate finance theories such as the trade-off theory of capital structure.

Though theoretically appealing, the early enthusiasm around structural credit risk models
decreased in late eighties. On the one hand, the empirical applications of the first generation
of these models had disappointing results with the models failing to accomodate the observed
bond spreads and explaining their time variation. As discussed in the literature review, there
are several reasons for this. On the other hand, following Jarrow and Turnbull (1995), a
new class of credit risk models emerged. These models, which were termed ’reduced-form’,
attracted practioners and researchers attention as they were able to use the information
available in bond prices in a more tractable way. They were also able to fit better the
data. In these models default is modelled as a intensity process, which is a function of some
exogenous latent state variables. Similar to Logit models, there is no theoretical model of
the firm capital structure and default has no clear economic rationale, which limits the use
of these models.

Meanwhile, a second generation of structural credit risk models emerged. These models
tried to ovecome some of the issues that were pointed as being the causes of the poor results
obtained by the first models. Empirical evidence is still scarce, but results suggest that,
whenever the most appropriate estimation methods are used, current models are able to fit
the data significantly better. In some cases, however, this improvement came at the cost of
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mathematical tractability. With nowadays computers, the latter is not essential for pricing
purposes as numerical techniques such as Monte Carlo simulations and finite differences allow
us to price even path dependent derivatives in an efficient way. Nevertheless, closed form
solutions are still useful if one wants to infer market views on latent variables (e.g. the market
value of a firm assets) based on observed market prices on contingent claims such as equity
and CDS spreads. This can be particularly useful for policy makers trying to understand
what is going on in financial markets.

This thesis presents a model that is able to provide a closed form solution for the most
important types of financial assets that are contingent on the market value of the firm,
notably, equity, bonds/CDS and European-style options (quasi-closed form in this case),
and simultaneously take into account two of the most relevant contributions to the original
Merton (1974) model, notably, the possibility of early default and asset price jumps. This
is done in a model where the state variable is the firm cash flow from operating activities.
This thesis starts with a literature review on structural credit risk and corporate finance
models. Chapter 2 explains the model considered in this thesis and provides the reader with
some tools needed to understand the derivations in the subsequent chapters. Chapters 3 to
7 derive the pricing of the before mentioned financial assets and discusses some important
corporate finance concepts such as the cost of capital and the trade-off theory of optimal
capital structure. Chapter 8 illustrates the model. Chapter 9 concludes.

1.1. Literature Review

Structural models of contingent liabilities were pioneered by Merton (1974) following Black
and Scholes (1973) and Merton (1973). In its seminal paper, Merton considers that a firm
financed by equity and debt honours its commitments towards debtholders if the value of its
assets at maturity exceed its debt. If not, the firm declares bankruptcy and all its assets are
liquidated with all the proceeds accruing to creditors. Intrinsically, the equity holders hold
the firm, but have the right (but not the obligation) to sell it to the debtholders at debt’s
nominal value. In other words, stockholders own a put option on the firm assets with strike
equal to nominal debt. This option is given by the debtholders whose claim, at market price,
is worth the nominal debt value discounted at the risk free rate less the value of this put
option, which is interpreted as debtholders’ expected loss. Under the assumption that firm
assets follow a diffusion process known as geometric Brownian motion, the price of this option
is straightforward to compute. Alternatively, one can consider that debtholders own the firm
but shareholders have a call option on it with strike equal to the firm nominal liabilities.
This equivalence follows from the Put-Call parity.

4



Though revolutionary and theoretically appealing, the first empirical papers on the ap-
plication of Merton’s structural credit risk model led to disappointing results. Jones et al.
(1984) is the first paper that empirically assesses the validity of the model. In this paper,
Merton’s model is applied to a set of firms with simple capital structures during the period
between 1977 and 1981. Though they found a better performance in the case of speculative
bonds, these authors concluded that in general the model overstates bond prices. They also
concluded that the model is heavily penalized by the assumption of constant interest rates.
Subsequent studies using more recent data reached broadly the same conclusions. This is the
case of Lyden and Saraniti (2001) and Eom et al. (2004).

The reasons behind the lack of success of Merton’s model have been extensively analysed
in the literature.1 The irrealistic assumption that default could only occur at debt’s maturity
was one of the issues that was first addressed. In order to overcome this, Black and Cox (1976)
present a model where a firm financed by a single debt issue with a fixed maturity defaults
at the first time the asset process crosses a pre-specified time-varying exponential barrier.
When this happens, debtholders have the right to force reorganization of the firm, receiving
firm value at default time.2 Shareholders lose everything. The existence of this barrier
has several implications. First of all, the barrier sets the maximum loss the debt holder
may have. However, it also leads to higher probabilities of default. The consideration of a
default barrier has also important consequences for the shareholder in terms of risk taking
incentives. Differently from Merton’s model where equity is a monotone function of asset
volatility, equity is now a concave function on volatility. In this model when shareholders
take riskier projects they increase the odds of very positive outcomes, but they also have a
higher chance of losing their firm. Black and Cox (1976) study the impact of this barrier on
debtholders with different levels of seniority.

A fundamental question is what determines the barrier. In the first sections of their
paper, Black and Cox (1976) justify the consideration of this barrier by the inclusion of
safety covenants in debt contracts. These safety covenants allow debtholders to demand
debt payment whenever the value of the firm goes below a certain point. This has been
named stock-based insolvency. Something similar occurs in many countries with laws giving
debtholders in general the right to push the firm to bankruptcy whenever assets breach some

1The literature on structural models of contingent liabilities is very large and this review does not intend to
be exaustive. Among the extensions to the original Merton model that are out of this review are models
that assume a dynamic capital structure (e.g. Fischer et al. (1989)), models where assets follow mean
reverting processes (e.g. Collin-Dufresne and Goldstein (2001) and Sarkar and Zapatero (2003)) as well
as models that take into acount liquidity risk (e.g. He and Xiong (2012)).

2Depending on how the barrier is specified, default can also occur at debt maturity. In those specifications
where default at debt maturity is virtually impossible, the loss given default becomes constant and equal
to the barrier level.
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lower level. In regulated sectors, such as banks, one may also think that regulators may push
shareholders to increase capital. Whenever the latter are not able to do it, the bank may be
resolved. In any of these cases, there must be some trigger that is often defined based on
book values since the true asset value of the firm is not observable.

A second approach arises when one sets default as the result of the firm not being able
to honour its ongoing payments either through the defined payout rate or by issuing new
securities. This is usually referred as flow-based insolvency. Here we may think of three
cases. In a model where the asset value is perfectly observed by all agents, one possibility is
that the barrier is endogenously determined by the shareholders as the result of an optimal
stopping time problem. Consider that at any moment in time shareholders may inject capital
in the firm avoiding default. Shareholders will be willing to do it as long as equity value after
the capital injection is higher than the capital injection. Notice that in a model with strict
absolute priority and no problems of information asymmetry this condition remains valid
even if shareholders have no capacity to increase capital since they are better off diluted than
under default.3 This was first proposed by Black and Cox (1976) who derived the optimal
barrier in a model where the firm is financed by a perpetual bond. They showed that in this
case, the default barrier is independent of the current value of assets, proportional to the
contractual debt service (i.e. the higher the coupon payments the higher the barrier) and a
decreasing function of asset volatility. Basically, shareholders are more willing to save the
firm if they see any chances of making large profits in the future. This line of research was
pursued in several other papers as documented below. A second possibility arises when the
assumption of information symmetry falls. In this case, the firm capacity to increase capital
may depend on its shareholders capacity to inject capital. If current shareholders are not able
to do it the firm becomes dependent on external prospective shareholders assessment. This
shall lead to a default barrier above the one implied by the optimal stopping time problem.4

In the limit, we may have a third case where the firm may have to service debt using only
internally generated funds. Whenever the latter is not sufficient the firm defaults. This is
the case of Kim et al. (1993).

Several years after Black and Cox (1976) seminal paper, Leland (1994a) proposes a model
where a firm financed by perpetual debt continues its activity until the asset process hits a
default barrier determined endogenously by shareholders willingness to capitalize the firm.
In addition, taxes and distress costs are introduced in order to analyse the firm optimal
capital structure. They consider that the tax benefits of debt can be seen as a security that

3Implicitly, we are assuming that both current and prospective shareholders observe the current value of
assets. In reality none of them observe the market value of assets. The problem is more relevant in the
case of prospective shareholders, though.

4In this case, one may either set the barrier exogenously or model the impact of information asymmetries.
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pays a constant coupon equal to the tax-shaltering value of interest payments as long as the
firm is solvent. Similarly, distress costs can be seen as a claim on assets whenever default
occurs. In their model, firm value equals the market value of assets plus the value of tax
benefits minus distress costs. Equity is then computed subtracting current debt value from
the market value of the firm. Leland (1994a) is one of the most relevant papers in corporate
finance literature. Even so, besides the stochastic process itself, there are three issues that
deserve some comment. The first issue regards the hypothesis of asset tradability after debt
being issued. This issue is recognized in footnote 11 of the paper. A second source of criticism
concerns the fact that in this model an increase in taxes actually leads to an increase in firm
value. This results from the fact that the asset value is treated as an exogenous variable.
Finally, the assumption that shareholders pay debtholders’ coupons totally from their own
pockets (assets are not sold in this model) may lead the expected leverage ratio of the firm
to decrease as time goes by. Subsequent articles allow for asset sales. Notice however that in
this case, as noted by Goldstein et al. (2001), the government claim is presumed constant (a
fraction of coupon payments, which are paid as long as the firm operates) implicitly leading
to an oversestimation of shareholders dividend variation, which is not in line with empirical
findings.

Leland pursued his line of research in Leland (1994b) and Leland and Toft (1996). These
papers differ mostly on the assumptions regarding debt rollover. In Leland (1994b) the firm
retires a constant fraction of the currently outstanding debt at its principal value and re-
places it by new debt so that cashflow requirements for debt service are equal to a fixed
coupon amount and a fixed sinking fund requirement. Similar to the perpetual coupon bond
case analysed in Black and Cox (1976) and Leland (1994a), total debt has time-homogenous
cash-flows in this case, which is crucial to the computation of an endogenous barrier based
on shareholders willingness to capitalize the firm. In Leland and Toft (1996) the firm contin-
uously sells a constant amount of coupon bonds with a certain maturity, which it will redeem
at par. New bond principal in then issued. In spite of each debt issue having non-constant
cashflows, aggregate debt has time-homogenous cash-flows. In a recent provocative article,
Décamps and Villeneuve (2014) argue however that the strategic default decision problem
faced by equity holders in a model with roll-over debt has never been formulated properly.
Instead it is presented as a kind of natural extension of Leland (1994a) infinite maturity
case. In particular, they question whether equity value can be computed by taking current
debt value out of asset value and whether equity holders’ problem ia a standard stopping
time problem with solution given by the smooth pasting condition. In their paper they prove
that equity can in fact be computed by difference. However, the smooth pasting principle is
shown to be the unique optimal shareholder strategy only under some specific conditions.
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The studies referred up to now assume that absolute priority holds meaning that equity
holders receive zero when default occurs and that senior debtholders only lose capital when
equity holders and subordinate debtholders lose everything. In a case where debtholders
may not be able to push the firm into bankruptcy, shareholders may run some sort of asset
substitution (i.e. take risky projects they wouldn’t take if the firm was not overleveraged) or
try to service debt liquidating the firm assets at fire sale prices in order to gain time to see
if things go better. These agency costs may justify the violation of absolute priority rules in
practice. In this case, the barrier may arise from a game between the different stakeholders
with shareholders still receiving something in case of debt restructuring. This approach was
followed by Anderson and Sundaresan (1996), who showed that unlike Leland (1994a), Leland
(1994b) and Leland and Toft (1996), the optimal barrier, restructuing barrier in this case, is
an increasing function of liquidation costs. The higher the cost of liquidating the firm, the
greater is shareholders’ capacity to extract value from debt-holders. Other studies assume
that the absolute priority does not hold but do not model it. This is the case of Longstaff and
Schwartz (1995), who assume that the firm meets all its contractual obligation as long as the
market value of its assets are above a certain threhold determined exogenously. Once this
barrier is broken the firm defaults on all its obligations. Each stakeholder may then receive
something that is also defined exogenously based on empirical evidence. This assumption
simplifies the pricing of the different debt securities as one can simply use the average loss
given default observed for each type of debt security for each sector of activity.

Another source of criticism on Merton model is the assumption of constant interest rates.
The first structural credit risk model to overcome this issue is the one by Shimko et al. (1993).5

These authors assume that interest rates follow the Vasicek model. In their model the firm
is assumed to default only at debt maturity. The models by Kim et al. (1993) and Longstaff
and Schwartz (1995) were the first to price risky corporate debt with stochastic interest rates
under a first passage time setting. The models differ on the way the barrier is set. While
the barrier in Kim et al. (1993) is defined through the capacity of the firm to service debt
based only on its internally generated funds, in the case of Longstaff and Schwartz (1995)
the barrier is defined exogenously.6 The consideration of stochastic interest rates is crucial
to price any fixed income security. The impact on credit spreads is not so clear, though. In
these models the drift of the asset process depends on the risk free interest rate. As result,
the higher the interest rate, the higher the drift, the lower the probability of default and

5In trueth, Merton (1973) already foresees stochastic interest rates. In his paper, bond prices are assumed
to follow a GBM.

6In this model the probability of default on a bond is determined by a single variable rather than the default
status of other bonds. There is no need to condition on the pattern of cash payments to be made prior
to the maturity of the bond. Thus, one can value coupon bonds as portfolios of discount bonds.
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the lower the credit spread. In this setting, positive correlations between the interest rate
and the asset process tend to generate higher spreads because the two factors move in the
same direction.7 This effect disappears when one considers that nominal liabilities and the
default barrier grow at the same rate as assets, which is equivalent to say that the firm has
a stationary capital structure.8 Further effects may play their role in more complex models,
though. In models where the barrier is determined endogenously, an increase in the interest
rate may lead to a downwards shift in the barrier. Notice that the higher the interest rate
the more valuable is shareholders option and the longer they are willing to wait for recovery.
In contrast, under an incomplete market setting whenever rollover is introduced it makes
sense to think that an increase in the interest rate leads to an increase in the barrier simply
because shareholders wait for less time whenever borrowing costs are higher.9

Though the financial extensions referred were able to improve the model, empirical lit-
erature from the early twenty first century shows that these models are still unable to cor-
rectly predict spreads. Lyden and Saraniti (2001) compare Merton (1974) and Longstaff
and Schwartz (1995) using a database composed of firms with only one bond outstanding.
Asset values were computed as the sum of firms’ equity, market value of bonds and adjusted
values for other liabilities. The results were again disappointing but the authors finish their
paper reffering that the classical model could still be correct in case the poor fit is due to
problems in asset volatility prediction. Eom et al. (2004) implement the models by Merton
(1974), Geske (1977), Longstaff and Schwartz (1995), Leland and Toft (1996) and Collin-
Dufresne and Goldstein (2001) using a sample of 182 bonds from firms with simple capital
structures during the period 1986-1997. They concluded that while Merton model leads to
too low spreads, more recent models overestimate spreads on average. They also refer that
the more recent models overstate the risks coming from firms with high leverage or volatility
but underpredict spreads on safer bonds. They conclude that the major challenge for struc-
tural credit risk models is to increase spread predictions without overstating either volatility,
leverage or coupons paid. This goes in line with the general idea that structural models
underpredict spreads unless abnormal parameter values are used. This is more pronounced
in investment grade bonds but true for any rating in the case of short-term bonds. Some
studies have analysed whether this difference could be justified by a liquidity premium. This

7An increase in the risk free rate is usually associated with inflation expectations above the central bank
target which often occurs when the economy is growing fast and financial assets appreciate for this reason.
This fact justifies a positive correlation between asset returns and the risk free rate.

8This does not mean however that the firm management pursues a specific capital structure as in Collin-
Dufresne and Goldstein (2001).

9Additionally, in the case of banks, higher interest rates are associated with the possibility of banks funding
their assets at below the risk free rate through deposits. This is something that tends not to be possible
when interest rates are at or near the lower bound.
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is the case of Perraudin and Taylor (2003), Longstaff et al. (2005) and Huang and Huang
(2012). Though these studies suggest that non-default issues can justify a significant part of
corporate bond (investment grade) spreads vis-a-vis sovereign bonds, they were not enough
to explain the empirical shortcomings of structural models. More recently, some studies have
argued that the poor performance of structural models is closely related with the estimation
methods used and state that independently of the model, the results obtained are signifi-
cantly better whenever the parameters are estimated through maximum likelihood. This is
the case of Li and Wong (2008), who calibrate Merton (1974), Longstaff and Schwartz (1995)
and Collin-Dufresne and Goldstein (2001) models using the maximum likelihood estimator
first proposed by Duan (1994). In contrast with Eom et al. (2004), these authors conclude
that these structural models are very useful for pricing medium and long term bonds but
they are not able to replicate the observed prices on short-term bonds. Similar conclusions
are reached by Wong and Choi (2009), using the Brockman and Turtle (2003) model, and by
Forte (2011) and Forte and Lovreta (2012), using a slightly modified version of Leland and
Toft (1996) model. The last two studies estimate the barrier parameter iteratively, though.10

Despite the improvements achieved by the already referred models, the current consensus
is that structural models poor performance is maily due to the assumption of a pure diffusion
process. Under a diffusion process, the time of default is accessible meaning that there is an
increasing sequence of stopping times that converges to the default time and thus ’foretells’
the event of default. In other words, the probability of assets falling substantially goes to zero
as one approximates debt maturity. In addition, the light tails of the Normal distribution
circunvent the firm from defaulting unless it is already near financial distress. This is in strong
contradiction with the observed data. In order to solve these issues, and following Merton
(1976) seminal article, Zhou (2001) considers a first passage credit risk model where firm
assets follow a jump-diffusion process with jump amplitudes from a Lognormal distribution.
In this case, default can occur both in an expected way, due to the diffusion process, or
unexpectedly due to jumps. The model is able to generate credit spreads in line with the
ones observed. Unfortunately, the proposed model has no closed form solution. Hilberink and
Rogers (2002) extend Leland (1994a) model to the case where the market value of firm assets
faces only downward jumps.11 The authors did not reach a closed form solution but debt
prices can be computed numerically without too much pain. Cathcart and El-Jahel (2003)
propose a first passage time structural model where default can occur in an expected manner

10It is interesting to note that the estimates produced by the iterative procedure proposed by Forte and
Lovreta (2012) are very close to the results that come out from the application of the smooth pasting
condition.

11As referred by the authors downward jumps are more likely than upward jumps. In addition, this assump-
tion simplifies the problem considerably.
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through the diffusion process or unexpectedly at the first jump event determined according to
a stochastic hazard rate. Their paper distinguishes from most of the literature by specifying
that default occurs depending on the dynamics of a signaling variable. The authors argue
that this approach is more flexible as it may be applied to issuers that do not hold a clearly
identifiable set of assets such as sovereigns. Moreover, their model considers that the risk free
rate follows the Cox-Ingersoll-Ross (CIR) process. The latter is assumed to be uncorrelated
with the asset process but affect the hazard rate of the jump event. Absolute priority is
assumed to be violated. Despite providing almost closed-form solutions to bond prices this
paper does not provide any guidance on equity value, which limits model calibration. More
recently, several papers (e.g. Chen and Kou (2009), Huang and Huang (2012)) have proposed
the use of the double exponential distribution instead of the Normal distribution to model
jump sizes. Besides having heavier tails, this distribution has the advantage of having a
closed-form solution.

The introduction of jumps in the asset process has not been the only way proposed in
the literature to account for the fact that spreads tend to zero as debt approaches maturity.
Moodys-KMV is probably the most successful commercial application of structural models.
Under their model the normalized distance between asset values and the default barrier (i.e.
distance to default) is first computed and then evaluated in Moodys proprietary database
instead of using the Normal distribution. JPMorgan, Goldman Sachs, Deutsche Bank and
the RiskMetrics Group (see Finger et al. (2002)) consider instead that the default boundary,
though constant, is uncertain. This turns default into an unpredictable event enabling the
model to produce non-zero short-term spreads even for investment grade bonds. A third
alternative is to consider that the volatility term is not constant. This approach has been
followed by Fouque et al. (2006). In this paper, it is shown that when asset volatility follows
a fast mean-reverting process short term spreads increase significantly. A fourth possibility
is to leave the assumption that the market value of the firm is observed. This is what
occurs in Duffie and Lando (2001). In their model, investors observe at each moment in time
that the firm has not defaulted and noisy accounting reports, on which their assessment on
the market value of assets is based. The two values are then assumed to be joint Normal
distributed.12 Based on this assumption, they compute the distribution of the true asset value
conditional on the available information. They show that for an issuer with conditionally
unbiased reported assets, a kind of Jensen effect implies a lower debt price as compared with
the perfect observation case. In addition, with imperfect information, credit spreads remain
bounded away from zero as maturity goes to zero. Finally, in the last years the IMF has used

12This results from the fact that the difference between the logarithm of the true market value and the
observed being assumed to be normally distributed.
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in its macrofinancial risk assessments structural models with Gram-Charlier expansions (see
Jobst and Gray (2013)). The latter is an approximate density function that differs slightly
from the standard Normal distribution by introducing potentially non-zero skewness and
excess kurtosis.

1.2. Contribution to the literature

This thesis presents a structural model of contingent claims that builds on the literature of
first passage time models. The paper most similar with this thesis is the one from Goldstein
et al. (2001). In the first part of their paper, it is assumed that the firm holds a project whose
earnings before interest and taxes (EBIT) follows a geometric Brownian motion with default
occurring in the first time the state variable falls below a certain level. Stakeholders on the
firm receive their payoffs based on the value of this project, which in contrast with most
structural models of corporate liabilities, is seen as a non-tradable asset. The implications
of abandoning the tradability assumption are analysed here. This thesis further elaborates
in this model by adding mainly two additional features. First, the cash flow from operating
activities (CFO) is considered to be the state variable and a fixed cost parameter is intro-
duced. The latter corresponds to the capital expenditures (capex) needed to mantain the
current project growth rate. However, any type of fixed cost can be considered as long as the
state variable is redefined in accordance. It is shown that this additional parameter leads to
an operational leverage effect that increases firm volatility in bad times. In addition, under
fixed costs the barrier level that maximizes the smooth pasting condition is not the one that
maximizes firm value ex-ante. Second, the possibility of a sudden negative jump of fixed size
in the project’s capacity to generate earnings is added as in Realdon (2007).13 The empirical
observation that negative jumps are more likely than positive jumps justifies this choice. Ex-
amples of negative jumps include the discovery of substantial accounting misgivings that lead
investors to suddenly reduce their estimates of the true value of the firm assets (e.g. Enron,
Parmalat, Salad oil), natural disasters (e.g. Tepco), accidents (e.g. BP, Spanair), terrorist
attacks (PanAm) or even redenomination risk (e.g. euro area sovereign debt crisis). Some
negative events do not lead firms to default but hamper their financial capacity significantly
leading default risk to soar. As such, the inclusion of this term contributes to the prediction

13Realdon (2007) derives a closed form solution for a first passage time structural model with constant interest
rate where default occurs either at the first time the process hits an exogenous barrier or at the first jump
of a compounded Poisson process with fixed negative amplitude. All outstanding debt is assumed to have
equal priority in case of default. Equity is then computed subtracting total debt value and distress costs
value from asset value as in Leland (1998).
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of more realistic short term spreads without risking model tractability.14

In addition to providing pricing formulas for equity, debt with different levels of seniority
and credit default swaps, this thesis analyzes some important questions in the field of corpo-
rate finance, such as the optimal capital structure and the cost of capital, and gives almost
closed-form formulas for pricing equity options. Finance literature has mostly treated option
pricing and the pricing of securities in the firm’s capital structure as separate research areas.
This separation though convenient is inconsistent potentially leading to arbitrage opportuni-
ties that can be exploited using the model presented here. In addition, for model calibration,
the highest the amount of information the best. Stock price information is seldom enough to
properly calibrate highly parameterized models. This is particularly true when one leaves out
the assumption that it is possible to trade on the firm asset, which is the case in this thesis.
Stock options complement the information set potentially leading to a significant improve-
ment in model estimation.15 Notable exceptions in the literature are the papers by Geske
(1979), Toft and Prucyk (1997), Ericsson and Reneby (2003) and Realdon (2003). Geske
uses Merton’s model with finite maturity zero coupon debt to price options as compound
options on the firm assets. Doing so, the variance of the stock returns becomes a function
of the firms’ leverage. In particular, when equity goes down, the debt-to-equity increases
leading to a higher variance of returns, which is in line with the observed volatility skew.
Toft and Prucyk (1997) also treat equity options as compound options on assets but under
Leland (1994a) model. In this case, equity options are options on a down-and-out call option
that expires whenever the market value of asset falls below an endogenous barrier. These
authors show that the barrier level significantly affects option values and sensitivies. For
example, an increase in asset volatility leads to an increase in option value due to the usual
convexity in option pricing. However, in the case of an endogenous barrier it may also shift
the barrier downwards further contributing to increase option value. Ericsson and Reneby
(2003) consider the case where default is triggered either by the barrier or the inability to
repay debt at maturity. Realdon (2003) extend Toft and Prucyk (1997) to the case where
equity retains value even after assets hitting the barrier and shows that this feature can be
very relevant for the pricing of out of the money put options. This thesis aims to help closing
the identified gap.

14According to Leland the probability of investment grade firms jumping directly to default is low. See
http://www.haas.berkeley.edu/groups/finance/WP/LECTURE2.pdf.

15General formulas for computing CDS spreads with any seniority structure are rarely provided in published
papers. These can also be very relevant for model calibration.
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2. The model

2.1. The asset process

Consider a firm that holds a single project that generates a certain amount of cash flow
according to the following Lévy process under the physical measure P:

dδt
δt

= µδdt+ σdWt
P − jdNP

t , (2.1)

where µδ is the instantaneous growth rate of the project cash flows (exogenously determined),
σ is the instantaneous volatility of the cash flow growth rate,

{
W P
t , t ≥ 0

}
is a standard

Wiener process, j is the relative cash flow change when a sudden jump occurs and finally{
NP
t , t ≥ 0

}
is a Poisson process with hazard rate λ. j is a constant meaning that jumps

have fixed size. It is assumed that Wt
P ⊥ NP

t and 0 < j < 1 meaning that the cash flow
decreases after the sudden jump but remains non-negative. δ0 is the cash flow of the firm
at time 0, the initial time of the process. δt is interpreted as the cash flow from operations
(CFO) at time t. However, one can also interpret δt as the EBITDA without any change
in the model. The CFO excludes any capital outflows related with investments in capital
assets. Capex is nevertheless needed to justify a positive growth rate in the project cash
flows. For this reason capex suppliers are seen as claimants on the project.1 The process is
assumed to continue indefinitely. However, it is considered that either at time τ , the first
time the process hits a lower boundary δ̄, or at time τ̂ , when Nτ̂ = 1, whichever occurs first,
the firm ceases to exist and the project is sold to a competitor firm. This time is denoted as
τSolv. As further discussed in the next section, distress costs are incurred (or not) depending
on whether δt is below or above δ̄ at τSolv. Shareholders are assumed to manage this firm
but they are not allowed to change the project risk profile nor the amount of liabilities and

1As further developed in Section 2.2, capex suppliers are seen as having a continuous fixed claim on the
project. In practice, any fixed cost can be treated in this way as long as the state variable is defined in
accordance. In contrast with Goldstein et al. (2001), this model can thus be applied even to firms with
negative EBIT.
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capex expenditure required to mantain the project. Agency problems are thus ignored. The
solution to equation (2.1) is given by Proposition 1.

Proposition 1. The process given by equation (2.1) has solution equal to

δt = δ0e
(µδ−0.5σ2)t+σW P

t +ln(1−j)NP
t . (2.2)

Proof. Consider f (x) = ln (x). Applying Lévy-Itô’s lemma, we have

d ln (δt) = δtµδ
1
δt
dt− σ2δ2

t

2
1
δ2
t

dt+ 1
δt
δtσdW

P
t + [ln ((1− j)δt−)− ln (δt−)] dNP

t

=
(
µδ − 0.5σ2) dt+ σdW P

t + ln (1− j) dNP
t .

(2.3)

Integrating,

ln (δt) = ln (δ0) +
(
µδ − 0.5σ2) t+ σW P

t + ln (1− j)NP
t . (2.4)

Taking the exponent in both sides of equation (2.4) one obtains equation (2.2).

Consider the existence of a security, At, capturing the market value of this project at each
moment in time, whose value at time 0 and dynamics are given by Proposition 2.

Proposition 2. The value of security At at the beggining of the process is given by

A0 = δ0
µA − g

, (2.5)

where g = µδ − λj is the expected CFO growth rate including jumps. At dynamics are given
by

dAt
At

= µδdt+ σAdW
P
t − jAdNP

t . (2.6)

where σA and jA correspond to σ and j, respectively.2

Proof. Since the δ process is assumed to live infinitely we have that

A0 = EP

 +∞∫
0

e−µAsδsds

∣∣∣∣∣∣F0

 , (2.7)

2The two notations are used throughout this thesis.
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where the discount rate µA is assumed to be constant for mathematical tractability.3 Ft is
the filtration generated by the δt process.

Now, rewrite δt process in martingale form

dδt
δt

= (µδ − λj) dt+ σdWt
P − jdMP

t , (2.8)

where Mt is the compensated Poisson process associated with NP
t :

dMP
t = dNP

t − λdt. (2.9)

Solving equation (2.8) and substituting the solution in equation (2.7), one obtains

A0 = δ0

+∞∫
0

EP
[
e−(µA−µδ+0.5σ2+λj)s+σW P

s−ln(1−j)MP
s

∣∣∣F0

]
ds. (2.10)

Taking the expectation and then rearranging

A0 = δ0

+∞∫
0

e−(µA−µδ+λj)sds. (2.11)

Computing the integral on the right-hand side of equation (2.11) one arrives at equation
(2.5).

Since At is a function of δt one can derive the dynamics of At by applying Lévy-Itô’s
lemma. Consider

f (x) = x

µA − g
.

Applying the lemma,

dAt = 1
µA − g

dδt. (2.12)

Substituting dδt according to equation (2.1),

dAt = δt
µA − g

[
µδdt+ σdW P

t − jdNP
t

]
. (2.13)

Substituting δt by At (µA − g) one obtains equation (2.6).

3Accoring to Goldstein et al. (2001) this result can nevertheless be obtained in a model with a representative
agent with a power-utility function.
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In contrast with most corporate finance models, the growth rate of At is independent of
the discount rate µA. Also, as time passes, At generates δt but its value does not decrease
as a result of this. This occurs because At is not really a security, and thus, its value is not
affected by any payout.4 In line with Ericsson and Reneby (2002), At should be thought as
a fictive security instead.5 Something that is not really a security cannot be claimed to be
traded as in most structural model setups. However, for illustrative purpose, this assumption
will be adopted in the next paragraphs. It is then explained what is new when At is not
traded.

Black and Scholes revolutionized the entire derivatives industry by showing that when
the underlying asset follows a continuous process such as a geometric Brownian motion one
could form a risk free portfolio using only the underlying asset and one derivative. Since this
portfolio is instantaneoulsy risk free it should earn the risk free rate. This finding allowed
them to derive a partial differential equation describing the dynamics of the option contract
for the case of a geometric Brownian motion. They then solved this equation with the
boundary condition associated with a European call option arriving at the famous Black-
Scholes call option formula. A similar argument was followed by Merton (1973). In his
paper, Merton considers forming a self-financing portfolio containing the common stock, the
option and a riskless bond with the same maturity as the option contract. Since this portfolio
requires zero investment one must have that under no arbitrage opportunities, the expected
return on this portfolio must equal zero. The two approaches are equivalent with this section
folowing the first approach.6 When At dynamics are given by equation (2.6), it is evident

4In order to compute the project return one has to add δt to the asset growth rate

dAt + δtdt

At
=
dAt

At
+
δtdt

At

=
dAt

At
+
At (µA − g) dt

At
.

Substituting dAt
At

according to equation (2.6) and then cancelling µδ,

dAt + δtdt

At
= µδdt+ σAdW

P
t − jAdNP

t + (µA − g)dt

= (µA + λjA) dt+ σAdW
P
t − jAdNP

t

= µAdt+ σAdW
P
t − jAdMP

t .

5According to Ericsson and Reneby (2002) if this was not the case we would have two types of securities with
conflicting claims over the same cash flows. On the one hand, we would have the holders of this asset. On
the other hand there would be shareholders and debt holders that receive dividends and coupons based
on the same cash flows.

6The contribution from each of these authors to the development of the so-called Black-Scholes-Merton
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that it is impossible to form a risk free portfolio since there are two sources of randomness
(i.e. the Wiener process and the Poisson process) but only one asset in addition to the risk
free asset. The market is clearly incomplete. Nevertheless, one may complete the market by
adding a second traded derivative contract.7 I will now formalize this idea.

Consider a market composed by At, a risk free bond, Bt, and two traded derivatives
(e.g two European options on the stock), which we will call χG and χS . For simplicity,
assume that these derivatives have no payouts. Further, assume that the price processes
of these instruments, ΠG (t) and ΠS (t), are given by some functions only of t and At with
ΠG (T ) = G (T,AT ) and ΠS (T ) = S (T,AT ). Our goal is to find how these functions, denoted
as G and S, must look like in order for the market [At, Bt, χG, χS ] to be arbitrage free.

Applying Itô’s formula to G (t, At) and S (t, At) the price dynamics of χG and χS are
obtained

dΠG
t

ΠG
t

= αGdt+ σGdW
P
t − jGdNP

t

dΠS
t

ΠS
t

= αSdt+ σSdW
P
t − jSdNP

t ,

(2.14)

where the drift terms are

αG = Gt + αAAGx + 0.5σ2
AA

2Gxx
G

αS = St + αAASx + 0.5σ2
AA

2Sxx
S

,

(2.15)

the diffusion terms are

σG = σAAGx
G

σS = σAASx
S

,

(2.16)

model is not completly clear from reading the cited papers as each paper benefited from the other. Taking
Merton’s words when interviewed in 2013, Black and Scholes “had the fundamental insight of undertaking
a dynamic trading strategy in the underlying stock and the risk-free asset to hedge the systematic risk of
an option position, and thereby create a portfolio of stock, risk-free asset, and option whose Capital Asset
Pricing Model (CAPM) equilibrium expected return would equal the risk-free interest rate. In addition
to naming it the Black-Scholes model, my most significant contribution to the model was to show that if
you go to shorter and shorter trading intervals, their same dynamic strategy rules will eliminate all the
risk, which has the implication that you have a way to synthesize the option, even if the option does not
exist. By following a set of rules for trading the stock and the risk-free asset, I could create a portfolio
that produced exactly the same payoff as the option.”

7Notice, however, that in the general case where jump sizes are random we will need to add as many assets
as the possible states of the jump size distribution in order to complete the market. For a continuous
jump size distribution this is impossible, turning the model incomplete.
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and, finally, the jump terms correspond to8

jG = G (At−)−G ((1− j)At−)
G (At−)

jS = S (At−)− S ((1− j)At−)
S (At−) .

(2.17)

Following Björk (2009) notation, αA indicates the drift of the asset under consideration
minus any payout, k, which in the case of At is 0 and thus αA = µδ.

Consider a portfolio composed of At, χG and χS . Denoting the relative portfolio weights
by wA, wG and wS the following portfolio dynamics are obtained:

dVt
Vt

= (wA (αA + kA) + wG (αG + kG) + wS (αS + kS)) dt+ (wAσA + wGσG + wSσS) dW P
t

− (wAjA + wGjG + wSjS) dNP
t ,

(2.18)

where wA + wG + wS = 1 and kA = kG = kS = 0.
One may then build a risk free portfolio by choosing portfolio weights so that

wA + wG + wS = 1
wAσA + wGσG + wSσS = 0
wAjA + wGjG + wSjS = 0

(2.19)

This system has the solution

wA = σGjS − σSjG
σGjS − σSjG + σAjG − σAjS + σSjA − σGjA

wG = σSjA − σAjS
σGjS − σSjG + σAjG − σAjS + σSjA − σGjA

wS = σAjG − σGjA
σGjS − σSjG + σAjG − σAjS + σSjA − σGjA

.

(2.20)

Since this portfolio is risk free, no arbitrage implies that

wAαA + wGαG + wSαS = r, (2.21)

where r denotes the risk free interest rate.
8As further discussed in Sections 3.3 and 4.2, in this model the value of the derivative contract after the
jump is not simply G ((1− j)At− ) because the liquidation of the firm leads to a reorganization of each
claimant rights. In this section, however, At is treated independently of this fact.
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Substituting the optimal weights in equation (2.21) and rearranging one obtains

αA − jA σG(αS−r)−σS(αG−r)
σGjS−σSjG − r
σA

= −jG (αS − r)− jS (αG − r)
σGjS − σSjG

, (2.22)

where the right-hand side of equation (2.22) does not depend on any parameters relative to
the underlying. Rearranging in the same way for G and S one obtains similar expressions
where the right-hand side does not depend on the correspondent parameters. In addition,
it is possible to prove (see Appendix A.1) that under no arbitrage both the term on the
right-hand side of equation (2.22) and the term multiplying the jump term on the left-hand
side are equal for the two derivatives and the underlying. In Appendix A.2 it is shown that
the term multiplying the jump is its hazard rate in the risk neutral measure. For this reason,
it is denoted as λ. This leads to the conclusion that under no arbitrage, and similar to the
no jump case, the excess return (adjusted for the possibility of a jump) per unit of volatility
risk must be the same in the underlying and in the derivatives:9

αA − jAλ− r
σA

= αG − jGλ− r
σG

= αS − jSλ− r
σS

. (2.23)

In addition, since αA, σA, jA, λ and r are assumed to be constant the excess return per
unit of risk must be also constant across time.

Substituting αA, αG, σG and jG on the first equality of equation (2.23), and rearranging,
one obtains the following integro-differential equation (see Appendix A.1):10

Gt +
(
r + jAλ

)
AGx + 0.5σ2

AA
2Gxx − λ [G ((1− j)At−)−G (At−)]− rG = 0. (2.24)

The price of χG can then be found by solving equation (2.24) subject to

ΠG (T ) = G (T,AT ) . (2.25)

As first noted by Duffie (1988), one may alternatively use Feynman-Kac theorem in order
to obtain a stochastic representation formula:

G (t, x) = e−r(T−t)EQ [G (T,AT )] , (2.26)

9In the case where k 6= 0 we have to substitute αA, αG and αS by µA, µG and µS .
10Notice that when λ = 0 and the derivative contract has no explicit time dependence the term Gt vanishes

and equation (2.24) becomes an ordinary differential equation (ODE). The resulting ODE is similar to
equation 3 in Leland (1994a) except that here it is assumed that G has no payout, while in the case of
Leland (1994a) the derivative is assumed to have a constant payout.
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with the dynamics of At given by

dAt
At

=
(
r + jAλ

)
dt+ σAdW

Q
t − jAdN

Q
t . (2.27)

The latter can also be written in martingale form as

dAt
At

= rdt+ σAdW
Q
t − jAdM

Q
t . (2.28)

Equation (2.26) is the usual risk neutral valuation formula applied to derivative χG. It
states that the market price of χG is simply the expected value of its payoff at time T (under
some probability measure usually denoted as Q) discounted at the risk free rate. Since this
probability measure is the one used throughout this thesis it is convenient to give it a formal
definition.

Definition 1. The probability measure Q is a probability measure equivalent to the original
probability measure P such that the discounted value of any asset payoffs (i.e. the asset
price plus any dividends expressed in units of the numeraire money market account) is a
martingale. Mathematically, for T ≥ t and considering a generic financial asset X one may
write

Xt

βt
= EQ

[
XT

βT

∣∣∣∣Ft] , (2.29)

where βt = ert is the value of the money market account at time t.

Substituting the term correspondent to the value of the money market account on equation
(2.29) one obtains

EQ [XT | Ft] = er(T−t)Xt, (2.30)

and it is clear that measure Q assumes that any financial asset generates a rate of return
equal to the risk free interest rate.

The derivation just done is very useful to show how equation (2.26) emerges. As an alter-
native, one can start with equation (2.26) and use the Girsanov theorem for jump diffusion
processes in order to change the probability measure to measure Q. This is known as the
martingale approach and it is explored in Appendix A.2. The partial differential equation
(PDE) approach and the martingale approach are broadly seen as equivalent, though their
equivalence have only been proved under some conditions on model parameters, which the
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model here considered fulfills (Heath and Schweizer (2000)).11 Once the characteristics of
each derivative are taken into account, the PDE approach has the advantage of simultane-
ously providing the reader the so-called hedging portfolio. The latter can be very useful if
one wants to use this model for capital structure arbitrage.

Up to now it has been assumed that At is traded. What if it is not traded? Is it
still possible to price derivative contracts using no-arbitrage arguments? Can we obtain an
equation similar to equation (2.26)? The answer to these questions is yes. However, as pointed
in Björk (2009), arbitrage pricing is always a case of pricing a derivative in terms of the price
of some underlying asset. If At is not traded we do not have enough underlying assets. One
can, however, add a third derivative. Consider χF with price process Π (t)F = F (t, At) and
with ΠF (T ) = F (AT ). For simplificity, let’s assume that χF has no dividends. Further
assume that At is observable.12 As for other derivatives we have that

αF = Ft + αAAFx + 0.5σ2
AA

2Fxx
F

σF = σAAFx
F

jF = F (At−)− F ((1− j)At−)
F (At−) .

(2.31)

Proceeding as previously, it is possible to find risk weights so that we are again able to
build a risk free portfolio. Since this portfolio is risk free, no arbitrage implies that

wFαF + wGαG + wSαS = r, (2.32)

Substituting the optimal weights into equation (2.32) one obtains

mt = αF − jFλ− r
σF

= αG − jGλ− r
σG

= αS − jSλ− r
σS

. (2.33)

Equation (2.33) leads to two very important conclusions. First, though the underlying
asset is not traded, the excess return adjusted for the jump per unit of volatility risk must
be the same for all derivatives. This is a consistency condition in order to avoid arbitrage

11In trueth, based on the first fundamental theorem of asset pricing, equation (2.26) is valid as long as
arbitrage opportunities are ruled out. However, according to the second fundamental theorem of asset
pricing, there is no unique equivalent martingale measure if the market is not complete. Please see
Harrison and Kreps (1979), Harrison and Pliska (1981) and Harrison and Pliska (1983).

12This thesis leaves unanswered the delicate question of whether the asset value is de facto observable. The
latter implies that, in addition to r and δ0, agents must also be aware of m, µδ, σ, λ and j.
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opportunities between the derivatives. Second, though under no arbitrage the excess return
adjusted for the jump per unit of volatility risk must be equal for all derivatives, it does
not need to be constant as in the case where At is assumed to be traded. In turn, mt is
a stochastic process, which is not specified within this model. The only thing we know is
that mt is some function of t and At, whose value affects the price of all derivative contracts
on the firm. In order to determine mt one needs an equilibrium asset pricing model where
agents preferences are modelled. As argued in footnote 2, one convenient assumption is
that asset prices are determined under a representative agents model with a power-utility
function. In this case, mt = m is in fact constant, which considerably simplifies the analysis.
All derivations taken in this thesis hereafter assume that m is constant.

Substituting αG, σG and jG in equation (2.33) as previously and rearranging, one arrives
at

Gt + (µδ −mσ)AGx + 0.5σ2
AA

2Gxx − rG− λ [G ((1− jA)At−)−G (At−)] = 0. (2.34)

Equation (2.34) is similar to equation (2.24) but with µδ−mσA instead of r+jAλ. Again,
one can use Feynman-Kac theorem to obtain a stochastic representation formula

G (t, x) = e−r(T−t)EQ [G (T,AT )] . (2.35)

This time the dynamics of At, under the martingale measure Q, are given by

dAt
At

= (µδ −mσA) dt+ σAdW
Q
t − jAdN

Q
t , (2.36)

or equivalently, using the compensated Poisson process,

dAt
At

=
(
µδ − λjA −mσA

)
dt+ σAdW

Q
t − jAdM

Q
t , (2.37)

Solving equation (2.37) as in Proposition 1, one obtains

At = A0e
(µδ−λjA−mσA−0.5σ2

A)t+σAWQ
t +ln(1−jA)MQ

t . (2.38)

Equation (2.37) is equal to equation (3) in Goldstein et al. (2001) when λ = 0. While
Goldstein et al. (2001) arrives at equation (2.37) following a martingale approach, a partial
differential equation approach is followed in this thesis. The martingale approach is useful
to clarify one aspect that is not completely clear so far, notably, the relation between µA ,
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m and λ. From the first fundamental theorem of asset pricing it is known that

A0 = EP

 +∞∫
0

e−µAsδsds

∣∣∣∣∣∣F0

 = EQ

 +∞∫
0

e−rsδsds

∣∣∣∣∣∣F0

 , (2.39)

where

dδt
δt

= (µδ −mσ)dt+ σdWt
Q − jdNQ

t . (2.40)

Solving the above stochastic differential equation and substituting in equation (2.39), one
obtains

A0 = δ0

r +mσ + λj − µδ
. (2.41)

Summing and subtracting λj in the denominator, one arrives at

A0 = δ0

r +mσ +
(
λ− λ

)
j − g

. (2.42)

Thus, µA = r + mσ +
(
λ− λ

)
j meaning that the expected return on the project can be

decomposed in three components, the risk free rate, a premium m per unit of volatility risk
and a premium

(
λ− λ

)
per unit of jump risk. As will be shown in Sections 3.3 and 4.2 a

similar result is obtained for equity and debt.

Before ending this section, it is important to compare the equations obtained here with
those obtained in the literature when the state variable is the market value of the firm’s
asset. Except for the jump term, equation (2.28) is equal to equation 1 in Leland (1994a)
after changing to the risk neutral measure. The latter assumes that the firm generates a
return of µA and that shareholders pay interest from their own pockets. Since µA is positive
this model implicitly assumes that the firm is expected to deleverage as time goes by.13

By assuming that At is a traded security, however, this ends up having no effect on equity
and debt valuations. Decreasing leverage and shareholders paying debtholders continuously
are unreasonable assumptions, though. In order to overcome these issues, several models
assume that a constant fraction k of At is continuously sold with shareholders putting any
additional value in case it is optimal to do it. When k is below (above) µA the firm is
implicitly assumed to deleverage (increase leverage). Though k ends up affecting debt and

13The same occurs in the model presented in this thesis whenever µδ > 0.
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equity valuations through the probability of default, again the assumption that At is traded
turns µA irrelevant for pricing purposes.

Though challenging, leaving the hypothesis of asset tradeability seems thus wise. In this
case it can be shown that µA and m affect equity and debt valuations. The higher is µA
the lower the probability of default and the higher the debt value. Computing equity by
subtracting debt value from asset value as it is done in most papers may lead to counter-
intuitive conclusions, though. For instance, the higher is µA, the lower is the probability
of default of the firm, the higher is debt value for the same At and thus the lower is the
equity value. One alternative is to price equity directly as the present value of all future
dividends. Doing this there is no guarantee, however, that the asset value equals the sum of
equity and debt value unless this is imposed during estimation. The latter occurs because
µA and At are not set jointly in the same model. It adds that the joint estimation of µA and
At is particularly difficult. A convenient and reasonable hypothesis in this case is to assume
that k = µA, which means that the firm distributes all its returns. In this case, the asset
drift becomes 0 under the physical measure and debt value ends up not depending either on
µA and k even when the asset is non-tradable. Equity and debt continue to depend on m,
though. It occurs that the asset process obtained in this case is exactly equal to equation
(2.37) when µδ = 0 and λ = 0. This is not a surprising result since the way the model is set
we are intrisically assuming that all the cash flow is distributed, which is tantamount to say
that µA = k. The approach followed in this thesis brings, however, two major advantages
vis-a-vis simply assuming that the latter terms cancel out. First, by setting At as a function
of δt, At becomes a function of something that is observed. Second, At is now computed in
a way consistent with m.14 Additionaly, this model setup allow us to better value the effect
of taxes, distress costs and fixed costs. These features are discussed in the next section.

2.2. Contingent claimants and the default barrier

Traditionally, structural models of corporate liabilities assume At as the state variable. Tak-
ing Leland (1994a) as reference, the value of the firm then corresponds to At plus the tax
shield arising from debt minus distress costs. As pointed by Goldstein et al. (2001) this ap-
proach is inconsistent in the sense that an increase in the tax rate leads to an increase in the
value of the firm. In addition, the assumption that government’s revenue is a constant share
14Someone that does not agree with equation (2.7) can still estimate At as a latent process. In this case, one

can ignore Chapter 3 and compute equity by difference.
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of the coupons paid, and thus constant, is not consistent with the empirical observation.
Instead, in this model it is considered that the cash flows generated by the project have five
claimants, notably, shareholders, debtholders, the government, capex suppliers and distress
costs. Each of these claimants have very different payoffs depending on the project cash
flows and the firm capacity to stay in operation. As long as the firm mantains its activity
shareholders are considered to receive the cash flows generated by the project minus any
payments to debtholders, government and capex suppliers. Payments to debtholders and
capex suppliers are fixed.15 The government receives a fixed share of shareholders payoff,
which is not constant, and a fixed share of debtholders’ coupons, which are constant. As
established in most tax regimes, shareholders returns are taxed twice (first at the firm level,
t
Corp, and then at the investor level, tDiv). As referred in Section 2.1 the firm is closed at
time τSolv = Min {τ, τ̂} where τ is the first passage time of δt through δ̄ and τ̂ is the time
of the first jump. τ can also be defined as the first hitting time of At through v̄, which
is the project value associated with δ̄. Once the firm activity is over, two cases may occur
depending on whether AτSolv ≥ v̄. If AτSolv ≥ v̄, which can only occur when the collapse
of the firm is triggered by a sudden jump, distress costs are not incurred and the firm re-
ceives βSoldAτSolv . βSold correspond to equity and debtholders share on the project when
this is sold. One possibility is to assume that this corresponds to their current share. In this
case βSold can be easily found iteratively. The remaining

(
1− βSold

)
AτSolv is considered to

belong to external claimants on the project (see Chapter 5). The usual pecking order then
applies to βSoldAτSolv meaning that debtholders receive the minimum of nominal debt and
the recovered value. Shareholders only receive something if βSoldAτSolv ≥ L. If AτSolv ≤ v̄,
the firm is considered to be economically non-viable and distress costs are incurred. This cor-
respond to costs with lawyers and value destruction caused by fire sales and loss of intangible
value. In this case, the project is again sold for AτSolv but only βBankAτSolv accrues to the
firm. It is assumed that 0 ≤ βBank ≤ βSold. The difference between βSold and βBank times
the project value at the time the firm closes corresponds to distress costs. External claimants
in this case hold

(
1− βSold

)
AτSolv plus these distress costs. βBank may be estimated using

market prices.

As already explained, shareholders receive at each moment in time the difference between
the CFO generated by the project and their duties towards other claimants. While govern-
ment claim is assumed to fluctuate with the project returns, the costs with debtholders and

15One may claim that capex is not a fixed cost since the firm may adjust it during a crisis period. This shall
affect the operating cash flows growth rate and the project value, though. As referred in footnote 1 of this
chapter, as long as one defines the state variable in accordance one can consider any type of fixed costs.
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capex suppliers are considered fixed meaning that whenever the cash flows generated are not
enough, shareholders have to inject capital in the firm in order to avoid default. The obvious
question is for how long are they willing to do it. By answering this question one can arrive
at an endogenous default barrier. As first showed by Black and Cox (1976) the answer to
this question is given by solving a standard optimal stopping time problem. As explained in
Leland (1994a) this is the case because the above described liability structure is compatible
with an environment where debt securities are time independent. The latter is essential to
arrive at a closed form solution for an endogenous default barrier resulting from an optimal
stopping time problem. According to Leland (1994b), this occurs only in three cases, notably,
when debt is perpetual, when debt is retired at a constant rate and continuously replaced by
new debt so that the cash payouts are constant and when a firm continuously sells a constant
amount of new debt with the same maturity, which is then redeem at par upon maturity.16

In this thesis, the first case is followed. Nevertheless, the computation of bond prices with
arbitrary finite maturity is straightforward, based on the formulae given in Chapter 4.17 It is
assumed that each type of debt security is initially sold at par entitling its owner to a certain
coupon, which is pre-determined according to the firm’s risk. The latter is in contrast with
Leland (1994a), which assumes the that coupon payments are chosen by the shareholders
when optimizing the firm’s capital structure. The coupon level is thus seen as a synonym of
debt in his model. content

2.3. The distribution functions

Chapters 3 to 7 of this thesis derive the price of equity, debt, credit default swaps and
European-style options on stocks following a probabilistic approach. This is done by inte-
grating the joint density of the asset process, the time to hit the barrier and the jump time
appropriately. Since the Brownian motion is assumed to be independent from the Poisson
process, the joint distribution of At with τ ≥ t is treated separately from the jump distribu-
tion. The derivation of these probabilities is presented in Sections 2.3.1 and 2.3.2.

16Décamps and Villeneuve (2014) show, however, that the last two cases do not correspond to standard
stopping time problems and that extra assumptions are required to ensure that the smooth pasting
condition leads to an unique optimal stopping time.

17In this case one must be aware that the usual balance sheet identity is not respected anymore as the
model becomes internally inconsistent. In addition, the endogenous barrier derived in Section 3.4 is not
compatible with an enviroment with rollover debt.
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2.3.1. The joint distribution of At and τ ≥ t

In this section, the joint distribution of At and τ ≥ t is derived ignoring the possibility of
jumps. Though At follows a geometric Brownian motion, it is instructive to start with the
simpler case where Xt is a stochastic variable that follows an arithmetic Brownian motion.
In this case, the joint distribution of Xt with its minimum above y is given by Proposition 3.

Proposition 3. If dXt = vdt+σdWQ
t where v ∈ R, σ > 0, and

{
WQ
u , u ≥ 0

}
is a Q-measured

standard Brownian motion such that WQ
0 = 0, then for x ≥ y

Q
(
XQ
t ≤ x, inf

0<u≤t

(
XQ
u

)
≥ y
∣∣∣∣F0

)
= N

(
−y + vt

σ
√
t

)
− e

2vy
σ2 N

(
y + vt

σ
√
t

)
−N

(
−x+ vt

σ
√
t

)
+ e

2vy
σ2 N

(
−x+ 2y + vt

σ
√
t

) (2.43)

and

Q
(
XQ
t ∈ dx, inf

0<u≤t

(
XQ
u

)
≥ y
∣∣∣∣F0

)
= n

(
x; vt;σ

√
t
)
− e2 vy

σ2 n
(
x; 2y + vt;σ

√
t
)
, (2.44)

where N (.) and n (.) stand for the standard normal distribution and density functions, re-
spectively.

Proof. See Appendix A.3.

Ignoring the Poisson process in equation (2.36) and applying Itô’s formula to f (x) =
ln
(
x
A0

)
one obtains

d ln
(
At
A0

)
=
(
µδ −mσA − 0.5σ2

A

)
dt+ σAdW

Q
t . (2.45)

Taking Proposition 3 with Xt = ln
(
At
A0

)
, y = ln

(
v̄
A0

)
and v̄ < A0 and further noting that

Q
(

ln
(
At
A0

)
< x, inf

0<u≤t

(
ln
(
Au
A0

))
≥ ln

(
v̄
A0

)∣∣∣∣F0

)
= Q

(
ln
(
At
A0

)
< x, τ ≥ t

∣∣∣F0

)
thus leads

28



to

Q
(

ln
(
At
A0

)
≤ x, τ ≥ t

∣∣∣∣F0

)
= N

(
− ln (R) + v?t

σA
√
t

)
− e

2v? ln(R)
σ2
A N

(
ln (R) + v?t

σA
√
t

)
−N

(
−x+ v?t

σA
√
t

)
+ e

2v? ln(R)
σ2
A N

(
−x+ 2 ln (R) + v?t

σA
√
t

)
= N

(
− ln (R)− v?t

σA
√
t

)
−R2aN

(
ln (R) + v?t

σA
√
t

)
−N

(
−x− v

?t

σA
√
t

)
+R2aN

(
−x+ 2 ln (R) + v?t

σA
√
t

)
(2.46)

and

Q
(

ln
(
At
A0

)
∈ dx, τ ≥ t

∣∣∣∣F0

)
= n

(
x; v?t;σA

√
t
)
−R2an

(
x; 2 ln (R) + v?t;σA

√
t
)
, (2.47)

where v? = µδ −mσA − 0.5σ2
A, R = v̄

A0
and a = v?

σ2 .

In Chapters 3 to 7 we are mostly interested in the asset distribution rather than the
asset return distribution. It is well known however that whenever asset returns follow an
arithmetic Brownian motion, the asset itself follows a geometric Brownian motion, whose
joint distribution with τ ≥ t is presented in Proposition 4.

Proposition 4. If dAt
At

= vdt + σAdW
Q
t where v ∈ R, σA > 0, and

{
WQ
u , u ≥ 0

}
is a

Q-measured standard Brownian motion such that WQ
0 = 0, then

Q (At < x, τ ≥ t |F0 ) = N (h1 (x, t)) +R2aN (h2 (x, t))−N (h1 (v̄, t))−R2aN (h2 (v̄, t))
(2.48)

Q (At ∈ dx, τ ≥ t |F0 ) = d

dx
N (h1 (x, s)) +R2a d

dx
N (h2 (x, s))

= 1/x
σA
√
t

[
n (h1 (x, t))−R2an (h2 (x, t))

]
,

(2.49)

and

Q (τ ∈ du |F0 ) = d

du
N (h1 (v̄, u)) +R2a d

du
N (h2 (v̄, u)) (2.50)
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where h1 (z, s) = ln( zA )−v?s
σA
√
s

and h2 (z, s) = ln(R v̄
z )+v?s

σA
√
s

.

Proof. The proof is based on equation (2.47) and the total probability theorem.
By integrating the density function (2.47) on all possible values of Xt above ln

(
x
A0

)
one

obtains the probability of Xt being above ln
(
x
A0

)
and simultaneoulsy the process not hitting

v up to time t. This equals

Q (At ≥ x, τ ≥ t| F0) =
+∞∫

ln
(
x
A0

) n
(
x; v?t;σA

√
t
)
−R2an

(
x; 2 ln (R) + v?t;σA

√
t
)

= N

− ln
(
x
A0

)
− v?t

σA
√
t

−R2aN

− ln
(
x
A0

)
− 2 ln (R)− v?t

σA
√
t


= 1−N (h1 (x, t))−R2aN (h2 (x, t)).

(2.51)

Notice that when x = v̄, this is basically the probability of the process not hitting the
barrier up to time t

Q (τ ≥ t| F0) = Q (At ≥ v̄, τ ≥ t| F0)

= 1−N (h1 (v̄, t))−R2aN (h2 (v̄, t)) .
(2.52)

Using the total probability theorem

Q (τ ≥ t| F0) = Q (As ≤ x, τ ≥ t| F0) + Q (As > x, τ ≥ t| F0) . (2.53)

And thus

Q (As ≤ x, τ ≥ t| F0) = Q (τ ≥ t| F0)−Q (As > x, τ ≥ t| F0) . (2.54)

Substituting equations (2.51) and (2.52) on equation (2.54), and rearranging, equation
(2.48) is obtained. Differentiating leads to

Q (At ∈ dx, τ ≥ t |F0 ) = d

dx
N (h1 (x, t)) +R2a d

dx
N (h2 (x, t)) (2.55)

= 1/x
σA
√
t

[
n (h1 (x, t))−R2an (h2 (x, t))

]
. (2.56)
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The probability of the process hitting the barrier up to time t is given by

Q (τ < t| F0) = 1−Q (τ ≥ t| F0)

= N (h1 (v̄, t)) +R2aN (h2 (v̄, t)) .
(2.57)

Taking the derivative of equation (2.57) one obtains equation (2.50).

2.3.2. The jump time distribution

The probability distribution that describes the time between events in a Poisson process is the
exponential distribution, whose density and distribution functions are given in Proposition
5.

Proposition 5. The density and distribution functions of an exponentially distributed ran-
dom variable correspond, respectively, to

Q (τ̂ ∈ dû |F0 ) = λe−λû (2.58)

and

Q (τ̂ ≤ û |F0 ) = 1− e−λû. (2.59)

Following from equation (2.59), the probability of a jump not occurring up to time û
equals

Q (τ̂ ≥ û |F0 ) = e−λû. (2.60)

2.4. Further mathematical tools

Throughout this thesis several integrals involving the standard Normal distribution function
are computed. This section presents three mathematical results that are recurrently used for
this purpose.

The first integral we are interested is
z2∫
z1

x d
dxN (h1 (x, s))dx. This appears several times

and can be computed using Proposition 6 below.
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Proposition 6. For any s > 0 we have, for every z1 > 0 and z2 > 0,

z2∫
z1

x
d

dx
N

(
ln(x)− ln(A)− v?s

σA
√
s

)
dx = Ae(v?+0.5σ2

A)s [N (h3 (z2, s))−N (h3 (z1, s))] , (2.61)

where h3 (z, s) = ln( zA )−(v?+σ2
A)s

σA
√
s

.

Proof. For any a ∈ R and b > 0 we have, for every y>0,

y∫
0

x
d

dx
N

(
ln(x) + a

b

)
dx =

y∫
0

xn

(
ln(x) + a

b

)
1
xb
dx

= 1
b

y∫
0

n

(
ln(x) + a

b

)
dx

= 1
b

y∫
0

1√
2π
e
− 1

2

(
ln(x)+a

b

)2

dx.

(2.62)

Taking w = ln (x),

y∫
0

x
d

dx
N

(
ln(x) + a

b

)
dx = 1

b

ln(y)∫
−∞

1√
2π
ewe−

1
2 (w+a

b )2
dw

=
ln(y)∫
−∞

1√
2πb2

e
− 1

2

(
w2+2aw+a2−2b2w

b2

)
dw

= e
− 1

2

(
a2−(b2−a)2

b2

)
ln(y)∫
−∞

1√
2πb2

e
− 1

2

(
w2−2w(b2−a)+(b2−a)2

b2

)
dw

= e
− 1

2

(
a2−b4+2ab2−a2

b2

) ln(y)∫
−∞

1√
2πb2

e−
1
2

(w−b2+a)2

b2 dw

= e0.5b2−aN

(
ln(y) + a− b2

b

)
.

(2.63)
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Taking a = − ln(A)− v?s and b = σA
√
s, we obtain

z2∫
z1

x
d

dx
N

(
ln(x)− ln(A)− v?s

σA
√
s

)
dx = e0.5σ2

As+ln(A)+v?s
[
N

(
ln(z2)− ln(A)− v?s− σ2

As

σA
√
s

)

−N
(

ln(z1)− ln(A)− v?s− σ2
As

σA
√
s

)]
= eln(A)+(v?+0.5σ2

A)s
[
N

(
ln(z2/A)− (v? + σ2

A)s
σA
√
s

)
−N

(
ln(z1/A)− (v? + σ2

A)s
σA
√
s

)]
= Ae(v?+0.5σ2

A)s [N (h3 (z2, s))−N (h3 (z1, s))] .
(2.64)

We are also often interested in
z2∫
z1

x d
dxN (h2 (x, s)) dx, which can be computed using Propo-

sition 7.

Proposition 7. For any s > 0 we have, for every z1 > 0 and z2 > 0,

z2∫
z1

x
d

dx
N

(
− ln(x) + ln(Rv̄) + v?s

σA
√
s

)
= AR2e(v?+0.5σ2

A)s [N (h4 (z2, s))−N (h4 (z1, s))] ,

(2.65)

where h4 (z, s) = ln(R v̄
z )+(v?+σ2

A)s
σA
√
s

.

Proof. Procceding as in equation (2.62) one obtains

y∫
0

x
d

dx
N

(
− ln(x) + a

b

)
= e0.5b2+aN

(
− ln(y) + a+ b2

b

)
. (2.66)

Taking a = ln(Rv̄) + v?s and b = σA
√
s,
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z2∫
z1

x
d

dx
N

(
− ln(x) + ln(Rv̄) + v?s

σA
√
s

)
dx

= e0.5σ2
As+ln(Rv̄)+v?s

[
N

(
− ln (z2) + ln (Rv̄) + v?s+ σ2

As

σA
√
s

)
−N

(
− ln (z1) + ln (Rv̄) + v?s+ σ2

As

σA
√
s

)]

= e0.5σ2
As−ln(A)+ln(v̄2)+v?s

N
 ln

(
R v̄
z2

)
+
(
v? + σ2

A

)
s

σA
√
s

−N
 ln

(
R v̄
z1

)
+
(
v? + σ2

A

)
s

σA
√
s


= v̄2

A
e(v?+0.5σ2

A)s [N (h4 (z2, s))−N (h4 (z1, s))]

= AR2e(v?+0.5σ2
A)s [N (h4 (z2, s))−N (h4 (z1, s))] .

(2.67)

The last result of this section is used to compute integrals such as
T∫
0
e$s ddsN (h1 (z, s)) ds

and
T∫
0
e$s ddsN (h2 (z, s)) ds. This can be done using Proposition 8 below. As this type of

integral appears in different forms throughout this thesis, the referred proposition defines a
general function to compute it, which is called F (a, b, c, y).

Proposition 8. Let a,b,c ∈ R satisfy b < 0 and c2 > 2a. Then, we have for every y > 0

F (a, b, c, y) :=
y∫

0

eax
d

dx
N

(
b− cx√

x

)
dx =

{
Ω+
g (a, c) g+(y) + Ω+

h (a, c)h+(y), b > 0
Ω−g (a, c) g−(y) + Ω−h (a, c)h−(y), b < 0

,

(2.68)

34



where 18

Ω±g (a, c) = ∓
√
c2−2a∓c

2
√
c2−2a

Ω±h (a, c) = ∓
√
c2−2a±c

2
√
c2−2a

g±(y) = e∓bΨ
±
g (a,c)N

(
∓b−

√
c2−2ay√
y

)
h±(y) = e∓bΨ

±
h

(a,c)N
(
∓b+
√
c2−2ay√
y

)
Ψ±g (a, c) = ∓c−

√
c2 − 2a

Ψ±h (a, c) = ∓c+
√
c2 − 2a

. (2.69)

Proof. For b < 0 see Bielecki et al. (2006). For b > 0 notice that

N

(
b− cx√

x

)
= 1−N

(
−b+ cx√

x

)
.

Denoting
b∗ = −b
c∗ = −c

and substituting, one obtains

y∫
0

eax
d

dx
N

(
b− cx√

x

)
dx =

y∫
0

eax d
dx

[
1−N

(
b∗ − c∗x√

x

)]

= −
y∫

0

eax d
dx
N

(
b∗ − c∗x√

x

)
.

(2.70)

Since b∗ < 0 one can apply the result proved in Bielecki et al. (2006).

In the referred particular cases this leads to

T∫
0

eωs
d

ds
N (h1 (z, s)) ds = F

(
$,

ln
(
z
A

)
σA

,
v?

σA
, T

)
T∫

0

eωs
d

ds
N (h2 (z, s)) ds = F

(
$,

ln
(
R v
z

)
σA

,
v?

σA
, T

)
.

(2.71)

18The ± signal reflect whether we are in the case that b > 0 or b < 0. This thesis does not provide a
closed-form solution for the case where b = 0.
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2.5. Basic Securities

All securities priced in this thesis can be computed as a combination of five basic securities.
These basic securities have some similarities with some type of call or put option. Neverthe-
less, they cannot be really seen as options for a number of reasons that differ case by case.
For this reason they are called pseudo-options in most cases. This section shows how each of
these basic securities can be computed.

Pseudo-asset or nothing "no liquidation" call: AN (s)

Consider a security whose price today is given by AN (s) = EQ [As1{τ>s,τ̂>s}|F0
]
. Ba-

sically, this security pays As if the firm has not been closed up to time s. This security
resembles a down-and-out call option with maturity s, exercise price 0 and barrier v̄ but with
two differences. First, in addition to the barrier this option only pays As if a negative jump
has not occurred up to time s. Second, the expected payoff in this case is not discounted.
The time-0 price of this security corresponds to

AN (s) =
+∞∫
v̄

+∞∫
s

+∞∫
s

xQ (As ∈ dx, τ ∈ du, τ̂ ∈ dû |F0 )

=
+∞∫
v̄

+∞∫
s

+∞∫
s

xQ (τ̂ ∈ dû |F0 )Q (As ∈ dx, τ ∈ du |F0 )

=
+∞∫
v̄

xQ (τ̂ ≥ s |F0 )Q (As ∈ dx, τ ≥ s |F0 ).

(2.72)

Using equations (2.60) and (2.49), then

AN (s) =
+∞∫
v̄

e−λsx

[
d

dx
N (h1 (x, s)) +R2a d

dx
N (h2 (x, s))

]
dx. (2.73)
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Using Proposition 6 and 7,

AN (s) = A0e
(v?+0.5σ2

A−λ)s lim
x→+∞

{N (h3 (x, s))−N (h3 (v̄, s))

+R2a+2 [N (h4 (x, s))−N (h4 (v̄, s))]
}
.

(2.74)

Given that lim
x→+∞

N (h3 (x, s)) = 1 and lim
x→+∞

N (h4 (x, s)) = 0, this simplifies to

AN (s) = A0e
(v?+0.5σ2

A−λ)s [1−N (h3 (v̄, s))−R2a+2N (h4 (v̄, s))
]
. (2.75)

Pseudo-Digital "no liquidation" call: Dig (s)

Define Dig (s) = EQ [1{τ>s,τ̂>s}|F0
]
. Dig (s) is similar to AN (s) except that the payoff

now is the monetary unit instead of the underlying asset. As the expected payoff is not
discounted, Dig(s) corresponds to the probability of the firm surviving up to time s.

Dig (s) =
+∞∫
s

+∞∫
s

Q (τ ∈ du, τ̂ ∈ dû| F0) dûdu

= Q (τ > s, τ̂ > s| F0)

= Q ( τ̂ > s| F0)Q (τ > s| F0) .

(2.76)

Using equations (2.60) and (2.52), one obtains

Dig (s) = e−λs
[
1−N (h1 (v̄, s))−R2aN (h2 (v̄, s))

]
. (2.77)

Digital down-and-out "no jump" put with rebate: DigHit (s)

DefineDigHit (s) = EQ [e−rτ1{τ<s,τ̂>τ}|F0
]
. DigHit (s) can be seen as the non-deferable

rebate of a put down-and-out with maturity s, exercise price and barrier equal to v̄ and re-
bate equal to 1 that only pays off if a negative jump does not occur up to maturity. Notice
that the probability of this option ending up in the money is zero and thus the value of this
option comes exclusively from the rebate. Mathematically,
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DigHit (s) =
s∫

0

∞∫
u

e−ruQ (τ ∈ du, τ̂ ∈ dû |F0 )

=
s∫

0

∞∫
u

e−ruQ (τ̂ ∈ dû |F0 )Q (τ ∈ du |F0 )

=
s∫

0

e−ruQ (τ ∈ du |F0 )Q (τ̂ ≥ u |F0 ).

(2.78)

Using equations (2.50) and (2.60), then

DigHit (s) =
s∫

0

e−rue−λu
(
d

du
N (h1 (v̄, u)) +R2a d

du
N (h2 (v̄, u))

)
du. (2.79)

Using Proposition 8 and denoting $ = −(r + λ),

DigHit (s) = F

(
$,

ln (R)
σA

,
v?

σA
, s

)
+R2aF

(
$,

ln (R)
σA

,− v
?

σA
, s

)
. (2.80)

Remark 1. Consider that DigHit? (s) = EQ [e−rτ1{τ<s,τ̂>τ}|F0
]
. DigHit? (s) is given by

equation (2.80) replacing $ by −λ.

Pseudo-range asset or nothing down-and-out "jump" call: ANJump
(
l, u, s

)
Con-

sider that ANJump
(
l, u, s

)
= EQ

[
e−rτ̂Aτ̂−1{l<Aτ̂−<u,τ>τ̂,τ̂<s}|F0

]
. This security value is

very similar to an option with maturity s that pays the underlying value (just before the
jump) if the jump occurs, the asset before the jump lies between l and u and, finally, if the
barrier has not been hit previously. However, in this case we are discounting the payoff from
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the moment the jump occurs and not from time s.

ANJump
(
l, u, s

)
=

s∫
0

u∫
l

xe−rû
∞∫
û

Q (Aû ∈ dx, τ ∈ du, τ̂ ∈ dû |F0 )

=
s∫

0

u∫
l

xe−rû
∞∫
û

Q (τ̂ ∈ dû |F0 )Q (Aû ∈ dx, τ ∈ du |F0 )

=
s∫

0

u∫
l

xe−rûQ (τ̂ ∈ dû |F0 )Q (Aû ∈ dx, τ ≥ û |F0 ).

(2.81)

Substituting the jump density from equation (2.58) and using equation (2.49),

ANJump
(
l, u, s

)
= λ

s∫
0

u∫
l

xe−(r+λ)û
(
d

dx
N (h1 (x, û)) +R2a d

dx
N (h2 (x, û))

)
dûdx.

(2.82)

Using Propositions 6 and 7 and denoting ω = v? + 0.5σ2
A − r − λ,

ANJump
(
l, u, s

)
= λA0

s∫
0

eωû
{
N (h3 (u, û))−N

(
h3
(
l, û
))

+R2a+2 [N (h4 (u, û))−N
(
h4
(
l, û
))]}

dû.

(2.83)

Integrating by parts

ANJump
(
l, u, s

)
= λA0

ω

{
eωû

[
N (h3 (u, û))−N

(
h3
(
l, û
))]∣∣s

0

−
s∫

0

eωû
d

dû

[
N (h3 (u, û))−N

(
h3
(
l, û
))]

dû

+R2a+2
[
eωû

[
N (h4 (u, û))−N

(
h4
(
l, û
))]∣∣s

0

−
s∫

0

eωû
d

dû

[
N (h4 (u, û))−N

(
h4
(
l, û
))]

dû

 .

(2.84)
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Using Proposition 8,

ANJump
(
l, u, s

)
= λA0

ω

{
eωs

(
N (h3 (u, s))−N

(
h3
(
l, s
)))

−N (h3 (u, 0)) +N
(
h3
(
l, 0
))

− F

(
ω,

ln
(
u
A

)
σA

,
v? + σ2

A

σA
, s

)
+ F

ω, ln
(
l
A

)
σA

,
v? + σ2

A

σA
, s


+R2a+2 [eωs (N (h4 (u, s))−N

(
h4
(
l, s
)))

−N (h4 (u, 0)) +N
(
h4
(
l, 0
))

−F

(
ω,

ln
(
Rv̄
u

)
σA

,−v
? + σ2

A

σA
, s

)
+ F

ω, ln
(
Rv̄

l

)
σA

,−v
? + σ2

A

σA
, s

 .

(2.85)

Remark 2. Consider that ANJump?
(
l, u, s

)
= EQ

[
Aτ̂1{l<Aτ̂<u,τ>τ̂,τ̂<s}|F0

]
. ANJump?

(
l, u, s

)
is given by equation (2.85) replacing ω by ω? = v? + 0.5σ2

A − λ.

Pseudo-range digital down-and-out "jump" call: DigJump
(
l, u, s

)
Finally, consider DigJump

(
l, u, s

)
= EQ

[
e−rτ̂1{l<Aτ̂<u,τ>τ̂,τ̂<s}|F0

]
. This security is

very similar to ANJump
(
l, u, s

)
except that the payoff is the monetary unit and not the

underlying asset. The value of this security can be derived as follows.

DigJump
(
l, u, s

)
=

s∫
0

u∫
l

e−rû
∞∫
û

Q (Aû ∈ dx, τ ∈ du, τ̂ ∈ dû |F0 )

=
s∫

0

u∫
l

e−rû
∞∫
û

Q (τ̂ ∈ dû |F0 )Q (Aû ∈ dx, τ ∈ du |F0 ).

(2.86)

Substituting the jump density from equation (2.58) and using equation (2.49),

DigJump
(
l, u, s

)
= λ

s∫
0

u∫
l

e−(r+λ)û
[
d

dx
N (h1 (x, û)) +R2a d

dx
N (h2 (x, û))

]
dûdx. (2.87)
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Integrating and denoting $ = −(r + λ),

DigJump
(
l, u, s

)
= λ

s∫
0

e$û
[
N (h1 (x, û))|ūl̄ +R2a N (h2 (x, û))|ūl̄

]
dû

= λ

s∫
0

e$û
{
N (h1 (u, û))−N

(
h1
(
l, û
))

+R2a [N (h2 (u, û))−N
(
h2
(
l, û
))]}

dû.

(2.88)

Integrating by parts,

DigJump
(
l, u, s

)
= λ

$

{
e$û

[
N (h1 (u, û))−N

(
h1
(
l, û
))]∣∣s

0

−
s∫

0

e$û
d

dû

[
N (h1 (u, û))−N

(
h1
(
l, û
))]

dû

+R2a
[
e$û

[
N (h2 (u, û))−N

(
h2
(
l, û
))]∣∣s

0

−
s∫

0

e$û
d

dû

[
N (h2 (u, û))−N

(
h2
(
l, û
))]

dû

 .

(2.89)

Using Proposition 8,

DigJump
(
l, u, s

)
= λ

$

{
e$s

[
N (h1 (u, s))−N

(
h1
(
l, s
))]

−N (h1 (u, 0)) +N
(
h1
(
l, 0
))

− F

(
$,

ln
(
u
A

)
σA

,
v?

σA
, s

)
+ F

$, ln
(
l
A

)
σA

,
v?

σA
, s


+R2a [e$s [N (h2 (u, s))−N

(
h2
(
l, s
))]

−N (h2 (u, 0)) +N
(
h2
(
l, 0
))

−F

(
$,

ln
(
Rv̄
u

)
σA

,− v
?

σA
, s

)
+ F

$, ln
(
Rv̄

l

)
σA

,− v
?

σA
, s

 .

(2.90)

Remark 3. Consider that DigJump?
(
l, u, s

)
= EQ

[
1{l<Aτ̂<u,τ>τ̂,τ̂<s}|F0

]
. DigJump?

(
l, u, s

)
is given by equation (2.90) replacing $ by −λ.
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3. Equity

Chapter 2 presented the stochastic process governing the project cash flow generation and
a fictive security representing the market value of the project. In the next sections, we will
derive the price of equity, debt, CDS and European-style stock options as contingent claims
on this project. Starting with equity, its value in this model corresponds to the sum of two
components: 1) the after-tax present value of all future dividends up to the moment the
firm stops its activity (i.e. (1− tEff )Div0); and 2) the proceedings from selling the project
at τSolv whenever these are enough to comply with all the firm liabilities after taking into
account all external claimants on the project (i.e. EqRec0). Mathematically,

E0 =
(

1− tEff
)
Div0 + EqRec0, (3.1)

where
(

1− tEff
)

=
(

1− tCorp
)(

1− tDiv
)
.

The first two sections of this chapter cover the contribution from these two components
to equity value. The third section derives the dynamics of the equity process and presents
the concept of cost of equity. This chapter ends with the derivation of shareholders’ optimal
default barrier.

3.1. Dividends

As explained in Chapter 2, the project owned by our firm continuously generates δt. The
project requires a continuous investment of q, though. In addition, the firm must pay
debtholders coupons and government taxes. At each moment in time, depending on whether
δt is enough to cover coupons and capex, shareholders either receive the difference or inject
capital in the firm in order to avoid bankruptcy. In the latter case it is assumed that a tax
provision is created. Mathematically, the before-tax present value of all future dividends
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received by shareholders equals

Div0 = lim
T→+∞

T∫
0

e−rsEQ [(δs − cL− q) 1{τ>s,τ̂>s}|F0
]
ds

= lim
T→+∞

T∫
0

e−rsEQ [δs1{τ>s,τ̂>s}|F0
]
ds− (cL+ q) lim

T→+∞

T∫
0

e−rsEQ [1{τ>s,τ̂>s}|F0
]
ds.

(3.2)

Noticing that δs = (µA − g)As, we have that the first and second expectations correspond
respectively to (µA − g) times AN (s) and Dig (s):

Div0 = (µA − g) lim
T→+∞

T∫
0

e−rsAN (s) ds− (cL+ q) lim
T→+∞

T∫
0

e−rsDig (s) ds, (3.3)

where the first term corresponds to the discounted sum of all future cash flow as long as the
firm exists and the remaining terms are the discounted sum of all future interest and capex
costs as long as the firm exists. For this reason, these terms are called PayoutT0 , CouponT0
and CapexT0

Div0 = lim
T→+∞

[
PayoutT0 − CouponT0 − CapexT0

]
. (3.4)

Starting with PayoutT0 , substituting AN (s) by equation (2.75) and denoting ω = v? +
0.5σ2 − r − λ, one obtains

PayoutT0 = (µA − g)A0

T∫
0

eωs
[
(1−N (h3 (v̄, s)))−R2a+2N (h4 (v̄, s))

]
ds. (3.5)

Substituting A0 by δ0
µA−g and integrating by parts,

PayoutT0 = δ0
ω

eωs [1−N (h3 (v̄, s))]|T0 +
T∫

0

eωs
d

ds
N (h3 (v̄, s)) ds

−R2a+2

eωsN (h4 (v̄, s))|T0 −
T∫

0

eωs
d

ds
N (h4 (v̄, s)) ds

 .

(3.6)
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Applying Proposition 8,

PayoutT0 = δ0
ω

{
eωT [1−N (h3 (v̄, T ))]− 1 +N (h3 (v̄, 0)) + F

(
ω,

ln (R)
σ

,
v? + σ2

σ
, T

)
−R2a+2

[
eωTN (h4 (v̄, T ))−N (h4 (v̄, 0))− F

(
ω,

ln (R)
σ

,−v
? + σ2

σ
, T

)]}
.

(3.7)

Given that N (h3 (v̄, 0)) = 0 and N (h4 (v̄, 0)) = 0, equation (3.7) can be simplified into1

PayoutT0 = δ0
ω

{
eωT [1−N (h3 (v̄, T ))]− 1 + F

(
ω,

ln (R)
σ

,
v? + σ2

σ
, T

)
−R2a+2

[
eωTN (h4 (v̄, T ))− F

(
ω,

ln (R)
σ

,−v
? + σ2

σ
, T

)]}
.

(3.8)

Considering that T goes to infinity and that ω < 0, then

Payout0 := lim
T→+∞

PayoutT0

= δ0
ω

lim
T→+∞

[
F

(
ω,

ln (R)
σ

,
v? + σ2

σ
, T

)
+R2a+2F

(
ω,

ln (R)
σ

,−v
? + σ2

σ
, T

)
− 1
]
.

(3.9)

Finally, computing the limits as explained in Appendix A.4, one obtains

Payout0 = δ0
ω

[
Ω−h
(
ω,
v? + σ2

σ

)
R

1
σΨ−

h

(
ω, v

?+σ2
σ

)
+Ω−h

(
ω,−v

? + σ2

σ

)
R

2a+2+ 1
σΨ−

h

(
ω,− v

?+σ2
σ

)
− 1
]
.

(3.10)

CouponT0 can be computed in a similar way. Replacing Dig (s) by equation (2.77) and
denoting $ = −(r + λ), one obtains:

CouponT0 = cL

T∫
0

e$s
[
1−N (h1 (v̄, s))−R2aN (h2 (v̄, s))

]
ds. (3.11)

1Notice that

h3 (v̄, 0) = lim
s→0

ln(R)−(v?+σ2)s
σ
√
s

= lim
s→0

ln(R)
σ
√
s
− lim
s→0

(v?+σ2)
σ

√
s = −∞⇒ N (h3 (v̄, 0)) = 0

h4 (v̄, 0) = lim
s→0

ln(R)+(v?+σ2)s
σ
√
s

= lim
s→0

ln(R)
σ
√
s

+ lim
s→0

(v?+σ2)
σ

√
s = −∞⇒ N (h4 (v̄, 0)) = 0
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Integrating by parts and noticing that N (h1 (v̄, 0)) = 0 and N (h2 (v̄, 0)) = 0,

CouponT0 = cL

$

{
e$s

[
1−N (h1 (v̄, s))−R2aN (h2 (v̄, s))

]
|T0

−
T∫

0

e$s d
ds

[
1−N (h1 (v̄, s))−R2aN (h2 (v̄, s))

]
ds


= cL

$

{
e$T

[
1−N (h1 (v̄, T ))−R2aN (h2 (v̄, T ))

]
− 1

+
T∫

0

e$s
[
d

ds
N (h1 (v̄, s)) +R2a d

ds
N (h2 (v̄, s))

]
ds

 .

(3.12)

Using Proposition 8,

CouponT0 = cL

$

{
e$T

[
1−N (h1 (v̄, T ))−R2aN (h2 (v̄, T ))

]
− 1

+F
(
$,

ln(R)
σ

,
v?

σ
, T

)
+R2aF

(
$,

ln(R)
σ

,−v
?

σ
, T

)}
.

(3.13)

Considering that T goes to infinity, then

Coupon0 := lim
T→+∞

CouponT0

= cL

$
lim

T→+∞

[
F

(
$,

ln(R)
σ

,
v?

σ
, T

)
+R2aF

(
$,

ln(R)
σ

,−v
?

σ
, T

)
− 1
]
.

(3.14)

Finally, taking the limit (please see Appendix A.4), one obtains

Coupon0 = cL

$

[
Ω−h
(
$,

v?

σ

)
R

1
σΨ−

h ($, v?σ ) + Ω−h
(
$,−v

?

σ

)
R2a+ 1

σΨ−
h ($,− v?σ ) − 1

]
. (3.15)

Doing the same for Capex0, one obtains

Capex0 := lim
T→+∞

CapexT0

= q

$

[
Ω−h
(
$,

v?

σ

)
R

1
σΨ−

h ($, v?σ ) + Ω−h
(
$,−v

?

σ

)
R2a+ 1

σΨ−
h ($,− v?σ ) − 1

]
.

(3.16)
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3.2. Recovered value after closing the firm

When the firm closes, the project is sold. This may occur because the project value hits the
barrier or due to a jump. Thus,

EqRec0 = EqRecHit0 + EqRecJump0, (3.17)

where EqRecHit0 and EqRecJump0 are the respective contributes to equity value.

3.2.1. Recovered value after hitting the barrier

In the case that the firm hits the barrier, it is assumed that the firm incurs in distress costs
and recovers only βBankAτ . Since debtholders have priority over shareholders they only
receive something when v̄ > L

βBank
.2 Mathematically,

EqRecHit0 =

 lim
T→+∞

EQ
[
e−rτ

(
βBankv̄ − L

)
1{τ<T,τ̂>τ} |F0

]
, v̄ ≥ L

βBank

0, v̄ < L
βBank

=


(
βBankv̄ − L

)
lim

T→+∞
DigHit (T ) , v̄ ≥ L

βBank

0, v̄ < L
βBank

.

(3.18)

DigHit (T ) is given by equation (2.80). Taking the limit, one obtains

lim
T→+∞

DigHit (T ) = lim
T→+∞

[
F

(
$,

ln (R)
σ

,
v?

σ
, T

)
+R2aF

(
$,

ln (R)
σ

,−v
?

σ
, T

)]
= Ω−h

(
$,

v?

σ

)
R

1
σΨ−

h ($, v?σ ) +R2aΩ−h
(
$,−v

?

σ

)
R

1
σΨ−

h ($,− v?σ ).
(3.19)

The above limits can be computed with the help of equations (A.61) and (A.62) in Appendix
A.4 with $ replacing ω and v?

σ instead of v
?+σ2

σ .

3.2.2. Recovered value after a jump

When the firm closes after a jump, depending on whether Aτ̂ is above or below v̄, the firm
recovers βSoldAτ̂ or incurs distress costs and recovers only βBankAτ̂ . This difference turns

2In this model, this should be seen as the special case of a firm with a very low level of debt and high fixed
costs. In this case, the barrier might be higher than L

βBank
.
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the analysis substantially more complex and thus the two cases will be treated separately.

EqRecJump0 = EqRecJumpBank0 + EqRecJumpSold0 (3.20)

The firm is liquidated with distress costs: EqRecJumpBank0

The firm is liquidated with default costs when the project value stays below the barrier after
the jump (i.e. Aτ̂− ∈

[
v, v

1−j

]
). In this case, there might be two types of payoffs. These will

depend on the relation between the recovered value, βBank (1− j)Aτ̂− , and the amount of
liabilities. Mathematically, the nominal recovered value equals

EqRecJumpBankτ̂ =
{

0, v < Aτ̂− <
L

βBank(1−j)

βBank (1− j)Aτ̂− − L, L
βBank(1−j) < Aτ̂− <

v
1−j

. (3.21)

Since there is no guarantee that v < L
βBank(1−j) and L

βBank(1−j) <
v

1−j the following cases
may emerge:

First case: v ≤ L
βBank(1−j) ≤

v
1−j

EqRecJumpBank0

= lim
T→+∞

EQ

e−rτ̂ [βBank (1− j)Aτ̂− − L
]

1{
L

βBank(1−j)
<Aτ̂−<

v̄
1−j ,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


= βBank (1− j) lim

T→+∞
ANJump

(
L

βBank (1− j) ,
v̄

1− j , T
)

− L lim
T→+∞

DigJump

(
L

βBank (1− j) ,
v̄

1− j , T
)

;

(3.22)

Second case: L
βBank(1−j) ≤ v ≤

v
1−j

EqRecJumpBank0 = lim
T→+∞

EQ
[
e−rτ̂

[
βBank (1− j)Aτ̂− − L

]
1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<T}
∣∣∣F0

]
= βBank (1− j) lim

T→+∞
ANJump

(
v̄,

v̄

1− j , T
)

− L lim
T→+∞

DigJump

(
v̄,

v̄

1− j , T
)

;

(3.23)
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Third case: v ≤ v
1−j ≤

L
βBank(1−j)

In this case shareholders know that they will receive nothing after a sudden jump if
distress costs are incurred.

The limits above can be computed using equations (A.65) and (A.68) in Appendix A.4.

The firm is liquidated without distress costs: EqRecJumpSold0

The firm is liquidated without distress costs when the project value stays above the barrier af-
ter the jump (i.e. Aτ̂− ∈

[
v

1−j ,+∞
]
). Again, two types of payoffs may emerge. Shareholders

either recover 0 or the difference between the firm recovered value and nominal liabilities.

EqRecJumpSoldτ̂ =
{

0, v̄
1−j < Aτ̂− <

L
βSold(1−j)

βSold (1− j)Aτ̂− − L, L
βSold(1−j) < Aτ̂− < +∞

(3.24)

Two cases may emerge depending whether v̄
1−j is lower than L

βSold(1−j) or not:

First case: v
1−j ≤

L
βSold(1−j) ≤ +∞

EqRecJumpSold0

= lim
T→+∞

EQ

e−rτ̂ [βSold (1− j)Aτ̂− − L
]

1{
L

βSold(1−j)
<Aτ̂−<+∞,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


= βSold (1− j) lim

u,T→+∞
ANJump

(
L

βSold (1− j) , u, T
)

− L lim
u,T→+∞

DigJump

(
L

βSold (1− j) , u, T
)

;

(3.25)

Second case: L
βSold(1−j) ≤

v
1−j ≤ +∞

EqRecJumpSold0 = lim
T→+∞

EQ
[
e−rτ̂

[
βSold (1− j)Aτ̂− − L

]
1{ v̄

1−j<Aτ̂−<+∞,τ>τ̂,τ̂<T}
∣∣∣F0

]
= βSold (1− j) lim

u,T→+∞
ANJump

(
v̄

1− j , u, T
)

− L lim
u,T→+∞

DigJump

(
v̄

1− j , u, T
)

;

(3.26)
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The limits above are given by equations (A.76) and (A.77) in Appendix A.4.

Before finishing this section, it is important to emphasize one feature of this model. While
in the case where the process falls below (or hits) the barrier is justifiable to compute equity
as the positive difference between the recovered value and liabilities, in the opposite case
this is only motivated by mathematical tractability. Notice that the alternative would be an
equity process with an indeterminate number of jumps.3 In these cases, we are assuming
that the firm is being liquidated, which is something that would not occur if the same value
of At would have been reached through diffusion. By doing this, whenever βSoldAτ̂ stays
above the barrier we are inappropriately eliminating shareholders’ option to have a positive
payoff in the future if the project perspectives improve. The size of this problem depends
crucially on j. When j is sufficiently high, the probability of the project value falling below
the barrier is very high eliminating the problem. However, unless j = 1 there is always
a residual probability that At stays above the barrier after the jump. It is reasonable to
think that the largest the value of j the lowest should be the value of λ (i.e. the largest
the size of the jump the less probable it is). By setting j too high the analyst ignores
the possibility of a large range of jump sizes that are virtually impossible under diffusion
and whose probability may be significantly higher than the one associated with the chosen
level of j. The analyst faces thus a trade-off between setting j very high and λ very low
minimizing this error or, alternatively, setting a lower value of j and a higher value of λ
potentially increasing this pricing error but better capturing the risks faced by the project.
In this context it is important to have an idea of the potential size of the error that arises
from assuming that the shareholder receives the maximum of zero or the intrinsic value of
his claim. Define EqRecJumpSold0 as the correct equity recovered value when the project
stays above the barrier after a sudden jump and E ((1− j)Aτ̂−) as the correct equity pricing
function evaluated at the project value just after the jump event. In this case we have

EqRecJumpSold0 = lim
T→∞

EQ
[
e−rτ̂E ((1− j)Aτ̂−) 1{l<Aτ̂−<+∞,τ>τ̂,τ̂<T}

]
. (3.27)

where l corresponds to v̄
1−j independent of the relative position vis-a-vis L

βSold(1−j) . Assuming
that 1) the barrier value is independent of whether the shareholder receives an option over
the project or the maximum of zero and the intrinsic value of shareholders’ claim and 2)
in case of a second jump the shareholder effectively receives the maximum of zero and the
intrinsic value of his claim on the project (i.e. his option to continue running the firm is lost

3Equity value in this circunstance can be computed using Fast Fourier Transforms as proposed for the case
of Normally distributed jumps by Carr and Madan (1999). There is no literature on the pricing of options
in this case, though.
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after a second jump even if the project value stays above the barrier), E (At) corresponds to
our equity pricing function, E (At), given by equation (3.1). Thus,

EqRecJumpSold0 ≈ lim
T→∞

E
[
e−rτ̂E ((1− j)Aτ̂−) 1{l<Aτ̂−<+∞,τ>τ̂,τ̂<T}

]
. (3.28)

Procceding as in equations (2.81) and (2.82),

EqRecJumpSold0 ≈ λ̄ lim
T,ū→∞

T∫
0

ū∫
l

E ((1− j)x) e−(r+λ̄)û
(
d

dx
N (h1 (x, û))

+R2a d

dx
N (h2 (x, û))

)
dûdx.

(3.29)

Unfortunetly, it is not possible to apply Propositions 6 and 7 because this time the
derivative of the Normal function is multiplied by a function of x instead of x. To the
best of my knowledge the only way to compute the above integral is thus numerically. The
difference between EqRecJumpSold0 and EqRecJumpSold0 gives the analyst a good idea
of the pricing error that arises from the assumption that the firm closes after the jump even
if the project value stays above the barrier after the jump.

3.3. The equity process and the cost of equity

Sections 3.1 and 3.2 showed how to price equity as a contingent claim on the firm’s cash
flows. Equally interesting is to look at the stochastic process governing equity value. In the
presented model, it has been shown that equity is a function only of At, with its dynamics
under the physical and risk neutral measure given by equations (2.6) and (2.37), respectively.
Taking the latter, applying Ito’s lemma to function E (At) and dividing by Et− one obtains

dEt
Et−

=
(

(µδ −mσA) ∂E
∂A

At
Et−

+ 0.5∂
2E

∂A2
A2
t

Et−
σ2
A

)
dt+ σEtdW

Q
t − jEtdN

Q
t , (3.30)

where

σEt = ∂E

∂A

At
Et−

σA

jEt =
E (At−)−max

{[
βBank1{(1−jA)At−≤v̄} + βSold1{(1−jA)At−>v̄}

]
(1− jA)At− − L, 0

}
E (At−) .

(3.31)
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In the above application of Ito’s lemma, notice that E ((1− j)At−) was replaced by
max{βSold (1− j)At − L, 0}. This occurs because the firm is assumed to be closed and
thus equity value after the jump is not equivalent to replacing At by (1− j)At in the equity
function.4 Substituting Nt byMt+λdt one arrives at the following martingale representation:

dEt
Et−

=
(

(µδ −mσA) ∂E
∂A

At
Et−

+ 0.5∂
2E

∂A2
A2
t

Et−
σ2
A − λjEt

)
dt+ σEtdW

Q
t − jEtdM

Q
t . (3.32)

Equation (3.32) requires the computation of the first and second derivatives of the equity
function. One can avoid the computation of the second derivative by using measure Q
definition, though. Following Definition 1, any financial asset generates a rate of return equal
to the risk free interest rate under measure Q. In the case of equity, its return corresponds
to

dEt + (δt − cL− q) dt
Et

= dEt
Et

+ (δt − cL− q) dt
Et

(3.33)

= dEt
Et

+ kEtdt, (3.34)

Hence, under measure Q, dEtEt
must have a drift equal to r − kEt , implying that5

(µδ −mσA) ∂E
∂A

At
Et−

+ 0.5∂
2E

∂A2
A2
t

Et−
σ2
A − λjEt = r − kEt . (3.35)

Equation (3.32) can thus be rewritten as

dEt
Et−

= (r − kEt) dt+ σEtdW
Q
t − jEtdM

Q
t , (3.36)

where only the first derivative of the equity function is required to compute σEt . This
corresponds to

∂E

∂A
=
(

1− tEff
) ∂Div

∂A
+ ∂EqRec

∂A
. (3.37)

Starting with the derivative of the dividend function and using equation (3.4),

∂Div

∂A
= ∂Payout0

∂A
− ∂Coupon0

∂A
− ∂Capex0

∂A
. (3.38)

4The difference between E ((1− j)At− ) and max{βSold (1− j)At−L, 0} corresponds to the pricing ’error’
incurred by assuming that the firm is closed after the jump even if the value of the project stays above v̄.

5The validity of the above equation was confirmed numerically.
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The derivatives above follow from equations (3.10), (3.15) and (3.16). The derivative of
the Payout function is given by

∂Payout0
∂A

= µA − g
ω

[
Ω−h
(
ω,
v? + σ2

σ

)
R

1
σΨ−

h

(
ω, v

?+σ2
σ

)
+Ω−h

(
ω,−v

? + σ2

σ

)
R

2a+2+ 1
σΨ−

h

(
ω,− v

?+σ2
σ

)
− 1
]

+ (µA − g)A
ω

[
Ω−h
(
ω,
v? + σ2

σ

)
∂

∂A
R

1
σΨ−

h

(
ω, v

?+σ2
σ

)
+Ω−h

(
ω,−v

? + σ2

σ

)
∂

∂A
R

2a+2+ 1
σΨ−

h

(
ω,− v

?+σ2
σ

)]
,

(3.39)

where

∂

∂A
R

1
σΨ−

h

(
ω, v

?+σ2
σ

)
=
− 1
σΨ−h

(
ω, v

?+σ2

σ

)
v̄

(
A

v̄

)−1− 1
σΨ−

h

(
ω, v

?+σ2
σ

)

=
− 1
σΨ−h

(
ω, v

?+σ2

σ

)
v̄

R
1+ 1

σΨ−
h

(
ω, v

?+σ2
σ

) (3.40)

and

∂

∂A
R

2a+2+ 1
σΨ−

h

(
ω,− v

?+σ2
σ

)
=
−2a− 2− 1

σΨ−h
(
ω,−v

?+σ2

σ

)
v̄

(
A

v̄

)−2a−3− 1
σΨ−

h

(
ω,− v

?+σ2
σ

)

=
−2a− 2− 1

σΨ−h
(
ω,−v

?+σ2

σ

)
v̄

R
2a+3+ 1

σΨ−
h

(
ω,− v

?+σ2
σ

)
.

(3.41)

The derivative of the coupon function is

∂Coupon0

∂A
= cL

$

[
Ω−h
(
$,

v?

σ

)
∂

∂A
R

1
σΨ−

h ($, v?σ ) + Ω−h
(
$,−v

?

σ

)
∂

∂A
R2a+ 1

σΨ−
h ($, v?σ )

]
,

(3.42)

where

∂

∂A
R

1
σΨ−

h ($, v?σ ) =
− 1
σΨ−h

(
$, v

?

σ

)
v̄

R1+ 1
σΨ−

h ($, v?σ ) (3.43)
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and

∂

∂A
R2a+ 1

σΨ−
h ($,− v?σ ) =

−2a− 1
σΨ−h

(
$,−v

?

σ

)
v̄

R2a+1+ 1
σΨ−

h ($,− v?σ ). (3.44)

Doing the same for the capex,

∂Capex0

∂A
= q

$

[
Ω−h
(
$,

v?

σ

)
∂

∂A
R

1
σΨ−

h ($, v?σ ) + Ω−h
(
$,−v

?

σ

)
∂

∂A
R2a+ 1

σΨ−
h ($, v?σ )

]
.

(3.45)

For the recovered value after the firm closing, we have that

∂EqRec0
∂A

= ∂EqRecHit0
∂A

+ ∂EqRecJump0

∂A
. (3.46)

The derivative of the equity recovery hit function (3.18) corresponds to

∂EqRecHit0
∂A

=


(
βBankv̄ − L

)
∂
∂A lim

T→+∞
DigHit (T ) , v̄ ≥ L

βBank

0, v̄ < L
βBank

=


(
βBankv̄ − L

) [
Ω−h
(
$, v

?

σ

)
∂
∂AR

1
σΨ−

h ($, v?σ )

+Ω−h
(
ω,−v

?

σ

)
∂
∂AR

2a+ 1
σΨ−

h (ω,− v?σ )
]
, v̄ ≥ L

βBank

0, v̄ < L
βBank

,

(3.47)

where the above derivatives are given by equations (3.43) and (3.44).
For the derivative of the equity recovery jump function, equation (3.20), we have

∂EqRecJump0

∂A
= ∂EqRecJumpBank0

∂A
+ ∂EqRecJumpSold0

∂A
. (3.48)

For the first term above, it is necessary to derive either equations (3.22), (3.23) or zero
(case 3). For the second term above, it is required to derive either equation (3.25) or (3.26).
In all cases, one needs to compute the derivative of the limits of the ANJump

(
l, u, T

)
and

DigJump
(
l, u, T

)
functions. These are given by equations (A.78) and (A.81), for the case

where only T goes to +∞, and by equations (A.82) and (A.84) for the cases where both u
and T go to +∞. Both are presented in Appendix A.5.

Notice that when λ = 0, equation (3.36) is very similar to the one obtained in the Black-
Scholes model. However, in contrast with the GBM process, it does not exhibit constant
volatility because ∂E

∂A
At
Et−

is not constant. Since there is still only one source of uncertainty
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(i.e. the Brownian motion) the process is usually referred to be locally stochastic.
Taking the derivative of σEt in order to At one observes a negative relation (i.e. equity

volatility increases as the asset and stock prices decrease.). This is known in the literature as
the leverage effect. Notice, however, that in constrast with models whose state variable is At
(e.g. Toft and Prucyk (1997)) here σEt is locally stochastic even if the firm has no liabilities.
This occurs because the leverage effect results not only from financial leverage (i.e. debt)
but also from operating leverage due to fixed costs such as capex expenditures.

Corporate managers frequently have to take decisions on whether to take or not a project.
These decisions are usually called capital budgeting. In doing so they must compare the
expected return on the project and their cost of capital (i.e. the rate of return stakeholders
expect from them). Whenever managers take projects with rates of return below these
expectations, they are intrinsically destroying value. But how much is that rate? Firms have
two main classes of financial stakeholders, notably, shareholders and debtholders. Each one
requires a different rate of return depending on risk. These are called the cost of equity and
the cost of debt, respectively. Mathematically, these correspond to the drift of each of these
assets under measure P plus the respective payouts. Taking equation (3.36) and changing
the probability measure through Girsanov theorem one obtains

dEt
Et−

=
(
r − kEt +mσEt +

(
λ− λ

)
jEt
)
dt+ σEtdW

P
t − jEtdMP

t . (3.49)

and thus the cost of equity equals r +mσEt +
(
λ− λ

)
jEt .

Notice that, similarly to equation (2.42) regarding the asset rate of return, the cost of
equity is simply equal to the risk free rate plus a premium per unit of volatility risk and a
premium per unit of jump risk.

3.4. The endogenous barrier

At each moment in time, whenever the cash flow generated by the project is not enough to
pay all duties, shareholders must inject capital in the firm. In a model with no information
issues and where shareholders face no liquidity constraints, it is plausible to think that equity
holders choose the default time τ strategically by solving the following stopping time problem:

sup
τ∈τ[0,+∞]

E0 (τ) , (3.50)
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where E0 (τ) is given by equation (3.1) as a function of τ . According to Décamps and Vil-
leneuve (2014) it can be shown that this time-homogenous property implies that the optimal
stopping time solution to this problem is a barrier strategy τ? = inf

{
s : δt ≤ δ

}
where δ is a

positive constant, which can be determined by the classical smooth-pasting condition. More
recently, Kyprianou and Surya (2007) prove that in the case of Lévy processes this depends
on whether the process has unbounded variation leading to the following theorem.

Proposition 9. Consider that At = A0e
Xt , where Xt is a spectrally negative Lévy process.

If Xt has unbounded variation so that 0 is regular for the lower half-line (−∞, 0), then the
bankruptcy-triggering asset level v̄ satisfies the condition of smooth pasting; that is to say
that v is chosen to satisfy

∂E

∂A

∣∣∣∣
A=v

= 0.

Proof. See Kyprianou and Surya (2007).

As the process here considered satisfies the conditions described in Proposition 9, the
optimal barrier is derived in the usual way. First take the derivative of equation (3.1), then
substitute At by v̄ and finally equate to 0. Based on equation (3.46), the first derivarive of
equation (3.1) is simply the derivative of the payout function minus the derivatives of the
coupon and capex functions plus the derivative of the equity recovery function.

The first is given by substituting equations (3.40) and (3.41) into equation (3.39). Then,
replacing A by v̄ one obtains

∂Payout0
∂A

∣∣∣∣
A=v

= µA − g
ω

[
Ω−h
(
ω,
v? + σ2

σ

)
+Ω−h

(
ω,−v

? + σ2

σ

)
− 1
]

+ (µA − g) v
ω

Ω−h
(
ω,
v? + σ2

σ

) − 1
σΨ−h

(
ω, v

?+σ2

σ

)
v

+Ω−h
(
ω,−v

? + σ2

σ

) −2a− 2− 1
σΨ−h

(
ω,−v

?+σ2

σ

)
v

 .
(3.51)

The latter simplifies to

∂Payout0
∂A

∣∣∣∣
A=v

= µA − g
ω

{
Ω−h
(
ω,
v? + σ2

σ

)[
1− 1

σ
Ψ−h

(
ω,
v? + σ2

σ

)]
+Ω−h

(
ω,−v

? + σ2

σ

)[
−2a− 1− 1

σ
Ψ−h

(
ω,−v

? + σ2

σ

)]
− 1
}
.

(3.52)
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Replacing equations (3.43) and (3.44) into equations (3.42) and (3.45) and then replacing
At by v̄, one obtains the correspondent terms for the coupon and capex functions:

∂Coupon0

∂A

∣∣∣∣
A=v

= cL

$v̄

{
− 1
σ

Ω−h
(
$,

v?

σ

)
Ψ−h

(
$,

v?

σ

)
+Ω−h

(
$,−v

?

σ

)[
−2a− 1

σ
Ψ−h

(
$,−v

?

σ

)]} (3.53)

∂Capex0

∂A

∣∣∣∣
A=v

= q

$v̄

{
− 1
σ

Ω−h
(
$,

v?

σ

)
Ψ−h

(
$,

v?

σ

)
+Ω−h

(
$,−v

?

σ

)[
−2a− 1

σ
Ψ−h

(
$,−v

?

σ

)]}
.

(3.54)

The derivative of the equity recovery function corresponds to the sum of the derivative
of the equity recovery hit function and the equity recovery jump function. Starting with the
hit function, substituting equations (3.43) and (3.44) into equation (3.47) and replacing A
by v̄ one obtains

∂EqRecHit0
∂A

=



(
βBank − L

v̄

) [
− 1
σΨ−h

(
$, v

?

σ

)
Ω−h
(
$, v

?

σ

)
+
(
−2a− 1

σΨ−h
(
$,−v

?

σ

))
Ω−h
(
ω,−v

?

σ

)]
, v̄ ≥ L

βBank

0, v̄ < L
βBank

. (3.55)

The derivative of the equity jump recovery term is given by summing either the derivative
of equations (3.22), (3.23) or zero (case 3) with the derivative of either equation (3.25) or
(3.26). As already referred, this requires the computation of the derivative of the limits of
the ANJump

(
l, u, T

)
and DigJump

(
l, u, T

)
functions with two cases emerging depending

on whether only T goes to +∞ or both u and T go to +∞.

Only T goes to +∞
The derivative of ANJump

(
l, u, T

)
evaluated at A = v̄ when only T goes to +∞ is

computed taking equation (A.78) and replacing A by v̄:6

6Notice that l and u are always bigger than v̄ for all cases we are interested.
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∂

∂A
lim

T→+∞
ANJump

(
l, u, T

)
= λ

ω

−1− lim
T→+∞

F

(
ω,

ln
(
u
v̄

)
σ

,
v? + σ2

σ
, T

)
+ lim
T→+∞

F

ω, ln
(
l
v̄

)
σ

,
v? + σ2

σ
, T


+

− lim
T→+∞

F

(
ω,

ln
(
v̄
u

)
σ

,−v
? + σ2

σ
, T

)
+ lim
T→+∞

F

ω, ln
(
v̄

l

)
σ

,−v
? + σ2

σ
, T


+ λv̄

ω

− ∂

∂A
lim

T→+∞
F

(
ω,

ln
(
u
v̄

)
σ

,
v? + σ2

σ
, T

)
+ ∂

∂A
lim

T→+∞
F

ω, ln
(
l
v̄

)
σ

,
v? + σ2

σ
, T


+ −2a− 2

v̄

− lim
T→+∞

F

(
ω,

ln
(
v̄
u

)
σ

,−v
? + σ2

σ
, T

)
+ lim
T→+∞

F

ω, ln
(
v̄

l

)
σ

,−v
? + σ2

σ
, T


+

− ∂

∂A
lim

T→+∞
F

(
ω,

ln
(
v̄
u

)
σ

,−v
? + σ2

σ
, T

)
+ ∂

∂A
lim

T→+∞
F

ω, ln
(
v̄

l

)
σ

,−v
? + σ2

σ
, T

 .

(3.56)

where the first two limits are given by equation (A.66), replacing A by v̄, and the second two
limits are given by equation (A.67) replacing R by 1. The derivatives are, respectively, given
by equations (A.79) and (A.80), again replacing A by v̄ and R by 1.

Doing the same for the derivative of DigJump
(
l, u, T

)
when ony T goes to +∞,7

∂

∂A
lim

T→+∞
DigJump

(
l, u, T

)
= λ

$

− ∂

∂A
lim

T→+∞
F

(
$,

ln
(
u
v̄

)
σ

,
v?

σ
, T

)
+ ∂

∂v̄
lim

T→+∞
F

$, ln
(
l
v̄

)
σ

,
v?

σ
, T


+ −2a

v̄

− lim
T→+∞

F

(
$,

ln
(
v̄
u

)
σ

,−v
?

σ
, T

)
+ lim
T→+∞

F

$, ln
(
v̄

l

)
σ

,−v
?

σ
, T


+

− ∂

∂A
lim

T→+∞
F

(
$,

ln
(
v̄
u

)
σ

,−v
?

σ
, T

)
+ ∂

∂A
lim

T→+∞
F

$, ln
(
v̄

l

)
σ

,−v
?

σ
, T

 ,

(3.57)

7Notice again that l and u are always bigger than v̄ for all cases we are interested.
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where the first two limits can be computed using equation (A.66) replacing ω by $, v
?+σ2

σ

by v?

σ and A by v̄ and the second two limits are given by equation A.67 doing the same
replacements (this implies replacing R by 1). The derivatives are obtained doing the same
substitutions in equations (A.79) and (A.80).

Both u and T go to +∞
For the derivative of ANJump

(
l, u, T

)
when both u and T go to +∞, substituting

equations (3.41) and (A.83) into equation (A.82) and replacing A by v̄, one obtains8

∂

∂A
lim

ū,T→+∞
ANJump

(
L

βSold (1− j) , ū, T
)∣∣∣∣

A=v

= λ

ω

Ω+
h

(
ω,
v? + σ2

σ

)(
l

v̄

)− 1
σΨ+

h

(
ω, v

?+σ2
σ

)
+ Ω−h

(
ω,−v

? + σ2

σ

)(
v̄

l

) 1
σΨ−

h

(
ω,− v

?+σ2
σ

)
+ λv̄

ω

Ω+
h

(
ω,
v? + σ2

σ

) 1
σΨ+

h

(
ω, v

?+σ2

σ

)
l

(
l

v̄

)1− 1
σΨ+

h

(
ω, v

?+σ2
σ

)

+ Ω−h
(
ω,
v? + σ2

σ

) − 1
σΨ−h

(
ω, v

?+σ2

σ

)
l

(
l

v̄

)1∓ 1
σΨ−

h

(
ω, v

?+σ2
σ

)

+
(
v̄

l

) 1
σΨ−

h

(
ω,− v

?+σ2
σ

)
Ω−h
(
ω,−v

? + σ2

σ

) −2a− 2− 1
σΨ−h

(
ω,− v

?+σ2

σ

)
v̄

 .

(3.58)

Cancelling v on the last three expressions and factoring out, one obtains

∂

∂A
lim

ū,T→+∞
ANJump

(
l, u, T

)∣∣∣∣
A=v

= λ̄

ω

Ω+
h

(
ω,
v? + σ2

σ

)(
l

v̄

)− 1
σΨ+

h

(
ω, v

?+σ2
σ

) [
1 + 1

σ
Ψ+
h

(
ω,
v? + σ2

σ

)]

+Ω−h
(
ω,−v

? + σ2

σ

)(
v̄

l

) 1
σΨ−

h

(
ω,− v

?+σ2
σ

) [
1− 2a− 2− 1

σ
Ψ−h

(
ω,−v

? + σ2

σ

)] .

(3.59)

Noticing that Ω+
h

(
ω, v

?+σ2

σ

)
= −Ω−h

(
ω,−v

?+σ2

σ

)
and Ψ+

h

(
ω, v

?+σ2

σ

)
= Ψ−h

(
ω,− v

?+σ2

σ

)
8Notice that l is always bigger than v̄ for all cases we are interested.
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one can factor out further:

∂

∂A
lim

ū,T→+∞
ANJump

(
l, ū, T

)∣∣∣∣
A=v

= λ̄

ω
Ω+
h

(
ω,
v? + σ2

σ

)(
l

v̄

)− 1
σΨ+

h

(
ω, v

?+σ2
σ

) [
2
σ

Ψ+
h

(
ω,
v? + σ2

σ

)
+ 2a+ 2

]
.

(3.60)

Finally, for the derivative ofDigJump
(
l, u, T

)
when both u and T go to +∞, substituting

equations (A.85) and (3.44) into equation (A.84) and replacing A by v̄, one obtains

∂

∂A
lim

ū,T→+∞
DigJump

(
l, u, T

)∣∣∣∣
A=v

= λ̄

$

Ω+
h

(
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σ

) 1
σΨ+

h

(
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?

σ

)
l

(
l

v̄

)1− 1
σΨ+

h ($, v?σ )

+
(
v̄

l

) 1
σΨ−

h ($,− v?σ )
Ω−h
(
$,−v

?

σ

) −2a− 1
σΨ−h

(
$,−v

?

σ

)
v̄

 .

(3.61)

Multiplying and dividing the first term by v and simplifying the expression yields

∂
∂A lim

ū,T→+∞
DigJump
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)∣∣∣∣
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(3.62)

Finally, noting that Ω+
h

(
$, v
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)
= −Ω−h
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$,−v
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)
and Ψ+
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(
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σ

)
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(
$,− v

?
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)
,

then

∂

∂A
lim

ū,T→+∞
DigJump

(
l, u, T

)∣∣∣∣
A=v̄

= λ̄

$v̄
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(
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σ

)(
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σΨ+
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σ
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(
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σ
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]
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(3.63)

Taking the derivative of the equity function, equating to 0 and then solving it numerically,
one obtains shareholders’ optimal default barrier.
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4. Debt

The value of debt corresponds to the sum of the market value of all the firm debt issues,
which in this model are assumed to be perpetual. In order to simplify model presentation,
most articles in contingent claim analysis assume a liability structure where all debt claims
have the same level of seniority. However, for model calibration it is very useful to take
seniority into account. For most firms, considering a liability structure with one or two types
of debt issues is a good approximation of reality. For larger firms, however, we may have
several layers of priority. For instance, in the case of banks, we may think of covered bonds1,
deposits (below and above the levels defined by deposit guarantee schemes), unsecured senior
bond holders, subordinate debtholders or even preferred equity. Though absolute priority is
not always respected in practice, the pecking order should be taken into account while using
market information to calibrate model parameters. For this computation one only needs to
know the amount of liabilities that are senior to the one being considered. We will denote it as
X. Debt value can then be computed as the sum of two components: 1) the present value of
all future after-tax coupons up to the moment the firm stops its activity ((1−tDebt)Coupon?0);
and 2) the recovered value whenever the firm closes (DbRec?0). Mathematically,

D?
0 =

(
1− tDebt

)
Coupon?0 +DbRec?0. (4.1)

The present value of all future coupons up to the moment the firm stops its activity is given
by equation (3.14) with the specific issue coupon rate replacing c. ? is used as superscript
to differentiate from the case where the entire debt of the firm is considered. The value of
the remaining component is given in the first section of this chapter. Similar to Chapter 3,
the debt process and the cost of debt is then analysed in the second section of this chapter,
which ends up with the derivation of the probability of default in this model.

1In the case where the firm has only one covered bond issue we can think of this covered bond as the most
senior claim.
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4.1. Recovered value after closing the firm

Similar to EqRec0, DbRec0 corresponds to the sum of the contributions from the cases where
the project value hits the barrier and when the jump occurs.

DbRec?0 = DbRecHit?0 +DbRecJump?0. (4.2)

4.1.1. Recovered value after hitting the barrier

We may have three mutually exclusive cases depending on the relationship between the
recovered value at the barrier, the amount of liabilities that are senior to the considered debt
classes and the size of the debt issue. The first case arises when the recovered value at the
barrier is smaller than the amount of senior liabilities. In this case, all the recovered value
accrues to senior debtholders, implying that subordinate debtholders receive nothing. The
second case arises when the recovered value at the barrier is sufficient to pay all debtholders
that are senior to the one being priced but is not enough to cover all nominal liabilities. In
this case, the debtholder under consideration receives the difference. Finally, whenever the
recovered value is enough to cover X and L?, the contribution to the value of our debt issue
is simply the discounted nominal value. Mathematically, these three cases correspond to

DbRecHit?0 = lim
T→+∞


0, βBankv̄ ≤ X(
βBankv̄ −X

)
EQ [e−rτ1{τ<T,τ̂>τ} |F0

]
, X < βBankv̄ ≤ X + L?

L?EQ [e−rτ1{τ<T,τ̂>τ} |F0
]
, βBankv̄ > X + L?

= lim
T→+∞


0, βBankv̄ ≤ X(
βBankv̄ −X

)
DigHit (T ) , X < βBankv̄ ≤ X + L?

L?DigHit (T ) , βBankv̄ > X + L?
,

(4.3)

where lim
T→+∞

DigHit (T ) is given by equation (3.19). The limits of F (.) are computed using

equations (A.61) and (A.62) in Appendix A.4 with $ instead of ω and v
σ replacing v+σ2

σ .

4.1.2. Recovered value after jump

Depending on the relation between the asset value after the jump and the barrier, we may
have two cases:

DbRecJump?0 = DbRecJumpBank?0 +DbRecJumpSold?0. (4.4)
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The firm is liquidated with distress costs: DbRecJumpBank?0

When the project value stays below the barrier after the jump, meaning that Aτ̂− ∈
[
v, v

1−j

]
there might be three types of payoffs. These will depend on the relation between the recov-
ered value, βBank (1− j)Aτ̂− , the amount of senior liabilities and the size of the debt issue
considered. Mathematically, the nominal recovered value equals

DbRecJumpBank?τ̂ =


0, v < Aτ̂− <

X
βBank(1−j)

βBank (1− j)Aτ̂− −X, X
βBank(1−j) < Aτ̂− <

X+L?
βBank(1−j)

L?, X+L?
βBank(1−j) < Aτ̂− <

v
1−j

. (4.5)

However, there is no guarantee that X
βBank(1−j) > v and that v

1−j ≥
X+L?

βBank(1−j) . In
addition, it may occur that v

1−j <
X

βBank(1−j) and v > X+L
βBank(1−j) . As a result, six cases may

emerge depending on the parameter values. I will start with the most general case where all
payoffs are possible. I will then move to the two cases where two types of payoffs are possible
and finish with the three extreme cases where only one type of payoff may occur.

First case: v ≤ X
βBank(1−j) ≤

X+L?
βBank(1−j) ≤

v
1−j

In this case, all payoffs are possible depending on the asset value when the event occurs.
Therefore,

DbRecJumpBank?0

= lim
T→+∞

EQ

e−rτ̂ [βBank (1− j)Aτ̂− −X
]

1{
X

βBank(1−j)
<Aτ̂−<

X+L?
βBank(1−j)

,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


+ L? lim

T→+∞
EQ

e−rτ̂1{
X+L?

βBank(1−j)
<Aτ̂−<

v̄
1−j ,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


= βBank (1− j) lim

T→+∞
ANJump

(
X

βBank (1− j) ,
X + L?

βBank (1− j) , T
)

−X lim
T→+∞

DigJump

(
X

βBank (1− j) ,
X + L?

βBank (1− j) , T
)

+ L? lim
T→+∞

DigJump

(
X + L?

βBank (1− j) ,
v̄

1− j , T
)
.

(4.6)

Second case: v ≤ X
βBank(1−j) ≤

v
1−j ≤

X+L?
βBank(1−j)

Two types of payoff are possible. The debtholder either receives the discounted recovered
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value (after senior debtholders share) or nothing. Hence,

DbRecJumpBank?0

= lim
T→+∞

EQ

e−rτ̂ [βBank (1− j)Aτ̂− −X
]

1{
X

βBank(1−j)
<Aτ̂−<

v̄
1−j ,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


= βBank (1− j) lim

T→+∞
ANJump

(
X

βBank (1− j) ,
v̄

1− j , T
)

−X lim
T→+∞

DigJump

(
X

βBank (1− j) ,
v̄

1− j , T
)
.

(4.7)

Third case: X
βBank(1−j) ≤ v ≤

X+L?
βBank(1−j) ≤

v
1−j

Again, two types of payoff are possible. This time the debtholder either receives everything
or the discounted recovered value (after senior debtholders share):

DbRecJumpBank?0

= lim
T→+∞

EQ

e−rτ̂ [βBank (1− j)Aτ̂− −X
]

1{
v̄<Aτ̂−<

X+L?
βBank(1−j)

,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


+ L? lim

T→+∞
EQ

e−rτ̂1{
X+L?

βBank(1−j)
<Aτ̂−<

v̄
1−j ,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


= βBank (1− j) lim

T→+∞
ANJump

(
v̄,

X + L?

βBank (1− j) , T
)

−X lim
T→+∞

DigJump

(
v̄,

X + L?

βBank (1− j) , T
)

+ L? lim
T→+∞

DigJump

(
X + L?

βBank (1− j) ,
v̄

1− j , T
)
.

(4.8)

Fourth case: v ≤ v
1−j ≤

X
βBank(1−j) ≤

X+L?
βBank(1−j)

In this case, the debtholder knows beforehand that it will always receive nothing after a
sudden jump if distress costs are incurred. Thus,

DbRecJumpBank?0 = 0.

Fifth case: X
βBank(1−j) ≤ v ≤

v
1−j ≤

X+L?
βBank(1−j)

In this case, the debtholder knows that it will always receive the discounted recovered
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value:

DbRecJumpBank?0 = lim
T→+∞

EQ
[
e−rτ̂

[
βBank (1− j)Aτ̂− −X

]
1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<T}
∣∣∣F0

]
= βBank (1− j) lim

T→+∞
ANJump

(
v̄,

v

1− j , T
)

−X lim
T→+∞

DigJump

(
v̄,

v

1− j , T
)
.

(4.9)

Sixth case: X
βBank(1−j) ≤

X+L?
βBank(1−j) ≤ v ≤

v
1−j

In the last case, the debtholders know that they will always recover everything, meaning
that their investment has no credit risk:

DbRecJumpBank?0 = L? lim
T→+∞

EQ
[
e−rτ̂1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<T}
∣∣∣F0

]
= L? lim

T→+∞
DigJump

(
v̄,

v

1− j , T
)
.

(4.10)

All limits presented can be computed using either equation (A.65) or (A.68) in Appendix
A.4.

The firm is liquidated without distress costs DbRecJumpSold?0

Again, there might be three types of payoffs depending on the relation between the asset
value before the jump event, the amount of senior liabilities and the size of the debt issue
considered. The intervals considered for each type of payoff are nevertheless different since
distress costs are not incurred in this case. Thus,

DbRecJumpSold?τ̂ =


0, v̄

1−j < Aτ̂− <
X

βSold(1−j)

(1− j)Aτ̂− , X
βSold(1−j) < Aτ̂− <

X+L?
βSold(1−j)

L?, X+L?
βSold(1−j) < Aτ̂− < +∞

. (4.11)

Once more, there is no guarantee that X
βSold(1−j) >

v̄
1−j . In addition it can occur that

v
1−j >

X+L?
βSold(1−j) . Notwithstanding, we know that X

βSold(1−j) ≤
X+L?

βSold(1−j) ≤
L

βSold(1−j) and
thus this time we have only three cases.

First case: v
1−j ≤

X
βSold(1−j) ≤

X+L?
βSold(1−j) ≤ +∞
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Depending on the project value when the jump occurs, all payoffs are possible. Therefore,

DbRecJumpSold?0

= lim
T→+∞

EQ

e−rτ̂ [(βSold (1− j)
)
Aτ̂− −X

]
1{

X

βSold(1−j)
<Aτ̂−<

X+L?
βSold(1−j)

,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


+ L? lim

T→+∞
EQ

e−rτ̂1{
X+L?

βSold(1−j)
<Aτ̂−<+∞,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


= βSold (1− j) lim

T→+∞
ANJump

(
X

βSold (1− j) ,
X + L?

βSold (1− j) , T
)

−X lim
T→+∞

DigJump

(
X

βSold (1− j) ,
X + L?

βSold (1− j) , T
)

+ L? lim
u,T→+∞

DigJump

(
X + L?

βSold (1− j) , u, T
)
.

(4.12)

Second case: X
βSold(1−j) ≤

v
1−j ≤

X+L?
βSold(1−j) ≤ +∞

In this case, the debtholder knows beforehand that his payoff will be either the nominal
debt value or the discounted asset value after deducting the senior debtholders payoff:

DbRecJumpSold?0

= lim
T→+∞

EQ

e−rτ̂ [(βSold (1− j)
)
Aτ̂− −X

]
1{

v̄
1−j<Aτ̂−<

X+L?
βSold(1−j)

,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


+ L? lim

T→+∞
EQ

e−rτ̂1{
X+L?

βSold(1−j)
<Aτ̂−<+∞,τ>τ̂,τ̂<T

}∣∣∣∣∣∣F0


= βSold (1− j) lim

T→+∞
ANJump

(
v̄

1− j ,
X + L?

βSold (1− j) , T
)

−X lim
T→+∞

DigJump

(
v̄

1− j ,
X + L?

βSold (1− j) , T
)

+ L? lim
u,T→+∞

DigJump

(
X + L?

βSold (1− j) , u, T
)
.

(4.13)

Third case: X
βSold(1−j) ≤

X+L?
βSold(1−j) ≤

v̄
1−j ≤ +∞

In the third case the debtholder knows that his payoff will be always equal to the nominal
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debt value. Hence,

DbRecJumpSold?0 = L? lim
T→+∞

EQ
[
e−rτ̂1{ v̄

1−j<Aτ̂−<+∞,τ>τ̂,τ̂<T}
∣∣∣F0

]
= L? lim

u,T→+∞
DigJump

(
v̄

1− j , u, T
)
.

(4.14)

Again, all limits presented can be computed using equation (A.77), (A.65) and (A.68) in
Appendix A.4.

Similar to equity, the simplifying assumption that the firm is closed after a sudden negative
jump, even if the project value is above the barrier, affects debt pricing. Again, it is not
possible to have a precise number for the impact of this assumption. However, under the
hypothesis that 1) the barrier is independent from this fact and 2) the firm is liquidated
after a second jump, no matter the project value, one can have an idea of the impact of this
assumption. Define DbRecJumpSold0 as the correct debt recovered value when the project
stays above the barrier after a sudden jump and D (A) as the correct debt pricing function
for each value of At. Approximating D (A) with D (A), which is given by equation (4.1),
then

DbRecJumpSold0 ≈ lim
T→∞

E
[
e−rτ̂D ((1− j)Aτ̂−) 1{l<Aτ̂−<+∞,τ>τ̂,τ̂<T}

]
. (4.15)

Procceding as in equations (2.81) and (2.82),

DbRecJumpSold0 ≈ λ̄ lim
T,ū→∞

T∫
0

ū∫
l

D ((1− j)x) e−(r+λ̄)û
(
d

dx
N (h1 (x, û))

+R2a d

dx
N (h2 (x, û))

)
dûdx.

(4.16)

Similar to equity, to the best of my knowledge the only way to solve this integral is
numerically. The difference between DbRecJumpSold0 and DbRecJumpSold0 gives the
analyst a good idea of the pricing error that arises from the assumption that the firm closes
after the jump even if the project value stays above the barrier after the jump.
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4.2. The debt process and the cost of debt

Similarly to Section 3.3, the dynamics of debt can be derived by applying Itô’s lemma to the
debt function. In this case, one obtains

dDt

Dt−
=
(

(µδ −mσA) ∂D
∂A

At
Dt−

+ 0.5∂
2D

∂A2
A2
t

Dt−
σ2
A − λjDt

)
dt+ σDtdW

Q
t − jDtdM

Q
t , (4.17)

where

σDt = ∂D

∂A

At
Dt−

σA

jDt =
D (At−)−min{

[
βBank1{(1−jA)At−≤v̄} + βSold1{(1−jA)At−>v̄}

]
(1− jA)At− −X,L?}

D (At−) .

(4.18)

Alternatively, one can rely on measure Q definition. In this case, we have that

dDt

Dt−
= (r − kDt) dt+ σDtdW

Q
t − jDtdM

Q
t , (4.19)

where

kDt = cLdt

Dt
. (4.20)

Using equation (4.19) one avoids the computation of the second derivative of the debt
function. For the first derivative, and using equation (4.1), we have that

∂D

∂A
=
(

1− tDebt
) ∂Coupon0

∂A
+ ∂DbRec0

∂A
, (4.21)

where the first term in equation (4.21) is given by equation (3.42) and the second term
corresponds to

∂DbRec

∂A
= ∂DbRecHit0

∂A
+ ∂DbRecJump0

∂A
. (4.22)

The derivative of the debt recovery hit function is
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∂DbRecHit0
∂A

=


0, βBankv̄ ≤ X(
βBankv̄ −X

)
∂
∂A lim

T→+∞
DigHit (T ) , X < βBankv̄ ≤ X + L?

L? ∂
∂A lim

T→+∞
DigHit (T ) , βBankv̄ > X + L?

, (4.23)

where

∂

∂A
lim

T→+∞
DigHit (T ) = Ω−h

(
$,

v?

σ

)
∂

∂A
R

1
σΨ−

h ($, v?σ ) + Ω−h
(
ω,−v

?

σ

)
∂

∂A
R2a+ 1

σΨ−
h (ω,− v?σ ),

(4.24)

with the above derivatives given by equations (3.43) and (3.44).

For the derivative of the debt recovery jump function, using equation (4.4), we have that

∂DbRecJump0

∂A
= ∂DbRecJumpBank0

∂A
+ ∂DbRecJumpSold0

∂A
. (4.25)

Similarly to the derivatives of the equity recovery jump function, the above terms require the
computation of the derivative of the limits of the ANJump

(
l, u, T

)
and DigJump

(
l, u, T

)
functions, which are given by equations (A.78) and (A.81) for the case where only T goes to
+∞ and equations (A.82) and (A.84) for the cases where both u and T go to +∞. Both are
given in Appendix A.5.

Changing the probability measure to P and summing kDt to the drift in equation (4.19)
one obtains the cost of debt, which corresponds to r +mσDt +

(
λ− λ

)
jDt .

4.3. The probability of default

The first two sections of this chapter presented formulas for computing the market price
of debt issues. This was done by summing the present value of all future coupons with
the present value of the recovered values. Both under measure Q. As further explained
in Chapter 6, the difference between the nominal promissed value and the recovered value
is interpreted as the expected loss. A common standpoint in credit risk literature is to
decompose the expected loss between the probability of default and the loss given default.
This decomposition can be very useful to understand the firm’s credit risk profile. This
section shows how the probability of default can be computed in this model under measure
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Q, so that this decomposition can be made. For someone interested in the true probability of
the firm defaulting on its obligations, one should use measure P instead. This can be easily
obtained replacing v? = µδ −mσ − 0.5σ2 by v? = µδ − 0.5σ2 and λ by λ in Propositions 4
and 5.2 It is interesting to note that in both cases the probability of default depends on risk
pricing parameters through the project value.

Before all else, it is important to define default. In this model, it is considered that the
firm defaults if the debtholders receive less than L when the firm closes its business. Notice
that default does not need to imply distress costs. In the case where the asset jumps to below
L but stays above v̄ the firm defaults but there is no default costs. As in previous sections
we will decompose the probability of default in two components:

PD(T ) = PDHit(T ) + PDJump(T ), (4.26)

where PDHit(T ) and PDJump are, respectively, the probability of the firm defaulting after
the process hitting the barrier and after a sudden jump up to time T .

4.3.1. Probability of default after hitting the barrier

Regarding PDHit(T ), it is clear that this is 0 whenever v̄ > L
βBank

. In this case, diffusion is
not able to lead the firm to default. Thus, we have that

PDHit(T ) =
{

0, v̄ ≥ L
βBank

Q (τ < T, τ̂ > τ |F0 ) , v̄ < L
βBank

(4.27)

=
{

0, v̄ ≥ L
βBank

DigHit? (T ) , v̄ < L
βBank

, (4.28)

where DigHit? (T ) is given by equation (2.80).

4.3.2. Probability of default after a jump

Regarding PDJump(T ), one should consider two cases: 1) default with distress costs; and
default without distress costs. Therefore,

PDJump(T ) = PDJumpBank(T ) + PDJumpSold(T ). (4.29)

2The terms DigHit? (T ) and DigJump?
(
l, u, T

)
in equations (4.27)-(4.32) must then be computed accord-

ingly.
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These correspond to the cases where shareholders do not receive anything after the jump.
The formulae for the probability of default is thus straightforward if one follows the opposite
logic to Section 3.2.2.

Probability of default with distress costs

Similarly to Section 3.2.2, we may have three cases here.
First case: v ≤ L

βBank(1−j) ≤
v

1−j

PDJumpBank(T ) = Q
(
v̄ < Aτ̂− <

L

βBank (1− j) , τ > τ̂ , τ̂ < T

)
= DigJump?

(
v̄,

L

βBank (1− j) , T
)
.

(4.30)

Second case: L
βBank(1−j) ≤ v ≤

v
1−j

In this case, the probability of default is always 0.

Third case: v ≤ v
1−j ≤

L
βBank(1−j)

In this case the firm always defaults after incurring distress costs and thus

PDJumpBank(T ) = Q
(
v̄ < Aτ̂− <

v̄

1− j , τ > τ̂ , τ̂ < T

)
= DigJump?

(
v̄,

v̄

1− j , T
)
.

(4.31)

Probability of default without distress costs

Following again Section 3.2.2, we may have two cases here.
First case: v

1−j ≤
L

βSold(1−j) ≤ +∞

PDJumpSold(T ) = Q
(

v̄

1− j < Aτ̂− <
L

βSold (1− j) , τ > τ̂ , τ̂ < T

)
= DigJump?

(
v̄

1− j ,
L

βSold (1− j) , T
)
.

(4.32)

Second case: L
βSold(1−j) ≤

v
1−j ≤ +∞

In this case, the firm never defaults without distress costs.

70



5. External claimants, firm value and the
optimal capital structure

Chapters 3 and 4 presented formulas for computing shareholders and debtholders’ claims
on the project. These are not the only agents whose payoff depends on the latter. The
government payoff increases with the value of the project. Also, capex suppliers are better
off when the firm is running than after bankruptcy. In contrast, distress costs only occur when
the firm goes bankrupt. The first section of this chapter presents formulas for computing the
value of these external claims. The second and third sections of these chapter discuss two
very important corporate finance concepts, notably, the optimal capital structure and the
cost of capital.

5.1. External claimants

Our project has three external claimants, notably, the government, capex suppliers and
distress costs. Government and capex suppliers receive a continuous stream of cash flows as
long as the firm exhists. In the case of the government, this is a variable stream (taxes). In
the case of capex suppliers, it is a fixed stream. In contrast, distress costs only occur when
it is optimal for the shareholders to close the firm. Notice that whenever the firm closes,
the project is sold for the project value at that time with the firm receiving βSoldAτSolv .
Depending on whether distress costs are incurred or not (i.e. whether the project value is
lower or equal to v̄), the firm loses

(
βSold − βBank

)
AτSolv due to distress costs. As referred

in Section 2.2, these correspond to costs with lawyers and value destruction caused by fire
sales and loss of intangible value. Since the project continues, in either case there is a residual
claim that does not belong to the firm; it belongs to external claimants.1 This corresponds to

1The hypothesis that the project continues forever might look strange at first sight. However, one may
look to any project as being composed by tangible and intangible assets. While the intangible assets may
be destroyed when the firm closes, tangible assets such as land, buildings or machinery continue in the
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(
1− βSold

)
AτSolv . As already referred, these external claimants are the government, capex

suppliers and distress costs. The latter are still a claimant because the project buyer can
close its activity, too. By splitting

(
1− βSold

)
AτSolv to each of these claimants we obtain the

fundamental accounting identity. In other words, the value of the project equals the value
attributed to all its claimants. The way this value is split is not of interest for us, though.2

The government, capex suppliers and distress costs claims correspond, respectively, to

GovClaim0 = lim
T→+∞

τEff
T∫

0

e−rsEQ [(δs − cL− q) 1{τ>s,τ̂>s}|F0
]
ds

+ lim
T→+∞

τDebt
T∫

0

e−rsEQ [cL1{τ>s,τ̂>s}|F0
]
ds+GovZ0

= τEff (Payout0 − Coupon0 − Capex0) + τDebtCoupon0 +GovZ0,

(5.1)

CapClaim0 = Capex0 + qZ0, (5.2)

and

DCClaim0 =
(
βSold − βBank

)
lim

T→+∞

[
EQ [e−rτ v̄1{τ<T,τ̂>τ} |F0

]
+EQ

[
e−rτ̂ (1− j)Aτ̂−1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<T}|F0

]]
+DCZ0

=
(
βSold − βBank

)
lim

T→+∞

[
v̄DigHit (T ) + (1− j)ANJump

(
v̄,

v̄

1− j , T
)]

+DCZ0,

(5.3)

where Z0 is external claimants share on the discounted expected value of the project when

market indefinitely.
2One possible way to split this residual claim is to consider that the government, capex and distress costs
share in the firm that buys the project equals the one in the firm under consideration. In this case one
can simply run the model once with some initial values and then substitute by the ones obtained.
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the firm closes and Gov, q and DC are the correspondent shares of Z0. Z0 corresponds to

Z0 =
(
1− βSold

)
lim

T→+∞

{
EQ [e−rτ v̄1{τ<T,τ̂>τ} |F0

]
+ EQ

[
e−rτ̂ (1− j)Aτ̂−1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<T}|F0

]
+EQ

[
e−rτ̂ (1− j)Aτ̂−1{ v̄

1−j<Aτ̂−<+∞,τ>τ̂,τ̂<T}
∣∣∣F0

]}
=
(
1− βSold

) [
v̄ lim
T→+∞

DigHit (T ) + (1− j) lim
T→+∞

ANJump

(
v̄,

v̄

1− j , T
)

+ (1− j) lim
u,T→+∞

ANJump

(
v̄

1− j , u, T
)]

,

(5.4)

where lim
T→+∞

DigHit (T ) is given by equation (3.19), lim
T→+∞

ANJump
(
v̄, v̄

1−j , T
)

is given

by equation (A.65) and, finally, lim
u,T→+∞

ANJump
(

v̄
1−j , u, T

)
is given by equation (A.76).

5.2. Firm value and the optimal capital structure
The question of whether there is an optimal capital structure and its determination has been
at the core of corporate finance literature since the early days. What is known as the modern
theory of capital structure began with Modigliani and Miller (1958) paper. The latter sets the
conditions under which the capital structure is irrelevant for firm valuation. Currently, three
theories dominate bookshelves, notably, the trade-off theory, the pecking order theory and
the market-timing theory. The trade-off theory postulates that debt is able to increase the
value of the firm because it is tax deductible. However, the higher the debt level the higher
the probability of bankruptcy and distress costs. The optimal debt level is the one where
the marginal tax benefit equals the marginal cost arising from bankruptcy costs. In contrast
with the trade-off theory, the pecking order theory does not set an optimal capital structure
level. Instead, it asserts that the firm maximizes its value by choosing to finance new projects
with the cheapest source of funding with this depending critically on information asymmetry
issues. Internal funding is considered to be the cheapest form of financing, followed by debt
and then equity. Finally, market-timing theory indicates that firms may create value by
issuing equity when this is seen as overvalued and issue debt when equity is undervalued.
Again, there is no such thing as an optimal leverage ratio in this theory.

Among the referred theories, the trade-off theory is thus the only one that suggests an
optimal leverage ratio. Following this theory, we are interested in choosing what is the level of
L that maximizes firm value, which corresponds to the sum of shareholders and debtholders
claims on the project. Since the project value is invariant to the choice of L, the level of L that
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maximizes firm value is also the one that minimizes external claimants value. In addition,
since debt is issued at time 0, this is also the value of L that maximizes shareholders claim.
Notice that at time 0 shareholders hold the firm and any proccedings from issuing debt
are distributed as an extraordinary dividend. So, the higher value of debt, the higher the
dividend received. In principle, the optimal value of L can be found by differentiating equity
and debt functions in order to L, summing and equaling to zero. However, this turns out
to be particularly difficult to do because, differently from Leland (1994a), we have no closed
form solution for v̄, which depends on L. Chapter 8 provides numerical solutions, though.

5.3. The firm process and the cost of capital
The firm value corresponds to the sum of shareholders and debtholders’ positions. Sections
3.3 and 4.2 derived the dynamics of these claims by applying Ito’s lemma to the equity and
debt functions, respectively. Doing the same for the value of the firm, one obtains

dVt
Vt−

= (r − kVt) dt+ σVtdW
Q
t − jVtdM

Q
t , (5.5)

where

kVt = δt − q
Vt

, (5.6)

σVt = ∂V

∂A

At
Vt−

σA

=
(
∂E

∂A
+ ∂D

∂A

)
At
Vt−

σA,

(5.7)

and

jVt =
V (At−)−

(
βBank1{(1−jA)At−≤v̄} + βSold1{(1−jA)At−>v̄}

)
(1− jA)At−

D (At−) . (5.8)

It is clear from the above equations that neither the drift, the volatility or the jump terms
are constants. Instead, they are functions of the underlying stochastic process. Changing
the probability measure to P and summing kVt to the drift in equation (5.5) one obtains the
cost of capital, which corresponds to r +mσVt +

(
λ− λ

)
jVt .
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6. CDS

A credit default swap (CDS) is a contract by which the seller of the CDS agrees to compensate
the buyer in case of a credit event. In return, and as long as the underlying entity does not
default, the buyer of the CDS makes a series of payments to the seller, the CDS spread. These
streams of cash flows are usually called the protection leg and the coupon leg, respectively.
All CDS contracts have a notional value. When a credit event occurs, the CDS contract must
be settled, which may happen either physically or in cash. When the CDS contract is settled
physically, the protection buyer delivers a bond to the seller in exchange for the par value of
that bond. If the protection buyer simultaneously holds the underlying debt obligation and
CDS contracts with the same notional value he is basically eliminating the credit risk from
his portfolio. In this case, CDS works as an insurance mechanism. In practice, however,
there are many more CDS contracts then bond holdings. In order to solve the problem, it is
usually organized an auction. This auction has two phases. In the first phase, those willing
to settle physically place orders for the company’s debt. The range of prices received is then
used to calculate the, so called, inside market midpoint (IMM). The IMM is used to set how
much protection sellers have to give to protection buyers on the second phase. For those
contracts settling in cash, the protection buyer must receive from the protection seller one
minus the IMM on the par value.

The CDS spread (cds) for a contract with maturity tcds, nominal value Lcds and underly-
ing debt security L? corresponds to the coupon value that turns the coupon leg equal to the
protection leg. In this model, this coupon is assumed to be paid continuously. Thus, there
is no accrued interest. Mathematically, the coupon leg equals

CouponLeg
(
tcds, Lcds

)
= cds× Lcds

tcds∫
0

EQ [e−rs1{τ>s,τ̂>s} |F0
]
ds. (6.1)

75



Following the same steps as in the case of CouponT0 , equation (6.1) can be rewritten as

CouponLeg
(
tcds, Lcds

)
= cds× Lcds

$

{
e$tcds

[
1−N

(
h1
(
v̄, tcds

))
−R2aN

(
h2
(
v̄, tcds

))]
− 1

+F
(
$,

ln(R)
σ

,
v?

σ
, tcds

)
+R2aF

(
$,

ln(R)
σ

,−v
?

σ
, tcds

)}
,

(6.2)

which corresponds to equation (3.13) substituting L by Lcds, c by cds and T by tcds.

The protection leg value corresponds to the expected loss, which is the difference between
the promissed value Lcds and the recovered value (in case of default) discounted from the
default time. The recovered value depends on the seniority of the debt issue that underlies
the CDS contract. As previously, the expected loss can be computed as the sum of the
contribution from the case where the asset process hits the barrier and the case where the
sudden jump occurs. Thus, the expected loss between now and tcds corresponds to

ELt
cds

0 = ELHitt
cds

0 + ELJumpt
cds

0 . (6.3)

The expected loss up to time tcds when the process hits the barrier equals

ELHitt
cds

0 = LcdsEQ [e−rτ1{τ<tcds,τ̂>τ} |F0
]
− Lcds

L?
RecHit?0

tcds

= LcdsDigHit
(
tcds
)
− Lcds

L?
RecHit?0

tcds ,

(6.4)

where RecHittcds0 can be computed using equation (4.3), replacing T by tcds while not taking
the limit.

Regarding the expected loss up to time tcds when the sudden jump occurs, we have to
consider two cases:

ELJumpt
cds

0 = ELJumpBankt
cds

0 + ELJumpSoldt
cds

0 , (6.5)

where

ELJumpBankt
cds

0 = LcdsEQ
[
e−rτ̂1{v̄<Aτ̂< v̄

1−j ,τ>τ̂,τ̂<t
cds} |F0

]
− Lcds

L?
RecJumpBankt

cds

0

= LcdsDigJump

(
v̄,

v̄

1− j , t
cds

)
− Lcds

L?
RecJumpBankt

cds

0 ,

(6.6)
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and

ELJumpSoldt
cds

0 = LcdsEQ
[
e−rτ̂1{ v̄

1−j<Aτ̂<+∞,τ>τ̂,τ̂<tcds} |F0

]
− Lcds

L?
RecJumpSoldt

cds

0

= Lcds lim
u→+∞

DigJump

(
v̄

1− j , u, t
cds

)
− Lcds

L?
RecJumpSoldt

cds

0 .

(6.7)

RecJumpBankt
cds

0 can be computed using equations (4.6) to (4.10) given in Section 4.1.2.
DigJump

(
v̄, v̄

1−j , t
cds
)
is given by equation (2.90). RecJumpSoldtcds0 can be computed using

equations (4.12) to (4.14) in Section 4.1.2, while replacing T by tcds and not taking the limit.
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7. European Call and Put options

7.1. Call options

Typically the time 0 value of a European call option on a stock corresponds to the discounted
expected value under measure Q of the maximum of zero and the stock price minus the
strike price at maturity. In this model, however, the equity process may stop before the
option maturity either because the asset process hits the barrier or due to a sudden jump.1

In these cases, equity value corresponds to the recovered value as presented in Chapter 3.
Mathematically,

C0 (ES ,K, S) = e−rS
{
EQ
[
(ES −K) 1{ES>K,τSolv>S} |F0

]
+EQ

[
(EqRecτSolv −K) 1{K<EqRecτSolv ,τSolv<S} |F0

]}
,

(7.1)

where ES can be computed using the E function derived in Chapter 3 replacing A by AS .
The next two subsections calculate the two terms above.

7.1.1. The firm closes after option maturity

Consider the following function that gives the intrinsic value of a call option at its maturity:

IV C(AS) = ES(AS)−K. (7.2)

The call option is in the money for IV C(AS) > 0. Substituting on the first term in equation
(7.1), then

EQ [(ES −K) 1{ES>K,τSolv>S} |F0
]

= EQ
[
ES1{IV C(AS)>0,τ>S,τ̂>S} |F0

]
−KQ

(
IV C (AS) > 0, τ > S, τ̂ > S

∣∣F0
)
.

(7.3)

1It is assumed in these cases that the equity value does not change between τSolv and S.
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Define AC as the value of AS that solves IV C(AS) = 0. We are basically interested in
the values of AS > max

(
v̄, AC

)
.2 The first term in equation (7.3) can thus be rewritten as

EQ
[
ES1{IV C>0,τ>S,τ̂>S} |F0

]
=

+∞∫
max

(
v̄,AC

)
+∞∫
S

+∞∫
S

ES (AS)Q (AS ∈ dx, τ ∈ du, τ̂ ∈ dû |F0 )

=
+∞∫

max
(
v̄,AC

) ES (AS)Q (τ̂ ≥ S |F0 )Q (AS ∈ dx, τ ≥ S |F0 ),

(7.4)

where AC can be determined numerically.3

Using equations (2.60) and (2.49) we end up with an expression that can be solved easily
numerically:

EQ
[
ES1{IV C>0,τ>S,τ̂>S} |F0

]
= e−λS

+∞∫
max

(
v̄,AC

) 1/x
σ
√
S
ES (x)

[
n (h1 (x, S))−R2an (h2 (x, S))

]
dx.

(7.5)

Doing the same for the second term,

KQ
(
IV C (AS) > 0, τ > S, τ̂ > S

∣∣F0
)

= K

+∞∫
max

(
v̄,AC

)
+∞∫
S

+∞∫
S

Q (AS ∈ dx, τ ∈ du, τ̂ ∈ dû |F0 )

= K

+∞∫
max

(
v̄,AC

) Q (τ̂ ≥ S |F0 )Q (AS ∈ dx, τ ≥ S |F0 ).

(7.6)

2Notice that we need to restrict AS to be higher than v̄ because, under certain parameter values, shareholders
may still recover something when the process hits the barrier. It is thus possible that AC < v̄.

3Since IV C−1 is a monotone function of the intrinsic value we have that IV C−1 (+∞) = +∞.
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Using equations (2.60) and (2.49) and then taking the integral,

KQ
(
IV C (AS) > 0, τ > S, τ̂ > S

∣∣F0
)

= e−λSK

+∞∫
max

(
v̄,AC

) d

dx
N (h1 (x, S)) +R2a d

dx
N (h2 (x, S))dx

= e−λSK

{
lim

x→+∞
N (h1 (x, S))−N

(
h1

(
max

(
v̄, AC

)
, S
))

+

+R2a
[

lim
x→+∞

N (h2 (x, S))−N
(
h2

(
max

(
v̄, AC

)
, S
))]}

.

(7.7)

Finally, taking notice that lim
x→+∞

N (h1 (x, S)) = 1 and lim
x→+∞

N (h2 (x, S)) = 0,

KQ
(
IV C (AS) > 0, τ > S, τ̂ > S

∣∣F0
)

= e−λSK
[
1−N

(
h1

(
max

(
v̄, AC

)
, S
))

−R2aN
(
h2

(
max

(
v̄, AC

)
, S
))]

.
(7.8)

7.1.2. The firm closes before option maturity

The firm may close before option maturity either because the asset process hits the barrier
or due to a sudden jump. As a result,

EQ
[
(EqRecτSolv −K) 1{K<EqRecτSolv ,τSolv<S} |F0

]
= EQ [(EqRecHitτ −K) 1{K<EqRecHitτ ,τ<S,τ̂>τ} |F0

]
+ EQ

[
(EqRecJumpτ̂ −K) 1{K<EqRecJumpτ̂ ,τ>τ̂,τ̂<S} |F0

]
.

(7.9)

The asset process hits the barrier before option maturity

In the case where the asset process hits the barrier,

EQ [ (EqRecHitτ −K) 1{K<EqRecHitτ ,τ<S,τ̂>τ}
∣∣F0

]
=
{

EQ [[(βBankv̄ − L)−K] 1{τ<S,τ̂>τ}
∣∣F0

]
, v̄ ≥ L+K

βBank

0, v̄ < L+K
βBank

=
{ (

βBankv̄ − L−K
)
Q (τ < S, τ̂ > τ | F0) , v̄ ≥ L+K

βBank

0, v̄ < L+K
βBank

=
{ (

βBankv̄ − L−K
)
DigHit?(S), v̄ ≥ L+K

βBank

0, v̄ < L+K
βBank

.
.

(7.10)
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A sudden jump in asset value occurs before the option maturity

When the firm closes due to a sudden jump, we must distinguish two cases depending on
whether distress costs are incurred or not:

EQ [ (EqRecJumpτ̂ −K) 1{K<EqRecJumpτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ [ (EqRecJumpBankτ̂ −K) 1{K<EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}

∣∣F0
]

+EQ [ (EqRecJumpSoldτ̂ −K) 1{K<EqRecJumpSoldτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
.

(7.11)

When distress costs are incurred we may have three cases depending on the relative
position of the barrier.

First case: v ≤ L+K
βBank(1−j) ≤

v
1−j

EQ [ (EqRecJumpBankτ̂ −K) 1{K<EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ

[[βBank (1− j)Aτ̂− − L
]
−K

]
1{

L+K
βBank(1−j)

<Aτ̂−<
v

1−j ,τ>τ̂,τ̂<S

}∣∣∣∣∣∣F0


= βBank (1− j)EQ

Aτ̂−1{
L+K

βBank(1−j)
<Aτ̂−<

v
1−j ,τ>τ̂,τ̂<S

}∣∣∣∣∣∣F0


− (L+K)Q

(
L+K

βBank(1−j) < Aτ̂− <
v

1−j , τ > τ̂ , τ̂ < S
∣∣∣F0

)
= βBank (1− j)ANJump∗

(
L+K

βBank(1−j) ,
v

1−j , S
)
− (L+K)DigJump∗

(
L+K

βBank(1−j) ,
v

1−j , S
)
.

(7.12)

Second case: L+K
βBank(1−j) ≤ v ≤

v
1−j

EQ [ (EqRecJumpBankτ̂ −K) 1{K<EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ

[[[
βBank (1− j)Aτ̂− − L

]
−K

]
1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<S}
∣∣∣F0

]
= βBank (1− j)EQ

[
Aτ̂−1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<S}
∣∣∣F0

]
− (L+K)Q

(
v̄ < Aτ̂− <

v̄
1−j , τ > τ̂ , τ̂ < S

∣∣∣F0

)
= βBank (1− j)ANJump∗

(
v̄, v̄

1−j , S
)
− (L+K)DigJump∗

(
v̄, v̄

1−j , S
)
.

(7.13)

Third case: v ≤ v
1−j ≤

L+K
βBank(1−j)

EQ [ (EqRecJumpBankτ̂ −K) 1{K<EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= 0. (7.14)
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When distress costs are not incurred we may have two cases.
First case: v

1−j ≤
L+K

βSold(1−j) ≤ +∞

EQ [ (EqRecJumpSoldτ̂ −K) 1{K<EqRecJumpSoldτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ [([βSold (1− j)Aτ̂ − L

]
−K

)
1{K<βSold(1−j)Aτ̂−L,τ>τ̂,τ̂<S} |F0

]
= βSold (1− j)EQ

Aτ̂1{
Aτ̂>

L+K
βSold(1−j)

,τ>τ̂,τ̂<S

} |F0


− (L+K)Q

(
Aτ̂ >

L+K

βSold (1− j) , τ > τ̂ , τ̂ < S

∣∣∣∣F0

)
= βSold (1− j) lim

u→+∞
ANJump?

(
L+K

βSold (1− j) , u, S
)

− (L+K) lim
u→+∞

DigJump?
(

L+K

βSold (1− j) , u, S
)
.

(7.15)

Second case: L+K
βSold(1−j) ≤

v
1−j ≤ +∞

EQ [ (EqRecJumpSoldτ̂ −K) 1{K<EqRecJumpSoldτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ

[([
βSold (1− j)Aτ̂ − L

]
−K

)
1{Aτ̂> v̄

1−j ,τ>τ̂,τ̂<S} |F0

]
= βSold (1− j)EQ

[
Aτ̂1{Aτ̂> v̄

1−j ,τ>τ̂,τ̂<S}
|F0

]
− e−rS (L+K)Q

(
Aτ̂ >

v̄

1− j , τ > τ̂ , τ̂ < S

∣∣∣∣F0

)
= βSold (1− j) lim

u→+∞
ANJump?

(
v̄

1− j , u, S
)

− (L+K) lim
u→+∞

DigJump?
(

v̄

1− j , u, S
)
.

(7.16)

7.2. Put options

The procedure for determining the price of put options is similar to the one for call options.
Again, we have to consider both the hypothesis that the asset process stops after and before
the option maturity:

P0 (ES ,K, S) = e−rS
{
EQ
[
(K − ES) 1{ES<K,τSolv>S} |F0

]
+EQ

[
(K − EqRecτSolv ) 1{K>EqRecτSolv ,τSolv>S} |F0

]}
.

(7.17)
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The next two sections cover how these two terms can be computed.4

7.2.1. The firm closes after option maturity

Consider the following function that gives the intrinsic value of a put option at its maturity:

IV P (AS) = K − ES(AS). (7.18)

The put option is in the money when IV P (AS) > 0. Substituting on the first term in
equation (7.17), we obtain:

EQ
[
(K − ES) 1{ES<K,τSolv>S} |F0

]
= KQ

(
IV P (AS) > 0, τ > S, τ̂ > S

∣∣F0
)

− EQ
[
ES1{IV P (AS)<0,τ>S,τ̂>S} |F0

]
.

(7.19)

The strategy to compute these terms is very similar to the one for call options. This time,
however, we have to take into account that the intrinsic value of the put option can never be
higher than K, which occurs when ES is zero. The latter can only occur when At approaches
the barrier or never occur depending on the barrier value. Define AP as the value of AS that
solves IV P (AS) = 0. Taking this into account, the first term in equation (7.21) equals

KQ
(
IV P (AS) > 0, τ > S, τ̂ > S

∣∣F0
)

= K

max
(
v̄,AP

)∫
v̄

+∞∫
S

+∞∫
S

Q (τ̂ ∈ dû |F0 )Q (AS ∈ dx, τ ∈ du |F0 )

= K

max
(
v̄,AP

)∫
v̄

Q (τ̂ > S |F0 )Q (AS ∈ dx, τ > S |F0 ).

(7.20)

Again, using equations (2.60) and (2.49), then

KQ
(
IV P (AS) > 0, τ > S, τ̂ > S

∣∣F0
)

= e−λSK

max
(
v̄,AP

)∫
v̄

d

dx
N (h1 (x, S)) +R2a d

dx
N (h2 (x, S))dx.

(7.21)

4Similar to call options, it is assumed that the recovered value stays constant between τSolv and S whenever
τSolv < S.
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This leads to

KQ
(
IV P (AS) > 0, τ > S, τ̂ > S

∣∣F0
)

= e−λSK
{
N
(
h1

(
max

(
v̄, AP

)
, S
))
−N (h1 (v̄, S))+

+R2a
[
N
(
h2

(
max

(
v̄, AP

)
, S
))
−N (h2 (v̄, S))

]}
.

(7.22)

The computation of the second term is very similar to equation (7.5):

EQ
[
ES1{ES<K,τ>S,τ̂>S} |F0

]
= e−λS

max
(
v̄,AP

)∫
v̄

1/x
σ
√
S
ES (x)

[
n (h1 (x, S))−R2an (h2 (x, S))

]
dx.

(7.23)

7.2.2. The firm closes before the option maturity

Again, the firm may close before option maturity either because the asset process hits the
barrier or due to a sudden jump.

EQ
[
(K − EqRecτSolv ) 1{K>EqRecτSolv ,τSolv<S} |F0

]
= EQ [(K − EqRecHitτ ) 1{K>EqRecHitτ ,τ<S,τ̂>τ} |F0

]
+ EQ

[
(K − EqRecJumpτ̂ ) 1{K>EqRecJumpτ̂ ,τ>τ̂,τ̂<S} |F0

]
.

(7.24)

The asset hits the barrier before the option maturity

In the case where the asset process hits the barrier

EQ [ (K − EqRecHitτ ) 1{K>EqRecHitτ ,τ<S,τ̂>τ}
∣∣F0

]
=


0, v̄ > L+K

βBank

EQ [[K − (βBankv̄ − L)] 1{τ<S,τ̂>τ}
∣∣F0

]
, L
βBank

≤ v̄ ≤ L+K
βBank

EQ [K1{τ<S,τ̂>τ}
∣∣F0

]
, v̄ < L

βBank

=


0, v̄ > L+K

βBank(
L+K − βBankv̄

)
Q (τ < S, τ̂ > τ | F0) , L

βBank
≤ v̄ ≤ L+K

βBank

KQ (τ < S, τ̂ > τ | F0) , v̄ < L
βBank

=


0, v̄ > L+K

βBank(
L+K − βBankv̄

)
DigHit?(S), L

βBank
≤ v̄ ≤ L+K

βBank

KDigHit?(S), v̄ < L
βBank

.

(7.25)
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A sudden jump in asset value occurs before the option maturity

When the firm closes due to a sudden jump, we must distinguish two cases depending on
whether distress costs occur or not:

EQ [ (K − EqRecJumpτ̂ ) 1{K>EqRecJumpτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ [ (K − EqRecJumpBankτ̂ ) 1{K>EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}

∣∣F0
]

+EQ [ (K − EqRecJumpSoldτ̂ ) 1{K>EqRecJumpSoldτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
.

(7.26)

When distress costs are incurred we may have three cases depending on the relative
position of the barrier.

First case: v ≤ L+K
βBank(1−j) ≤

v
1−j

EQ [ (K − EqRecJumpBankτ̂ ) 1{K>EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ

[K − [βBank (1− j)Aτ̂− − L
]]

1{
v̄<Aτ̂−<

L+K
βBank(1−j)

,τ>τ̂,τ̂<S

}∣∣∣∣∣∣F0


= (L+K)Q

(
v̄ < Aτ̂− <

L+K
βBank(1−j) , τ > τ̂ , τ̂ < S

∣∣∣F0

)
−βBank (1− j)EQ

Aτ̂−1{
v̄<Aτ̂−<

L+K
βBank(1−j)

,τ>τ̂,τ̂<S

}∣∣∣∣∣∣F0


= (L+K)DigJump∗

(
v̄, L+K

βBank(1−j) , S
)
− βBank (1− j)ANJump∗

(
v̄, L+K

βBank(1−j) , S
)
.

(7.27)

Second case: L+K
βBank(1−j) ≤ v ≤

v
1−j

EQ [ (K − EqRecJumpBankτ̂ ) 1{K>EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= 0. (7.28)
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Third case: v ≤ v
1−j ≤

L+K
βBank(1−j)

EQ [ (K − EqRecJumpBankτ̂ ) 1{K>EqRecJumpBankτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= EQ

[[
K −

[
βBank (1− j)Aτ̂− − L

]]
1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<S}
∣∣∣F0

]
= (L+K)Q

(
v̄ < Aτ̂− <

v̄
1−j , τ > τ̂ , τ̂ < S

∣∣∣F0

)
−βBank (1− j)EQ

[
Aτ̂−1{v̄<Aτ̂−< v̄

1−j ,τ>τ̂,τ̂<S}
∣∣∣F0

]
= (L+K)DigJump∗

(
v̄, v̄

1−j , S
)
− βBank (1− j)ANJump∗

(
v̄, v̄

1−j , S
)
.

(7.29)

When distress costs are not incurred we may have two cases.

First case: v
1−j ≤

L+K
βSold(1−j) ≤ +∞
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Second case: L
βSold(1−j) ≤

L+K
βSold(1−j) ≤

v
1−j ≤ +∞

EQ [ (K − EqRecJumpSoldτ̂ ) 1{K>EqRecJumpSoldτ̂ ,τ>τ̂,τ̂<S}
∣∣F0

]
= 0. (7.31)
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8. Numerical analysis

The previous chapters presented the valuation model and have shown how to price contingent
claims. In this chapter the model is illustrated through comparative statics. This chapter is
divided into five sections. The first three sections address corporate finance issues, notably,
the value of each claimant holding, the optimal capital structure and the cost of capital.
The fourth section turns to credit risk metrics such as the probablity of default, the recovery
rate and the term structure of credit spreads. The effect of seniority on CDS spreads is also
studied. The last section compares the option prices produced by this model with those
obtained in the Black-Scholes model.

8.1. Project valuation and stakeholders holdings

As the base case, consider the following parameter values: δ0 = 400, µδ = 0.04, σ = 0.15,
λ = 0.01, j = 0.6, L = 1200, q = 100, r = 0.01, βSold = 0.4, βBank = 0.3, m = 0.4,
λ−λ = 0.012, q = 0.50, Gov = 0.45 and DC = 0.05.1 In addition, consider that tDiv = 0.28,
t
Debt = 0.28 and t

Corp = 0.21. So, tEff = 0.43. Table 8.1 shows the value of each claim
in the base case and for several other parameter values. Table 8.2 provides key information
to understand the results obtained, notably, ρ, which corresponds to the optimal barrier
normalized by L, the distance to the barrier, the recovery rate at the barrier, the optimal
coupon rate and earnings before taxes (EBT) when the barrier is hit.2

Starting with the base case, the project under analysis is split 40% − 60% between firm
investors and external claimants. This is in line with the assumption of βSold = 0.4.3 The
risk pricing parameters, m and λ − λ, have a very significant impact both on the project

1Several of the numbers presented as our base case are rounded numbers obtained from financial documents
of a real firm in Portugal. βSold was chosen to be 0.4 after running the model once with a different value.
Distress costs in the literature are often referred as 20% of the asset value. For this reason βBank was
considered to equal 0.3. The analyst can however take better estimates either doing more research on the
firm, looking to sector data or calibrating the model to market prices, if possible.

2EBT was computed as the operating cash flow minus the interest expense minus the fixed capex expenditure.
3This split is stable for most of the parameter values considered. The exceptions are q = 50 and q = 150.
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Table 8.1.: Contingent claims on the project
Asset Equity Debt Capex Gov DC
Eur Eur % Eur % Eur % Eur % Eur %

Base case 9 259 2 516 27.2 1 200 13.0 2 760 29.8 2 618 28.3 166 1.8
m = 0.3 14 184 4 775 33.7 1 200 8.5 3 746 26.4 4 291 30.2 172 1.2
m = 0.5 6 873 1 500 21.8 1 200 17.5 2 137 31.1 1 853 27.0 183 2.7
λ− λ = 0 11 111 3 192 28.7 1 200 10.8 3 387 30.5 3 138 28.2 194 1.7

λ− λ = 0.024 7 937 2 021 25.5 1 200 15.1 2 326 29.3 2 241 28.2 148 1.9
σ = 0.1 17 241 6 129 35.5 1 200 7.0 4 464 25.9 5 272 30.6 176 1.0
σ = 0.2 6 329 1 360 21.5 1 200 19.0 1 853 29.3 1 737 27.4 179 2.8
λ = 0 13 333 3 977 29.8 1 200 9.0 4 166 31.2 3 757 28.2 233 1.7
λ = 0.02 7 092 1 702 24.0 1 200 16.9 2 054 29.0 1 997 28.2 139 2.0
j = 0.4 10 309 2 914 28.3 1 200 11.6 3 101 30.1 2 913 28.3 181 1.8
j = 0.8 8 403 2 215 26.4 1 200 14.3 2 449 29.1 2 362 28.1 177 2.1
r = 0 12 048 3 471 28.8 1 200 10.0 3 734 31.0 3 415 28.3 228 1.9
r = 0.02 7 519 1 904 25.3 1 200 16.0 2 170 28.9 2 110 28.1 135 1.8
δ0 = 300 6 944 1 373 19.8 1 200 17.3 2 391 34.4 1 779 25.6 201 2.9
δ0 = 500 11 574 3 698 31.9 1 200 10.4 3 026 26.1 3 498 30.2 153 1.3
µδ = 0.03 7 519 1 767 23.5 1 200 16.0 2 320 30.9 2 055 27.3 177 2.4
µδ = 0.05 12 048 3 778 31.4 1 200 10.0 3 349 27.8 3 557 29.5 164 1.4
q = 50 9 259 3 157 34.1 1 200 13.0 1 759 19.0 3 043 32.9 99 1.1
q = 150 9 259 1 984 21.4 1 200 13.0 3 532 38.1 2 293 24.8 250 2.7
L = 1000 9 259 2 680 28.9 1 000 10.8 2 794 30.2 2 634 28.4 151 1.6
L = 1400 9 259 2 352 25.4 1 400 15.1 2 723 29.4 2 601 28.1 183 2.0

βBank = 0.25 9 259 2 475 26.7 1 200 13.0 2 748 29.7 2 613 28.2 223 2.4
βBank = 0.35 9 259 2 553 27.6 1 200 13.0 2 771 29.9 2 623 28.3 113 1.2
t
Div = 0.23 9 259 2 682 29.0 1 200 13.0 2 760 29.8 2 452 26.5 166 1.8
t
Div = 0.33 9 259 2 349 25.4 1 200 13.0 2 760 29.8 2 785 30.1 166 1.8
t
Debt = 0.23 9 259 2 543 27.5 1 200 13.0 2 768 29.9 2 586 27.9 162 1.8
t
Debt = 0.33 9 259 2 484 26.8 1 200 13.0 2 750 29.7 2 655 28.7 170 1.8
t
Corp = 0.16 9 259 2 667 28.8 1 200 13.0 2 760 29.8 2 467 26.6 166 1.8
t
Corp = 0.26 9 259 2 364 25.5 1 200 13.0 2 760 29.8 2 770 29.9 166 1.8

The first row corresponds to the base case where: δ0 = 400, µδ = 0.04, σ = 0.15, λ = 0.01, j = 0.6, L = 1200,
q = 100, r = 0.01, βSold = 0.4, βBank = 0.3, m = 0.4, λ− λ = 0.012, q = 0.50, Gov = 0.45 and DC = 0.05,
t
Div = 0.28, tDebt = 0.28 and tCorp = 0.21. All remaining rows correspond to the base case with only the
mentioned parameters changed.
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Table 8.2.: Endogenous barrier and the optimal coupon rate
ρ A/v̄ Recovery rate at v̄ (%) Coupon rate (%) EBT at v̄

Base case 1.89 4.08 56.7 3.0 -38
m = 0.3 2.22 5.33 66.5 1.9 -48
m = 0.5 1.75 3.28 52.4 4.6 -33
λ− λ = 0 2.09 4.43 62.8 2.5 -40

λ− λ = 0.024 1.75 3.79 52.4 3.6 -38
σ = 0.1 2.87 5.01 86.0 1.5 -38
σ = 0.2 1.58 3.34 47.4 5.7 -49
λ = 0 2.35 4.74 70.4 2.1 -21
λ = 0.02 1.67 3.54 50.1 4.2 -52
j = 0.4 1.99 4.31 59.8 2.4 -36
j = 0.8 1.92 3.65 57.6 4.4 -43
r = 0 2.04 4.92 61.2 1.3 -35
r = 0.02 1.80 3.47 54.1 4.7 -42
δ0 = 300 2.01 2.88 60.2 3.7 -40
δ0 = 500 1.83 5.27 54.9 2.7 -37
µδ = 0.03 1.78 3.52 53.4 4.0 -34
µδ = 0.05 2.08 4.84 62.3 2.2 -44
q = 50 1.20 6.45 35.9 3.0 -24
q = 150 2.55 3.03 76.5 2.8 -51
L = 1000 2.11 4.39 63.3 2.7 -35
L = 1400 1.75 3.78 52.5 3.3 -41

βBank = 0.25 1.94 3.98 48.4 3.3 -39
βBank = 0.35 1.85 4.18 64.7 2.7 -37
t
Div = 0.23 1.89 4.08 56.7 3.0 -38
t
Div = 0.33 1.89 4.08 56.7 3.0 -38
t
Debt = 0.23 1.86 4.15 55.7 2.8 -37
t
Debt = 0.33 1.93 4.01 57.8 3.2 -39
t
Corp = 0.16 1.89 4.08 56.7 3.0 -38
t
Corp = 0.26 1.89 4.08 56.7 3.0 -38

The first row corresponds to the base case where: δ0 = 400, µδ = 0.04, σ = 0.15, λ = 0.01, j = 0.6, L = 1200,
q = 100, r = 0.01, βSold = 0.4, βBank = 0.3, m = 0.4, λ− λ = 0.012, q = 0.50, Gov = 0.45 and DC = 0.05,
t
Div = 0.28, tDebt = 0.28 and tCorp = 0.21. All remaining rows correspond to the base case with only the
mentioned parameters changed.
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value and on the way it is split. A lower price of risk increases project value and equity
holders get a higher absolute and percentual claim both on the project and on the firm. The
same occurs with the government. Debt value stays the same for all parameter values since
it is sold at par. However, its stake on the project and on the firm decreases with a lower
level of risk aversion. Capex suppliers and distress costs claims increase in absolute value but
their relative stake decreases. The distance to the barrier increases substantially even though
the barrier itself increases, leading to a higher recovery rate at the barrier. As a result of a
lower probability of default and lower LGD, the coupon rate decreases. The opposite occurs
when the price of risk increases. However, all effects tend to be significantly smaller except
in the coupon rate, where the opposite occurs (i.e the effect is stronger when the price of risk
increases).

Similarly to the price of risk parameters, volatility has a very significant negative effect on
the project value. In addition, a lower volatility level leads to a higher equity and government
stake in the project. This is in sharp contrast with the original Merton model where an
increase in volatility leads to a higher equity value due to its standard call features. Again,
the distance to the barrier increases despite the barrier increasing leading to a higher recovery
rate at the barrier. This is in contrast with Leland (1994a) where a decrease in volatility
does not affect the asset value but shifts the barrier upwards, thus decreasing the distance to
the barrier. The coupon rate decreases when volatility decreases. The opposite occurs when
volatility increases, with a very significant asymetric effect being observed.

The effect of the jump hazard rate is similar to the volatility, though less significant in the
case considered here. It is noteworthy that the distance to the barrier decreases whenever
the jump hazard rate increases, independently of the jump risk being priced or not (the latter
is not shown in Table 8.2). It is also surprising that an increase in the jump hazard rate
actually leads to a lower distress costs claim. This occurs because the negative effect on the
project value dominates the positive effect arising from a higher default probability and a
lower recovery rate at the barrier. This does not occur when project volatility increases. In
this case, a slight increase in distress costs is observed. Multiplying the current project value
by 1− j and comparing with the barrier value one can better understand the reason for this.
For a jump size of 0.6, it is highly probable that the jump does not push the project value
below the barrier. In this case, distress costs are not incurred.

Decreasing the jump size increases the project value but has little impact on the way this
value is split. The barrier level is unchanged, though the distance to the barrier increases
as a consequence of a higher project value. The coupon rate decreases, though the effect
is much stronger in the opposite direction. It is interesting to note that changes in j have
slighly more effect on the capex suppliers than on equity holders. This occurs because equity
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holders leave the project immediately after the jump, often with zero value due to limited
liability. In contrast, capex suppliers still hold a percentual claim on the project value after
the jump since the project continues.

The interest rate has an effect similar to the price of risk. The lower the interest rate the
higher the project value. It is remarkable that 1p.p. change in the risk free rate produces
a variation of 20% − 30% in project value. This emphasizes the importance of models with
stochastic interest rates when the project value is endogenous. The use of the current short
term interest rate, though theoretically appealing, may lead to significant overvaluation (or
undervaluation) of the project value whenever this is far from its long-term mean. The lower
the interest rate the lower the coupon rate and the higher the equity claim. This goes in
contrast with models that assume traded assets where a decrease in the risk free rate decrease
the asset drift leading to a higher probability of default and a lower equity value. Similarly
to equity, a decrease in the interest rate leads to an increase in government’s claim. However,
in contrast with changes in the price of risk, this time governments’ relative share decreases
because a reduction in the interest rate leads to a lower tax revenue on coupons. As for risk
pricing and risk parameters, the effect of increases and decreases in the interest rate is not
symmetric. This occurs besides the effect on the coupon rate being of equal size, which is in
contrast with the latter. The reason for this is that equity is intrinsically a leveraged way of
being exposed to the risk of the project. So, in addition to the coupon rate effect, we have
that the higher the interest rate the higher the advantage of not having to hold the entire
project. This mitigates the negative impact on equity value arising from positive changes in
the coupon rate, leading to a non-symmetric effect.

Negative changes in δ0 decrease the project value significantly, affecting especially share-
holders and the government. In the case of shareholders, their claim falls from 2516 to 1373
as consequence of a 1) decrease in project value, 2) an increase in the coupon rate and 3)
a subsequent decrease in the distance to the barrier. So, a 25% decrease in initial operat-
ing cash flow leads to a reduction of 45% in equity value. This huge reduction is closely
related with the perpetual debt assumption and the fact that the process here considered is
both Markovian and non-mean reverting.4 This turns the equity value very sensitive to the
current operating cash flow level.5 In addition, it contributes to profitability levels close to
the barrier that are likely above those observed in practice.6 The opposite occurs when δ0

4When the coupon rate and the barrier are kept unchanged equity value falls 42%.
5Whenever the current operating cash flow is affected by one-off effects it may be wise to adjust it. For
a model with mean reverting EBITDA see Sarkar and Zapatero (2003). The latter does not allow for a
trend in earnings.

6There are other factors that may justify this. Examples include stiky costs, the need to rollover debt at
a likely higher rate and debtholders potential preference for renewing loans instead of pushing the firm
to default. Regarding the first, notice that a simultaneous increase in δ0 and q of 100 leads EBT at the
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increases. However, in contrast with changes in the price of risk and the risk free rate, an
increase in δ0 produced an impact of similar absolute size for the parameters considered.

The CFO growth rate, µδ, has an impact symmetric to the risk free rate on the project
value, meaning that a decrease in the µδ decreases the project value and decreases equity
holders stake. The effect on equity valuation is much stronger in this case, though. This
occurs besides the interest rate having a much stronger effect on the coupon rate than µδ.
Notice that while interest rate reductions mitigate the benefit of leverage, increases in µδ

amplify this benefit.
Fixed costs such as those with capex suppliers have no effect on the project value. They

have clear distributive effects, though. Equity holders and the government increase their
stake with a lower level of capex. The effect is slightly asymmetric. Capex expenditures have
a very strong impact on the barrier level. The lower the capex, the lower the barrier because
shareholders are willing to inject capital in the firm for a longer period of time hoping that
the project goes well. In consequence, the recovery rate when default effectively materializes
is the lowest observed under the tested parameter values. Besides this significant decrease in
the recovery rate, the coupon rate is unchanged, signaling that the probability of default and
the recovery effect cancel out. The opposite occurs when capex costs increase. This time,
however, the coupon rate decreases despite the distance to the barrier decreasing significantly.

Similarly to capex expenditures, firm liabilities have no impact on the project but change
each claimant holdings. A decrease in L increases equity value as interest expense declines.
Government and capex suppliers claims increase slightly as the firm is expected to stay more
years in operation. In the case of the government, notice that an increase in L leads to less
taxes on coupons but more taxes on dividends. These cancel out since tDiv = t

Debt.
Regarding distress costs, Table 8.1 considers the case where these correspond to 15% (i.e.

0.40−0.25) and 5% (i.e. 0.40−0.35) of the project value. Since the firm value is around 40%
of the project value, these correspond to 37.5% and 12.5% of the firm value, respectively. In
none of the cases distress costs have a sizable impact on the contingent claims value except
for the distress costs fictive holder. This low impact should be the result of a low probability
of default on a reasonably long horizon of time. In spite of this, the coupon rate increased
0.3p.p. and the barrier value increased.

Taxation has no impact on the project value but affects the way this is distributed in an
obvious way. Except for tDebt, other taxes have no impact on the distance to the barrier,
coupon rate and recovery at the barrier. This would not be the case in a model where the
firm may lose its tax shields. Taxes on debt coupons have a slight effect on the coupon rate

barrier to fall from −38 to −63. This suggests that the model can be improved by an in depth analysis
of the expenditure profile.
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and on the barrier. The lower the tax level, the lower the coupon rate and the lower the
barrier.

The current model assumes that the firm is closed after a jump even if the project value
is higher than the barrier. As argued in Section 3.2, this assumption simplifies tremendously
all computations. However, we are deliberately misestimating the recovered value in case
of a jump. In addition, whenever this misestimation affects significantly debt value, the
produced estimates on the coupon rate are also erroneous, affecting shareholders decision
over the endogenous barrier. It is thus important to have an idea of the impact that arises
from this assumption. Figures 8.1 and 8.2 show the difference between the recovered value
assumed in the model and the numeric estimates produced by equations (3.29) and (4.16)
divided by equity and debt values. This is done for each level of j between 0.2 and 1 in
the base case, δ0 = 200 and δ0 = 600. The barrier and the coupon rate are not reestimated
after computing the numeric estimates. Starting with the base case, surprisingly, a positive
difference is obtained for most of the considered values of j both in the case of equity and
debt. Differences are significantly higher in the case of debt. This result can be understood
with the help of Figures 8.3 and 8.4, which compare the intrinsic value of shareholders and
debtholders claims on the project (with and without distress costs) with the value given
by the equity and debt pricing functions derived in this thesis. This is done for several
values of δ under the base case (i.e. the barrier and the coupon rate used correspond to the
values obtained when δ0 = 400). These figures show that, despite equity and debt pricing
functions producing always values above the intrinsic value of these claimants holdings when
distressed costs are taken into account, this is not always the case when distressed costs
are not deducted. This occurs because shareholders have no possibility to close the firm
without distress costs. So, their optimal stopping time is based on βBankAτSolv and not
βSoldAτSolv . For a sufficiently high level of distress costs and Aτ̂− ≥ v̄

1−j , by considering that
shareholders receive Max

{
βSoldAτSolv − L, 0

}
instead of Max

{
βBankAτSolv − L, 0

}
after a

jump, we are more than compensating the loss of their option to continue running the firm.
Regarding debtholders, after a jump, they typically hold a perpetual debt security whose risk
is not totally reflected in the coupon rate. RecoveringMin

{
βBankAτSolv , L

}
is thus typically

better than holding the debt security. Receiving Min
{
βSoldAτSolv , L

}
is even better. When

δ = 130, the latter is worth 56% more than a risky debt security with a coupon rate of
3.01% (as set when δ0 = 400). This difference decreases for values of δ near the barrier and
near 400. The large difference observed is closely related with the assumption that debt is
perpetual and the relatively low interest rate level assumed.

The significant differences observed in debt values for a large class of δ values suggest
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Figure 8.1.: Difference in equity recovered
value resulting from assuming the firm is
closed after a sudden jump even if the
project value stays above the barrier.

Figure 8.2.: Difference in debt recovered
value resulting from assuming the firm is
closed after a sudden jump even if the
project value stays above the barrier.

Figure 8.3.: Comparison between equity
value and intrinsic value of shareholders
claim with and without distress costs.

Figure 8.4.: Comparison between debt value
and intrinsic value of debtholders claim with
and without distress costs.
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that it is important to check the impact of the assumption that the firm is always closed
after a sudden jump on the coupon rate and the barrier. Unfortunetly, a closed form solution
for the equity value has not been obtained for the case where the shareholder may continue
running the firm after a sudden jump and thus it is impossible to solve for the smooth pasting
condition. Figure 8.3 shows, however, that for reasonable parameter values, shareholders are
almost indifferent between recovering the intrinsic value of their claim (without subtracting
distress costs) and an option to continue running the firm. This suggests that it is reasonable
to compute the optimal barrier as previoulsy but adjusting the coupon rate to reflect the new
expected loss value. Figure 8.5 shows the difference between the equity value assumed in the
model and the numeric estimates resulting from reestimating the coupon rate, the barrier
and the recovered value after a jump for each value of j. Figure 8.6 shows the impact on
the barrier and the coupon rate in the base case. The impact on the barrier and the coupon
rate when δ0 = 200 and δ0 = 600 is presented in Figures 8.7 and 8.8. The difference in
equity price is very small for most values of j (always smaller than 2.5% in absolute terms).
It is interesting to note that the relation between the difference in equity valuation and j

is clearly non-monotonic. In the base case, this difference is very small for low and very
high values of j and increases slighly for medium values of j. This was already expected
based on Figure 8.4. Besides the small differences observed in equity valuations, Figure 8.6
points to non-negligible differences in terms of the endogenous barrier and the coupon rate
when j < 0.8 in the base case. This implies an underestimation of the probability of default
whenever j is set below 0.8.7 This problem only occurs for j < 0.5 when δ0 = 200 and it is
slightly intensified when δ0 = 600.

7For the base case the new ρ is 1.96. Using this value, the 10-year probability of hitting the barrier under
measure P increases from 0.04% to 0.05%.
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Figure 8.5.: Difference in equity value re-
sulting from assuming that the firm is closed
after a sudden jump even if the project value
stays above the barrier. Base case, δ0 = 200
and δ0 = 600.

Figure 8.6.: Impact on ρ and on the coupon
rate, under the base case, of the assump-
tion that the firm is closed after a sudden
jump even if the project value stays above
the barrier.

Figure 8.7.: Impact on ρ and on the coupon
rate, for δ0 = 200, of the assumption that
the firm is closed after a sudden jump even
if the project value stays above the barrier.

Figure 8.8.: Impact on ρ and on the coupon
rate, for δ0 = 600, of the assumption that
the firm is closed after a sudden jump even
if the project value stays above the barrier.
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8.2. The optimal capital structure
The previous section computed each claimant value for several parameter values. As it is
clear from Chapter 2, financial debt in this model does not affect the project value. However,
in line with the trade-off theory of capital structure, it affects the way this is distributed.
Table 8.3 presents firm value with no debt and at optimal debt level, the difference between
the two (debt benefit), the optimal debt-to-equity level, interest expense over operating cash
flow at the optimal debt level, the optimal debt level and the maximum amount of debt the
firm can issue. Depending on parameter values, debt is able to increase firm value between
5% (when tDiv = 0.23 and tDebt = 0.33) and 13% (when λ = 0). These values are significantly
below those reported by Leland (1994a), though for a significantly lower corporate tax rate
and risk free rate.8 It is interesting to note that lower prices of diffusion risk decrease slightly
debt capacity to create value while a lower price of jump risk do the opposite. The same
occurs with risk parameters (i.e. lower volatility reduces debt benefit but lower jump risk
increases). Also interesting, reductions in j lead to almost no change in debt benefit vis-a-vis
the base case but higher values of j produced one of the highest percentual increases in firm
value. These effects should be related with the assumption that the firm is closed even if the
project value stays above the barrier (see Figure 8.4). The lower is δ0 and µδ the higher is
the benefit of debt, though the optimal L is substantially lower due to the lower project value
effect. The same occurs with t

Debt but this time the optimal L is higher since the project
value is not changed. The opposite occurs with q, βBank, tDiv and tCorp.

Table 8.3 presents two leverage measures, notably, the debt-to-equity ratio and interest
expense over operating cash flow. The latter can be seen as a proxy for the inverse of the
EBITDA interest coverage ratio. The first adjusts for changes in prices while the second is
based only on nominal figures. Debt-to-equity values at optimal debt values ranged from 3.9
(in the case of q = 150) to 1.3 (when q = 50 and βBank = 0.25). Diffusion risk aversion
showed a positive relation with optimal debt-to-equity while jump risk aversion had almost
no impact. Higher risk parameters produced slightly higher debt-to-equity levels, though L
is lower in all cases. The same occurs with r, q, βBank, tDiv and tCorp. In contrast, lower δ0,
µδ and t

Debt produced higher debt-to-equity values. Interest expense share on operating cash
flow ranged from 27.6% when βBank = 0.25 to 52% when βBank = 0.35. Most parameters
had an impact on this metric similar to the one observed in the debt-to-equity ratio. The
only exceptions are risk and risk pricing parameters. An increase in diffusion and jump risk
aversion produced a reduction in interest expenses over operating cash flow. The same occurs

8Leland (1994a) refers that under reasonable parameter values debt can increase firm value by 25% to 40%.
Taking r = 6%, βBank = 0.2, tCorp = 35% and q = 0 in this model (i.e. parameters in line with those
assumed in the referred paper) debt is able to increase firm value by 18%.
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after an increases in σ and λ.
The last column of Table 8.3 presents figures on the maximum amount of financial debt

the firm can issue at time 0. Notice that as L increases the default boundary also increases,
eventually reaching the current project value. Since it is not possible to have A0 < v̄, this sets
the maximum amount of debt the firm can issue. On average, the optimal level of debt tends
to be around 80% of the firm maximum debt capacity. This figure varies from a minumum
of 71% (q = 50 and βBank = 0.25) to a maximum of 88% (q = 150). As a rule of thumb, the
higher the debt benefit the lower the slack between the optimal and maximum debt levels.
Goldstein et al. (2001) shows that whenever it is possible to issue further debt in the future,
optimal leverage tend to be smaller. The same occurs when the firm has to roll-over its
debt (see Leland and Toft (1996)). In this model, however, the fact that the firm only issues
perpetual debt once is probably pushing up the optimal debt level. The small slack between
the two is a signal that the optimal debt level suggested by the model is probably too high.

Figure 8.9 shows firm value, capex, goverment and distress costs claims for several debt
values using base case parameters. Figure 8.10 provides additional information on the default
boundary and the coupon rate for each debt value. Except for very low levels of debt, firm
value increases gradually up to the optimal level. As predicted by the trade-off theory, this
increase occurs amid a decrease in the government’s claim and an increase in distress costs
claim. It is interesting to note that, in addition to the government’s claim, capex claim also
decreases. The higher the debt value the higher the default barrier and the probability the
firm being closed. Since, in this case, capex suppliers only receive a share of the project
value at the time of liquidation, they are typically worst off in case of liquidation. In contrast
with the government’s claim, which is almost monotonic on the debt level, the capex claim
rises initially before starting a gradual decrease. In addition, for very high levels of debt
(and thus project value very near the barrier), the capex claim rises again, signaling that
capex suppliers are better off with a fixed share over the recovered value on the project than
with a risky claim on a fixed stream. Notice that in the latter case, there is a non-negative
probability of a negative jump, in which case capex suppliers would receive even less. The
initial increase in the capex claim is related with the decrease in the endogenous barrier. For
low levels of debt, interest expenditure is low and the decision to either continue running
the firm or closing it is mostly determined by fixed costs like capex expenditure. In spite
of the distress costs involved, for sufficiently high levels of fixed costs, the shareholder may
be better off closing the firm at an early stage and still recover something than waiting to
see whether the project improves. When this occurs, equity value near the barrier may be
significantly above zero. When the firm starts issuing debt, shareholders optimal barrier falls
because debtholders have priority whenever the firm closes. This turns the hypothesis to
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Table 8.3.: Optimal and maximum leverage
V (no debt) V(LOpt) Debt benefit (%) D/E cL/δ0 (%) LOpt LMax

Base case 3 594 3 896 8.4 2.1 37.4 2 640 3 320
m = 0.3 5 888 6 285 6.7 1.6 40.8 3 890 5 220
m = 0.5 2 541 2 792 9.9 2.5 35.7 1 990 2 420
λ− λ = 0 4 244 4 692 10.6 2.1 38.7 3 190 3 990

λ− λ = 0.024 3 108 3 332 7.2 2.1 36.8 2 260 2 850
σ = 0.1 7 230 7 662 6.0 2.0 45.0 5 090 6 490
σ = 0.2 2 383 2 623 10.1 2.2 36.8 1 800 2 240
λ = 0 4 993 5 653 13.2 2.1 39.9 3 830 4 780
λ = 0.02 2 791 2 973 6.5 2.2 36.9 2 030 2 560
j = 0.4 4 022 4 329 7.6 2.2 35.8 2 960 3 650
j = 0.8 3 237 3 600 11.2 2.3 41.8 2 500 3 060
r = 0 4 611 4 967 7.7 2.0 33.9 3 310 4 240
r = 0.02 2 950 3 214 9.0 2.2 39.6 2 200 2 740
δ0 = 300 2 439 2 682 10.0 3.2 42.1 2 040 2 380
δ0 = 500 4 785 5 153 7.7 1.6 33.9 3 200 4 280
µδ = 0.03 2 820 3 086 9.4 2.4 36.2 2 170 2 660
µδ = 0.05 4 882 5 238 7.3 1.8 39.3 3 360 4 400
q = 50 4 220 4 502 6.7 1.3 32.1 2 570 3 600
q = 150 3 101 3 439 10.9 3.9 44.0 2 740 3 100

βBank = 0.25 3 548 3 770 6.3 1.3 27.6 2 150 3 040
βBank = 0.35 3 648 4 060 11.3 3.3 52.0 3 110 3 630
t
Div = 0.23 3 789 3 992 5.3 1.4 29.9 2 360 3 320
t
Div = 0.33 3 400 3 816 12.3 2.9 43.5 2 830 3 320
t
Debt = 0.23 3 594 4 008 11.5 2.5 40.6 2 860 3 430
t
Debt = 0.33 3 594 3 790 5.4 1.6 31.8 2 330 3 220
t
Corp = 0.16 3 772 3 983 5.6 1.5 30.4 2 380 3 320
t
Corp = 0.26 3 417 3 823 11.9 2.8 42.8 2 810 3 320

The first row corresponds to the base case where: δ0 = 400, µδ = 0.04, σ = 0.15, λ = 0.01, j = 0.6, L = 1200,
q = 100, r = 0.01, βSold = 0.4, βBank = 0.3, m = 0.4, λ− λ = 0.012, q = 0.50, Gov = 0.45 and DC = 0.05,
t
Div = 0.28, tDebt = 0.28 and tCorp = 0.21. All remaining rows correspond to the base case with only the
mentioned parameters changed.
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wait and see more tempting vis-a-vis closing the firm. However, shareholders shall receive
almost nothing in case they decide to close the firm. This should justify the lower slope in
firm value for low levels of debt. Nothing of this occurs when q = 0; in this case the barrier
starts at 0 and increases as the coupon rate increases.

Figure 8.9.: Contingent claims for several
values of L.

Figure 8.10.: Default barrier and coupon
rate for several values of L.

8.3. The cost of capital

Table 8.4 presents the cost of equity, debt and capital for different parameter values at time
0. The volatility, jump size and payout terms are also supplied. The cost of equity ranges
between 7.7% when σ = 0.1 and 18.0% when σ = 0.2. Changes in project volatility produced
the highest movements in terms of cost of equity followed closely by changes in the market
price of diffusion risk. Significantly smaller differences were observed for all other parameters.
Regarding the cost of debt, values between 1.3% and 4.7% were observed. As expected, the
cost of debt is lower than the coupon rate due to the probability of default. Volatility
and its market price were also the parameters with more impact (between 1p.p. and 2p.p.).
However, this time there were other parameters that produced variations of almost the same
size. This is the case of the risk free rate and the jump hazard rate. Increases in the latter,
independently of being priced or not, lead to significant increases in debt volatility with effect
on the cost of debt. It is interesting to note that most parameters had a more significant
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impact, at least in relative terms, in the cost of debt than in the cost of equity. The most
notable cases are j, βBank and L, as a result of sizable changes in debt volatility (in the first
two cases absolute changes in debt volatility were higher than equity volatility). In the case
of an increase in j, jD moves from 0 (no imminent risk of losses resulting from a jump) to a
potential loss of 58%. In the opposite direction, changes in q produced substantially higher
variations in the cost of equity than in the cost of debt.

Table 8.4 presented the impact of changing the initial operating cash flow value, δ0, on
the required return, volatility and jump size of equity, debt and the firm. Nevertheless, δt
is a stochastic process and it is thus interesting to have a look on the impact of variations
of δt in the cost of capital. In this case, the coupon rate and the barrier are kept constant.
The results are presented in Figures 8.11, 8.12 and 8.13. As expected, the cost of equity and
the cost of debt are very high for low levels of δ. In these cases, small increases in δ lead
to very significant reductions in investors required return. For very large values of δ (in this
case, above 600) the cost of equity and the cost of debt become very stable. The cost of
capital (i.e. the rate of return firms should use to discount their projects) is relatively stable
until very close to the barrier, ranging between 8.5% and 10%. For δ < 130 we observe a
very steep rise in the cost of capital, though. Notice that the cost of capital is a weighted
average of the cost of equity and the cost of debt. In spite of these two figures increasing as δ
decreases, debtholders own an increasing share of the firm avoiding a steeper increase in the
cost of capital until very close to the barrier. There is a point, however, where the increase
in the cost of equity is so high that the cost of capital soars.

Figures 8.12 and 8.13 help us understand better the cost of capital behaviour by looking
at its determinants. Starting with volatility, reading the graph from the right to the left,
we observe a gradual increase as δ decreases. This was already expected and resembles
what is known in the literature as a leverage effect (i.e. volatility increases as the stock
price decreases). It is interesting to note that even for δ = 1000, σV is above σ despite
the probability of incurring in distress costs being null in this case. This occurs due to the
fixed costs with capex. Only for very high levels of δ, these fixed costs are diluted and
the volatility of the firm converges to the volatility of the project. This suggests that in
addition to a leverage effect, this model is able to capture a kind of operating leverage effect.
As δ decreases the probability of incurring distress costs increases and the already referred
operating leverage effect becomes more relevant leading to an increase in σE , σD and σV .
This occurs up to δ = 212. At this point, σV starts decreasing suggesting that at this level
the fact that debtholders hold an increasing stake of the firm dominates. For values of δ next
to the barrier firm volatility explodes, though.9

9When βBank = βSold and simultaneously q = 0 the volatility of the firm returns is close to 0.15 for very
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Figure 8.11.: Cost of equity, debt and capital for different values of δ.

Figure 8.12.: Volatility of equity, debt and firm returns for different values of δ.
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Table 8.4.: Drift, volatility and jump terms of the equity, debt and firm processes
Required return Volatility Jump Payout
rE0 rD0 rV0 σE0 σD0 σV0 jE0 jD0 jV0 kE0 kD0 kV0

Base case 12.6 2.7 9.4 0.26 0.04 0.19 0.89 0.00 0.60 6.0 2.2 6.4
m = 0.3 8.7 1.6 7.3 0.23 0.02 0.18 0.78 0.00 0.62 3.3 1.4 4.0
m = 0.5 17.0 4.3 11.4 0.30 0.06 0.19 1.00 0.08 0.59 9.3 3.3 8.8
λ− λ = 0 11.2 2.3 8.7 0.25 0.03 0.19 0.82 0.00 0.60 4.8 1.8 5.4
λ− λ = 0.024 14.1 3.2 10.1 0.27 0.06 0.19 0.97 0.00 0.61 7.2 2.6 7.4
σ = 0.1 7.7 1.3 6.6 0.15 0.01 0.12 0.75 0.00 0.62 2.6 1.1 3.2
σ = 0.2 18.0 4.7 11.8 0.40 0.09 0.25 1.00 0.16 0.60 9.7 4.1 9.3
λ = 0 10.9 1.9 8.8 0.25 0.02 0.20 0.77 0.00 0.59 3.9 1.5 4.6
λ = 0.02 14.4 3.9 10.1 0.28 0.07 0.19 1.00 0.05 0.61 8.3 3.1 8.2
j = 0.4 11.8 2.1 9.0 0.25 0.03 0.19 0.56 0.00 0.40 5.3 1.7 5.8
j = 0.8 13.0 3.6 9.7 0.27 0.05 0.19 1.00 0.58 0.85 6.4 3.1 6.9
r = 0 10.8 1.5 8.4 0.25 0.04 0.19 0.79 0.00 0.59 4.7 0.9 5.1
r = 0.02 14.4 4.0 10.4 0.28 0.05 0.19 1.00 0.00 0.61 7.3 3.4 7.6
δ0 = 300 15.1 3.5 9.7 0.32 0.06 0.20 1.00 0.07 0.57 6.4 2.7 6.1
δ0 = 500 11.3 2.4 9.1 0.23 0.03 0.18 0.82 0.00 0.62 5.7 1.9 6.5
µδ = 0.03 13.6 3.3 9.4 0.28 0.06 0.19 1.00 0.00 0.59 8.1 2.9 8.0
µδ = 0.05 11.5 2.1 9.2 0.24 0.03 0.19 0.81 0.00 0.61 4.1 1.6 4.8
q = 50 10.8 2.7 8.6 0.22 0.04 0.17 0.91 0.00 0.66 5.7 2.2 6.3
q = 150 14.6 2.5 10.0 0.31 0.04 0.21 0.86 0.00 0.53 6.2 2.0 6.2
L = 1000 12.1 2.4 9.4 0.25 0.03 0.19 0.82 0.00 0.60 5.8 1.9 6.4
L = 1400 13.0 3.1 9.3 0.27 0.05 0.19 0.97 0.00 0.61 6.1 2.4 6.3
βBank = 0.25 12.7 3.0 9.5 0.27 0.05 0.20 0.89 0.00 0.60 6.0 2.4 6.4
βBank = 0.35 12.4 2.5 9.3 0.26 0.04 0.19 0.89 0.00 0.61 5.9 2.0 6.3
t
Div = 0.23 12.5 2.7 9.5 0.26 0.04 0.19 0.90 0.00 0.62 6.0 2.2 6.1
t
Div = 0.33 12.6 2.7 9.3 0.26 0.04 0.19 0.88 0.00 0.58 5.9 2.2 6.7
t
Debt = 0.23 12.5 2.7 9.4 0.26 0.04 0.19 0.89 0.00 0.60 6.0 2.2 6.3
t
Debt = 0.33 12.7 2.7 9.4 0.26 0.04 0.19 0.89 0.00 0.60 6.0 2.2 6.4
t
Corp = 0.16 12.5 2.7 9.5 0.26 0.04 0.19 0.89 0.00 0.62 6.0 2.2 6.5
t
Corp = 0.26 12.6 2.7 9.3 0.26 0.04 0.19 0.88 0.00 0.58 5.9 2.2 6.2

The first row corresponds to the base case where: δ0 = 400, µδ = 0.04, σ = 0.15, λ = 0.01, j = 0.6, L = 1200,
q = 100, r = 0.01, βSold = 0.4, βBank = 0.3, m = 0.4, λ− λ = 0.012, q = 0.50, Gov = 0.45 and DC = 0.05,
t
Div = 0.28, tDebt = 0.28 and tCorp = 0.21. All remaining rows correspond to the base case with only the
mentioned parameters changed.

high levels of δ and decreases slightly to around 0.14 as it approaches the barrier. Volatility then explodes
next to the barrier.
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Moving to Figure 8.13, again from the right to the left, jE increases as δ decreases. For
values of δ such that At < L

βSold(1−j) (i.e. δ < 324), jE equals 1. In contrast, jD decreases up
to this point. This occurs because when δ = 1000 debt is clearly above par (the coupon rate
was defined with δ = 400). A jump represents thus a big loss for debtholders. As δ approaches
400, jD goes to 0 meaning that in case of a jump debtholders recover the full amount of their
investment. For values of δ between 400 and 324, jD continues decreasing, reaching negative
numbers, which means that debtholders are better off after the jump. This occurs because
debtholders recover the full amount invested despite debt being below par value. jD starts
then increasing as δ decreases because debtholders recover gradually less after a jump. When
At falls below v̄

(1−j) (i.e. δ < 245), jD increases drastically because at this level a jump leads
to default costs. jD continues then increasing gradually up to 0.6. Regarding jV , this starts
at broadly the same level as jE . However, similarly to jD, jV decreases gradually, though
at a lower pace. For δ < 400 we have that jV < 0.6, meaning that external claimants are
proportionaly more afected by the jump than the firm. This changes when δ < 130 because
distress costs become a reality after a jump. jV then continues decreasing reaching 0.6 near
the barrier.

Figure 8.13.: Jump size of equity, debt and firm returns for different values of δ.
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8.4. Credit risk

This thesis presented three credit risk metrics, notably, the probability of default, the recovery
rate and the CDS spread. These are computed in this section. Starting with the probability
of default, this is presented under measure P in Table 8.5. Measure Q is later analysed when
the lights turn to credit default swaps. As previously argued, P is the correct probability
measure for someone interested in the true probability of a debtor defaulting. The latter
is decomposed between the probability of defaulting after hitting the barrier and after a
jump. Except for the case where σ = 0.2, the probability of the process hitting the barrier
is always very near zero in the first 5 years. Even in the 10-year maturity, only σ = 0.2 and
δ0 = 300 produce cumulative default probabilities above 0.5%.10 This was already expected
since we are assuming a constant debt level and a positive CFO growth rate. The fact
that shareholders are the ones who chose the default point may also help explain the results
obtained, though. Figure 8.14 presents the coupon rate, the probability of default and the
probability of default after hitting the barrier for several values of ρ. The optimal barrier
is indicated with a small circle. The figure shows that shareholders’ optimal decision is to
set the barrier at a low level despite paying a significantly higher coupon rate in exchange
(almost the maximum level in the figure). Why is the barrier set so low? Figure 8.15 helps
answering this question. The latter shows equity value as a function of ρ before and after debt
issuance. In contrast with Leland (1994b), choosing ρ = 1.89 does not maximize equity value
ex-ante but is the optimal default point based on the smooth pasting condition.11 Suppose
shareholders convince debtholders that they will leave the firm whenever δ reaches 108 (i.e
at the level that maximizes the equity function ex-ante, which is ρ = 2.08). By doing this
the coupon rate falls slightly from 3.01 to 2.96. It occurs that when δ approaches the agreed
value it is optimal for the shareholder not to respect his commitment and wait a little bit
more. Figure 8.15 shows that the ρ value that maximizes equity value when δ is close to
108 is extremely close to the initial solution to the smooth pasting condition (i.e. ρ = 1.89).
As δ decreases they will become equal. The same occurs with any level of ρ different from
1.89. Debtholders know this. Thus, unless they have a mechanism to force shareholders to
10Moody’s attributes a rating of Ba2 to the firm that served as inspiration for the base case. Their report

acknowledges the firm strong profitability margin and strong cash flow generation but it is also referred
that the firm faces risks coming from low product diversification and parent company reliance on a constant
dividend flow. Standard and Poor’s emphasizes the same issues. On a stand-alone basis the firm credit
profile is seen as BB+ but the rating is capped at BB based on the overall group credit profile. No
reference has been found regarding the effect of country based rating caps, which suggests that these are
not binding. Notice that the type of risks faced by this firm are probably better captured by a jump term
than a diffusion term.

11This is justified by the introduction of fixed costs. Despite the value of ρ that maximizes equity value being
higher than the one that comes out from the smooth pasting condition, this does not imply that fixed
costs lead to a decrease in the barrier. Table 8.2 showed exactly the opposite.
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abandon the firm whenever the pre-agreed level has been reached, they will charge a coupon
rate in line with the smooth pasting condition. In the real world, these mechanisms are often
introduced through debt covenants in the contracts. In this model, the latter are able to
reduce the firm interest burden but they are not optimal to shareholders. However, this may
not be the case in a model where agency costs are considered.

The low probability of default after hitting the barrier contrasts with the probability of
default after a jump. Even for the 6-month maturity, a non-annualized default probability
near 0.5% is observed in several cases. λ and j are the parameters with stronger impact.
Notice that in the base case with λ = 0.01 and j = 0.6 the firm is able to resist a negative
jump at time 0. When λ increases the project value decreases substantially turning the firm
vulnerable to a jump. When j = 0.8 the project decreases a little but the high jump size
turns default almost certain after a jump. In addition to these, several other parameters
lead to sizable variations in the probability of default. In particular, it is interesting to note
the strong effect of risk aversion even under measure P. This occurs because the higher
the risk aversion the lower the project value and the lower the distance to L. As a result,
when m = 0.5 the 10-year cumulative probability of the jump leading to default increases
more than 3p.p.. Summing the terms relative to the probability of hitting the barrier and
the probability of the jump leading to default, one obtains the total probability of default,
which is clearly dominated by the latter. This may not be true, however, throughout the firm
lifetime as illustrated in Figure 8.16, which shows the probability of default after hitting the
barrier and after a jump in the base case for several values of δ. For values of δ below 180
the probability of hitting the barrier in 10 years is higher than the probability of defaulting
after a jump.

Credit default swaps and recovery rates are presented in Table 8.6 together with the
probability of default under measure Q.1213 For all parameters considered, an upward shape
term structure is observed as a result of lower recovered values and a higher probability of
hitting the barrier for longer maturities. For most parameter values, the spreads start at 0
12As expected, the probabilities of default are substantially higher in this case. Even so, the probability of

the process hitting the barrier is very close to zero up to 5-years. The only exception is again σ = 0.2.
The 10-year figures are substantially higher, reaching values above 5% in the case of m = 0.5, δ0 = 300,
q = 150 and above 20% in the case that σ = 0.2

13The reader might fell tempted to compare the 10-year CDS spread with the coupon rate presented in Table
8.2. Notice that the coupon rate presented is the value that the firm spends with coupon payments. This
includes the risk free rate and the associated spread received by the debtholder but also taxes that must
be then deducted to compute debtholders claim on the project. This contrasts with CDS spreads, which
are assumed to be free of taxation. So, in order to compare the values obtained in Table 8.2 with those
obtained in Table 8.6 one needs to add the interest rate and then divide by 1− tDebt.
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Table 8.5.: Probability of default (PD) - Measure P
PD P-measure Hit (%) PD P-measure Jump (%)

Time 0.5 1 2 5 10 0.5 1 2 5 10
Base case 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 0.48 1.17
m = 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10
m = 0.5 0.00 0.00 0.00 0.01 0.21 0.43 0.78 1.37 2.78 4.54
λ− λ = 0 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.12 0.43

λ− λ = 0.024 0.00 0.00 0.00 0.00 0.07 0.09 0.22 0.51 1.34 2.52
σ = 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.2 0.00 0.00 0.00 0.36 2.78 0.47 0.88 1.59 3.35 5.68
λ = 0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
λ = 0.02 0.00 0.00 0.00 0.00 0.11 0.77 1.37 2.40 4.86 7.88
j = 0.4 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.06
j = 0.8 0.00 0.00 0.00 0.00 0.10 0.50 1.00 1.98 4.74 8.52
r = 0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.06 0.27
r = 0.02 0.00 0.00 0.00 0.00 0.14 0.22 0.43 0.83 1.87 3.25
δ0 = 300 0.00 0.00 0.00 0.04 0.53 0.42 0.75 1.32 2.68 4.39
δ0 = 500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.34
µδ = 0.03 0.00 0.00 0.00 0.01 0.24 0.23 0.45 0.88 2.05 3.74
µδ = 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.19
q = 50 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.48 1.17
q = 150 0.00 0.00 0.00 0.02 0.38 0.00 0.03 0.13 0.55 1.28
L = 1000 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.12 0.43
L = 1400 0.00 0.00 0.00 0.00 0.07 0.09 0.22 0.51 1.34 2.52

βBank = 0.25 0.00 0.00 0.00 0.00 0.05 0.00 0.02 0.10 0.48 1.17
βBank = 0.35 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.10 0.48 1.17
t
Div = 0.23 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 0.48 1.17
t
Div = 0.33 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 0.48 1.17
t
Debt = 0.23 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.10 0.48 1.17
t
Debt = 0.33 0.00 0.00 0.00 0.00 0.05 0.00 0.02 0.10 0.48 1.17
t
Corp = 0.16 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 0.48 1.17
t
Corp = 0.26 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.10 0.48 1.17

The first row corresponds to the base case where: δ0 = 400, µδ = 0.04, σ = 0.15, λ = 0.01, j = 0.6, L = 1200,
q = 100, r = 0.01, βSold = 0.4, βBank = 0.3, m = 0.4, λ− λ = 0.012, q = 0.50, Gov = 0.45 and DC = 0.05,
t
Div = 0.28, tDebt = 0.28 and tCorp = 0.21. All remaining rows correspond to the base case with only the
mentioned parameters changed.
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and increase gradually. The only exception is j = 0.8. In this case the 6-month spread is
already 128 b.p. rising only to 145 b.p. in the 10-year maturity. The model did not generate
an inverted term structure in any case. This is not completely surprising since an inverted
term structure signals that default is highly probable in a short period of time. But when
this occurs the firm is not able to issue debt. This does not mean thus that the model is not
able to generate all types of term structures during the CDS lifetime. Figure 8.17 shows the
term structure of CDS spreads in the base case for different values of δ that may be observed
after time 0. For values of δ close to the barrier (i.e. δ = 98) the CDS term structure becomes
inverted.

Table 8.7 procceeds the analysis by looking to the term structure of a CDS contract that
grants protection over the firms’ subordinated debt, which is assumed to be 700. So, senior
debt amounts to 500. As expected, CDS spreads increase significantly as a consequence of a
lower recovered value. This pattern is more pronounced for medium-long maturities. In the
case of short term maturities the difference is smaller as the recovery rate is very similar in
most cases. The most relevant exception is j = 0.8, which produces a recovery rate of only
2% that is in contrast with 42% in the non-subordinated case for the 6-month maturity. This
is the only case under analysis that produces a slightly inverted (humped) term structure
of spreads (though it rises again in the later years). Increasing capex to 150 has a strong
impact on the recovery rate. This already occurred in Table 8.6, though at a lesser extent.
The fact that the barrier value, in this case, is the second highest considered suggests that
even though the probability of hitting the barrier is low, the probability of the jump leading
the firm to distress costs is higher, resulting in a lower recovered value. Notice, however,
that the CDS spread is near 0 due to the low probability of default. σ = 0.1 and σ = 0.2
also present significant differences vis-a-vis the no-subordination case at the 6-month horizon
time, though for different reasons. While for σ = 0.2 this should be caused by the higher
probability of reaching lower asset values, in the case of σ = 0.1 this should be motivated by
the same reason that justifies the strong capex effect. In this case, despite the barrier being
the highest in this study, the lower volatility leads to a recovery value higher as compared to
the capex case.
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Figure 8.14.: Coupon rate and the cumulative 10-year probability of default under measure
P for different values of ρ.

The red and the blue circles indicate, respectively, the solution to the smooth pasting condition and the value
of ρ that maximizes the equity function.

Figure 8.15.: Equity value for different values of ρ and δ before and after debt issuance.
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Figure 8.16.: Probability of default after hitting the barrier and after a jump for different
values of δ in the base case (10-year cumulative).

Figure 8.17.: CDS term structure for different values of δ when the barrier and the coupon
rate are set in the base case.
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Table 8.7.: CDS spreads and recovery rates - Subordinated debt
Recovery rate (%) CDS spread (%)

Time 0.5 1 2 5 10 0.5 1 2 5 10
Base case 94.2 90.5 84.1 68.9 51.7 0.00 0.01 0.04 0.18 0.50
m = 0.3 97.3 94.4 87.1 70.7 56.7 0.00 0.00 0.00 0.01 0.06
m = 0.5 82.2 78.4 71.4 55.6 38.5 0.36 0.42 0.53 0.86 1.77
λ− λ = 0 96.0 92.5 85.2 67.9 49.8 0.00 0.00 0.00 0.03 0.17

λ− λ = 0.024 91.6 87.6 81.3 67.4 52.2 0.06 0.13 0.25 0.56 1.09
σ = 0.1 75.1 74.3 72.9 69.5 65.7 0.00 0.00 0.00 0.00 0.00
σ = 0.2 70.4 66.2 58.8 37.4 25.6 0.63 0.70 0.82 1.66 3.45
λ = 0 96.0 88.6 51.0 51.5 53.5 0.00 0.00 0.00 0.00 0.04
λ = 0.02 86.1 82.6 76.8 64.2 50.8 0.51 0.60 0.77 1.19 1.85
j = 0.4 98.2 95.3 91.3 75.6 51.6 0.00 0.00 0.00 0.01 0.13
j = 0.8 2.4 3.4 5.0 8.3 13.6 2.15 2.14 2.11 2.07 2.24
r = 0 96.5 93.5 87.5 71.0 51.5 0.00 0.00 0.00 0.04 0.20
r = 0.02 90.4 86.1 79.3 65.2 50.7 0.11 0.17 0.26 0.50 0.99
δ0 = 300 82.3 76.5 68.1 53.0 42.0 0.35 0.43 0.56 0.87 1.57
δ0 = 500 96.3 93.3 88.5 75.8 59.3 0.00 0.00 0.00 0.04 0.19
µδ = 0.03 90.2 85.7 78.5 62.4 44.0 0.12 0.18 0.28 0.56 1.23
µδ = 0.05 96.5 93.6 87.6 72.4 56.9 0.00 0.00 0.00 0.03 0.14
q = 50 94.2 90.6 85.3 74.8 63.5 0.00 0.01 0.04 0.14 0.32
q = 150 55.2 52.5 48.7 43.8 48.5 0.01 0.06 0.15 0.39 0.86
L = 1000 95.3 91.2 82.3 62.6 45.1 0.00 0.00 0.01 0.08 0.33
L = 1400 92.4 88.7 82.9 70.0 54.0 0.04 0.08 0.15 0.34 0.73

βBank = 0.25 94.2 90.3 82.7 64.8 44.9 0.00 0.01 0.04 0.20 0.59
βBank = 0.35 94.2 90.6 84.8 72.3 58.0 0.00 0.01 0.04 0.16 0.43
t
Div = 0.23 94.2 90.5 84.1 68.9 51.7 0.00 0.01 0.04 0.18 0.50
t
Div = 0.33 94.2 90.5 84.1 68.9 51.7 0.00 0.01 0.04 0.18 0.50
t
Debt = 0.23 94.2 90.5 84.3 69.7 52.4 0.00 0.01 0.04 0.17 0.49
t
Debt = 0.33 94.2 90.4 83.7 68.1 51.0 0.00 0.01 0.04 0.18 0.52
t
Corp = 0.16 94.2 90.5 84.1 68.9 51.7 0.00 0.01 0.04 0.18 0.50
t
Corp = 0.26 94.2 90.5 84.1 68.9 51.7 0.00 0.01 0.04 0.18 0.50

The first row corresponds to the base case where: δ0 = 400, µδ = 0.04, σ = 0.15, λ = 0.01, j = 0.6, L = 1200,
q = 100, r = 0.01, βSold = 0.4, βBank = 0.3, m = 0.4, λ− λ = 0.012, q = 0.50, Gov = 0.45 and DC = 0.05,
t
Div = 0.28, tDebt = 0.28 and tCorp = 0.21. All remaining rows correspond to the base case with only the
mentioned parameters changed.
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8.5. Option prices

The final section of this chapter illustrates the option pricing model presented in Chapter 7
by comparing it with the standard Black-Scholes option pricing model with dividends. In
order to compare the two models one needs to determine the dividend yield to use in the
Black-Scholes model. As suggested by Toft and Prucyk (1997), this can be done by solving
the equation F0 = e(r−d)E0 where F0 is the forward price of equity, which corresponds to
F0 = erTC0 (K = 0).14 Figure 8.18 and 8.19 plot call and put option values as functions of
the equity value for this model and for the Black-Scholes model. In both cases, the model
here presented leads to slightly higher option values. These differences are higher in the
case of put options. In the case of the call option, the positive difference is caused by the
higher drift in the risk neutral measure due to the jump. This can be seen in equation (3.36)
replacing dMQ

t by dNQ
t −λ. So, under the risk neutral measure equity continuously generates

a return of λjE to compensate for a potential loss due to the jump. For higher equity values
this is partially offset by a slight reduction in volatility as illustrated in Figure 8.12 and by
the possibility of the jump itself. In the case of the put option, the possibility of a jump
increases significantly the option value, especially in the case of far out of the money options.
In addition, as equity falls equity volatility rises leading to an increase in option value. So,
the leverage effect has a negative impact on call option values and a positive impact on
put options. The latter tend to be stronger given the non-linear relation between σE and
δt. These effects are partially offset by the already referred higher drift, which reduces the
probability of the put option ending up in the money.

Figures 8.20 and 8.21 compare implied volatilies obtained from 1-year call options for the
base case and the usual parameter changes except for changes in βBank, tDiv, tDebt and tCorp

which had a very low impact on option prices. A clear volatility skew is observed in the base
case with implied volatilities ranging from 0.37 (for a strike price of 60% of equity value) and
0.26 (for a strike price of 140% of equity value). This skew was observed for all parameters
tested, though with different levels of intensity. In the case of call implied volatilities, in none
of the cases the model presented a volatility smirk. For put implied volatilities, a volatility
smirk is observed for j = 0.8.15

14The dividend yield computed in this way is different from kE with the latter only taking into account the
current value of the state variable δt. Also notice that, in contrast with the Black-Scholes model, the
dividend yield is not a constant fraction of equity value. The latter can be either negative or positive,
exhibiting a significant level of volatility when the project value is near the barrier.

15Notice that, in this model, put implied volatilities do not match call implied volatilities because the put-call
parity does not hold with uncertain dividends. The difference is almost 0 for the base case, m = 0.3,
λ − λ = 0, σ = 0.1, λ = 0, j = 0.4, r = 0, δ0 = 500, µδ = 0.05 q = 50 and L = 1000. For all other
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Figure 8.18.: Call option value as a func-
tion of equity value.

Figure 8.19.: Put option value as a func-
tion of equity value.

All parameters except δ and µδ presented a positive relation with implied volatility. For
the cases under analysis, σ and λ produced the largest variations while L produced the
smallest. The impact on implied volatility is asymmetric in the cases of σ, λ, j, δ, µδ and q.
Except for j, this asymetric impact is only clear for far out of the money options. In the cases
of λ and j, the impact is stronger for far out of the money options. The opposite occurs in
the cases of σ, δ, µδ and q. It is interesting to note that for λ = 0 the jump effect disappears
and we are left only with the leverage effect, which is small for the values considered.

parameter values tested, put implied volatilities were always higher with differences ranging from 0.1p.p.
(in the case of q = 150) and 4.3p.p. (in the case of j = 0.8) for far in the money put options.
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Figure 8.20.: Impact of changes in m, λ − λ, σ, λ, j and r on call implicit volatilities, for
different levels of moneyness.
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Figure 8.21.: Impact of changes in δ, µδ, q and L on call implicit volatilities, for different
levels of moneyness.
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9. Conclusion

This thesis presented a comprehensive model of contingent claims where the state variable is
the operating cash flow generated by the firm. The proposed model adds two elements to the
static version of Goldstein et al. (2001) model. First, a fixed cost parameter is introduced
allowing the application of the model even for firms with negative EBIT. Second, negative
jumps of fixed size are introduced leading to more realistic short term spreads. Pricing
formulas for equity, debt (with any seniority level), CDS and European-style options were
then derived under the assumption that the firm is closed whenever the project value hits
a constant lower boundary or at the time of the first jump, whatever occurs first. To the
best of my knowledge, there are very few papers where all these claims are priced in a
single setting. None of them considers jumps. In addition, in none of these papers the asset
value is endogenous. Though this has not been explored in this thesis, pricing all contingent
claims under the same model opens new possibilities for capital structure arbitrage, a popular
strategy among hedge funds. The availability of closed-form formulas for all the referred
instruments (quasi-closed form in the case of options) and the fact that the state variable is
not a latent process (as in most contingent claims models) suggest that this model may be
easier to calibrate than several other models in the literature. This has not been attempted,
though.

This thesis also addressed several corporate finance and credit risk issues, such as the
determination of the optimal capital structure, the cost of capital, the probability of default
and the loss-given-default. The numerical analysis suggests that, similarly to several other
models, the one proposed in this thesis leads to leverage ratios above those observed in
practice. This result may be related with the assumption of constant perpetual debt. The
literature has pointed that leverage ratios tend to be significantly closer to those observed
in reality whenever the possibility of issuing further debt in the future is introduced. The
same occurs when debt has to be rollover. The fact that debt does not need to be rolled over
also helps justifying the low probability of hitting the barrier observed for the case studied.
Finally, the capacity of the model to capture the impact of both financial and operating
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leverage on the cost of capital was emphasized.
To conclude, in addition to relaxing the constant perpetual debt assumption, there are

at least three issues that require further research. First, the model here presented assumes
that the risk free rate is constant. This is an over-simplifying assumption in a model where
the project value of the firm is treated as an endogenous variable. In addition, this precludes
the application of the model to the valuation of financial firms. In particular, in the case of
banks, higher interest rates are associated with the possibility of banks funding their assets
at below the risk free rate through deposits. This is something that tends not to be possible
when interest rates are at or near the lower bound, significantly affecting their equity value
and shareholders willingess to inject capital. Second, the model assumes that the project
cash flows follow a geometric Brownian motion. In practice, operating cash flows in several
sectors exhibit some degree of mean reversion as result of business cycles. To the best of my
knowledge, there is no published paper considering simultaneously the possibility of mean-
reversion and a trend in cash flows. Finally, throughout this thesis agency problems and
information issues are ignored. In a world where the process characteristics are not observed
and can be changed by managers in secret, these may take an important role.
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A. Appendix

A.1. The integro-differential equation

This appendix complements the derivation of equations (2.23) and (2.24) of Chapter 2.

Regarding equation (2.23), substituting the optimal weights given in equation (2.20) in
equation (2.21) one obtains

(σGjS − σSjG)αA + (σSjA − σAjS)αG + (σAjG − σGjA)αS
σGjS − σSjG + σAjG − σAjS + σSjA − σGjA

= r. (A.1)

Passing the denominator from the left-hand side to the right-hand side, and then collecting
the terms,

(σGjS − σSjG) (αA − r) = − (σSjA − σAjS) (αG − r)− (σAjG − σGjA) (αS − r) . (A.2)

Factoring out σA and jA,

αA − r = jA
σG (αS − r)− σS (αG − r)

σGjS − σSjG
− σA

jG (αS − r)− jS (αG − r)
σGjS − σSjG

. (A.3)

Rearranging,

αA − jA σG(αS−r)−σS(αG−r)
σGjS−σSjG − r
σA

= −jG (αS − r)− jS (αG − r)
σGjS − σSjG

. (A.4)

Doing the same for the derivative contracts, one obtains similar equations:

αG − jG σS(αA−r)−σA(αS−r)
σSjA−σAjS − r
σG

= −jS (αA − r)− jA (αS − r)
σSjA − σAjS

(A.5)
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and

αS − jS (σG(αA−r)−σA(αG−r))
σGjA−σAjG − r
σS

= −jG (αA − r)− jA (αG − r)
σGjA − σAjG

. (A.6)

It is possible to show that the terms multiplying the jump terms are equal for the three
equations. Taking equations (A.4) and (A.5) as example.

σG (αS − r)− σS (αG − r)
σGjS − σSjG

= σS (αA − r)− σA (αS − r)
σSjA − σAjS

. (A.7)

Moving the denominators to the opposite side,

[σG (αS − r)− σS (αG − r)] (σSjA − σAjS) = [σS (αA − r)− σA (αS − r)] (σGjS − σSjG) .
(A.8)

Applying the distributive rule,

σGσSjA (αS − r)− σ2
SjA (αG − r)− σGσAjS (αS − r) + σSσAjS (αG − r)

= σSσGjS (αA − r)− σAσGjS (αS − r)− σ2
SjG (αA − r) + σAσSjG (αS − r) ,

(A.9)

and collecting alike terms,

(αS − r) [σGσSjA − σAσSjG] = (αA − r)
[
σSσGjS − σ2

SjG
]

+ (αG − r)
[
σ2
SjA − σSσAjS

]
.

(A.10)

Canceling out σS and rearranging the order,

(αA − r) (σGjS − σSjG) = (αS − r) (σGjA − σAjG)− (αG − r) (σSjA − σAjS) . (A.11)

Dividing by σGjS − σSjG + σAjG − σAjS + σSjA − σGjA, one obtains

(αA − r)wA = (αS − r)wS − (αG − r)wG. (A.12)

Rearranging and noting that wA + wG + wS = 1, one arrives at equation (2.21), which is our
no arbitrage condition. So, the terms multiplying jA and jG are equal as long as there are
no arbitrage opportunities.

In addition, it is also possible to prove that the right-hand side of equations (A.4), (A.5)
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and (A.6) is also equal. Taking again the first two as example, we want to prove that

−jG (αS − r)− jS (αG − r)
σGjS − σSjG

= −jS (αA − r)− jA (αS − r)
σSjA − σAjS

. (A.13)

The above equation is very similar to equation (A.7). Moving the denominators to the
opposite side, applying the distributive rule and collecting the terms one obtains:

(αS − r) [σGjSjA − σAjSjG] = (αA − r)
[
j2
SσG − jSσSjG

]
+ (αG − r)

[
jSσSjAA − j2

SσA
]
.

(A.14)

Canceling out jS and rearranging, one arrives at equation (A.11), which it is known to be
true as long as there are no arbitrage opportunities. This ends the proof of equation (2.23).

Regarding equation (2.24), and replacing αG, σG and jG as given by equations (2.15),
(2.16) and (2.17) on the first equation in (2.23), then

αA − jAλ− r
σA

=

Gt+αAAGx+0.5σ2
AA

2Gxx
G − λ

[
G((1−j)At−)−G(At−)

G(At−)

]
− r

σAAGx
G

= Gt + αAAGx + 0.5σ2
AA

2Gxx − λ [G ((1− j)At−)−G (At−)]− rG
σAAGx

.

(A.15)

Multiplying and dividing the left-hand side by AGx,

αAAGx − jAλAGx − rAGx = Gt + αAAGx + 0.5σ2
AA

2Gxx − λ [G ((1− j)At−)−G (At−)]

− rG.
(A.16)

Eliminating αAAGx and factoring out one obtains equation (2.24).

In the case where At is not traded, one has

m = Gt + αAAGx + 0.5σ2
AA

2Gxx − λ [G ((1− j)At−)−G (At−)]− rG
σAAGx

. (A.17)
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Rearranging

mσAAGx = Gt + αAAGx + 0.5σ2
AA

2Gxx − λ [G ((1− j)At−)−G (At−)]− rG. (A.18)

Substituting αA by µδ and factoring out, one obtains equation (2.34).

A.2. The martingale approach

As stated in Proposition 1, under measure Q the discounted value of any asset payoff is a
martingale. Thus, following the martingale approach, one just has to change the probability
measure so that that the discounted value of At becomes a martingale. This can be done
using the Girsanov theorem for jump-diffusion processes presented below.

Proposition 10. Girsanov theorem for jump- difusion processes. Consider the filtered prob-
ability space (Ω,F,P,F) and assume that {Nt, t ≥ 0} is an optional counting process with
predictable intensity λt. Assume furthermore {Wt, t ≥ 0} is a standard (F,P)-Wiener pro-
cess. Let ht be a predictable process with ht ≥ −1 P-a.s. and let gt be an optional process.

Define the process L on [0,T] by{
dLt = LtgtdWt + Lt−ht (dNt − λtdt)
L0 = 1

and assume that EP [LT ] = 1.
Define the measure Q on Ft by dQ = LtdP, meaning that LT is the Radon-Nikodym

derivative. Then, the following holds:

dW P
t = gtdt+ dWQ

t (A.19)

λQt = (1 + ht)λPt (A.20)

where λQt and λPt are, respectively, the intensity of the Nt process under measure Q and P.

Proof. See Björk (2009).

Based on Girsanov theorem one just has to find g and h. Proposition 11 states what is
needed in order for the discounted value of At to become a martingale.

Proposition 11. The discounted asset process, Ãt, is a martingale if and only if g and h
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are set so that

µδ + σAg − (1 + h)λjA = r. (A.21)

Proof. Based on the Girsanov theorem (Proposition 10), dW P
t and dMP

t can be stated under
measure Q as

dWQ
t = dW P

t −gtdt (A.22)

dMQ
t = dNP

t − (1 + ht)λPt dt, (A.23)

where dWQ
t and dMQ

t are now martingales under measure Q.
Rearranging and substituting on equation (2.6), one obtains the dynamics of At under

measure Q1

dAt
At

= (µδ + σAg − (1 + h)λjA) dt+ σAdW
Q
t − jAdM

Q
t . (A.24)

Consider now that f (x) = e−rtx. Applying Levy-Ito’s lemma to equation (A.24) we have
that

dÃt = −re−rtAtdt+ e−rtdAt. (A.25)

Substituting dAt by equation (A.24), one obtains

dÃt = −re−rtAtdt+ e−rt
[
(µδ + σAg − jA (1 + h)λ)Atdt+ σAAtdW

Q
t − jAAtdN

Q
t

]
= (µδ + σAg − jA (1 + h)λ− r) Ãtdt+ σAÃtdW

Q
t − jAÃtdN

Q
t ,

(A.26)

and thus

dÃt

Ãt
= (µδ + σAg − jA (1 + h)λ− r) dt+ σAdW

Q
t − jAdM

Q
t . (A.27)

Given that both dWt and dMt are martingales under measure Q, we have that Ãt is a
martingale if and only if µδ + σAg − (1 + h)λjA − r = 0.

Equation (A.21) has two unknowns implying an infinite number of martingale measures.
1σ and j were substituted by σA and jA, respectively.
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However, one may find a similar expression for any traded derivative. In particular, in the
case of χG, no arbitrage implies that

αG + σGg − (1 + h)λjG = r. (A.28)

Solving the system composed by equations (A.21) and (A.28) one obtains{
g = −jA(αG−r)+jG(µδ−r)

−σAjG+jAσG
(1 + h)λ = r(σA−σG)+(µδσG−αGσA)

−σAjG+jAσG

. (A.29)

where one should notice that (1 + h)λ is equal to the term multiplying jA, jG and jS in
equations (A.4), (A.5) and (A.6) of Appendix A.1. This goes in line with the previous inter-
pretation that this term was the hazard rate of the process under the risk neutral measure.
The fact that one can find unique values for g and h implies that Q is the unique martingale
measure. In addition, following the second funtamental theorem of asset pricing, this indi-
cates that the market is complete. Susbtituting g and h on equation (A.24), and denoting
λ = (1 + h)λ, the drift of the At process under measure Q becomes

µδ + σA
−jA (αG − r) + jG (µδ − r)

−σAjG + jAσG
− jAλ. (A.30)

Multiplying and dividing the first two terms by −σAjG + jAσG,

µδ (−σAjG + jAσG)− σAjA (αG − r) + σAjG (µδ − r)
−σAjG + jAσG

− jAλ. (A.31)

Applying the distributive rule and factoring out,

−σAjGr + jAσGµδ − σAjA (αG − r)
jAσG − σAjG

− jAλ. (A.32)

Substituting αG = σG
µδ−jAλ−r

σA
+ jGλ+ r as stated in equation (2.23),

−σAjGr + jAσGµδ − jAσG
(
µδ − jAλ− r

)
− jAσAjGλ

jAσG − σAjG
− jAλ. (A.33)
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Factoring out again and then simplifying one obtains

jAσG
[
r + jAλ

]
− σAjG

[
r + jAλ

]
jAσG − σAjG

− jAλ =
[
r + jAλ

]
[jAσG − σAjG]

jAσG − σAjG
− jAλ

= r.

(A.34)

Thus, the asset process has a drift equal to r under measure Q as stated in equation (2.28).
One can also use the martingale approach in the case that At is not traded. Again, one

has to to find g and h at each moment in time such that the discounted asset price under
measure Q is a martingale. g and h are given by the system in equation (A.29) replacing the
A-terms by the correspondent F -terms:{

g = −jF (αG−r)+jG(αF−r)
−σF jG+jFσG

(1 + h)λ = r(σF−σG)+(αFσG−αGσF )
−σF jG+jFσG

(A.35)

As in the case where the underlying is traded, g and h are still uniquely determined. The
fact that this measure change is unique implies a certain relation between derivative prices
but does not imply a unique price for the derivatives. Replacing the obtained solutions in
equation (A.24) one obtains

dAt
At

= (µδ + g∗σA − (1 + h∗)λjA) dt+ σAdWt
Q − jAdMQ

t , (A.36)

where g∗ and h∗ correspond to the solutions to the system in equation (A.35). Equation
(A.36) is equal to equation (2.37) with g∗σA instead of −mσA and (1 + h∗)λ instead of λ.

A.3. The joint distribution of Xt and τ ≥ t

This appendix proves Proposition 3 on the joint distribution of Xt and τ ≥ t. The proof
follows from the Girsanov theorem and the joint distribution of a standard Brownian motion
and the first passage time. I will start by showing how to derive the latter using the reflection
principle and the total probability theorem, and only then move to the case of an arithmetic
Brownian motion.

From the reflection principle, it is known that for every sample path that hits level y
before time t but finishes below level x at time t, there is another equally probable path that
hits y before time t and then travels upwards at least y−x units to finish above level 2y−x.
Mathematically, this is equivalent to say
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Q
(
WQ
t < x, sup

0<u≤t

(
WQ
u

)
> y

∣∣∣∣F0

)
= Q

(
WQ
t > 2y − x, sup

0<u≤t

(
WQ
u

)
> y

∣∣∣∣F0

)
. (A.37)

Since y>x,

Q
(
σWQ

t > 2y − x, sup
0<u≤t

(
σWQ

u

)
> y

∣∣∣∣F0

)
= Q

(
σWQ

t > 2y − x
∣∣∣F0

)
. (A.38)

Dividing the right-hand side of equation (A.38) by the standard deviation of σWQ
t ,

Q

(
σWQ

t

σ
√
t
>

2y − x
σ
√
t

∣∣∣∣∣F0

)
= 1−Q

(
σWQ

t

σ
√
t
<

2y − x
σ
√
t

∣∣∣∣∣F0

)

= 1−N
(

2y − x
σ
√
t

)
= N

(
x− 2y
σ
√
t

)
.

(A.39)

Using this result in equation (A.37),

Q
(
σWQ

t < x, sup
0<u≤t

(
σWQ

u

)
> y

∣∣∣∣F0

)
= N

(
x− 2y
σ
√
t

)
. (A.40)

It is also known from the total probability theorem that

Q
(
σWQ

t < x
∣∣∣F0

)
= Q

(
σWQ

t < x, sup
0<u≤t

(
σWQ

u

)
> y

∣∣∣∣F0

)
(A.41)

+ Q
(
σWQ

t < x, sup
0<u≤t

(
σWQ

u

)
≤ y
∣∣∣∣F0

)
, (A.42)

where

Q
(
σWQ

t < x
∣∣∣F0

)
= N

(
x

σ
√
t

)
. (A.43)

Replacing equations (A.40) and (A.43) on equation (A.41), one obtains

Q
(
XQ
t ≤ x, sup

0<u≤t

(
XQ
u

)
≤ y
∣∣∣∣F0

)
= N

(
x

σ
√
t

)
−N

(
x− 2y
σ
√
t

)
(A.44)

for y ≥ 0 and x ≤ y.
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Applying the Leibniz rule to equation (A.44),

Q
(
σWQ

t ∈ dx, sup
0<u≤t

(
σWQ

u

)
≤ y
∣∣∣∣F0

)
= d

dx
Q
(
σWQ

t < x, sup
0<u≤t

(
σWQ

u

)
≤ y
∣∣∣∣F0

)

= d

dx


x
σ
√
t∫

−∞

1√
2π
e−

1
2u

2
du−

x−2y
σ
√
t∫

−∞

1√
2π
e−

1
2u

2
du


= 1√

2π
e
− 1

2σ2

(
x
σ
√
t

)2 1
σ
√
t
− 1√

2π
e
− 1

2

(
x−2y
σ
√
t

)2 1
σ
√
t

= 1√
2π
e
− 1

2
x2
σ2(t) − 1√

2π
e
− 1

2
(x−2y)2

σ2(t)

= n
(
x; 0;σ

√
t
)
− n

(
x; 2y;σ

√
t
)
.

(A.45)

Now consider that

dXt = vdt+ σdWQ
t , (A.46)

This is equivalent to say that dXt = σdWQ?
t whereWQ?

u is a Q∗-measured standard Brownian
motion and

dWQ?
t = dWQ

t + v

σ
dt. (A.47)

Changing the probability measure leads to

Q
(
Xt ≤ x, sup

0<u≤t
(Xu) ≤ y

∣∣∣∣F0

)
= EQ

1{
Xt≤x, sup

0<u≤t
(Xu)≤y

}
∣∣∣∣∣∣∣F0



= EQ?

 dQ
dQ?

1{
σWQ?

t ≤x, sup
0<u≤t

(σWQ?
t )≤y

}
∣∣∣∣∣∣∣F0

 ,
(A.48)
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where dQ
dQ? can be computed using the Girsanov theorem:

dQ

dQ?

∣∣∣∣Ft = e
−

T∫
0

(− vσ )dWQ?
s − 1

2

T∫
0

(− vσ )2
ds

= e
v
σW

Q?
t −

1
2 ( vσ )2

t

= e
v
σ2 σW

Q?
t −

1
2
v2
σ2 t.

(A.49)

Thus,

Q
(
Xt ≤ x, sup

0<u≤t
(Xu) ≤ y

∣∣∣∣F0

)
= EQ?

e v
σ2 σW

Q?
t −

1
2
v2
σ2 t 1{

σWQ?
t ≤x, sup

0<u≤t
(σWQ?

t )≤y
}
∣∣∣∣∣∣∣F0

 .
(A.50)

Let z = σWQ?
t . Integrating for values of z between −∞ and x,

Q
(
Xt ≤ x, sup

0<u≤t
(Xu) ≤ y

∣∣∣∣F0

)
=

x∫
−∞

e
v
σ2 z− 1

2
v2
σ2 t
[
n
(
z; 0;σ

√
t
)
− n

(
z; 2y;σ

√
t
)]
dz.

(A.51)

Applying Leibniz rule and rearranging,

Q
(
XQ
t ∈ dx, sup

0<u≤t

(
XQ
u

)
≤ y
∣∣∣∣F0

)
= e

v
σ2 x− 1

2
v2
σ2 t
[
n
(
x; 0;σ

√
t
)
− n

(
x; 2y;σ

√
t
)]

= n
(
x; vt;σ

√
t
)
− e

2vy
σ2 n

(
x; 2y + vt;σ

√
t
)
.

(A.52)

Alternatively, integrating equation (A.51), one obtains the joint distribution function of
XQ
t and sup

0<u≤t

(
XQ
u

)
≤ y:

Q
(
XQ
t < x, sup

0<u≤t

(
XQ
u

)
≤ y
∣∣∣∣F0

)
= N

(
x− vt
σ
√
t

)
− e

2µy
σ2 N

(
x− 2y − vt

σ
√
t

)
. (A.53)

For the joint distribution function of XQ
t and inf

0<u≤t

(
XQ
u

)
≥ y, notice that

sup
0<u≤t

(
−XQ

u

)
= − inf

0<u≤t

(
XQ
u

)
. (A.54)
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Hence,

Q
(
XQ
t ≤ x, inf

0<u≤t

(
XQ
u

)
≥ y
∣∣∣∣F0

)
= Q

(
−XQ

t ≥ −x,− inf
0<u≤t

(
XQ
u

)
≤ −y

∣∣∣∣F0

)
= Q

(
−XQ

t ≥ −x, sup
0<u≤t

(
−XQ

u

)
≤ −y

∣∣∣∣F0

)
.

(A.55)

Consider
Zt = −Xt

x = −x
y = −y

Applying Itô’s lemma to Zt = −Xt, then

dZt = −vdt+ (−σ) dWQ
t . (A.56)

Given equation (A.52), one obtains

Q
(
XQ
t ≤ x, inf

0<u≤t

(
XQ
u

)
≥ y
∣∣∣∣F0

)
= Q

(
ZQ
t ≥ x̄, sup

0<u≤t

(
ZQ
u

)
≤ ȳ
∣∣∣∣F0

)

=
+∞∫
x̄

[
n

(
z;−vt;

√
(−σ)2

t

)
− e

2(−v)y
(−σ)2 n

(
z; 2y − vt;

√
(−σ)2

t

)]
1{z≤y}dz

= N

(
y + vt

σ
√
t

)
− e−

2vy
σ2 N

(
y − 2y + vt

σ
√
t

)
−N

(
x+ vt

σ
√
t

)
+ e−

2vy
σ2 N

(
x− 2y + vt

σ
√
t

)
.

(A.57)

Substituting x and y, the above simplifies to equation (2.43). Differentiating one obtains

Q
[
XQ
t ∈ dx, inf

0<u≤t

(
XQ
u

)
≥ y
]

= ∂

∂x
Q
[
XQ
t ≤ x, inf

0<u≤t

(
XQ
u

)
≥ y
]

= − ∂

∂x
N

(
−x+ vt

σ
√
t

)
+ e

2vy
σ2

∂

∂x
N

(
−x+ 2y + vt

σ
√
t

)
= ∂

∂x
N

(
x− vt
σ
√
t

)
− e

2vy
σ2

∂

∂x
N

(
x− 2y − vt

σ
√
t

)
= n

(
x; vt;σ

√
t
)
− e

2vy
σ2 n

(
x; 2y + vt;σ

√
t
)
.

(A.58)
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A.4. The limits of the F(.) function

This section shows how to compute the limits of the F (.) function.
Before proceeding notice that

lim
y→+∞

F (a, b, c, y) =

 Ω+
g (a, c) lim

y→+∞
g+(y) + Ω+

h (a, c) lim
y→+∞

h+(y), b > 0

Ω−g (a, c) lim
y→+∞

g−(y) + Ω−h (a, c) lim
y→+∞

h−(y), b < 0
. (A.59)

Since c2 − 2a is always positive we have that

lim
y→+∞

g+(y) = e−bΨ
+
g (a,c) lim

y→+∞
N
(
−b−y

√
c2−2a√
y

)
= 0

lim
y→+∞

h+(y) = e−bΨ
+
h

(a,c) lim
y→+∞

N
(
−b+y

√
c2−2a√
y

)
= e−b(Ψ+

h
(a,c))

lim
y→+∞

g−(y) = ebΨ
−
g (a,c) lim

y→+∞
N
(
b−y
√
c2−2a√
y

)
= 0

lim
y→+∞

h−(y) = ebΨ
−
h

(a,c) lim
y→+∞

N
(
b+y
√
c2−2a√
y

)
= eb(Ψ−

h
(a,c))

and thus

lim
y→+∞

F (a, b, c, y) =
{

Ω+
h (a, c) e−bΨ

+
h

(a,c), b > 0
Ω−h (a, c) ebΨ

−
h

(a,c), b < 0
. (A.60)

So, for any fixed finite value of b, lim
T→+∞

F (.) can be computed using equation (A.60).

In the case of lim
T→+∞

F
(
ω, ln(R)

σ , v
?+σ2

σ , T
)
and lim

T→+∞
F
(
ω, ln(R)

σ ,− v
?+σ2

σ , T
)
in equa-

tion (3.9), since ln(R)
σ < 0 we have

lim
T→+∞

F

(
ω,

ln (R)
σ

,
v? + σ2

σ
, T

)
= Ω−h

(
ω,
v? + σ2

σ

)
e

ln(R)
σ Ψ−

h

(
ω, v

?+σ2
σ

)
= Ω−h

(
ω,
v? + σ2

σ

)
R

1
σΨ−

h

(
ω, v

?+σ2
σ

) (A.61)

and

lim
T→+∞

F

(
ω,

ln (R)
σ

,−v
? + σ2

σ
, T

)
= Ω−h

(
ω,−v

? + σ2

σ

)
R

1
σΨ−

h

(
ω,− v

?+σ2
σ

)
. (A.62)

The same rationale applies to lim
T→+∞

F
(
$, ln(R)

σ , v
?

σ , T
)
and lim

T→+∞
F
(
$, ln(R)

σ ,− v
?

σ , T
)

in equation (3.14), with $ appearing instead of ω and v?

σ replacing v?+σ2

σ .
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Regarding the limits of the ANJump
(
l, u, T

)
and DigJump

(
l, u, T

)
functions, one may

have two cases depending on whether we are interested in the limit when both u and T go
to +∞ or only T .

Only T goes to +∞

Using equation (2.85),

lim
T→+∞

ANJump
(
l, u, T

)
= lim
T→+∞

λA

ω

{
eωT

[
N (h3 (u, T ))−N

(
h3
(
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))]
−N (h3 (u, 0)) +N

(
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(
l, 0
))

− F

(
ω,

ln
(
u
A

)
σ

,
v? + σ2

σ
, T

)
+ F

ω, ln
(
l
A

)
σ

,
v? + σ2

σ
, T


+R2a+2 {eωT [N (h4 (u, T ))−N

(
h4
(
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))]
−N (h4 (u, 0)) +N

(
h4
(
l, 0
))

−F

(
ω,

ln
(
Rv̄
u

)
σ

,−v
? + σ2

σ
, T

)
F

ω, ln
(
Rv̄

l

)
σ

,−v
? + σ2

σ
, T


 .

(A.63)

Since ω ≤ 0 the exponential terms disappear in the limit. In addition,

∀x > A⇒ N (h3 (x, 0)) = 1
∀x < A⇒ N (h3 (x, 0)) = 0
∀x = A⇒ N (h3 (x, 0)) = 0.5

∀x > Rv ⇒ N (h4 (x, 0)) = 0
∀x < Rv ⇒ N (h4 (x, 0)) = 1
∀x = Rv ⇒ N (h4 (x, 0)) = 0.5

. (A.64)

Noticing that for all intervals of interest l and u are higher than Rv̄, we have that
N
(
h4
(
l, 0
))

and N (h4 (u, 0)) also disappear. As result,
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lim
T→+∞

ANJump
(
l, u, T

)
= λA

ω

{
−
(
1{u>A} + 0.5× 1{u=A}

)
+
(
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,
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σ
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)
+ lim
T→+∞

F

ω, ln
(
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σ

,
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σ
, T


+R2a+2
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F

(
ω,
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(
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u

)
σ

,−v
? + σ2

σ
, T

)
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F
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(
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)
σ

,−v
? + σ2

σ
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 .

(A.65)

Following equation (A.60), the first two limits can be computed using

lim
T→+∞

F

(
ω,

ln
(
ū
A

)
σ

,
v? + σ2

σ
, T

)
=

 Ω+
h

(
ω, v

?+σ2

σ

) (
ū
A

)− 1
σΨ+

h

(
ω, v

?+σ2
σ

)
, ū > A

Ω−h
(
ω, v

?+σ2

σ

) (
ū
A

) 1
σΨ−

h

(
ω, v

?+σ2
σ

)
, ū < A

,

(A.66)

and the remaining two limits can be computed using

lim
T→+∞

F

(
ω,

ln
(
Rv̄
ū

)
σ

,−v
? + σ2

σ
, T

)
=
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(
ω,−v
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) (
Rv̄
ū

)− 1
σΨ+

h

(
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)
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(
ω,−v

?+σ2

σ

) (
Rv̄
ū

) 1
σΨ−

h

(
ω,− v

?+σ2
σ

)
, ū > Rv̄

.

(A.67)

For lim
T→+∞

DigJump
(
l, u, T

)
, and following the same steps, we arrive at

lim
T→+∞

DigJump
(
l, u, T

)
= λ

$

{
−
(
1{u>A} + 0.5× 1{u=A}

)
+
(

1{l>A} + 0.5× 1{l=A}
)

− lim
T→+∞

F

(
$,

ln
(
u
A

)
σ

,
v?

σ
, T

)
+ lim
T→+∞

F

$, ln
(
l
A

)
σ

,
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σ
, T


+R2a

− lim
T→+∞
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(
$,

ln
(
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u

)
σ

,−v
?

σ
, T

)
+ lim
T→+∞

F

$, ln
(
Rv̄

l

)
σ

,−v
?

σ
, T

 ,

(A.68)
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where the limits can be computed using equations (A.66) and (A.67) replacing ω by $ and
v?+σ2

σ by v
σ .

Both u and T go to +∞

Using equation (2.85), we have that

lim
u,T→+∞

ANJump
(
l, u, T

)
= lim
u,T→+∞

λA

ω

{
eωT

[
N (h3 (u, T ))−N

(
h3
(
l, T
))]
−N (h3 (u, 0)) +N

(
h3
(
l, 0
))

− F

(
ω,

ln
(
u
A

)
σ

,
v? + σ2

σ
, T

)
+ F

(
ω,

ln
(
l
/
A
)

σ
,
v? + σ2

σ
, T

)
+R2a+2 [eωT (N (h4 (u, T ))−N

(
h4
(
l, T
)))
−N (h4 (u, 0)) +N

(
h4
(
l, 0
))

−F

(
ω,

ln
(
Rv̄
u

)
σ

,−v
? + σ2

σ
, T

)
+ F

ω, ln
(
Rv̄

l

)
σ

,−v
? + σ2

σ
, T

 .

(A.69)

Since ω ≤ 0 and noticing that lim
u→+∞

N (h3 (u, 0)) = 1, N
(
h3
(
l, 0
))

= 1{l>A}+0.5× 1{l=A}
and that lim

u→+∞
N (h4 (u, 0)) = N

(
h4
(
l, 0
))

= 0, this simplifies to2

lim
u,T→+∞

ANJump
(
l, u, T

)
= λA

ω

{
−1 + 1{l>A} + 0.5× 1{l=A}

− lim
u,T→+∞

F

(
ω,

ln
(
u
A

)
σ

,
v? + σ2

σ
, T

)
+ lim
T→+∞

F

ω, ln
(
l
A

)
σ

,
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σ
, T


+R2a+2

− lim
u,T→+∞

F

(
ω,

ln
(
Rv̄
u

)
σ

,−v
? + σ2

σ
, T

)
+ lim
T→+∞

F

ω, ln
(
Rv̄

l

)
σ

,−v
? + σ2

σ
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 .

(A.70)

The computation of the second and fourth limit is similar to equations (A.61) and (A.62).
Notice, however, that while it is known beforehand that Rv̄ < l for all values of l we are

interested in, implying that
ln
(
Rv̄

l

)
σ < 0, we do not know whether

ln
(
l
A

)
σ is positive or negative.

2All values of l and u that we are interested are bigger than v̄ and thus N (h4 (., 0)) = 0.
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Thus,

lim
T→+∞

F

ω, ln
(
l
A

)
σ

,
v? + σ2

σ
, T

 =


Ω+
h

(
ω, v

?+σ2

σ

)(
l
A

)− 1
σΨ+

h

(
ω, v

?+σ2
σ

)
, l > A

Ω−h
(
ω, v

?+σ2

σ

)(
l
A

) 1
σΨ−

h

(
ω, v

?+σ2
σ

)
, l < A

(A.71)

and

lim
T→+∞

F

ω, ln
(
Rv̄

l

)
σ

,−v
? + σ2

σ
, T

 = Ω−h
(
ω,−v

? + σ2

σ

)(
Rv̄

l

) 1
σΨ−

h

(
ω,− v

?+σ2
σ

)
. (A.72)

In the case of the first and third limits, one must take into account that b is not fixed.
However, we know that it is always positive in the first limit and always negative in the third
limit. So, we must be always either in the first branch or in the second branch of equation
(A.59).

Since c2 − 2a > 0, it is clear that for b > 0 (first limit) we have

lim
b,y→+∞

g+(y) = lim
b,y→+∞

e−bΨ
+
g (a,c)N

(
−b− y

√
c2 − 2a

√
y

)
= 0,

and thus,

lim
b,y→+∞

F (a, b, c, y) = Ω+
h (a, c) lim

b,y→+∞
h+(y).

Dividing the numerator and the denominator in h+(y) by y, one obtains

lim
b,y→+∞

h+(y) = lim
b,y→+∞

e−bΨ
+
h

(a,c)N

(
−b+ y

√
c2 − 2a

√
y

)

= lim
b,y→+∞

e−bΨ
+
h

(a,c)N

(
− b
y +
√
c2 − 2a

1√
y

)
.

(A.73)

Further noticing that when b = ln
(
u
A

)
, − ln

(
u
A

)
goes to −∞ faster than y goes to +∞, then

lim
b,y→+∞

h+(y) = 0.
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The same rationale can be applied for b < 0 (third limit). Again, since c2 − 2a > 0 we
have that

lim
b,y→+∞

g−(y) = lim
b,y→+∞

ebΨ
−
g (a,c)N

(
b− y

√
c2 − 2a
√
y

)
= 0,

and thus,

lim
b,y→−∞

F (a, b, c, y) = Ω−h (a, c) lim
b,y→+∞

h−(y).

Dividing the numerator and the denominator in h−(y) by y, one obtains

lim
b,y→−∞

F (a, b, c, y) = Ω−h (a, c) lim
b,y→+∞

h−(y)

= Ω−h (a, c) lim
b,y→+∞

ebΨ
−
h

(a,c)N

(
b+ y

√
c2 − 2a
√
y

)

= Ω−h (a, c) lim
b,y→+∞

ebΨ
−
h

(a,c)N

(
b
y +
√
c2 − 2a
1√
y

)
.

Since b = ln
(
Rv̄
u

)
goes to −∞ faster than y goes to +∞, we have that

lim
b,y→+∞

h−(y) = 0.

As a result,

lim
u,T→+∞

F

(
ω,

ln
(
u
A

)
σ

,
v? + σ2

σ
, T

)
= 0 (A.74)

and

lim
u,T→+∞

F

(
ω,

ln
(
Rv̄
u

)
σ

,−v
? + σ2

σ
, T

)
= 0. (A.75)
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Substituting equations (A.71)-(A.75) into equation (A.70) one obtains

lim
u,T→+∞

ANJump
(
l, u, T

)
= λA

ω

[
−1 + 1{l>A} + 0.5× 1{l=A}
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(A.76)

Using equation (2.90) and taking the same procedure, with $ and v?

σ replacing ω and
v?+σ2

σ , respectively, one obtains

lim
u,T→+∞

DigJump
(
l, u, T

)
= λ

$

[
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) 1
σΨ−

h ($,− v?σ )]
.

(A.77)

A.5. The first derivative of the F(.) function
In this section, the first derivative of the limit of the F(.) function when T and u goes to
+∞ is derived. Similarly to Appendix A.4, we might have two cases depending on whether
both u and T go to +∞ or only T .
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Only T goes to +∞
Using equation (A.65),

∂
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lim

T→+∞
ANJump

(
l, u, T

)
= λ

ω

{
−
(
1{u>A} + 0.5× 1{u=A}

)
+
(

1{l>A} + 0.5× 1{l=A}
)

− lim
T→+∞

F

(
ω,

ln
(
u
A

)
σ

,
v? + σ2

σ
, T

)
+ lim
T→+∞

F

ω, ln
(
l
A

)
σ

,
v? + σ2

σ
, T


+R2a+2

− lim
T→+∞

F

(
ω,

ln
(
Rv̄
u

)
σ

,−v
? + σ2

σ
, T

)
+ lim
T→+∞

F

ω, ln
(
Rv̄

l

)
σ

,−v
? + σ2

σ
, T


+ λA

ω

− ∂

∂A
lim

T→+∞
F

(
ω,

ln
(
u
A

)
σ

,
v? + σ2

σ
, T

)
+ ∂

∂A
lim

T→+∞
F

ω, ln
(
l
A

)
σ

,
v? + σ2

σ
, T


+ −2a− 2

v̄
R2a+3

[
− lim
T→+∞

F

(
ω,

ln
(
Rv̄
u

)
σ

,−v
? + σ2

σ
, T

)

+ lim
T→+∞

F

ω, ln
(
Rv̄

l

)
σ

,−v
? + σ2

σ
, T

+R2a+2

[
− ∂

∂A
lim

T→+∞
F

(
ω,

ln
(
Rv̄
u

)
σ

,−v
? + σ2

σ
, T

)

+ ∂

∂A
lim

T→+∞
F

ω, ln
(
Rv̄

l

)
σ

,−v
? + σ2

σ
, T

 .

(A.78)

The limits above are given by equations (A.66) and (A.67), while the derivatives are given
by
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(A.79)
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and
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, ū > Rv̄

.

(A.80)

The derivative ∂
∂A lim

T→+∞
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)
is obtained from equation (A.68):
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(A.81)

The limits above can be computed using equations (A.66) and (A.67), replacing ω by $
and v?+σ2

σ by v?

σ . The derivatives are given by equations (A.79) and (A.80) also replacing ω
by $ and v?+σ2

σ by v?

σ .

Both u and T go to +∞

Following equation (A.76),
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(A.82)

where the above derivatives are given by
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(A.83)

and by equation (3.41).
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Doing the same for the derivative of equation (A.77), one obtains
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where
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and the last derivative is given by equation (3.44).
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