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Resumo 

As uvas (espécie Vitis) são, a nível económico, o fruto mais importante à escala mundial. No 

entanto, as videiras são suscetíveis a várias doenças, sendo que os fungos são a principal causa para a 

redução de qualidade em uvas e do seu respetivo rendimento. A Trincadeira é uma variedade de 

videira muito importante em Portugal, pois dá origem a excelentes vinhos em alguns anos. No entanto, 

é também extremamente suscetível a doenças derivadas de fungos como o bolor cinzento causado por 

Botrytis cinerea, que é uma das doenças mais perigosas para as uvas. Esta tese de mestrado tem como 

objetivo aumentar o conhecimento relativo à forma como o metabolismo das uvas, bem como a 

qualidade do vinho, é afetado pela infeção com B. cinerea, complementando estudos recentes. A 

iniciação dos mecanismos de defesa contra patógenos necrotróficos, biotróficos e hemibiotróficos está 

já bem documentada no estudo de tecidos vegetativos, enquanto outros órgãos como os frutos (neste 

caso, a uva) ainda não foram bem estudados nesse aspeto. Aquando a infeção, o metabolismo 

hormonal das uvas é reprogramado graças ao envolvimento putativo de jasmonatos, ácido abcísico, 

auxinas e outras fito-hormonas, ao passo que o ácido salicílico não aparenta estar envolvido neste 

processo. Como tal, estamos interessados em estudar a forma como o metabolismo hormonal é 

regulado em uvas infetadas com B. cinerea, especialmente tendo em conta o papel desempenhado por 

estas hormonas tanto no amadurecimento do fruto como na resposta a stress biótico. Com este 

trabalho, temos como objetivo revelar nova informação relativamente às respostas das uvas durante 

interações patógeno-hospedeiro. Isto será feito através de uma análise combinada de perfis 

metabólicos de bagos infetados com análise da expressão de alguns genes envolvidos no metabolismo 

de hormonas. Pretendemos comparar as mudanças observadas no metabolismo hormonal aquando 

infeção com B. cinerea entre uma variedade suscetível (Trincadeira) e uma variedade resistente 

(Syrah). Por outro lado, o estudo da forma de como o aroma das uvas é influenciado por este tipo de 

infeção (em particular, o estudo do metabolismo de terpenos), e quais as consequências na qualidade 

do vinho são aspetos importantes neste contexto. 

De modo a conseguir estes resultados, bagos de uva controlo e infetados em três estágios de 

amadurecimento (green, EL32; veraison, EL35; harvest, EL38) foram colhidos para podermos efetuar 

quantificação de hormonas, análise de expressão de genes envolvidos no metabolismo hormonal e 

identificação de voláteis. Para fazer a análise de voláteis, foram usadas amostras liofilizadas a -40ºC. 

No entanto, foi concluído que, através do uso desta abordagem, muito poucos compostos conseguem 

ser detetados no processo e que uma grande quantidade inicial de material é necessária, de preferência 

proveniente de amostras frescas. Relativamente ao metabolismo de hormonas, os resultados obtidos 

mostram que os jasmonatos (OPDA e JA-Ile) estão envolvidos na resposta das uvas contra stress 

biótico proveniente da infeção. Estas hormonas já tinham sido caracterizadas como estando envolvidas 

no amadurecimento através do crescimento e do desenvolvimento de coloração dos bagos. Estudos 

prévios indicam que os jasmonatos são também responsáveis pela regulação de respostas de defesa 

como respostas contra stress oxidativo e stress por dessecação. Neste caso, as uvas da variedade Syrah 

apresentaram um elevado conteúdo basal de jasmonatos, ao passo que as uvas da variedade 

Trincadeira apresentaram um grande aumento na concentração de JA-Ile após estarem infetadas. As 

mudanças observadas na expressão dos genes envolvidos na biossíntese de JA-Ile (genes que 

codificam para as proteínas allene oxide synthase e 12-oxophytodienoate reductase 1) apoiam este 

aumento observado na quantidade de jasmonatos, já que uma baixa expressão destes genes a nível 

basal significa que não são necessários nas primeiras fases de crescimento devido ao já elevado 

conteúdo em jasmonatos. O metabolismo relativamente ao ácido abcísico apoia o já conhecido papel 

desta hormona no amadurecimento. É sabido de estudos anteriores que o ácido abcísico tem um papel 

importante no amadurecimento das uvas, sendo responsável por processos importantes na acumulação 
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de açúcares e aumento da coloração dos bagos. Estes dados foram apoiados pelo aumento de ABA que 

observámos durante o início do amadurecimento. Para além do amadurecimento, os resultados que 

obtivémos sugeriram ainda que esta hormona possa estar também envolvida na defesa das uvas contra 

a infeção por Botrytis cinerea. Esta observação advém do facto de que o teor em ácido abcísico tende 

a aumentar após a infeção e de que se verificou uma maior expressão dos genes envolvidos na síntese 

e na sinalização desta hormona (genes que codificam para a 9-cis-epoxycarotenoid dioxygenase e para 

o ABA receptor PYL4 RCAR10, respetivamente). No entanto, observou-se também um conteúdo basal 

em ABA baixo na variedade Syrah, que é resistente contra a infeção. Como tal, futuras investigações 

terão de ser feitas relativamente ao papel do ácido abcísico aquando a infeção. Relativamente ao papel 

das auxinas, sabe-se que estas hormonas estão presentes em baixas concentrações no início do 

amadurecimento, pois níveis elevados de auxinas atrasam a acumulação de açúcares que é essencial 

nesta fase. Estes dados estão de acordo com os resultados que obtivemos relativamente à expressão 

génica. No que toca ao seu papel na defesa, foram observados níveis basais elevados em uvas da 

variedade Syrah (que podem sugerir a existência de uma resposta acelerada quando infetadas) e 

aumentos de concentração em uvas da variedade Trincadeira após estas serem infetadas. Ambos estes 

fatores podem ser interpretados como indicadores de que as auxinas estão envolvidas na resposta das 

uvas contra o patógeno. Foram ainda observadas mudanças na expressão de genes envolvidos na 

síntese, sinalização e transporte de auxinas (genes que codificam para a IAA-amido synthetase e para o 

auxin-responsive SAUR29), em especial durante o início do amadurecimento. Estas mudanças 

sugeriram que as auxinas têm um papel importante tanto no crescimento como no amadurecimento das 

uvas. No que toca à importância do ácido salicílico, esta hormona tinha sido, devido a estudos 

anteriores, associada apenas à resposta contra fungos biotróficos. Estudos prévios estudaram o seu 

envolvimento na resposta contra fungos necrotróficos e foi colocada a hipótese de que, aquando a 

infeção, um fungo como Botrytis cinerea ativa alguns dos mecanismos de defesa da uva mas inibe as 

vias relacionadas com o ácido salicílico. No entanto, ao contrário do sugerido, também aparenta estar 

envolvida na resposta à infeção por fungos deste tipo, devido aos resultados obtidos em que a 

variedade de vinha resistente apresentou um alto conteúdo basal de ácido salicílico, o que pode 

significar uma resposta rápida contra a infeção. A expressão de genes envolvidos na sinalização 

mediada por ácido salicílico (genes que codificam para a proteína enhanced disease susceptibility 1 e 

para o seu co-regulador, phytoalexine deficient 4) mostrou ter uma progressão que, inicialmente, 

apoiava estes resultados. No entanto, foi observado que esta expressão decresceu em uvas da 

variedade Syrah durante os primeiros estágios de crescimento, o que não está de acordo com os 

resultados obtidos pela quantificação de hormonas. Desta forma, serão precisos estudos mais 

desenvolvidos no que toca ao papel do ácido salicílico na defesa contra patógenos necrotróficos. Em 

conclusão, este trabalho permitiu efetuar uma análise de um modo mais detalhado do papel 

desempenhado por algumas fito-hormonas tanto no crescimento e amadurecimento de uvas como na 

defesa relativamente a stress biótico. Permitiu também a sugestão de mecanismos, tanto moleculares 

como metabólicos, que podem estar envolvidos na regulação de ambos os processos.  

Palavras-chave: Botrytis cinerea, videira, metabolismo de hormonas, amadurecimento, resposta ao 

stress 
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Abstract 

Grapes (Vitis species) are economically the most important fruit crop worldwide. However, 

grapevines are prone to several diseases, with fungi being the major cause of reduction in grape 

quality and yield. Trincadeira is a very important Portuguese grapevine cultivar, giving rise to unique 

and excellent wines in certain years. However, it is extremely susceptible to fungal diseases such as 

grey mold caused by Botrytis cinerea, which is one of the most dramatic diseases for grapes.  This 

master thesis aims at further elucidating how the metabolism of grapes, as well as wine quality, is 

affected upon infection with Botrytis cinerea, complementing recent studies. The initiation of defense 

mechanisms against necrotrophic, biotrophic and hemibiotrophic pathogens has been documented 

mostly for vegetative tissues, while organs like the fruits have not been well studied in that regard. 

Upon infection, hormonal metabolism is reprogrammed with the putative involvement of jasmonates, 

abscisic acid, auxins and other phytohormones, whereas salicylic acid does not seem to play a role in 

the process as assessed by microarray. As such, we are interested in studying how hormonal 

metabolism is regulated in infected grapes given the role of hormones in both fruit ripening and biotic 

stress response. With this work, we aim at bringing novel insights into the responses of grapes during 

a pathogen-host interaction by a combined metabolic profiling analysis of infected fruits together with 

an analysis of the expression of genes involved in hormonal metabolism. We want to compare the 

changes in hormonal metabolism in a susceptible (Trincadeira) and a resistant (Syrah) variety upon 

infection with Botrytis cinerea. Furthermore, we want to study how the aroma of grapes is influenced 

by the infection, in particular the metabolism of terpenes, with consequences on wine quality. To this 

end, control and infected berries at the green, veraison and harvest stages were collected for hormonal 

quantification, analysis of gene expression regarding the metabolism of hormones and volatile 

identification. Regarding volatile analysis using samples lyophilized at -40ºC, it was concluded that 

few compounds can be detected using this approach and that a great quantity of starting material is 

needed and preferably fresh samples. In what concerns hormonal metabolism, our results showed that 

jasmonates were heavily involved in biotic stress response, as not only did Syrah grapes have a high 

basal content in jasmonates, but Trincadeira grapes displayed a significant increase in JA-Ile 

concentration upon infection. Changes in the expression of genes involved in JA-Ile biosynthesis 

accompanied this increase in quantity. Abscisic acid metabolism, while mostly cementing its role in 

ripening, also suggested an involvement in grape defense against B. cinerea, mainly due to increases 

in ABA content upon infection, as well as heightened expression of genes involved in its synthesis and 

signaling. However, due to the low basal content in ABA in the Syrah variety, further investigation 

will be pursued. Regarding auxins, the high basal levels in Syrah grapes and increased concentration 

in infected Trincadeira grapes were indicators of the hormone’s involvement in response to the 

pathogen. Changes in the expression of genes involved in IAA synthesis, signaling and transport, 

especially during the onset of ripening, also suggested an important role of auxin regulation during 

grape growth and ripening. Salicylic acid, which had only been previously suggested to be involved in 

response against biotrophic fungi, also appears to play a part during Botrytis cinerea infection due to 

elevated basal SA content in the resistant cultivar. Expression of genes involved in SA-mediated 

signaling, although in accordance with these results at first, decreases in Syrah grapes during earlier 

stages, which does not support the obtained results from hormonal quantification. As such, further 

studies might be needed concerning the role of salicylic acid in response to necrotrophic pathogens. In 

conclusion, this work allowed a more detailed analysis of the role played by hormones in both grape 

ripening and defense and suggested molecular and metabolic mechanisms that might regulate both 

processes. 

Keywords: Botrytis cinerea, grapevine, hormonal metabolism, ripening, stress response 
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1. INTRODUCTION 

1.1. Grape ripening 

Grapevine is a fruit species of worldwide economic importance, mainly due to its use for 

vinification and distillation. It is classified as a non-climacteric fleshy fruit and is made up of three 

tissue layers and its seeds (Kuhn et al., 2014). Grapevine growth and development has been 

extensively studied, with the berries displaying changes in composition, size, color, texture and 

susceptibility against biotic stress during the process (Conde et al., 2007). It is a complex process, 

normally represented by a double sigmoid growth curve that results from the existence of two different 

stages of growth separated by a lag phase, during which berry growth is slow or nonexistent. 

 The first phase of berry development, which according to the BBCH identification system 

(COOMBE, 1995) encompasses the stages EL31 to EL34, is a phase marked mainly by rapid berry 

growth through cell division and enlargement. No further cell division occurs during berry 

development. While the berries remain green in color due to the presence of chlorophyll and sugar 

levels remain low, there is a large accumulation of organic acids in the vacuoles and precursors of 

other important compounds, such as phenols, are synthesized (Dokoozlian, 2000; Kuhn et al., 2014). 

The lag phase, whose duration depends on grape variety and climacteric conditions, is where the 

berries’ chlorophyll content begins to drop. It is also marked by accumulation of organic acids. After 

the lag phase, the second phase of rapid berry growth begins with a short period known as véraison 

(stage EL35 in the BBCH identification system), characterized by sugar accumulation and 

pigmentation of berries by anthocyanins. The stages EL36 to EL38 makes the phase of berry 

development known as ripening, where red pigments accumulate further, the berries lose chlorophyll 

and compounds related to the aroma are created (Lund and Bohlmann, 2006). During this phase of 

development, sugars begin to accumulate, organic acids concentration declines and berries also 

become softer in texture and resume a rapid growth rate through cell enlargement (Dokoozlian, 2000). 

The amount of accumulated sugar and organic acids will ultimately influence the taste and other 

characteristics of the grape berries after the harvest stage (Conde et al., 2007).              

 

 

Figure 1.1 – Grape clusters of the Trincadeira cultivar through different stages of development: green (stage EL32; A), 

veraison (stage EL35; B) and harvest (stage EL38; C). 

 

While the first rapid growth period contributes to the final quality of the grape berry, ripening 

is the most important phase for its development do to it containing massive increases in important 

compounds such as glucose and fructose, and it is heavily influenced by grape variety, crop level and 

A B C 
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the environment. Temperature, water content, light conditions and pathogen intervention are the most 

important environmental factors, being able to enhance or delay ripening. Low temperatures, moderate 

water deficit and certain types of radiation such as UV-B can enhance the ripening process, while high 

temperatures or seasonal drought, lack of sunlight and biotic stress derived from pathogens are 

inhibitors of ripening (Kuhn et al., 2014). For example, a slight water deficit in earlier stages of berry 

development usually results in the increase of the concentration of anthocyanins and sugars, and some 

metabolites and transcripts are positively under these conditions (Deluc et al., 2009). On the other 

hand, light exclusion causes significant decreases in anthocyanin content through down-regulation of 

genes related to its biosynthesis (Matus et al., 2009).     

 Environmental conditions are also associated with changes in overall hormone content in 

grape berries, which is directly affects the process of ripening. One such example is abscisic acid, as 

its content increases in conditions of water deficit, which is beneficial for berry ripening. 

 

1.2. Hormonal metabolism during grape ripening 

Hormones play a key role in the development and ripening of grapes and other fleshy fruits. 

Depending on the phase of growth of a given fruit, different hormones can act either independently or 

in cooperation, by means of a complex hormonal crosstalk, to ensure the regulation of the fruit’s 

development through all of its growth phases.      

 Across berry development, the synthesis of different hormones is controlled depending on the 

phase of growth and climacteric conditions, with some of them promoting the process of ripening and 

others inhibiting it. Ethylene synthesis, for example, is essential for several types of fruits known as 

climacteric fruits, being the main driving force behind the ripening process (Alkan and Fortes, 2015). 

During grape ripening, however, the peak of ethylene production observed in climacteric fruits does 

not happen. Instead, enzymes involved in ethylene biosynthesis have increased expression before 

veraison, and this hormone is suggested to influence berry diameter and anthocyanin accumulation 

(Chervin et al., 2004).          

 Abscisic acid (ABA) is a key hormone during in the maturation of both climacteric and non-

climacteric fruits, but more importantly during grape ripening. Abscisic acid accumulation peaks at 

veraison, at the same time as berry softening and skin coloration, suggesting that it may help 

controlling these processes related to the ripening stage (Kuhn et al., 2014). Increases in the level of 

ABA also influence the accumulation of sugars by enhancing their uptake and storage, which can be 

stimulated earlier on by exogenous ABA application before veraison (C. Davies and Böttcher, 2009). 

Treating grape berries with ABA at veraison can also help improving anthocyanin levels and the 

biosynthesis of certain polyphenol compounds (Lacampagne, Gagné, and Gény, 2010).   

 Brassinosteroids are helpful for overall plant maturation and act towards the promotion of 

ripening in grapes and other non-climacteric fruits. During a previous study, genes involved in 

brassinosteroid synthesis revealed increased expression levels at the beginning of grape ripening, 

which was consistent with a larger content in the hormone at that stage. The application of a 

brassinosteroid isolate, epibrassinolide (Epi-BL), resulted in berry coloration and higher levels of 

sugar, leading to enhanced berry ripening. On the other hand, an inhibitor of brassinosteroid synthesis 

caused ripening to be delayed (Symons et al., 2006).      

 Auxins have an important role in fruit growth, but act as inhibitors of ripening in both 

climacteric and non-climacteric fruits (Kumar, Khurana, and Sharma, 2014). Indole-3-acetic acid 

(IAA), an important compound within the auxin class, has been observed as being present in higher 

amounts during early developmental stages of grape berries and in lower amounts in latter stages, 

including during berry ripening (X. Zhang et al., 2003). The onset of berry ripening is associated with 
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low levels of auxin, since this hormone causes delays in the accumulation of sugars, anthocyanins and 

in the increase of berry diameter. Low levels of auxin are directly connected to the inactivation of IAA 

by conjugation, which is realized by specific enzymes involved in IAA regulation mostly during grape 

ripening of several different cultivars (Fortes et al., 2011). The regulation of this hormone is also 

controlled by auxin response factors (ARFs), transcription factors that regulate the expression of 

responses mediated by auxin and that have an important role during veraison and initiation of grape 

berry ripening (Gouthu and Deluc, 2015).       

 Like auxins, cytokinins are involved in berry growth, but decrease in concentration during 

veraison and further maturation, because of which they act as promoters of early development but 

inhibitors of ripening (Böttcher et al., 2015). Treatment with cytokinins is often used as a way to 

reduce anthocyanin content in vineyards (Ferrara et al., 2014). Accordingly, previous studies have 

reported the down-regulation at stage EL36 of genes coding for cytokinin dehydrogenase 5, involved 

in cytokinin degradation, and for a purine permease involved in cytokinin transportation (Agudelo-

Romero et al., 2013).          

 Gibberellins follow a similar pattern, being essential for early plant development. This 

hormone is often applied on plants due to its function as a regulator of cell division and expansion. 

Due to this, active gibberellins are found in higher concentrations during early stages but in lower 

concentration during further berry development (X. Zhang et al., 2003), and their abundance is 

regulated by the abundance of gibberellins oxidase transcripts. A previous study showed that, during 

ripening, some genes coding for these oxidases were up-regulated when compared to stage EL32, but 

others were down-regulated, which makes the metabolism of gibberellins harder to understand (Fortes 

et al., 2011).           

 In non-climacteric fruits, jasmonic acid levels are higher during early development and 

decrease during ripening, which appears to enable the beginning of this stage. This observation was 

supported by the lesser amount of jasmonic acid biosynthesis-related mRNAs during and after 

veraison (Fortes et al., 2011). Jasmonates are also involved in the synthesis of methyl jasmonate, 

which when applied in grapevine increases the production of a compound that acts during plant 

defense against pathogens (Almagro et al., 2014).       

 The role of polyamines during ripening is harder to classify due to lack of information. 

Polyamines have been suggested to be inducers of flowering and fruit set in grapes during earlier 

developmental stages (Aziz, Brun, and Audran, 2001), and their content has been shown to decrease at 

the beginning of ripening, because of which this hormone’s role has been exclusively associated with 

early fruit development. However, previous studies have shown that genes coding for enzymes 

involved in polyamines synthesis, such as arginine decarboxylase, increased their expression during 

the ripening stage (Fortes et al., 2011). Products originated from the catabolism of polyamines, such as 

γ-aminobutyric acid (GABA), have also been observed as being accumulated during grape ripening 

(Agudelo-Romero et al., 2014). By further analysis of the polyamine pathway, it was noticed that, 

indeed, the content in free polyamines decreased during ripening and was accompanied by an increase 

in activity of polyamine catabolic enzymes, namely polyamine oxidase and diamine oxidase. This 

increase in polyamine catabolism leads directly to a larger content in hydrogen peroxide. Polyamine 

catabolism can then be seen as a way to produce reactive oxygen species that are important in plant 

defense against stress during ripening (Fortes, Teixeira, and Agudelo-Romero, 2015)  Grape 

ripening is, therefore, controlled by crosstalk between these hormones. The study of hormonal 

crosstalk has revealed several hormonal interactions, such as the one between ethylene and abscisic 

acid. Through an experiment based on blocking the synthesis and the signaling of ethylene, Sun et al. 

(2010) discovered that the effects of ethylene inhibition vary according to the berry’s developmental 

stage and that both ethylene and ABA are important for starting berry ripening, which is achieved 

through hormonal interplay.         
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 Auxins, on the other hand, appear to inhibit ripening processes induced by ABA. A previous 

study revealed that the treatment of berries with naphthaleneacetic acid delayed ripening onset, which 

was confirmed by transcriptomic analyses. The expression of genes related to ABA biosynthesis also 

decreased as a consequence of this delay, as opposed to ethylene biosynthetic genes, which had their 

expression increased (Ziliotto et al., 2012). Treatment of berries with artificial auxins also caused 

delays in the increase of ABA content (Christopher Davies, Boss, and Robinson, 1997).   

 Application of gibberellins promotes several interplays with different hormones such as 

brassinosteroid, ethylene, cytokinin and ABA. In this study, crosstalk between gibberelins and ABA 

was observed in the down-regulation of genes related to ABA signaling and synthesis, while in the 

case of ethylene it was observed in the regulation of the amount of ethylene transcription factors (Chai 

et al., 2014).  

 

1.3. Hormonal metabolism during grape defense 

Another factor that plays a part in the process of growth and ripening of fleshy fruits is stress. 

Stress can be caused by environmental conditions, availability of nutrients or infections from 

organisms such as bacteria or fungi.         

 One such fungal pathogen is grey mold, caused by Botrytis cinerea, which, in grapevines, is 

the main cause of infection, damage and loss in grape quality (Agudelo-Romero et al., 2015). Botrytis 

cinerea is a necrotrophic fungus to which several varieties of grapevine are susceptible, and it achieves 

a drop in grape quality by penetrating its host with specialized enzymes that degrade the cell wall and 

by using compounds such as reactive oxygen species to kill the cell (Tatsuki et al., 2013).  

 In fruit-pathogen interactions such as the one between tomato fruit and B. cinerea, stress 

hormones, prone to changes in their relative expression, act as regulators and heavily influence the 

fruit’s susceptibility to infection. The influence of ethylene regarding fruit ripening is especially 

important in these scenarios because it contributes to fruit ripening, a state in which it becomes more 

susceptible to infection (Cantu et al., 2009). Ethylene-related signaling components, such as receptors 

for ethylene, and the way they react to the presence of the hormone are also of note, as some fruits that 

have mutations for reduced receptor sensitivity are less susceptible to infection by B. cinerea (Cantu et 

al., 2009).          

 Experiments were conducted involving the exposure of ethylene receptors to specialized 

inhibitors: high inhibitor levels were able to halt the function of ethylene receptors and, therefore, the 

plant’s resistance mechanisms, showing that plant responses to ethylene depend on the receptors’ 

ability to perceive it during tomato fruit infection (Blanco-Ulate et al., 2013). Moreover, ethylene 

synthesis in the host can be caused by pathogen infection, which was suggested by an augmented 

expression of two genes related to the ripening of tomato, after the microarray analysis of fruits 

infected with B. cinerea. Pathogens such as B. cinerea can also synthesize it independently in order to 

promote earlier ripening and facilitate the infection (Cantu et al., 2009). Salicylic acid is also an 

important hormone, and tomato lines that do not accumulate this hormone have been shown to be 

more susceptible to infection than regular tomato lines, proving that salicylic acid-mediated plant 

responses contribute to fruit resistance (Blanco-Ulate et al., 2013).     

 Based on microarray analysis by Blanco-Ulate et al. (2013), the role of jasmonic acid during 

tomato fruit infection is not clear due to the lack of changes in expression of important components 

from the jasmonic acid signaling pathway, which may suggest the existence of different signaling 

pathways through which jasmonic acid-related responses in fruit occur. It is known, however, that the 

signaling pathways of jasmonic acid and salicylic acid are generally antagonistic, and that the 

interplay between them, mainly influenced by hormone concentration, allows plants to regulate their 
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defense mechanisms and adapt to the pathogen in question (Pieterse et al., 2009). However, pathogens 

like B. cinerea can bypass this interplay and inactivate specific genes necessary for plant resistance. 

 Abscisic acid synthesis is mainly related to increased fruit susceptibility. During infection, 

certain plant pathogens can directly produce ABA or induce its synthesis in the host in order to 

accelerate fruit ripening (Siewers, Smedsgaard, and Tudzynski, 2004). Overall perception and 

synthesis of different stress hormones, along with their relative concentrations, are the main driving 

forces behind plant resistance against pathogens.       

 A research was conducted by Agudelo-Romero et al. (2015) in order to obtain information 

concerning the way B. cinerea affects grape metabolism and overall functioning. It was revealed that 

B. cinerea causes not only a decrease in berry weight and an increase in pigmentation, but it also 

influences grape metabolism to a point where several metabolites are present in different contents 

when comparing between control berries and infected berries. For example, some organic acids such 

as tartaric and malic acid decreased in infected berries.       

 On the other hand, adding to the increase in pigmentation due to anthocyanin, the content in 

certain sugars such as fructose and glucose also increased upon infection. In this study, it was also 

seen that the infection by B. cinerea activates influences the reprogramming of metabolism regarding 

the activation of defense mechanisms in different growth phases of the berries, with some examples 

being the oxidative stress response and the activation of heat-shock proteins. Other types of 

suppression of the infected berries’ activated defenses were the downregulation of resistance genes 

involved in pathogen recognition, genes related to the organization of the cytoskeleton and the 

metabolism of lipids, showing that B. cinerea does indeed reprogram the metabolism of its host in 

order to facilitate infection.   

 

1.4. Volatiles and grape quality 

Directly tied to the development and ripening of berries is the production of volatile 

compounds, which is one of the most important factors influencing the aroma development of grape 

cultivars and, consequently, the characteristics and quality of wine (Palomo et al., 2007).  Even though 

most of these volatile organic compounds exist in odorless and inactive forms (Hjelmeland and Ebeler, 

2015), some grape compounds such as terpenes, mainly those belonging to the monoterpenes, 

sesquiterpenes and norisoprenoids sub-families, are the ones more directly linked to wine aroma, even 

if still present in trace amounts (Dunlevy et al., 2009).  In grapevine, important volatile compounds 

that have been identified include varietal aroma-responsible monoterpenes and rotundone, which 

belongs to the sesquiterpenes sub-family (Siebert et al., 2008). Several other volatile organic 

compounds belong to different chemicals groups, and the proportions in which these are present is 

largely dependent on the grape variety and berry developmental stage (Slegers et al., 2015), while 

environmental factors have a lesser impact.        

 Besides terpenes, the volatile compounds that are most relevant to aroma development are 

aldehydes, ketones, alcohols of various kinds, including unsaturated alcohols and aromatic alcohols, 

esters of acetic acid, chlorophylls, carotenoids and compounds derived from amino acids or fatty acids 

(Rambla et al., 2016). All these aroma-related compounds have been reported to be present in both 

free and glycosylated non-volatile forms, with monoterpenes being the most abundant ones included in 

this group (Agudelo-Romero et al., 2013).        

 Volatiles derived from amino acids are mostly synthesized from phenylalanine, and a large 

amino acid profile has been established as being directly connected with higher alcohol content and, 

consequently, wine aroma (Hernández-Orte, Cacho, and Ferreira, 2002). Their biosynthesis begins 

with the enzyme phenylalanine ammonialyase and latter steps involve catabolyzation by an O-
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methyltransferase (Mageroy et al., 2012). Amino acid-derived volatiles fall into the categories of 

aldehydes, esters or alcohols. Volatile aldehydes and phenols, with phenylacetaldehyde being an 

example of the latter, are responsible for distinct aromas of some grape varieties (Wang and Kays, 

2000).             

 Those derived from fatty acids have a poorly understood process of biosynthesis, although it is 

known to involve the catabolization of free fatty acids through the lipoxygenase pathway. Common 

lipidic precursors used catabolized during this pathway are linoleic and linolenic acids (Rambla et al., 

2016). Metabolites resulting from this pathway can also be reduced to alcohols through the activity of 

alcohol dehydrogenases (Tesniere et al., 2006).        

 Terpenes, most importantly monoterpenes and sesquiterpenes, play a major role in influencing 

the overall aroma of grape varieties, and are synthesized by means of two distinct pathways known as 

the isoprenoid pathways. These pathways are sources of the five-carbon precursor isopentenyl 

diphosphate and its isomer, dimethylallyl diphosphate, which are then used to create volatile terpenoid 

compounds (Rambla et al., 2016), including the aforementioned monoteprenes and sesquiterpenes, 

and others such as sterols, phytols and carotenoids (Agudelo-Romero et al., 2013). Volatile terpenes 

like norisoprenoids can also be derived from the carotenoids formed during these pathways, an action 

that is carried out by the activity of carotenoid cleavage dioxygenases.    

 Terpene evolution throughout berry development can be studied by comparing terpene profiles 

from different developmental stages, with the most relevant ones being early development, pre-

veraison, veraison and post-veraison, which takes into account the harvest stage (Zhang et al., 2016). 

A study conducted by Zhang et al. (2016) has shown that terpene concentration was lower during the 

veraison stage when compared to both pre-veraison and post-veraison.  During early development, a 

high production of terpenes is present in grape berries, be it in concentration or variety. The early 

developmental stage shows the highest concentration of volatile compounds out of all relevant stages 

of berry development, both when it comes to overall terpene and, more specifically, monoterpene and 

sesquiterpene concentrations.          

 A significantly different profile can be observed during the pre-veraison stage, as the grape 

berries show a large decrease in terpene concentration. This happens mostly due to a much lower 

concentration of volatiles from the sesquiterpene sub-family, while monoterpene concentration was 

only slightly reduced. Norisoprenoid concentration, however, reaches its peak in this stage.  

 A lower concentration of total volatile compounds is observed at veraison, during which the 

monoterpene and sesquiterpene sub-families reach their lowest concentration levels and several 

compounds were unable to be detected (Coelho et al., 2007). A less drastic decrease in concentration 

is observed for the norisoprenoid sub-family, which contributes for most of the total terpene 

concentration in the berries during this stage.        

 During a post-veraison stage where the grape berries display intermediate ripeness, overall 

terpene concentration increases, even though the monoterpene and sesquiterpoene concentrations 

remained at low levels, which coincided with the observations from a previous study by Coelho et al. 

(2006).             

 At harvest, berries showed a very different terpene profile when compared to the previous 

developmental stage. Overall terpene concentration increases, mainly due to a significant rise in 

sesquiterpene concentration, since monoterpenes and norisoprenoids decrease during this period. 

Therefore, the late period of ripening appears to be crucial to the development of sesquiterpenes at 

harvest. Previous observations made by Kalua and Boss (2009) have confirmed similar patterns in 

terpene profiles in all relevant developmental stages. These compounds belong in the group of 

secondary metabolites and are distributed through the pulp and skin of the berry, with several studies 

showing volatile compound storage predominantly in the skin tissue (Perestrelo et al., 2011). 
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Harvesting at the correct growth stage is, then, important to optimize the overall quality of the grape 

wine aroma.  

 

1.5. Impact of Botrytis cinerea infection in grape quality 

Most previous studies have focused on the mechanisms of volatile compounds and how they 

affect aroma development and grape quality, which are directly related to primary metabolites such as 

amino acids or polyphenols    pe -Rituerto et al., 2010). Because of this, the study of how infection 

by Botrytis cinerea affects the production of primary metabolites in grapes can greatly help the 

understanding of how fungal infection is related to alterations in grape and wine quality (Hong et al., 

2011).             

 B. cinerea infection of grape berries happens with greater intensity from the beginning of 

ripening until the stage of harvest, and leads to reductions in grape and wine quality by influencing the 

chemical composition of the berries. A previous study was focused on analyzing metabolic variations 

of pulp and skin metabolites upon infection, comparing healthy and infected grape clusters (Hong et 

al., 2012). In infected clusters it was observed a greater content in several aminoacids such as fructose 

and glucose in berry skin, while phenolic compounds were not detected when compared with healthy 

clusters. Regarding the berry pulp, infected clusters showed larger concentrations of GABA and 

arginine, for example. Healthy berries present in infected clusters were also analyzed, containing a 

greater content in a larger number of metabolites when compared to those of healthy clusters in both 

berry skin and pulp. These metabolic variations ultimately show that B. cinerea does affect the 

metabolome of both infected berries and even healthy berries when present in an overall infected 

grape cluster.            

 The study of  Hong et al. (2012) also allowed the analysis of the accumulation of several 

primary metabolites related to plant defense strategies, both on healthy berries collected from infected 

bunches and infected berries collected from infected bunches. Proline accumulation in infected grape 

berries resulted from its involvement in strengthening the cell-wall during plant defense against 

pathogen infection (Haudecoeur et al., 2009). The accumulation of arginine is a result of the need to 

synthesize polyamines that conjugate with phenolic compounds and are helpful in the defense 

response against B. cinerea. Arginine acts as a precursor to these polyamines, and the resulting 

products of conjugation have also been shown as accumulated in infected plants. In conjunction with 

proline and arginine accumulations, another compound that accumulated in grape berries was 

glutamate, which serves a precursor to both these stress-related metabolites and GABA (Forde and 

Lea, 2007). Accumulation of alanine in scenarios of biotic stress has also been observed, although its 

exact role is unclear.  GABA accumulation accompanies that of alanine, since the catabolism of the 

former by means of a GABA transaminase leads to the formation of the latter (Hong et al., 2012). 

 Alterations of the overall metabolome were reported in a study, conducted by Hong et al. 

(2011), regarding champagne base wines when influenced by B. cinerea. Differences in the 

metabolites were seen between wines based on healthy berries and botrytized ones, therefore allowing 

to assess not only the grape quality but also the quality of the wine. Increased concentrations in 

gluconic acid were observed in infected grapes and wines, as well as higher pH values when compared 

to those of healthy samples. These results were in accordance with a previous study, demonstrating 

that gluconic acid content can be seen as an indicator of B. cinerea infection and that a lower pH value 

is directly linked to degradation of organic acids by the pathogen (Cilindre et al., 2007).  

 Variations regarding glucose levels in wine were also analyzed, by comparing glucose 

contents between base wines derived from healthy berries and botrytized berries at different levels of 

infection. Due to glucose and infection levels not being linearly correlated, it was concluded that the 
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amount glucose consumed during the process of fermentation was not influenced by B. cinerea 

infection of grape berries.          

 Succinate, an important component for grape and wine quality, was found at lower levels in 

botrytized base wines when compared to wines derived from healthy grapes. This can be explained by 

the fact that, in a previous study, B. cinerea-infected grape berries showed a reduction in overall 

amino acid content, since amino acids contribute to the formation of succinate through fermentation 

(BELL and HENSCHKE, 2005). Reduced succinate levels in infected base wines are directly related 

to a flawed tricarboxylic acid cycle when compared to healthy base wines. This was seen as an 

indicative that B. cinerea inhibits alcoholic fermentation since succinate is a major component of this 

process, therefore causing a quality loss in wine (Hong et al., 2011). This research showed that 

metabolome analysis is crucial do the understanding of metabolic modifications in infected grape 

berries, and therefore in overall grape and wine quality. 

 

1.6. Scope and objectives of the study 

In the same segment of the work realized by Agudelo-Romero et al. (2015), this study has the 

objective of exploring how the metabolism of grape berries is affected by infection with the 

necrotrophic fungus Botrytis cinerea, and how these changes affect not only grape quality, but also 

wine quality.          

 Besides assessing grape and wine quality, it is also known that how defense mechanisms in 

plants are triggered when infected by necrotrophic, biotrophic and hemi-biotrophic pathogens has 

mostly been documented for vegetative tissues (Blanco-Ulate et al., 2013). As such, this work will 

allow for novel insights into the response of other organs, namely fruits, during an interaction between 

host and pathogen. Previously, a combined analysis of the transcriptome and metabolome of infected 

grape berries was conducted and suggested that hormonal metabolism play an important role in the 

interaction (Agudelo-Romero et al., 2015). In this thesis, the expression of genes related to hormonal 

metabolism and signaling, as well the analysis of their content was carried out. It is known from 

previous studies that hormones play an important role during fruit berry ripening and as a response to 

biotic stresses such as infection by B. cinerea (Blanco-Ulate et al., 2013). Genes related to aroma 

development will also be analyzed in the future, mainly those related to the biosynthesis of volatile 

compounds during grape development. The latter study will allow to deepen the understanding of how 

grape infection can be directly linked to wine quality and, consequently, its production worldwide. 

 To this end, analyzing a susceptible variety (Trincadeira) and a resistant variety (Syrah) of 

grape is essential, allowing to deepen the understanding of hormone regulation and aroma 

development. Studies of both varieties were conducted with control samples and samples infected with 

Botrytis cinerea, and these samples were distributed across three time points according to the BBCH 

identification system (COOMBE, 1995): green stage (EL32), véraison (EL35) and harvest stage 

(EL38). 
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2. MATERIALS & METHODS 

2.1. Infection of berries and sample collection 

Infections of grapevine berries with Botrytis cinerea were made in June 2016 at the Instituto 

Superior de Agronomia, University of Lisbon, Portugal. The infections were made by spraying berry 

clusters with a conidial suspension at the developmental stage of peppercorn size (stage EL29), 

following the procedure by Agudelo-Romero et al. (2015). Collection of Trincadeira and Syrah 

samples was performed at three different stages of development: green (stage EL32), veraison (stage 

EL35) and harvest (stage EL38) (COOMBE, 1995). Five to six replicates were obtained for each stage 

of development and for each treatment (control and infected), and all berry clusters were transported to 

the laboratory in dry ice and then conserved at -80C until further use.  

 

2.2. Sample preparation and conservation 

With the use of a mortar and pestle, berries were smashed in liquid nitrogen, the seeds were 

removed and frozen samples were grinded into a fine powder, organized according to their stages of 

development and transferred to falcon tubes, which were then kept at -80C. During grinding, liquid 

nitrogen was carefully used in order to consistently keep the samples in a frozen state. The materials 

used in the grinding and transference of samples were sterilized by leaving them in contact with 

sodium hydroxide overnight, followed by extensive washing in tap water and DEPC water (previously 

prepared by adding 0,1% of DEPC to Mili-Q ultrapure water) and further sterilized in the oven at 

180C for a minimum of 2 hours. 

 

2.3. Hormone quantification 

Stock solutions of each original phytohormone standard were prepared at 1 mg/mL in MeOH 

at Max Planck Institute for Chemical Ecology (Jena, Germany). For deuterated compounds, stock 

solutions were prepared in acetonitrile at 100 µg/mL. Working solutions of original phytohormones 

standards were prepared by diluting stock solutions in MeOH:water (7:3), at different concentration 

for each phytohormone depending on the range of the calibration curve:  ABA and IAA at 100 µg/mL; 

JA and SA at 200 µg/mL; OPDA at 50 µg/mL; and JA-Ile at 40 µg/mL. The internal standard stock 

solutions (d5-JA, d6-ABA, d4-SA, and d5-IAA) were combined and diluted in MeOH:water (7:3) 

ratio, resulting in the extraction solution. The final concentrations were 10 ng/m  for both d4-SA and 

d5-IAA, and 20 ng/mL for both d5-JA and d6-ABA. 

The samples (5 to 6 biological replicates) were transferred to Falcon tubes, which then 

contained grounded plant material up to the 25mL mark, and freeze dried at -40C for three days. 

Eppendorf tubes containing approximately 25mg of material were sent to Max Planck Institute for 

Chemical Ecology. 1mL of extraction solution containing the internal standards (d5-JA, d6-ABA, d5-

IAA, and d4-SA), prepared as described previously, was directly added. The samples were briefly 

mixed with a vortex, and spiked with phytohormones standards as described in Trapp et al. (2014). 

The spiked samples were shaken for 30 minutes and centrifuged at 16000g and 4C for 5 minutes. The 

supernatant was transferred into a new micro-centrifuge tube and dried in speed vac. After drying, 

100µL of MeOH were added to each sample, which were then mixed with a vortex and centrifuged at 
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16000g and 4C for 10 minutes. The supernatant was analyzed by HPLC-MS/MS (high performance 

liquid chromatography-mass spectrometry). 

 

2.4. DNA extraction 

DNA extraction was done according to Lodhi et al. (1994). In order to isolate DNA, 5 mL of 

DNA extraction buffer (20 mM sodium EDTA, 100 mM Tris-HCl at pH 8.0, 1.4 M NaCl, CTAB 2.0% 

w/v, β-mercaptoethanol 0.2%) were added to each sample, which were then incubated at 60C for 25 

minutes. After letting the samples cool down at room temperature, an extraction with 6 mL of 

chloroform:octanol 24:1 (v/v) was performed, right before a centrifugation at 5000 g for 20 minutes at 

4C. The supernatant was recovered to a new tube, and 1/2 volume of 5 M NaCl was added and 

thoroughly mixed. DNA precipitation was performed by the addition of 2 volume of ethanol 95% at -

20C, after which the samples were incubated at -20C for 10 minutes, followed by approximately 1 

hour at 4C. Two 4-minute centrifugations at 4C were performed next, at 3000 g and 5000 g 

respectively. The supernatant was discarded and the pellet was washed with 10 mL of cold ethanol 

76%. This was followed by a centrifugation at 5000 g for 5 minutes at 4C, after which the samples 

were incubated at 37C for 25 minutes in order to completely remove the ethanol. Approximately 250 

L of TE buffer (10 mM Tris-HCl, 1 mM EDTA) at pH 8.0 were added, and the samples are 

incubated at 4C overnight. The samples were transferred to eppendorf tubes and 1/10 volume of 2 M 

potassium acetate was added, which was followed by an 45-minute incubation on ice (this procedure 

was not included in the initial protocol). After incubation, a centrifugation at 10000 g for 10 minutes at 

4C was performed, and then the supernatant was recovered. RNase A at 1 L/100 L was added to 

the pellet, and the eppendorf tubes were incubated at 37C during 15 minutes. A second extraction 

with chloroform:octanol 24:1 (v/v), now with 1 volume being added, was performed, after which the 

tubes were centrifuged at 10000g for 10 minutes. The largest amount of sample possible was 

transferred into a new eppendorf tubes and a new precipitation step occurred with the addition of 1/10 

volume of sodium acetate and 2 volumes of ethanol 100%. After 1 hour at -20C, the tubes were 

centrifuged at 10000g during 10 minutes. The supernatant was then discarded and the pellet washed by 

adding approximately 200 L of ethanol 76% at -20C, followed by another 5-minute centrifugation at 

10000g. The ethanol was discarded and, after incubating the tubes for 15 minutes at 37C, 15 L of 

TE buffer were added before leaving the eppendorf tubes conserved at 4C. After the extraction, a 

0,8% agarose gel was used to verify the quality of the DNA. The DNA purity and concentration were 

measured using a spectrophotometer (Appendices, Table 1) 

 

2.5. RNase A preparation 

The RNase A solution used in the extraction of DNA was prepared according to the 

Ribonuclease A from bovine pancreas preparation protocol from Sigma-Aldrich, with minor 

alterations. A 10 mg/mL stock solution in 10 mM of sodium acetate buffer was prepared for 50 mL, 

and the pH was adjusted to 5.2 with the addition of HCl 37%. The solution was heated to 100C 

during 15 minutes and then allowed to cool down to room temperature. The pH was adjusted to 7.4 by 

adding 1 M Tris-HCl at pH 7.4, after which the solution was aliquoted and stored at 20C. 
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2.6. Assessment of Botrytis cinerea infection with PCR 

Detection of samples infected with Botrytis cinerea was made by visual inspection and 

through PCR. After DNA extraction and quantification, the PCR reaction was prepared by mixing 3 

L of DNA:water (containing 100 ng of DNA) with 22 L of a previously prepared master-mix: 16,76 

L of DEPC water, 0,6 L of a dNTP mix, 0,14 L of DreamTaq DNA polymerase, 2,5 L of the 

appropriate buffer (10x) and 2 L  of forward and reverse primers specific for amplification of fungal 

DNA. Primers for species-specific amplification of B. cinerea DNA were previously reported (Rigotti 

et al., 2002) and are as follows: C729+: AGCTC-GAGAGAGATCTCTGA; C729-: 

CTGCAATGTTCT-GCGTGGAA.         

 The samples were submitted to a PCR program (35 cycles with an initialization step at 95C 

for 3 minutes, a denaturation step at 95C for 30 seconds, an annealing step at 55C for 45 seconds, an 

extension step at 72C for 45 seconds and a final elongation step for 10 minutes at 72C for the 

extension of any remaining single-strand) and then loaded in a 1,2% agarose gel in order to evaluate 

the level of infection.           

 Using this approach, it was possible to confirm the samples that were infected and those that 

would serve as controls without natural infections (Appendices, Figure 1). It is noteworthy that 

Botrytis cinerea was only slightly detected in Syrah grapes at green and veraison stages. Certain 

samples were later pooled so that, for RNA extraction, 3 biological replicates would be used.  

 

2.7. RNA extraction 

Small scale RNA extraction was performed following the RNeasy Plant Mini Kit protocol. A 

different extraction buffer (300 mM Tris-HCl at pH 8.0, 25 mM EDTA, 2 M NaCl, CTAB 2% w/v, 

PVPP 2% w/v, β-mercaptoethanol 2%) was used for this extraction, and it was prepared beforehand 

and incubated at 60C for 20 minutes in agitation. The samples had a maximum of 100 mg of tissue 

powder, and 450 L of the extraction buffer were added to each one. The samples were then 

vigorously agitated. The resulting lysate was transferred to a lilac QIAshredder spin column in a 2 mL 

collection tube, which was centrifuged at full speed during 2 minutes. The supernatant of the flow-

through was transferred to a new tube, to which 0.5 volume of highly concentrated ethanol (96% to 

100%) was added and mixed by pipetting. The resulting sample was transferred in its entirety to an 

RNeasy Mini pink spin column in a 2 mL collection tube. The tube was centrifuged at 10000 g for 15 

seconds and the flow-though was discarded. 700 L of Buffer RW1 (wash buffer) were added to the 

RNeasy spin column, and the tube was centrifuged at 10000g during 15 seconds before discarding the 

flow-through. The same procedure was done for the addition of 500 L of Buffer RPE (buffer for 

washing membrane-bound RNA; requires the addition of ethanol). A third centrifugation at 10000g 

was done, after adding another 500 L of Buffer RPE, but this time for 3 minutes in order to dry the 

membrane. The column was placed in a new 1.5 mL collection tube and 30 L of RNase-free water 

were directly added to the column membrane, which was then centrifuged at 10000g for 1 minute to 

elute the RNA. The extracted RNA quantification was conducted using a spectrophotometer. 

A large scale RNA extraction protocol was used for larger samples. A new extraction buffer (1 

M Tris-HCl at pH 9.0, SDS 1%, PVP 0.8%, β-mercaptoethanol 5%) was used, and approximately 12 

mL were added to each falcon tube containing powder tissue up to the 16.5 mL mark.  Using the 

vortex, the samples were agitated for 1 minute and then put on ice. An extraction with 

chloroform:isoamyl alcohol was performed, after which the tubes were centrifuged at 7300 rpm for 10 

minutes. Approximately 20 mL of the aqueous phase of each sample were transferred to a new set of 
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falcon tubes and 1.6 mL of 2 M potassium chloride were added for protein precipitation. The tubes 

were mixed and left on ice during 1 hour. After a centrifugation at 9800 rpm for 15 minutes, the 

supernatant was recovered to Corex tubes. 1/10 volume of 3M sodium acetate and 0.8 volume of cold 

isopropanol were added to each sample to precipitate nucleic acids, followed by mixing the tubes 

thoroughly and a centrifugation at 10000 rpm during 15 minutes. The supernatant was discarded and 

two washes with 70% ethanol were performed, after which the tubes were left drying in the fume 

chamber for 15 minutes. The pellet was then dissolved in approximately 1.4 mL of DEPC water, and 

all the samples were transferred to eppendorf tubes. 1/10 volume of 2 M potassium acetate was added 

to aid in the precipitation of polissacharides, and the tubes were left on ice for 60 minutes, followed by 

a centrifugation at 10000g for 15 minutes. The supernatant of each sample was transferred to two 

separate eppendorf tubes, with 1 volume of 4 M of lithium chloride being added to each tube. The 

samples were left overnight at 4C for precipitation, after which they were centrifuged at 10000g for 

15 minutes. The supernatants were discarded. Two washes using 70% ethanol were performed and the 

tubes were left drying for 30 minutes in the fume chamber. The pellet was later dissolved in 50 L of 

DEPC water and stored at -20C for a short period. The extracted RNA quantification was conducted 

using a spectrophotometer. RNA integrity was verified through agarose gel electrophoresis 

(Appendices, Figure 2). 

 

2.8. Sample purification 

In order to purify the extracted samples, a treatment with DNase was conducted. To new 

eppendorf tubes, 24,5 L of each RNA sample were transferred, along with 1,5 L of RNase inhibitor, 

3 L of buffer (10x) and 1 L of Turbo DNase Ambion. The samples were mixed and then diluted in 

100L of DEPC water. Then the Spectrum™ Plant Total RNA Kit was used, and 250 L of binding 

solution were added, after which the samples were mixed with a pipette. The mixture was transferred 

to a binding column in a collector tube, which was centrifuged at 10000g for 1 minute. 500 L of 

wash solution 1 were added to the mixture, followed by another centrifugation at 10000g for 1 minute. 

Two more identical centrifugations were executed after adding 500 L of wash solution 2. After each 

centrifugation, the binding column was removed and the collector tube was dried. The column was 

then dried by centrifuging during 1 minute at 10000g, after which it was put in a new collector tube. 

50 L of elution solution were carefully added to the center of the membrane, followed by 1 minute at 

room temperature and a short centrifugation at 10000g to elute the sample. After the purification step, 

a 1,2% agarose gel was used to verify the quality of the RNA. The quantification of the newly purified 

RNA samples was conducted using a spectrophotometer.  

 

2.9. Reverse transcriptase protocol 

First-strand cDNA was synthesized from 2g of total RNA as described previously in Ana M 

Fortes et al. (2011). The Thermo Scientific RevertAid H Minus Reverse Transcriptase protocol was 

followed in order to obtain cDNA from the extracted RNA. For each sample, 11,5 L of RNA with 

DEPC water and 1 L of oligo(dT) primers were added to a sterile eppendorf tube. The tubes were 

mixed gently, briefly centrifuged at 10000g and incubated at 65C during 5 minutes, after which they 

were put on ice and centrifuged a second time. 4 L of reaction buffer (5x) were added to each tube, as 

well as 0,5 L of RNase inhibitor, 2 L of a dNTP mix and 1 L of RevertAid H Minus reverse 
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transcriptase. The tube were mixed gently, centrifuged at maximum speed and incubated at 42C 

during 60 minutes, after which they were stored at -20C. 

 

2.10. Real-time quantitative PCR 

Samples to be analyzed were diluted either 40x or 80x according to the level of expression. 

Before the final qPCR essays, all primer pairs were tested using two samples of each cultivar and a 

negative control. A dilution series was also prepared, with either a 1:10 dilution factor or, 

alternatively, 1:5 (for less expressed genes). Plates with 48 wells were used: the first wells were used 

for the dilution series (1:1, 1:10, 1:100, 1:1000 or 1:1, 1:5, 1:25, 1:125, 1:625), with each one having 

three replicates; the remaining wells were used for the samples, with three biological replicates for 

each time point and grape variety, and for the negative control. Additionally, each qPCR essay was 

repeated in a separate plating, yielding two technical replicates.     

 A master-mix was prepared for a total of 51 reactions to avoid pipetting errors, so that each 

well would contain 10 L of Sybr Green, 0,7 L of each primer (forward and reverse, diluted to a 

stock solution of 100 M), 4,6 L of ultra-pure water and 4 L of the appropriate cDNA sample. In 

these essays, the preparation of the master-mix and its distribution were done inside a UV chamber.

 Data were normalized using the expression of the actin gene (VIT_04s0044g00580) and 

elongation factor 1α gene  VIT_06s0004g03220), which are the most stable genes according to 

NormFinder software (Agudelo-Romero et al., 2015). The quantitative PCR program used in these 

essays consisted of 42 cycles with an initialization step at 95C for 10 minutes, a denaturation step at 

95C for 15 seconds, an annealing step for 40 seconds whose temperature was based on the calculated 

melting temperature of the primers being used (generally one degree lower), an extension step at 95C 

for 15 seconds and an elongation step at 60C for 1 minute. All primer pairs used in the qPCR were 

designed using the PrimerSelect software (Appendices, Table 2). qPCR essays were carried out using 

the StepOne Real-Time PCR System (Applied Biosystems). 

 

2.11. Identification of volatiles  

In order to identify volatile compounds, approximately 1-2g of two harvest samples, one 

control and one infected, of each cultivar were used, and divided by two smaller tubes. A solution of 

0,2 g NaCl/1 mL was prepared, and 500  L were added to each tube. After adding the solution, each 

tube was left in a water bath at 50C for 30 minutes to stimulate the emission of volatiles. For another 

30 minutes, the volatiles compounds were analyzed using solid-phase microextraction and gas 

chromatography-mass spectrometry (GC-MS).  astly, the en yme β-glycosidase was added and left to 

act overnight at 37C, and then analyzed again. 
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3. RESULTS 

3.1. Optimization of RNA extraction protocol 

With the initial RNA extractions following the RNeasy Plant Mini Kit protocol, we were 

unable to get the desired results in order to proceed to reverse transcription (Appendices, Table 3). 

Due to the use of spin columns in the essay, large amounts of sample could not be employed, which in 

turn lead to a lower yield. Different types of extraction buffer were also used in the process: but to no 

better results. By using an alternative, large scale RNA extraction protocol, we were able to use larger 

amounts of each sample, which allowed us to attain better yields at the end of the process. 

 Some changes were made to the large scale RNA extraction protocol in order to further 

increase its effectiveness. In the original protocol, the addition of potassium acetate for polyssacharide 

precipitation was done after the overnight RNA precipitation with lithium chloride. This procedure 

would mean an additional overnight precipitation and an additional set of two washes with ethanol. 

With the modified protocol, we were able to effectively reduce the duration of the RNA extraction 

without skipping important steps during the process. Further RNA purification allowed us to obtain 

purified RNA samples (Table 3.1) and proceed to reverse transcription. 

 

Table 3.1 – RNA quantification after extraction and purification. RNA was obtained from two grape cultivars (Trincadeira, 

susceptible; Syrah, resistant) across three development stages: green (EL32), veraison (EL35) and harvest (EL38). C = 

control sample; I = infected sample. 

Sample name Concentration 

(ng/µL) 

A260/A280 A260/A230 

EL32 Trincadeira C 1 297,7 2,06 2,27 

EL32 Trincadeira C 2 326 2,05 2,29 

EL32 Trincadeira C 3 403 2,02 2,3 

EL32 Trincadeira I 1 224,9 2,09 2,41 

EL32 Trincadeira I 2 629,5 2,14 2,33 

EL32 Trincadeira I 3 304,9 2,04 2,28 

EL32 Syrah C 1 1291,7 2,1 2,41 

EL32 Syrah C 2 947,9 2,1 2,36 

EL32 Syrah C 3 1045,4 2,1 2,41 

EL32 Syrah I 1 1233 2,11 2,44 

EL32 Syrah I 2 739 2,1 2,41 

EL32 Syrah I 3 1100,3 2,09 2,37 

EL35 Trincadeira C 1 564,2 2,12 2,46 

EL35 Trincadeira C 2 140,4 2,04 2,28 

EL35 Trincadeira C 3 321,6 2,03 2,21 

EL35 Trincadeira I 1 322,2 2,04 2,25 

EL35 Trincadeira I 2 272,8 2,06 2,25 

EL35 Trincadeira I 3 259,2 2,06 2,42 

EL35 Syrah C 1 240,3 2,06 2,3 

EL35 Syrah C 2 152,8 2,06 2,26 

EL35 Syrah C 3 245,6 2,05 2,29 

EL35 Syrah I 1 170,5 2,07 2,3 

EL35 Syrah I 2 225,4 2,05 2,34 

EL35 Syrah I 3 199,6 2,08 2,39 

EL38 Trincadeira C 1 275,4 2,03 2,22 

EL38 Trincadeira C 2 180,6 2,05 2,1 
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EL38 Trincadeira C 3 353,6 2,03 2,26 

EL38 Trincadeira I 1 318,5 2,06 2,34 

EL38 Trincadeira I 2 391 2,02 2,3 

EL38 Syrah C 1 331,3 2,05 2,33 

EL38 Syrah C 2 337,1 2,05 2,24 

EL38 Syrah C 3  221,2 2,06 2,35 

EL38 Syrah I 1 1021,8 2,09 2,39 

EL38 Syrah I 2 754,9 2,1 2,29 

EL38 Syrah I 3 576,9 2,1 2,31 

 

3.2. Hormonal metabolism 

3.2.1. Metabolism of jasmonates 

3.2.1.1. Content in oxo-phytodienoic acid and jasmonic acid 

Our results (Figure 3.1) showed that, in what concerns grape ripening, the amount of oxo-

phytodienoic acid (OPDA), a precursor to jasmonic acid, was equivalent in both cultivars at EL32 

(annotation according to the BBCH identification system (COOMBE, 1995)), and started decreasing 

with grape ripening until it reached its lowest value at EL38. The concentration of jasmonic acid had 

its peak at EL32 in both cultivars, and was especially abundant in Syrah grapes. The quantity of 

jasmonic acid decreased with grape ripening, reaching its lowest amount at the harvest stage. 

Regarding infected samples, during the green stage (EL32), OPDA levels (Figure 3.1) in 

Syrah were maintained after infection, while in the susceptible variety they increased drastically. 

During the veraison and harvest stages, the concentration of OPDA decreased in Syrah grapes when 

infected and increased in Trincadeira grapes when infected, albeit in a much smaller amount than in 

stage EL32. Jasmonic acid concentrations followed a similar pattern, as their highest level was at stage 

EL32. Similarly to OPDA, the larger increases in JA levels were observed in Trincadeira, although a 

high variance was also observed. 
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Figure 3.1 – Hormonal quantification of jasmonates, namely OPDA and JA-Ile, in Trincadeira and Syrah across three 

development stages: green (EL32), veraison (EL35) and harvest (EL38). Cont = control sample; Treat = sample treated with 

B. cinerea infection. 

 

3.2.1.2. Expression of allene oxide synthase and 12-oxophytodienoate reductase 1 

During the green stage, levels of allene oxide synthase (AOS) expression (Figure 3.2) were 

very low, possibly due to the already high basal concentrations of jasmonic acid in Syrah grapes. AOS 

content at veraison is in agreement with the hormonal alterations for both jasmonates and OPDA 

(Figure 3.1). However, AOS has its largest expression at EL38, while jasmonic acid (JA) and OPDA 

concentrations peak at EL32.  

12-oxophytodienoate reductase 1 (OPR1) expression (Figure 3.2) peaks at the green stage, 

which is in accordance with the concentration of jasmonic acid at that stage. Particularly, it illustrates 

the increase in jasmonic acid concentration in Trincadeira grapes upon infection. OPR1 decreases at 

veraison, in a similar way as the content in jasmonic acid. Both genes present relatively high levels of 

expression at EL38, which was not reflected in the hormone analysis for either jasmonic acid or 

OPDA (Figure 3.1). 
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Figure 3.2 – Gene expression of AOS (allene oxide synthase) and OPR1 (12-oxophytodienoate reductase 1) in Trincadeira 

and Syrah across three development stages: green (EL32), veraison (EL35) and harvest (EL38). 

 

3.2.2. Metabolism of abscisic acid (ABA) 

3.2.2.1. Content in ABA 

In what concerns grape ripening, abscisic acid (ABA) concentration (Figure 3.3) increased 

drastically at veraison in both Trincadeira and Syrah, with the latter having greater amount. At 

harvest, the amount of ABA decreased and reached its lowest point in Syrah grapes. In Trincadeira the 

decrease was less pronounced and a large amount of abscisic acid was still present at stage EL38. 

Regarding infected samples, ABA also displayed larger increases in concentration (Figure 3.3) 

in the Trincadeira cultivar upon infection, with the largest increase being during stage EL32. In this 

stage, infection lead to an increase in ABA content only in Trincadeira grapes, while during EL35 an 

increase in concentration was observed in both Trincadeira and Syrah. However, changes concerning 

ABA concentration in Syrah grapes were generally less pronounced across all time points when 

compared to Trincadeira. 
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Figure 3.3 – Hormonal quantification of ABA in Trincadeira and Syrah across three development stages: green (EL32), 

veraison (EL35) and harvest (EL38). Cont = control sample; Treat = sample treated with B. cinerea infection. 

 

3.2.2.2. Expression of 9-cis-epoxycarotenoid dioxygenase and ABA receptor 

Our results showed that the levels of 9-cis-epoxycarotenoid dioxygenase (Figure 3.4) were 

relatively high during the grape development cycle, having large increases at the green stage of 

Trincadeira grapes and veraison in both cultivars. These data are in accordance with the variations in 

ABA content showed in the hormone quantification (Figure 3.3).  

The expression of the gene coding for ABA receptor PYL4 RCAR10 (Figure 3.4) was at its 

highest during the green stage, especially in Syrah grapes, meaning that the abscisic acid signaling was 

more intense during this stage in the development. The peak of ABA concentration, however, 

happened at veraison, both for Syrah and for Trincadeira grapes (Figure 3.3). ABA receptor 

expression was still noticeable in Trincadeira grapes at harvest, possibly related to an increase in 

concentration of abscisic acid in this cultivar. 

 

Figure 3.4 – Gene expression of 9-cis-epoxycarotenoid dioxygenase (NCED) and ABA receptor PYL4 RCAR10 in 

Trincadeira and Syrah across three development stages: green (EL32), veraison (EL35) and harvest (EL38). 
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3.2.3. Metabolism of auxins 

3.2.3.1. Content in auxins 

In what concerns ripening, Syrah grapes showed a constant decrease in auxin concentration 

(Figure 3.5). In Trincadeira, this concentration increased slightly from stage EL32 to stage EL35. 

However, in both cultivars, the amount of auxins reached its lowest point at the harvest stage. 

Regarding infected samples, Trincadeira grapes also showed increases in concentration 

(Figure 3.5) during the green and veraison stages, and during harvest the amount of IAA was 

maintained. The level of auxins in Syrah upon infection increased at stages EL32 and EL38, but 

suffered a slight drop at stage EL35.  

 

Figure 3.5 – Hormonal quantification of indole-3-acetic acid (IAA) in Trincadeira and Syrah across three development 

stages: green (EL32), veraison (EL35) and harvest (EL38). Cont = control sample; Treat = sample treated with B. cinerea 

infection. 

 

3.2.3.2. Expression of IAA-amido synthetase GH3.2 and auxin-responsive SAUR29 

The highest expression levels of the gene coding for IAA-amido synthetase (Figure 3.6) were 

at stage EL32, with only minor increases in both cultivars upon infection. Concordantly, the 

concentration of auxins in both Syrah and Trincadeira grapes during the green stage reflects these 

results (Figure 3.5). IAA-amido synthetase expression lowers with grape development, although some 

expression was still seen in the Trincadeira cultivar at veraison, which was reflected in the higher 

content in auxins manifested during this stage (Figure 3.5).  

Some members of the auxin-responsive SAUR gene family act as negative regulators of auxin 

biosynthesis (Kant et al., 2009), being at lower levels of expression (Figure 3.6) during stage EL32 

and in accordance with the peak of auxin content observed in both cultivars during this stage (Figure 

3.5). As the expression of the auxin-responsive SAUR29 increased, auxin concentration decreases, 

until the gene reached its peak of expression at stage EL38. Concordantly, auxin concentration in both 

cultivars was very low at harvest (Figure 3.5). 
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Figure 3.6 – Gene expression of IAA-amido synthetase GH3.2 and auxin-responsive SAUR29 in Trincadeira and Syrah 

across three development stages: green (EL32), veraison (EL35) and harvest (EL38). 

 

3.2.4. Metabolism of salicylic acid (SA) 

3.2.4.1. Content in SA 

In what concerns grape ripening, salicylic acid (SA) concentrations (Figure 3.7) steadily 

decreased across the various stages of ripening, both in Syrah and in Trincadeira grapes. Out of the 

two cultivars, Syrah displays higher basal levels of SA. 

Regarding infected samples, salicylic acid was shown to accumulate more in Syrah grapes 

upon infection, especially at veraison (Figure 3.7). During this stage, Trincadeira displayed levels of 

salicylic acid that suffered no changes in response to the pathogen. At the harvest stage, SA content 

stayed relatively the same in both grape cultivars after being infected.  

  

Figure 3.7 – Hormonal quantification of SA in Trincadeira and Syrah across three development: green (EL32), veraison 

(EL35) and harvest (EL38). Cont = control sample; Treat = sample treated with B. cinerea infection. 
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3.2.4.2. Expression of PAD4 and EDS1 

The green stage was marked by high levels of expression (Figure 3.8) of the gene coding for 

enhanced disease susceptibility (EDS1) in infected Tricandeira grapes, as the gene is involved in 

signaling pathways associated with salicylic acid. Accordingly, SA was at its overall highest 

concentration during stage EL32, with Trincadeira grapes showing a larger increment of the hormone 

upon infection (Figure 3.7). EDS1 expression levels were low at veraison and at harvest.  

The gene coding for phytoalexine deficient 4 (PAD4) displayed similar high levels of 

expression (Figure 3.8) in Trincadeira upon infection during the green stage (EL32). PAD4 expression 

remained noticeable in both cultivars throughout grape development, particularly upon infection. This 

pattern was also seen in the hormonal analysis of salicylic acid (Figure 3.7), which increased in 

concentration at stage EL35 in both cultivars and at stage EL38 in Trincadeira. 

 

Figure 3.8 – Gene expression of EDS1 (enhanced disease susceptibility 1) and PAD4 (phytoalexine deficient 4) in 

Trincadeira and Syrah across three development stages: green (EL32), veraison (EL35) and harvest (EL38). 

 

3.3. Identification of volatiles 

Due to the low amount (3-4g) of each sample available to be used in the process, the 

identification of volatiles could not be properly finished. Some examples of the results obtained can be 

found in the Appendices section (Appendices, Figure 3). It is planned to carry out the quantification of 

volatiles in fresh samples, with a minimum of 10g of grape material, instead of using samples frozen 

in liquid nitrogen.  
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4. DISCUSSION 

Hormones play an important role in plant development and stress responses. Disclosing the 

role played by hormones in grape ripening and grape defense against major fungal pathogens will 

enable improvement in fruit traits and productivity. Hormonal metabolic pathways regarding 

jasmonates, abscisic acid, auxins and salicylic acid can be found in the Appendices section 

(Appendices, Figure 4). 

 

4.1. Role of jasmonic acid and oxo-phytodienoic acid (OPDA) 

Jasmonic acid has been suggested to play a part in grape fruit development and ripening by 

influencing the coloring and softening of the fruit (Jia et al., 2016). A volatile form of JA, methyl 

jasmonate, is responsible for promoting red coloring and increase of anthocyanin content when 

exogenously applied on fruit (Rudell et al., 2002). In our results, jasmonyl-isoleucine (JA-Ile, which is 

the biologically active form of jasmonic acid (Fonseca, Chico, and Solano, 2009)) content dropped 

significantly between the green stage and the onset of ripening.     

 Jasmonic acid has also been characterized as being involved in stress responses of grape 

berries against necrotrophic pathogens, such as B. cinerea (Agudelo-Romero et al., 2015). Previous 

studies have also established that this hormone mediates defense responses such as oxidative stress 

and desiccation stress responses (Vannini and Chilosi, 2013). This is supported by our results in 

hormonal quantification, which show a large increase in JA-Ile content in Trincadeira grapes upon 

infection, especially in earlier stages of development. On the other hand, Syrah grapes display high 

basal levels of JA-Ile, which suggest a more accelerated stress response against the infection, therefore 

supporting the innate resistance of this cultivar when infected with B. cinerea.    

 The initial increase in JA-Ile content in the Trincadeira variety upon infection is in accordance 

with the increase in the expression of OPR1, which leads to the biosynthesis of jasmonic acid. 

Moreover, the expression of this gene is heavily related to the amount of OPDA available, which 

makes sense due to the fact that it is a precursor to jasmonic acid. OPR1 and AOS expression in Syrah 

is not essential due to the already high amount of the hormone during the green stage (EL32) 

 Microarray analysis conducted by Agudelo-Romero et al. (2015) revealed that a gene coding 

for AOS was differentially expressed in Trincadeira at veraison (EL35), showing an increase upon 

infection. Our results support this data, showing a slight increase in AOS expression at that stage. 

However, the expression of this gene is not in accordance with JA-Ile and OPDA content at EL38, 

because of which the gene may be coding for an isoenzyme related to methyl jasmonate production 

(Seo et al., 2001). If so, it does make sense that gene expression starts to increase at veraison, as 

methyl jasmonate plays a role in grape ripening (Rudell et al., 2002). 

 

4.2. Role of abscisic acid  

Abscisic acid plays an important part in berry ripening. It has been suggested that increases in 

the level of ABA at veraison are probably responsible for controlling several ripening-related 

processes such as sugar accumulation and increased skin coloration of the berries, which ultimately 

leads to berry susceptibility during these later stages (Agudelo-Romero et al., 2015; Blanco-Ulate et 

al., 2013). Certain pathogens, including Botrytis cinerea, can generate abscisic acid upon infection or 

induce its synthesis in the host, thus acceleration ripening and making it easier for the infection to 

proceed (Verena Siewers et al., 2006).         
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 Our results show that ABA levels increase in both cultivars at the onset of ripening, which 

supports the claim that it does in fact have a role in the process. ABA levels also increase in both 

cultivars at veraison as a result of infection, which may suggest the hormone’s involvement in the 

defense of berries against pathogens, possibly through interaction with other growth regulators.  

However, the presence of a high content in ABA in the Trincadeira variety throughout ripening may 

suggest its involvement in berry susceptibility, due to the ease of infection in this cultivar being 

naturally higher than in Syrah.         

 In fact, it has been studied that ABA deficient mutants of tomato have increased resistance 

against Botrytis cinerea, and that application of exogenous ABA leads to more susceptibility towards 

the fungus (Asselbergh et al., 2007; Audenaert, De Meyer, and Höfte, 2002). As such, depending on 

the host species and crosstalk with other hormones, abscisic acid can either be involved in pathogen 

resistance or susceptibility.         

 The expression of 9-cis-epoxycarotenoid dioxygenase supports the effect of ABA in ripening, 

but may also be an indicator of ABA’s role in stress response and/or susceptibility, due to its increase 

in Trincadeira at EL32 and EL35 upon infection. However, the increases in abscisic acid content are 

not as pronounced as the ones showed by gene expression. The resistant Syrah variety also did not 

show high basal levels of ABA. As such, further investigation might be needed concerning the effects 

of ABA in grape defense, particularly relating to the mechanism of tolerance and susceptibility.  

 ABA receptors help in the up-regulation of ABA signaling by inhibiting specific phosphatases 

which, through a cascade reaction, can lead to the activation of several target proteins and 

transcription factors (Pilati et al., 2017). In turn, this process of inhibition depends and is induced by 

the availability of abscisic acid (Saavedra et al., 2010; Santiago et al., 2012). Interestingly, previous 

studies have shown that exogenous treatment of developing grape berries with ABA can affect ABA 

mediated processes through signaling, as some ABA receptors were down-regulated in the process 

while phosphatases were induced (Pilati et al., 2017).  Our results showed higher expression of ABA 

receptor PYL4 RCAR10 in Syrah when compared to Trincadeira, especially during the green stage, 

meaning that ABA-mediated processes are more activated in Syrah grapes. This might be another 

indicator of ABA’s role in response against biotic stress.  ater in development, however, Trincadeira 

grapes show higher expression of ABA receptor PYL4 RCAR10. 

 

4.3. Role of auxins 

It has been suggested that auxins are present in low concentration at the onset of ripening in 

grapes, due to the fact that high auxin levels delay the sugar accumulation that is essential during 

ripening (Davies, Boss, and Robinson, 1997). This is in accordance with the obtained results for the 

expression of the IAA-amido synthetase GH3.2, which leads to the inactivation of indole-3-acetic acid 

by promoting the formation of its conjugated form (Böttcher et al., 2010). The expression of this gene 

peaks during earlier stages, allowing the formation of conjugated IAA to regulate free IAA levels 

before the onset of ripening.         

 Besides berry ripening, auxins are also crucial when it comes to plant defense against 

necrotrophic pathogens. Previous studies have shown that treatment of plants with inhibitors for auxin 

transport lead to an increase in necrotrophic infection (Llorente et al., 2008).  Moreover, mutants 

with either decreased auxin influx or auxin-mediated signaling have increased susceptibility against 

Botrytis cinerea (Korolev, Rav David, and Elad, 2008). It is also of note that B. cinerea has been 

shown to be able to synthesize auxin, though its use upon infection has not been fully investigated 

(Sharon et al., 2007).          

 Concerning the results we obtained, auxin basal levels are high in Syrah grapes, which might 
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suggest that it is indeed involved in grape defense. Auxin concentration also increases in Trincadeira 

upon infection even though the largest increase happens during veraison. This is not in accordance 

with the usual defense responses, which are normally suggested by substantial increases of hormonal 

concentration in Trincadeira at EL32. The expression of auxin-responsive SAUR29 rises with the 

onset of ripening, reaching its peak at EL38.       

 Proteins of the SAUR family have been suggested to be involved in different processes of 

plant growth and development, with one hypothesis being auxin-regulated cell-expansion (Ren and 

Gray, 2015). SAUR proteins are also responsible for modulating IAA signaling and transport, which is 

essential at the onset of ripening (Fortes, Teixeira, and Agudelo-Romero, 2015). Because of this, it 

does make sense that gene expression starts to become noticeable at veraison (Davies, Boss, and 

Robinson, 1997). 

 

4.4. Role of salicylic acid 

Previous studies have highlighted the role of salicylic acid in responses against biotrophic 

pathogens through signaling processes (Glazebrook, 2005). It does not, however, appear to be 

involved in the defense against necrotrophic pathogens such as B. cinerea, with one possibility being 

that, upon infection, this pathogen activates some defense mechanisms but suppresses the salicylic 

acid response (Agudelo-Romero et al., 2015). Interestingly, salicylic acid signaling has been suggested 

to have an antagonistic relationship with auxin signaling: for example, auxins can inhibit plant 

defenses that are dependent on SA, while SA-deficient plants display a higher content in IAA (Wang 

et al., 2007; Abreu and Munné-Bosch, 2009).       

 Our results show that resistant Syrah grapes have a higher basal content in SA when compared 

to Trincadeira grape and also a higher amount at veraison. A high basal concentration in the resistant 

cultivar suggests a rapid response upon infection, which in turn may suggest that salicylic acid is 

indeed involved in grape defense against Botrytis cinerea.     

 The low expression of EDS1 in Syrah grapes is not in accordance with the elevated basal 

concentration of salicylic acid. This protein, along with its co-regulator PAD4, contributes to SA-

mediated signaling and, under some conditions, further salicylic acid accumulation (Agudelo-Romero 

et al., 2015; Glazebrook 2005) due to the activation of specific salicylic acid biosynthetic enzymes 

(Seyfferth and Tsuda, 2014). Because of this, the increase in salicylic acid in infected Trincadeira 

grapes at EL32 is in accordance with the increases in expression of both these genes, even though the 

latter are more pronounced. This might hint at a slow response against infection.   

 PAD4 activity changes drastically between cultivars during earlier stages: while it does 

increase in Trincadeira grapes upon infection, the already high PAD4 expression verified in healthy 

Syrah grapes decreases in response to the pathogen. The latter does not translate to the results we 

obtained in hormonal quantification. Overall expression of the genes coding for EDS1 and PAD4 do 

not appear to be related to the content in salicylic acid, which can be explained by the fact that these 

genes, besides SA-dependent defense pathways, are also involved in SA-independent pathways (Cui et 

al., 2017). 
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APPENDICES 

 
Appendices, Table 1 – Examples of RNA quantification before protocol optimization and without the purification step. RNA 

was obtained from two grape cultivars (Trincadeira, susceptible; Syrah, resistant) across three development stages: green 

(EL32), veraison (EL35) and harvest (EL38). C = control sample; I = infected sample.  

Sample name Concentration 

(ng/µL) 

A260/A280 A260/A230 

EL32 Trincadeira C 1 330,2 2,02 1,69 

EL32 Trincadeira C 3 455,5 1,99 1,52 

EL32 Trincadeira C 3 233,3 2,04 1,77 

EL32 Trincadeira I 1 738,0 1,93 1,35 

EL32 Trincadeira I 2 176,0 2,04 1,77 

EL32 Trincadeira I 3 834,8 1,97 1,48 

 

 

Appendices, Table 2 – Primer pairs designed for qPCR. Primer sequences are ordered from 5’ to 3’. A set of rules was taken 

into account when designing the primers: primer size should be between 18 and 25 nucleotides; the melting temperature for 

each primer should be between 58°C and 61°C; GC content of each primer should be between 40% and 60%; amplicon size 

should be between 80 and 200 base pairs. Fw = forward primer; Rev = reverse primer. 

Gene coding for:  Primer sequence Tmelting  

(°C) 

Allene oxide synthase (AOS) 
Fw 

Rev 

GCTTTACCGCGCCTTTTATGC 

TCCTGCTGAGCCAACCCACTT 

57,7 

58,3 

12-oxophytodienoate reductase 1 

(OPR1) 

Fw 

Rev 

CCCCGGGTATATGGACAAAAGA 

CCACATGCCAAAGCTGACAAAT 

56,6 

56,4 

9-cis-epoxycarotenoid dioxygenase 

(NCED) 

Fw 

Rev 

CGCTCGCCTCCTCCTCTTCTAT 

AGGGCTTGATTCGCACTTGGTA 

57,9 

57,5 

ABA receptor PYL4 RCAR10 
Fw 

Rev 

TGCCGCCGCGAATAACCATA 

GACGGCGGAGCAGCATTGATT 

60,7 

60,9 

IAA-amido synthetase GH3.2 
Fw 

Rev 

GAGGCCATTCTTTGCGTTGACT 

CGACTCGGAGGACTTCTTTGTG 

57,1 

55,4 

Auxin-responsive SAUR29 
Fw 

Rev 

GGGGAGGAGCAGCAGAGGTTTG 

GGCTGTGGTGGTGGTGGGACTT 

60,9 

61,7 

Enhanced disease susceptibility 1 

(EDS1) 

Fw 

Rev 

GAGCTTCCGGTGTCTTCTGATG 

TTTCGCTTCTCCAACTCTCCTG 

58,1 

60,1 

Phytoalexine deficient 4 (PAD4) 
Fw 

Rev 

GGCTAGCTGGGCAGGAGTCAA 

AGGTGTGGCGGTAACGGATTCA 

55,3 

55,2 

 

 

Appendices, Table 3 – Quantification of extracted DNA. DNA was obtained from two grape cultivars (Trincadeira, 

susceptible; Syrah, resistant) across three development stages: green (EL32), veraison (EL35) and harvest (EL38). C = 

control sample; I = infected sample. 

Sample name Concentration 

(ng/µL) 

A260/A280 A260/A230 

EL32 Trincadeira C 1 219,7 1,85 1,89 

EL32 Trincadeira C 2 72,2 1,66 1,21 

EL32 Trincadeira C 4 - - - 

EL32 Trincadeira C 5 16,4 1,74 1,24 
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EL32 Trincadeira I 1 261,8 1,92 2,39 

EL32 Trincadeira I 2 168,0 1,92 2.39 

EL32 Trincadeira I 3 11,8 1,81 -0,37 

EL32 Trincadeira I 4 122,0 1,76 1,37 

EL32 Trincadeira I 5 120,2 1,94 3,21 

EL32 Syrah C 1 129,5 1,98 2,27 

EL32 Syrah C 2 174,1 1,91 1,95 

EL32 Syrah C 3 189,2 1,83 1,01 

EL32 Syrah C 4 160,9 1,88 1,58 

EL32 Syrah C 5 148,8 2,12 3,76 

EL32 Syrah I 1 33,2 1,62 1,11 

EL32 Syrah I 2 437,5 1,69 1,04 

EL32 Syrah I 3 147,4 1,87 1,54 

EL32 Syrah I 4 159,5 1,66 1,22 

EL35 Trincadeira C 1a 6,7 1,61 -0,36 

EL35 Trincadeira C 1b 18,2 1,61 -1,37 

EL35 Trincadeira C 2 200,8 1,79 1,40 

EL35 Trincadeira C 3 289,4 1,80 1,32 

EL35 Trincadeira C 4 207,3 1,64 1,11 

EL35 Trincadeira C 5 78,6 2,04 -5,44 

EL35 Trincadeira I 3 49,6 1,44 0,71 

EL35 Trincadeira I 4 174,8 1,95 2,52 

EL35 Trincadeira I 5 309,2 1,55 0,92 

EL35 Trincadeira I 6 114,7 1,48 0,65 

EL35 Trincadeira I 7 350,2 1,71 1,14 

EL35 Trincadeira I 8 159,5 1,91 2,80 

EL35 Syrah C 1 252,5 1,83 1,24 

EL35 Syrah C 2 215,1 1,94 2,20 

EL35 Syrah C 3 188,9 1,92 1,25 

EL35 Syrah C 4 128,0 1,81 1,12 

EL35 Syrah C 5 109,7 1,69 1,55 

EL35 Syrah I 1 200,2 1,96 2,20 

EL35 Syrah I 2 169,7 2,02 2,89 

EL35 Syrah I 3 170,6 1,92 1,82 

EL35 Syrah I 5 207,4 1,88 1,34 

EL35 Syrah I 6 283,2 2,00 2,14 

EL38 Trincadeira C 1 232,9 1,76 1,17 

EL38 Trincadeira C 2 33,1 1,96 -2,62 

EL38 Trincadeira C 3 153,9 1,81 1,64 

EL38 Trincadeira C 4 207,5 1,69 0,94 

EL38 Trincadeira C 5 83,2 1,77 2,22 

EL38 Trincadeira C 6 29,1 2,70 -0,67 

EL38 Trincadeira I 3 85,2 1,42 0,53 

EL38 Trincadeira I 4 104,4 1,66 0,89 

EL38 Trincadeira I 5 63,4 1,69 1,94 

EL38 Trincadeira I 6 114,2 1,71 1,20 

EL38 Trincadeira I 8 68,6 1,91 2,32 

EL38 Syrah C 1 336,4 1,81 0,99 

EL38 Syrah C 2 241,2 1,92 1,45 

EL38 Syrah C 3 5,5 0,92 0,29 

EL38 Syrah C 4 129,4 1,53 0,69 
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EL38 Syrah C 5 161,0 1,87 1,76 

EL38 Syrah C 6 154,9 1,70 0,90 

EL38 Syrah I 2 203,7 1,78 1,83 

EL38 Syrah I 3 255,6 1,46 0,63 

EL38 Syrah I 4 280,8 1,56 0,77 

EL38 Syrah I 5 - - - 

EL38 Syrah I 6 - - - 

EL38 Syrah I 8 171,1 1,95 2,42 

 

 

 

Appendices, Figure 1 – Assessment of B. cinerea infection in grapes using a 1.2% agarose gel. The PCR procedure was able 

to amplify the 0.7-kb B. cinerea fragment from 100 ng of DNA. Samples on the left represent controls, samples on the right 

represent samples that have been infected and presented visible symptoms. One control sample presented natural infection 

despite the negative results from preliminary visual inspection and was removed from further analyses. 

 

 

 

Appendices, Figure 2 – Assessment of RNA integrity (from left to right: EL32 Trincadeira control, EL32 Trincadeira 

infected, EL32 Syrah control, EL32 Syrah infected) by agarose gel electrophoresis, using a 1.2% agarose gel. The 18S and 

28S ribosomal RNA bands are clearly visible in the RNA sample. 
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Appendices, Figure 3 – Example of the results obtained in identification of volatile compounds. Volatiles such as hexanol 

and octanol have been identified though at low quantity. 
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Appendices, Figure 4 – Hormonal pathways of jasmonates (A, B), abscisic acid (C, D), auxins (E, F) and salicylic acid (G, 

H). 
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