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Resumo 

O uso de tomografia computorizada (CT) é considerado como a prática clínica adequada para 

aplicações clínicas onde a simulação da atenuação de radiação pelos tecidos corporais é necessária, tais 

como a correcção de atenuação dos fotões em Tomografia de Emissão de Positrões (PET) e no cálculo 

da dosagem a ser administrada durante o planeamento de radioterapia (RTP). 

Imagens de ressonância magnética (MRI) têm vindo a substituir o uso de TC em algumas 

aplicações, sobretudo devido ao seu superior contraste entre tecidos moles e ao facto de não usar 

radiação ionizante. Desta forma, técnicas como PET-MRI e o planeamento de radioterapia apenas com 

recurso a imagens de ressonância magnética são alvo de uma crescente atenção. No entanto, estas 

técnicas estão limitadas pelo facto de imagens de ressonância magnética não fornecerem informação 

acerca da atenuação e absorção de radiação pelos tecidos. 

Normalmente, de forma a solucionar este problema, uma imagem de tomografia computorizada 

é adquirida de forma a realizar a correcção da atenuação dos fotões, assim como a dose a ser entregue 

em radioterapia. No entanto, esta prática introduz erros aquando do alinhamento entre as imagens de 

MRI e CT, que serão propagados durante todo o procedimento. Por outro lado, o uso de radiação 

ionizante e os custos adicionais e tempo de aquisição associado à obtenção de múltiplas modalidades de 

imagem limitam a aplicação clínica destas práticas.  

Assim, o seguimento natural prende-se com a completa substituição do uso de CT por MRI. Desta 

forma, o desenvolvimento de um método para a obtenção de uma imagem equivalente a CT usando MRI 

é necessário, sendo a imagem resultante designada de pseudo-CT. 

Vários métodos foram desenvolvidos de forma a construir pseudo-CT, usando métodos baseados 

na anatomia do paciente ou em métodos de regressão entre CT e MRI. No entanto, no primeiro caso, 

erros significativos são frequentes devido ao difícil alinhamento entre as imagens em casos em que a 

geometria do paciente é muito diferente da presente no atlas. No segundo caso, a ausência de sinal no 

osso cortical em MRI, torna-o indistinguível do ar.  Sequências que usam um tempo de eco muito curto 

são normalmente utilizadas para distinguir osso cortical de ar. No entanto, para áreas com maior 

dimensão, como a área pélvica, dificuldades relacionadas com o equipamento e com o ruído limitam a 

sua aplicação nestas áreas. Por outro lado, estes métodos utilizam frequentemente diferentes imagens de 

MRI de forma a obter diferentes contrastes, aumentando assim o tempo de aquisição das imagens.  

Nesta dissertação, é proposto um método para a obtenção de um pseudo-CT baseado na 

combinação de um algoritmo de decomposição de água e gordura e um modelo de regressão de mistura 

gaussiana para a região pélvica através da aquisição de sequências de MRI convencionais. Desta forma, 

a aquisição de diferentes contrastes é obtida por pós-processamento das imagens originais. 

Desta forma, uma imagem ponderada em T1 foi adquirida com 3 tempos de eco. Um algoritmo 

de decomposição do sinal de ressonância magnética em sinal proveniente de água e gordura foi utilizado, 

permitindo a obtenção de duas imagens, cada uma representando apenas o sinal da água e gordura, 

respectivamente. Usando estas duas imagens, uma imagem da fracção de gordura em cada voxel foi 

também calculada. Por outro lado, usando o primeiro e o terceiro eco foi possível calcular o decaimento 

de sinal devido a efeitos relacionados com o decaimento T2*. O método para gerar o pseudo-CT baseia-
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se num modelo de regressão duplo entre as variáveis relacionadas com MRI e CT. Assim, o primeiro 

modelo aplica-se aos tecidos moles, enquanto que o segundo modelo se aplica aos tecidos ósseos. A 

segmentação entre estes tecidos foi realizada através da delineação manual dos tecidos ósseos. No caso 

do modelo de regressão para os tecidos moles, o modelo consiste numa regressão polinomial entre as 

imagens da fracção de gordura e os valores de CT. A ordem do polinómio usada foi obtida pela 

minimização do erro absoluto médio. No caso do modelo de regressão para os tecidos ósseos, um modelo 

de regressão de mistura gaussiana foi aplicado usando as imagens de gordura, água, de fracção de 

gordura e de R2*. Estas variáveis foram selecionadas, uma vez que estudos prévios correlacionam esta 

com a densidade mineral óssea, que por sua vez está relacionada com as intensidades em CT. A 

influência de incluir no modelo de regressão informação acerca da vizinhança foi estudada através da 

inclusão de imagens do desvio padrão nos 27 voxéis na vizinhança das variáveis previamente incluídas 

no modelo. O número de componentes a usar no modelo de regressão de mistura gaussiana foi obtido 

através da minimização do critério de Akaike. O pseudo-CT final foi obtido pela sobreposição das 

imagens obtidas através do duplo modelo de regressão, seguido da aplicação de um filtro gaussiano com 

desvio padrão de 0.5 de forma a mitigar os erros na segmentação dos tecidos ósseos. Este método foi 

validado usando imagens da zona pélvica de 6 pacientes usando um procedimento leave-one-out-cross-

validation (LOOCV). Durante este procedimento, o modelo foi estimado através das variáveis de 5 

pacientes (imagens de treino) e aplicado às variáveis relacionadas com MRI do paciente restante 

(imagem de validação), de forma a gerar o pseudo-CT.  Este procedimento foi repetido para todas as 

seis combinações de imagens de treino e de validação e os pseudo-CT obtidos foram comparados com 

a imagem TC correspondente. 

No caso do modelo para os tecidos moles, verificou-se que a utilização de um polinómio de 

segundo grau permitia a obtenção de melhores resultados. Da mesma forma, verificou-se que a inclusão 

de informação acerca da vizinhança permitia uma melhor estimativa dos valores de pseudo-CT no caso 

dos tecidos ósseos. A segmentação dos tecidos ósseos foi considerada adequada uma vez que o valor 

médio do coeficiente de Dice entre estes tecidos e o osso em CT foi de 0.91 ±0.02. O valor médio do 

erro absoluto entre o pseudo-CT e a correspondente CT para todos os pacientes foi de 37.76±3.11 HU, 

enquanto que no caso dos tecidos ósseos o valor foi de 96.61±10.49 HU. Um erro médio de -2.68 ± 6.32 

HU foi obtido, denotando a presença de bias no processo. Por outro lado, valores médios de peak-to-

signal-noise-ratio (PSNR) e strucutre similarity índex (SSIM) de 23.92±1.62 dB e 0.91±0.01 foram 

obtidos, respectivamente. Os maiores erros foram encontrados no recto, uma vez que o ar não foi 

considerado neste método, nas interfaces entre diferentes tecidos, devido a erros no alinhamento das 

imagens, e nos tecidos ósseos. 

Desta forma, o método de obtenção de um pseudo-CT proposto nesta dissertação demonstrou ter 

potencial para permitir uma correcta estimativa da intensidade em CT. Os resultados obtidos 

demonstram uma melhoria significativa quando comparados com outros métodos encontrados na 

literatura que se baseiam num método relacionado com a intensidade, enquanto que se encontram na 

mesma ordem de magnitude de métodos baseados na anatomia do paciente. Para além disso, quando 

comparados com os primeiros, este método tem a vantagem de apenas uma sequência MRI ser utilizada, 

levando a uma redução no tempo de aquisição e nos custos associados. Por outro lado, a principal 

limitação deste método prende-se com a segmentação manual dos tecidos ósseos, o que dificulta a sua 

implementação clínica. Desta forma, o desenvolvimento de técnicas de segmentação automáticas dos 

tecidos ósseos torna-se necessária, sendo exemplos destas técnicas a criação de um shape model ou 

através da segmentação baseada num atlas. A combinação destes métodos com o método descrito nesta 

dissertação pode permitir a obtenção de uma alternativa às imagens de CT para o cálculo das doses em 

radioterapia e correcção de atenuação em PET-MRI. 
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Abstract 

Purpose: Methods for deriving computed tomography (CT) equivalent information from MRI are 

needed for attenuation correction in PET-MRI applications, as well as for dose planning in MRI based 

radiation therapy workflows, due to the lack of correlation between the MR signal and the electron 

density of different tissues. This dissertation presents a method to generate a pseudo-CT from MR 

images acquired with a conventional MR pulse sequence. 

Methods: A T1-weighted Fast Field Echo sequence with 3 echo times was used. A 3-point water-fat 

decomposition algorithm was applied to the original MR images to obtain water and fat-only images as 

well as a quantitative fat fraction image. A R2* image was calculated using a mono-exponential fit 

between the first and third echo of the original MR images. The method for generating the pseudo-CT 

includes a dual-model regression between the MR features and a matched CT image. The first model 

was applied to soft tissues, while the second-model was applied to the bone anatomy that were 

previously segmented. The soft-tissue regression model consists of a second-order polynomial 

regression between the fat fraction values in soft tissue and the HU values in the CT image, while the 

bone regression model consists of a Gaussian mixture regression including the water, fat, fat fraction 

and R2* values in bone tissues. Neighbourhood information was also included in the bone regression 

model by calculating an image of the standard deviation of 27-neighbourhood of each voxel in each MR 

related feature. The final pseudo-CT was generated by combining the pseudo-CTs from both models 

followed by the application of a Gaussian filter for additional smoothing. This method was validated 

using datasets covering the pelvic area of six patients and applying a leave-one-out-cross-validation 

(LOOCV) procedure. During LOOCV, the model was estimated from the MR related features and the 

CT data of 5 patients (training set) and applied to the MR features of the remaining patient (validation 

set) to generate a pseudo-CT image. This procedure was repeated for the all six training and validation 

data combinations and the pseudo-CTs were compared to the corresponding CT image. 

Results: The average mean absolute error for the HU values in the body for all patients was 37.76±3.11 

HU, while the average mean absolute error in the bone anatomy was 96.61±10.49 HU. No large 

differences in method accuracy were noted for the different patients, except for the air in the rectum 

which was classified as soft tissue. The largest errors were found in the rectum and in the interfaces 

between different tissue types. 

Conclusions: The pseudo-CT generation method here proposed has the potential to provide an accurate 

estimation of HU values. The results here reported are substantially better than other voxel-based 

methods proposed. However, they are in the same range as the results presented in anatomy-based 

methods. Further investigation in automatic MRI bone segmentation methods is necessary to allow the 

automatic application of this method into clinical practice. The combination of these automatic bone 

segmentation methods with the model here reported is expected to provide an alternative to CT images 

for dose planning in radiotherapy and attenuation correction in PET-MRI. 

 

Keywords: Magnetic Resonance, Computed Tomography, pseudo-CT, water-fat decomposition, 

Gaussian mixture regression 
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Chapter 1 

Introduction 

Computed tomography (CT), with its high availability and geometric accuracy, has proven to be 

an invaluable tool for many clinical applications where radiation transport simulation is necessary. Since 

the voxel’s intensity of a CT image is related to the tissue electron density, CT images may be used to 

quantify the attenuation of X-rays within a tissue, which, in turn, is necessary to simulate radiation 

transport. For this reason, CT is considered as the golden standard technique of both radiotherapy 

planning (RTP) and attenuation correction of Positron Emission Tomography (PET) images [1] [2]. 

Despite the many advantages of CT, Magnetic Resonance Imaging (MRI) is starting to replace 

the use of CT in some applications, mainly due to improved soft tissue contrast and the lack of ionizing 

radiation.  

PET-MRI is an emerging technology with enormous potential for improvements over PET-CT 

for staging, multiparametric therapy planning and functional assessment of treatment response. PET-

MRI was shown to outperform PET-CT in the diagnostic and evaluation of some lesions and diseases, 

such as breast cancer, prostate cancer and the detection of soft tissue lesions in the brain, liver and lymph 

nodes [3] [4] [5]. However, current PET-MRI systems lack accurate attenuation correction, which is the 

most significant of all the corrections applied during PET image reconstruction[6] [7] [8] [9]. Since the MRI 

voxel’s intensity is governed by the proton density and relaxation effects, there is no relation between 

the MRI voxel’s intensity and the tissue electron density, necessary to perform the attenuation 

correction[10].  

MR-based RTP and integrated MRI treatment machines, such as MRI linear accelerator 

combinations, are another emerging technologies, with the potential to improve tumour visualization 

during treatment compared to conventional systems that use ionizing radiation[11] [12] [13]. Several studies 

have shown the superiority of MRI for contouring tumour and organs at risk volumes in terms of target 

volume delineation[14] [15] [16]. However, similar to the attenuation correction for PET-MRI, radiation 

absorption in tissue depends on photon interaction with electrons, and MRI does not directly relate to 

such effects. 

Traditionally, to overcome these problems, CT is also performed in order to calculate the 

attenuation correction map as well as the dose to be delivered. However, this practice introduces 

systematic errors in MRI-CT registration, that will cause ambiguities in the following PET-MRI and 

MR-RTP procedures. Furthermore, the use of ionizing radiation and the additional costs and scanning 

time associated with obtaining and using multiple imaging modalities are serious limitations of this 

practice[17]. 

Thus, the natural follow-up is to completely replace the use of CT by MRI. When residing to 

MRI-only techniques, there must be an accurate method to derive CT equivalent data from the MR data 

to be able to perform attenuation correction and dose calculations in the same way as it is done when 

using a real CT image. MRI-based CT-equivalent images are generally called pseudo-CT images (or 

synthetic CT or substitute CT). This approach brings many benefits including the reduction of imaging 
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acquisition costs and radiation exposure, as well as the elimination of the registrations errors between 

different imaging modalities[18]. 

Several methods were developed in order to generate a pseudo-CT, either by using an anatomy-

based approach or a voxel-based approach. The main challenge for the first case lies in the difficulty of 

accurate registration when the patient’s geometry is very different from the atlas, which will lead to 

significant errors. When using a voxel-based approach, one of the main problems is the lack of signal in 

cortical bone, making it indistinguishable from the  air[18]. Ultrashort Echo Time (UTE) sequences have 

been proposed to distinguish bone and air[19]. However, for areas with a large field of view (FOV), such 

as the pelvic area, difficulties related to the hardware and noise considerations associated with UTE 

sequences make them unsuitable for clinical application[20]. Furthermore, most of these methods also 

acquire different MR sequences in order to obtain different contrasts to generate the pseudo-CT, which 

leads to an increase in scanning time[21] [22] [23]. 

In this dissertation, we propose to develop a MRI conversion approach for the generation of 

pseudo-CTs using a combination of an MR-based water-fat decomposition algorithm with a Gaussian 

mixture regression algorithm for the pelvic area. In this way, the acquisition of different sequences to 

obtain different contrasts will be replaced by contrasts that could be obtained through post-processing 

of images from a single acquisition. Specifically, water and fat images may be obtained from a water-

fat-decomposition algorithm. Moreover, other semi-quantitative images may be obtained by the 

conjugation of these two images, such as a fat fraction image, that may provide a different contrast 

between voxels. Furthermore, as a gradient-echo sequence is used, an estimation of the T2* decay is 

possible. In this work, a dual-model regression is applied, with one model applied to soft tissue and the 

second model tuned to the bone anatomy obtained by segmentation. As soft tissues are mainly 

constituted by water and fat, the use of a water-fat decomposition scheme seems obvious for the 

separation of these two species in the MR images, followed by HU values assignment through 

regression. Regarding the bone anatomy, it was demonstrated the correlation of the T2* decay as well 

as proportion of the fat signal in a voxel with the bone mineral density [17][24] [25] [26] [27]. Furthermore, the 

correlation between the HU values and the bone mineral density was also demonstrated, with higher 

bone mineral density tissues, normally caused by the presence of minerals such as calcium, representing 

denser bones [28]. By including the water and fat information together with information about the T2* 

decay in a Gaussian mixture regression procedure, it is expected to obtain a good estimation of the HU 

units in the bone anatomy.  Also, the influence of including neighbourhood information for HU 

estimating in the bone anatomy is investigated. This approach was evaluated on six patient datasets for 

which CT and MR images were available for prostate sites, by using a leave-one-out-cross-validation 

procedure. The pseudo-CTs were obtained for the six patients and were compared to the corresponding 

CT images. 

The goal of this project was to investigate if the conversion of MR-data into CT equivalent data 

could be established without prior CT information and by a better fundamental understanding of the MR 

signal itself, aiming at completely removing CT acquisitions of the traditional workflow of PET-MRI 

and MR-RTP. 

This dissertation describes the work performed at Image Sciences Institute (ISI), part of the 

University Medical Center (UMC) of Utrecht, The Netherlands, during a 10 months internship. The 

work is here organized in 5 chapters. Chapter 2 provides background information about CT imaging, 

MR imaging and MR-based water-fat decomposition, different approaches to derive a pseudo-CT and 

Gaussian mixture regression. Chapter 3 describes the data, software and methods used in this work. 
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Chapter 4 presents the relevant results and also the discussion. Finally, Chapter 5 summarizes the main 

conclusions and possible future work. 
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Chapter 2 

Background 

2.1. CT imaging 

In CT, transaxial X-ray projections are computed to create cross-sectional images of the human 

body. In a CT scanner, the X-ray tube rotates around the body, while the beams pass through the patient 

at different angles. The intensity of the attenuated beams is measured and then converted into an electric 

signal using detectors placed on the opposite side of the X-ray tube. After processing, these signals are 

transformed into attenuation values consisting of the CT raw data[29]. This data is then converted into an 

image using one of several possible a CT reconstruction algorithms, of which the filtered back-

projection algorithm is the most widely used[30]. As a final result, each voxel of the reconstructed CT 

image represents a scanned voxel with a specific Hounsfield Unit (HU), describing the degree of 

attenuation relative to water[31]: 

 
HU(i, j) = 1000 × 

μ(i, j) − μw
μw

 

 

(2.1) 

where μ(i, j) represents the linear attenuation coefficient of the voxel (i, j) and μw is the linear 

attenuation coefficient for water at the same spectrum of photon energies. 

The HU is a measure that describes the absorption properties of the tissue relative to water. 

Therefore, different HU values are responsible for creating different contrasts in a CT image, as it can 

be seen in figure 2.1[31]. Generally, bone appears brighter since it has the highest HU values (ranging 

from 400 to 1800 HU), air is black as it presents the smallest HU values (-1000 HU), while soft tissues 

present different shades of grey according to their HU values[32] [33]. The similarity in HU values for 

different soft tissues makes the distinction between tumours and healthy tissues difficult.  

 

Figure 2.1 - HU values for different tissue types in human body. y-scale represents the HU scale [33]. 
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The accuracy of attenuation correction and dose calculations based on CT images is determined 

by the precision of HUs to relative electron densities conversion. This relationship is called calibration 

curve[34]. 

2.2. MR Imaging 

2.2.1.  Physical Principles 

Due to the magnetic properties of the atomic nuclei, protons and neutrons present a spin angular 

momentum and an associated magnetic moment 𝜇. In Nuclear Magnetic Resonance (NMR), instead of 

a single particle, it is important to study all particles[35]. Thus, it is important to convert from the magnetic 

momentum of a single particle to a measure that represents the sum of all magnetic momenta. This sum 

can be represented by a vector called magnetization, 𝑀⃗⃗⃗: 

 𝑀⃗⃗⃗ =  ∑𝜇𝑖⃗⃗⃗⃗  

 

(2.2) 

For NMR’s studies, two components of 𝑀⃗⃗⃗ are important: 𝑀𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, the transverse magnetization, and 

𝑀𝑧⃗⃗ ⃗⃗⃗⃗ , the longitudinal magnetization. In a state without any external force applied, the magnetic 

momentum of each particle is random, and therefore 𝑀⃗⃗⃗ is equal to 0, as it can be seen in figure 2.2[35] 

[36]. 

 

 

When an external magnetic field B0 is applied (normally in z-component), the magnetic 

momentum of each particle will align with the direction of B0, and therefore the magnetization vector 

in the z-direction is not 0, as represented in figure 2.3. For 1H, which is the most typical isotope used in 

NMR, only two magnetic momenta are allowed (±1/2) and therefore two energy states are allowed, 

having the same energy. However, if the proton is placed into B0, the angular momentum will align with 

Figure 2.2 – Illustration of a single particle momentum and resulting magnetization vector when there is no external force 

applied [36]. 
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the field direction, making that the resultant magnetic momentum does not have the same energy for 

both states. The state with the z-component parallel to B0 presents a lower energy than the state with the 

z-component anti-parallel. In this way, there are more particles align parallel to B0 than anti-parallel and 

𝑀⃗⃗⃗ will be parallel to B0 
[36][37]. 

 

 

It is possible that spin transition from one state to the other one happens by supplying energy to 

the system. This energy has to be equal to the difference of energy of both states. This energy supplying 

can be done by applying a radio frequency (RF) pulse with frequency equals to 

 𝜔0 = 𝛾𝐵0 (2.3) 

   

Where 𝜔0 is named Larmor frequency and 𝛾 is the gyromagnetic ratio, that is specific to the used 

isotope (for 1H, γ/2π=43 MHz/T). 

When the RF pulse (B1 field) is applied in the xy-plane with the Larmor frequency, the particles 

in the spin-up state can, therefore, transit to the spin-down state. Adding to this effect, the individual 

particles will rotate (precession movement) in phase (phase coherence) allowing a transverse 

magnetization to appear, as represented in figure 2.4. Regarding 𝑀⃗⃗⃗, the RF pulse will lead the rotation 

of this vector, and the angle of rotation (flip angle, α) will only depend on the amplitude of the B1 field 

and the duration of the pulse (t): 

 𝛼 = 𝛾𝐵1𝑡 (2.4) 

 

Figure 2.3 – Illustration of a single particle momentum and resulting magnetization vector when there B0 magnetic field is 

applied [36]. 
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As the RF pulse is stopped, the particles return to the rest state as well as 𝑀⃗⃗⃗. For this to happen, 

the particles emit a RF wave with the Larmor frequency, called the free inductive decay (FID). The 

return to the equilibrium state is called relaxation and is governed by two physical phenomena: spin-

lattice relaxation and spin-spin relaxation[36][37] [38].  

As the spins return to the spin-up state, 𝑀𝑧⃗⃗ ⃗⃗⃗⃗  returns to the rest state (spin-lattice relaxation) due to 

energy dissipation to the spins’ surroundings. This process is called T1 recovery, described by  

 𝑀𝑍 = 𝑀0 (1 − 𝑒
−𝑡/𝑇1) 

 

(2.5) 

Where 𝑀0 is the magnetization at t=0, and T1 is the spin-lattice relaxation time or longitudinal 

time. 

Moreover, after stimulation, the net magnetization starts to dephase (spin-spin relaxation), due to 

the inhomogeneities of B0 and the interaction between the spins. This process is called T2 decay and it 

is described by 

 𝑀𝑥𝑦 = 𝑀𝑥𝑦0 𝑒
−𝑡/𝑇2 

 

(2.6) 

Where T2 is the spin-spin relaxation time or transverse relaxation time. 

Although relaxation is the result of stochastic processes, some deterministic conditions, such as 

the inhomogeneity of B0, causes different spins to precess with different resonance frequencies. The B0 

inhomogeneities may be caused by the presence of mineral such as iron and calcium, that create 

distortion in B0
[37]. Thus, the spins will dephase, causing the decay of the total transversal magnetization. 

In this way, the effective transversal relaxation time will be referred as T2* and it is defined as 

 1

𝑇2
∗ =

1

𝑇2
+
1

𝑇2
′ 

 

(2.7) 

Figure 2.4 – Illustration of a single particle momentum and resulting magnetization vector when the RF-pulse (B1 field) is 

applied [36]. 
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Where T2 is the stochastic contribution and T2’ the deterministic. By definition, T2* is always 

shorter than T2. 

T1, T2 and T2* relaxation times are dependent on the material composition and consequently also 

the acquired NMR signal. 

However, as the FID signal quickly vanishes due to the T2* decay, it is difficult to acquire. 

Therefore, MRI pulse sequences are used for rephasing the spins. The coherent signal that is emitted 

after rephasing is designed by echo. In practice, the pulse sequences are always repeated with a fixed 

repetition time (TR) in order to reduce the noise and to achieve different space encoding in the different 

repetitions. There are two fundamental types of MR pulse sequences: Spin Echo (SE) and Gradient Echo 

(GE) sequences[37]. The remaining developed MR sequences derive in some way from the combination 

of the SE and GE sequences. 

In a SE sequence, after applying a 90° RF-pulse, the transversal magnetization will decay 

exponentially according to T2*, due to differences in the frequency precession of different spins. If a 

second RF-pulse with a flip angle of 180° is applied, all spins will rotate 180° around the direction of 

the B1 field, causing the inversion of the relative phases of the spins in the transversal plane, while the 

longitudinal magnetization continues unchanged. In this way, faster spins that were leading in-phase 

will now be lagging in phase. After the 180° pulse, these spins will catch up with the slower spins, 

causing the rephasing of the spins. This rephasing results in an echo signal. The time between the 90° 

pulse and the emission of the echo is called echo time (TE) [37]. 

Gradient echo sequences are created using a magnetic field gradient instead of a RF-pulse. After 

the excitation pulse, typically smaller than 90°, a gradient is switched on, causing the dephasing of the 

spins. Then, the polarity of the gradient is reversed, causing the spins’ rephasing and the formation of 

an echo. As the spins’ rephasing occurs only with respect to the gradient, and not to other sources of 

dephasing, the signal amplitude is dependent on the T2* decay[37]. 

This T2* decay can be quantified in GE sequences using: 

 1

𝑇2
∗ = 𝑅2

∗ = −
log 𝑆(𝑇𝐸𝑛) − log 𝑆(𝑇𝐸1)

𝑇𝐸𝑛 − 𝑇𝐸1
 

 

(2.8) 

where 𝑆(𝑇𝐸𝑛) is the signal intensity when the TE was equal to the nth echo of the acquisition, 

𝑇𝐸𝑛 is the echo time of the nth echo of the acquisition. 𝑆(𝑇𝐸1) is the signal intensity of the first echo of 

the acquisition acquired at 𝑇𝐸1.  

In this way, MR intensities can be correlated with proton densities, which are related to the 

number of hydrogen atoms in a volume, and tissue relaxation properties rather than with the attenuation 

properties of the tissues such as in CT. The density and relaxation time of protons in different tissues is 

used to create the required contrast and signal intensity for diagnostic purpose in MR images by changes 

in TE and TR. The contrasts are created based on a linear look up table, where magnitudes of the 

measured signals are converted to a grey tone. 

Thus, there are 3 different types of contrasts in MR images that can be created by changing TE 

and TR: T2-weighted images, T1- weighted images and proton-density (PD) weighted images[39]. In T2-

weighted images, the TR and TE are both long and tissues with long T2, such as fluids, present the 

highest signal intensities, producing a bright appearance. T2 images are often called as “pathology 

images” as the abnormal fluids appear bright against the dark normal tissue. In T1-weighted images, 

long T1 tissues give the weakest signal and appear dark, as fluids, and bright pixels are associated with 
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short T1 values, such as fat based tissues. This contrast can be achieved by using short TR and TE. T1 

images are often called anatomy scans as they display clearly the boundaries between different tissues. 

PD-weighted images give a quantitative summary of the number of protons per unit tissue. The higher 

the number of protons in a tissue, the brighter the tissue will appear on the image. This contrast can be 

achieved by using a long TR and a short TE[39]. 

As for CT, MRI generates cross-sectional images of the human body. The RF pulse is therefore 

delivered only to the slice that is needed to be imaged. Slice position will be selected according to the 

central frequency of the applied RF pulse. After selecting slice thickness and position, the spatial 

position of the MR signal needs to be identified which is accomplished using spatial encoding. Spatial 

encoding comprises two steps, phase encoding and frequency encoding, requiring the application of 

additional gradients that will change the magnetic field strength along the x and y axis enabling unique 

spatial identification of each voxel. The raw-data space which is used to store the digitized MR signals 

during acquisition is called k-space. The k-space has two axes with the horizontal axis (kx) representing 

the frequency information and the vertical axis (ky) the phase information. The final MR image will be 

created from the raw data by applying the 2D- Fourier Transformation to the k-space after the scan is 

over[39]. 

2.2.2. Fat and water Magnetic Resonance Imaging 

Most clinical magnetic resonance imaging applications detect the signal from protons, which 

compromise over 90% of nuclei in the human body. The detected protons are either part of water, bound 

to molecules or carbohydrates, or fat. Their respective signal intensities in imaging voxels results from 

a combination of their spin density, longitudinal and transverse relaxation times (T1 and T2, 

respectively), and the parameters of the imaging sequence used. By exploiting the particular 

characteristics of hydrogen, MRI can provide excellent contrast between soft tissue, according to 

whether they are bound to water or lipid molecules[40]. 

With its relatively short T1 relaxation time, fat signal often appears bright in many important 

clinical imaging sequences and can obscure underlying pathology such as edema, inflammation, or 

enhancing tumours. For this reason, water-fat decomposition methods are necessary to supress or detect 

fat signal and improve visualization of these abnormalities[40].  

Several techniques of water-fat decomposition were proposed such as the chemical shift 

saturation pulse and the short-tau inversion recovery (STIR). In the first technique, a frequency selective 

RF pulse and a spoiler gradient pulse are used in conjunction to first excite and then saturate the fat 

magnetization before water is excited during imaging[41]. In STIR, the longitudinal magnetization of fat 

is first flipped 180° by an inversion pulse and then allowed to relax back to its equilibrium along the 

magnetic field direction. Water magnetization, which is usually also flipped 180° by the same inversion 

pulse, is excited when the longitudinal magnetization of fat crosses the null point. Due to the short T1 

relaxation time of fat, water has usually relaxed only partially along the longitudinal axis at the time of 

excitation[42] [43]. 

Although the previous techniques can obtain a reliable fat suppression, for pseudo-CT generation 

purposes, detection rather than suppression is more valuable, once quantification of water and fat is 

necessary, since they present different HU values, as it can be seen in figure 2.1. Also, it was 

demonstrated that the quantitative fat fraction is correlated with bone mineral density, which is 

correlated with the HU values of bone[26] [28].  
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In this way, methods that could quantify the signal of water and fat are preferred over suppression 

techniques. These methods that are able to perform separation as well as quantification are referred as 

chemical shift water-fat decomposition techniques[40] [44]. 

2.2.2.1. Physics of water-fat imaging 

2.2.2.1.1. NMR Spectrum of water and fat  

The electronic shielding of the protons in fat molecules is greater than that experienced by protons 

in water molecules, resulting in different microscopic magnetic fields, and subsequently different proton 

resonance frequencies. Fat has a complex spectrum with multiple peaks, the largest of which is shifted 

downfield by ≈ 3.5 ppm from the water peak[40] [45]. 

The resulting chemical shift, Δfcs in the resonance frequency is linearly related to the magnetic 

field strength B0: 

 ∆𝑓𝑐𝑠 =
𝛾

2𝜋
𝐵0 × ∆𝛿 [𝑝𝑝𝑚] ×10

−6 

 

(2.9) 

As the chemical shift is directly proportional to B0, the chemical shift at 1.5 T is -210 Hz (fat 

precesses slower than water), while at 3 T, it doubles to -420 Hz at body temperature (37°C), as 

represented in figure 2.5[46]. 

 

2.2.2.1.2. B0 Inhomogeneities 

Most of the water-fat separation techniques rely on the assumption that there are constant 

frequencies for fat and water across the image. However, in practical applications many factors can 

create inhomogeneities in the B0 field that violate this assumption and result in imperfection suppression 

of fat[40]. 

Although the main magnet itself may have an imperfect magnetic homogeneity, this is a minor 

effect since modern MR scanners are shimmed to homogeneity within 1 ppm across the field of view 

(FOV). Magnetic susceptibility introduced by the patient leads to more significative B0 inhomogeneities 

and it can be caused by several sources, such as air/tissue interfaces, ears or the bowel gas. These B0 

Figure 2.5 – Illustration of the resonance spectrum of water and fat at 3 Tesla. The stars represent the additional peaks of 

fat [40]. 
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inhomogeneities have three main effects: distortion in the readout gradient, accelerated T2* decay for 

gradient echo imaging and failed fat suppression which is the most relevant for the context of this 

work[40].  

2.2.2.2.  Water-Fat Separation Techniques 

2.2.2.2.1. Chemical shift based water-fat separation  

Chemical shift based water-fat separation methods comprise a class of approaches commonly 

known as “Dixon” water-fat separation. As for the frequency selective approach, the Dixon techniques 

rely on the water-fat chemical shift difference. However, the Dixon techniques encode the chemical shift 

difference into the signal difference with a modified data acquisition and then achieve the water/fat 

separation through post-processing. In its original approach, Dixon acquired an image with water and 

fat signal in-phase and another image with the signal 180° out-of-phase[44] [47]. The choice of the echo 

times to achieve these two images is done using  

 
𝑇𝐸 =  

𝜃

2𝜋 ∆𝑓𝑐𝑠
 

(2.10) 

 

where θ is the phase shift between water and fat signal. In this way, the Dixon technique can be 

described by the following equation system: 

 

{
𝐼𝑃 = 𝑊 + 𝐹
𝑂𝑃 = 𝑊 − 𝐹

  <=> {
𝑊 =

(𝐼𝑃 +  𝑂𝑃)

2

𝐹 =
(𝐼𝑃 −  𝑂𝑃)

2

 

 

 

(2.11) 

where IP represents the in-phase image, OP the out-of-phase image, F the fat image and W the 

water image. As this approach only requires two images, it is considered a “two-point” method. 

Unfortunately, Dixon’s original approach was sensitive to B0 inhomogeneities that resulted in 

water-fat swapping in the image[40]. Thus, this approach was subsequently modified to include a third 

image that was used to compensate for B0 inhomogeneities. This three-point method acquire images at 

TE values that generate phase shifts of 0, +π and -π between the water and fat[48]. The additional 

information can be used to calculate a B0 field inhomogeneity map (field map). By using phase 

unwrapping algorithms, this approach is able to remove the effects of field distortions, thereby avoiding 

water-fat swapping, turning this method more robust[44] [49] [50]. However, this technique increases the 

scan time and doesn’t allow flexibility in the sequence design since the images have to be acquired at 

specific TE values[40]. 

To allow more flexibility in the pulse sequence design and, consequently, reduce the scan time, 

several methods were developed that allow arbitrary TE values to accomplishing the water-fat 

separation, such as the iterative decomposition of water and fat with echo asymmetry and least squares 

estimation (IDEAL)[51]. This method uses images acquired at arbitrary TE values together with an 

iterative least square estimation of the field map to accomplish a voxel-independent water-fat separation. 

However, in areas with severe field inhomogeneities this method still fails to obtain an accurate field 

map since, with this technique, the field map can be directly estimated only if the true field map ranges 

between ± Δfcs/2. In practice, the field inhomogeneity may exceed this range[52]. Furthermore, these 

techniques normally use an alternating bipolar readout gradient to achieve scan efficiency and reduce 
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the echo spacing. The use of this alternating bipolar gradient turns the estimation of the field map 

susceptible to eddy-currents, which manifest itself as phase errors[53] [54] [55]. 

More recently, a water-fat separation method that uses a graph-cut algorithm to jointly estimate 

water/fat images and the field map was proposed[56]. In this approach, the estimation of the field map at 

all voxels is formulated as the minimization of a global criterion, which is the linear combination of the 

sum of the voxel-independent criteria and a field map smoothing penalty, and solve it using an iterative 

graph cut algorithm. This algorithm is further explained below. 

2.2.2.2.1.1.  Graph Cut Water-Fat decomposition algorithm 

The graph cut water-fat estimation algorithm uses a multi-echo water and fat decomposition 

scheme, where a sequence of images is collected with different echo time shifts, t1, t2, tn. The signal at 

each individual voxel is described by the following model[51] [56]: 

 𝑠(𝑟, 𝑡𝑛) = (𝜌𝑤𝑎𝑡𝑒𝑟(𝑟) + 𝜌𝑓𝑎𝑡(𝑟)𝑒
𝑗2𝜋∆𝑓𝑐𝑠𝑡𝑛)𝑒−𝜑(𝑟)𝑡𝑛 ,    𝑛 = 1,… , 𝑁 (2.12) 

 

where ρwater(r) and ρfat(r) are complex-valued concentrations of water and fat, respectively. The 

field map, f(r), is consolidated in  𝜑(𝑟) through 

 𝜑(𝑟) = [𝑗2𝜋 f(𝑟)]    

 

(2.13) 

From this signal model, it is possible to observe that there are 2 complex unknows, ρwater(r) and 

ρfat(r), and 1 real unknown, f(r), in a total of 5 (each complex unknown has a real and imaginary 

unknown). As each image contributes with a real and imaginary measurement, constituting two 

measurements per TE value, at least 3 images at different TE values have to be acquired, since the 

number of measurements has to be always equal or higher than the number of unknown parameters. 

Also, in this signal model, it is assumed that fat only presents a single resonance frequency. 

However, fat has several peaks. In particular, the spectral peak from olefinic proton (5.3 ppm) is close 

to the water resonance frequency, which can cause some water-fat swapping[57]. One possible solution 

is to include in the signal model a weighted sum of the amplitudes of the fat peaks, by changing equation 

2.12 to: 

 

𝑠(𝑟, 𝑡𝑛) = (𝜌𝑤𝑎𝑡𝑒𝑟(𝑟) + 𝜌𝑓𝑎𝑡(𝑟) [∑𝛽𝑖𝑒
𝑗2𝜋∆𝑓𝑐𝑠𝑖𝑡𝑛

𝑀

𝑖=1

]) 𝑒−𝜑(𝑟)𝑡𝑛 ,    𝑛 = 1,… , 𝑁 

 

 

(2.14) 

Here, the fat signal is modelled using an M (usually 6) peak model, where ∆𝑓𝑐𝑠𝑖 is the chemical 

shift between the ith fat peak and water (Hz), and βi >0 is the relative weight of each peak. However, this 

model would require N ≥ M+2 images to estimate the unknown parameters, which is not practical due 

to the increased scan time. In this way, it is assumed that βi are known. Thus, the number of unknown 

parameters remains the same as the single peak model[56] [57]. Consequently, only 3 images have to be 

acquired. 

However, this multi-peak signal model doesn’t account for T2* decay. Although for many 

applications the T2* decay may be neglected, for imaging with substantially shortened T2*, it is 

important to consider the effects from both fat and T2*, as they may interfere with the estimation of each 

other. Therefore, it is possible to estimate the R2* map, i.e. R2* =1/ T2*, by including it in the signal 
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model[57] [58]. This can be done by modelling the B0 field inhomogeneity and the T2* decay in a complex 

field map term, by changing equation 2.13 to: 

 𝜑(𝑟) = [1 𝑇2
∗(𝑟)⁄ − 𝑗2𝜋𝑓(𝑟)] 

 

(2.15) 

In this way, the number of unknown parameters increases to 6, thus 3 images acquired at different 

TE values should be enough for obtaining all the unknown parameters. However, as the number of 

complex acquired images is equal to the number of unknown parameters, the estimation can be very 

sensitive to noise. For a better performance, typically 6 echoes are acquired. Furthermore, for pseudo-

CT generation, besides the importance of the R2* estimation for water-fat decomposition, some studies 

prove the correlation between R2* values and HU values, especially in bone tissues. This is mainly due 

to the correlation between R2* values and bone mineral density, since bone minerals as calcium create 

local inhomogeneities that are reflected by R2* values [27]. 

 The model in equation 2.14 can be written in a matrix form as: 

 

[
 
 
 
 
 
𝑒−(𝜑(𝑟)𝑡1) 𝑒−(𝜑(𝑟)𝑡1) (∑𝛽𝑖𝑒

−𝑗2𝜋𝛿𝑖𝑡1

𝑀

𝑖=1

)

𝑒−(𝜑(𝑟)𝑡𝑛) 𝑒−(𝜑(𝑟)𝑡𝑛) (∑𝛽𝑖𝑒
−𝑗2𝜋𝛿𝑖𝑡𝑛

𝑀

𝑖=1

)
]
 
 
 
 
 

⏟                          
𝐴𝜑

∗ [
𝜌𝑤𝑎𝑡𝑒𝑟
𝜌𝑓𝑎𝑡

]
⏟    

𝑔

= [
𝑠[1]

𝑠[𝑁]
]

⏟  
𝑠

 

 

 

(2.16) 

 

The unknown parameters are obtained by minimizing the least-square errors between the model 

and the measured data: 

 {𝜌𝑤𝑎𝑡𝑒𝑟 , 𝜌𝑓𝑎𝑡 , 𝜑} = arg min
𝜌𝑤𝑎𝑡𝑒𝑟,𝜌𝑓𝑎𝑡,𝜑

‖𝐴𝜑𝑔 − 𝑠‖
2
 (2.17) 

 

Since the above minimization is dependent on many parameters, the criterion is minimized with 

respect to some variables by assuming the other to be fixed, thus eliminating them from the 

optimization[59]. Minimizing the above cost function with respect to the concentrations, assuming ϕ to 

be fixed, we obtain the optimal concentration estimates as 𝑔𝑜𝑝𝑡 = (𝐴𝜑
𝑇𝐴𝜑)

−1𝐴𝜑
𝑇 𝑠.  Replacing the 

optimal concentrations back in the previous cost function, and solving for ϕ, we obtain 

 
𝜑(𝑟) = argmin

𝜑
‖𝐴𝜑(𝐴𝜑

𝑇𝐴𝜑)
−1
𝐴𝜑
𝑇 𝑠(𝑟) − 𝑠(𝑟)‖⏟                    

𝐶(𝑟,𝜑)

2
    

(2.18) 

 

In case of necessity of R2* estimation, again it is possible to minimize the expression with respect 

to T2* to obtain a cost function that is only dependent on f: 

 𝑓(𝑟) = argmin
𝑓
min
𝑇2
∗
𝐶(𝑟, 𝜑)

⏟      
𝐷(𝑟,𝑓)

 (2.19) 

 

Since the estimation of T2* values doesn’t suffer from ambiguities, an exhaustive search over 

possible T2* values can be performed to obtain D from C.  
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In order to address the sensitivity of the voxel-by-voxel optimization strategy described in 

equation 2.19 to multiple feasible solutions and phase wrapping, the joint recovery of the field map is 

formulated as a smoothness regularized optimization scheme. The global criterion is the linear 

combination of the sum of D and a smoothness penalty: 

 𝑓 = 𝑎𝑟𝑔min
𝑓
∑𝐷(𝑟, 𝑓(𝑟))

𝑟

+ 𝜇∑∑𝜔𝑟,𝑠 |𝑓(𝑟) − 𝑓(𝑠)|

ℵ(𝑟)𝑟

 

 

(2.20) 

Here, ℵ(r) is the local neighbourhood of the voxel at location r, μ is an additional smoothing 

constant and ωr,s are pre-defined weights that specify the relative importance of each difference term. 

The first term of equation 2.20 is the sum of the voxel independent criteria in equation 2.19, while the 

second term promotes field map smoothness. Then, the continuous problem is converted to a discrete 

optimization scheme by restricting the field map to a set of discrete values. 

However, the direct discrete minimization of equation 2.20 is computationally infeasible, since it 

involves a large and fully connected graph, an iterative scheme where a one-layer graph is constructed 

and a sequence of binary decision problems at each iteration[60]. These decision problems are solved 

efficiently using a s-t graph cut algorithm. Thus, at (n+1)th iteration, there are two possible solutions at 

each voxel:Γ𝑛+1(𝑟) = {𝑓𝑛(𝑟), 𝑔𝑛(𝑟)} . Here, 𝑓𝑛(𝑟) is the optimal solution obtained from the previous 

iteration, while 𝑔𝑛(𝑟) is chosen as  𝑓𝑛(𝑟) ± 𝛽, where 𝛽 may be a pre-specified constant, or a picked 

randomly among a set of local minimizers of D. This binary decision problem is efficiently solved using 

a s-t graph-cut algorithm[61], guarantying the solution to converge to a global minimum, obtaining in this 

way the field map (and, if it is the case, the R2* map). Uploading this into the signal model represented 

by equation 2.14, it is possible to obtain the water and fat images.   

2.2.2.2.1.2. Fat Fraction 

As already discussed, quantification of the fat signal is important for pseudo-CT generation. The 

quantification can be done by calculating the relative amount of fat in a voxel[62], by using 

 
𝐹𝐹 =

𝐹

𝐹 +𝑊
 ×100 

 

(2.21) 

where FF refers to fat fraction, F and W to the fat and water signal in a voxel, respectively. 

Thus, the FF will present values between 0 and 100. However, if the true fat content is 0, any 

noise in the fat estimate will result in an FF>0. Thus, FF will be biased by noise[63]. This can be avoided 

by calculating the fat fraction as[55]: 

 

𝐹𝐹 = {

𝐹

𝐹 +𝑊
 ×100                    𝑖𝑓 𝑊 < 𝐹

(1 −
𝑊

𝐹 +𝑊
)×100         𝑖𝑓 𝑊 > 𝐹

 

 

 

(2.22) 

 

2.3. Estimating HU values from MR data 

As previously mentioned, PET-MRI and MR-RTP lack electron density information to perform 

attenuation correction and dose calculations. This problem is commonly solved by the acquisition of an 

additional CT scan, which leads to systematic errors in the workflow caused by the imperfect MR-CT 
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registration. Thus, the estimation of HU values from MR data is a crucial step in PET-MRI and MR-

RTP workflow. 

Several approaches were developed to solve this problem. It is possible to group the several 

approaches into two main groups: anatomy-based approaches and voxel-based approaches[18]. The 

anatomy-based method generally uses a non-rigid registration between a library of MR reference images 

and a new patient MRI to warp a reference CT to match the anatomy of the new patient data[64] [65] [66] 

[67]. This method leads to significant errors when the new patient MRI geometry is very different 

compared to the geometry of the MR atlas[18]. The voxel-based method could be divided into two types. 

The first one involves a direct characterization into different tissue classes by manual segmentation 

followed by bulk assignments of HU values[68] [69]. The second one comprises a direct conversion of 

MRI voxels values to HU values by introducing a prior correlation between MRI and CT [17] [22] [23] [70] 

[71]. 

2.3.1. Anatomy-based methods 

The anatomy-based method could be divided into two main approaches: the atlas-based method[64] 

[65] [66] [66] and the patch-based method[72]. 

2.3.1.1. Atlas-based method 

The atlas-based method uses information from the whole image and can be divided in 3 steps, as 

illustrated in figure 2.6: 

1. First, every CT and MR image from the atlas dataset are aligned using non-deformable 

registration (elastic deformation) to enable intra-subject alignment and producing multiple conjugated 

CT-MR atlas image pairs[64] [66]. 

2. Then, a registration between all MR atlas images and the MRI of a new patient is performed 

using non-deformable and deformable transformations, enabling the alignment between the MRI of the 

new patient and the MR atlas[64] [65]. 

3. The transformation matrices and deformation fields used in step 2 are also applied to the CT 

images in the atlas, building the pseudo-CT, according to different strategies of atlas fusion for HU value 

assignment [64] [65].    

 

 

Figure 2.6 – Workflow of an atlas-based approach to generate a pseudo-CT [64]. 
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The HU value for each voxel in the obtained pseudo-CT can be obtained using a simple mean 

process[64] [66] or a weighted average based on similarity measures[67]. 

Using a simple mean process, the pseudo-CT intensity (μ) of a voxel at the position x0 is calculated 

using the mean of those at the same location in all deformed CT images in the CT atlas[64]: 

 

𝜇(𝑥0) =
1

𝑁𝑎
×∑𝑦𝑖(𝑥0)

𝑁𝑎

𝑖=1

 

 

(2.23) 

Where Na is the number of atlases and yi the HU value in all CT images in the atlas. 

In the weighted average based on similarity measures method, the MRI of the new patient is 

matched with the MRI atlas database using deformable registration and local image similarity measures 

such as the local sum of squared differences (NSSD) and the structural similarity index extended to 

regions of interest (ROI-SSIM). The similarity results are ranked across all MR images in the atlas 

according to the quality of the registration. The ranks in each nth subject and each voxel 𝑣⃗, 𝑅𝑛𝑣⃗⃗, are then 

converted to weights, 𝑊𝑛𝑣⃗⃗. Better registration results lead to a higher weight by applying a negative 

exponential decay function[67]: 

 𝑊𝑛𝑣⃗⃗ = 𝑒
−𝛽×𝑅𝑛𝑣⃗⃗⃗  (2.24) 

 

Where β is a constant weighting factor. Then the intensity at each voxel of the pseudo-CT is 

calculated using 

 
𝐼𝑣⃗⃗
𝑝𝐶𝑇

=
∑  𝑊𝑛𝑣⃗⃗×𝐽𝑛𝑣⃗⃗

𝐶𝑇𝑁𝑎
𝑛=1

∑ 𝑊𝑛𝑣⃗⃗
𝑁𝑎
𝑛=1

 

 

(2.25) 

Where 𝐽𝑛𝑣⃗⃗
𝐶𝑇 is the atlas CT image from subject n at voxel 𝑣⃗. 

2.3.1.2.  Patch-based method 

The patch-based method involves the use of a rigidly aligned CT-MRI atlas as database but it 

excludes the use of deformable registrations. In this method, 3D patches are extracted from the target 

MRI followed by a spatial local search of the most intensity similar patches in the MRI database[72]. 

Thus, the use of deformable registrations is replaced by the patch resemblance search. 

The patches extracted from the MRI atlas are centred on an arbitrary spatial location x, PS(x), and 

the HU value on position x in the aligned CT is designed by TS(x). Then, using this database, an intensity 

based nearest neighbour search is performed using: 

 𝑑(𝑠, 𝑥) = ‖𝑃(𝑦) − 𝑃𝑆(𝑥)‖
2 

 

(2.26) 

where P(y) represents the patch at the target MRI. Then, the search is done aiming at finding the 

patch that minimizes 𝑑(𝑠, 𝑥). After this search, the corresponding HU value in the CT atlas at the same 

spatial location is stored as 𝑇𝑠𝑘𝑚𝑖𝑛(𝑥𝑘
𝑚𝑖𝑛). Then, the HU value in the pseudo-CT at position y is 

calculated using a weighted average: 

 
𝑝𝐶𝑇(𝑦) =

∑ 𝑤𝑘×𝑇𝑠𝑘𝑚𝑖𝑛(𝑥𝑘
𝑚𝑖𝑛)𝑘

∑ 𝑤𝑘𝑘
 

(2.27) 
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Where the weights, 𝑤𝑘, are calculated by: 

 
𝑤𝑘 = exp(

−𝑑(𝑠𝑘
𝑚𝑖𝑛, 𝑥𝑘

𝑚𝑖𝑛

min
𝑘
𝑑(𝑠𝑘

𝑚𝑖𝑛, 𝑥𝑘
𝑚𝑖𝑛

) 

 

 

(2.28) 

 

2.3.2. Voxel-based methods 

2.3.2.1. Manual Bulk Density Assignment 

The application of bulk density to MRI consists of the assignment of a single HU value to each 

tissue. HU values may be assigned to the entire body region, creating a homogeneous pseudo-CT, or to 

specific manually segmented volumes, creating a stratified pseudo-CT. Three sets of pseudo-CTs with 

increasing level of heterogeneity are commonly generated, as described in figure 2.7[68] [69]: 

 1. MRIu: Delineation of the body contour, assigning the body as made of soft tissue. 

 2. MRIb: Bone segmentation is also performed, assigning a corresponding single HU value to 

the bone, and the remaining anatomy is assumed to be soft tissue. 

 3. MRIb,c: Adding to point 2, air segmentation is performed assigning the corresponding bulk 

HU value. 

 

 

2.3.2.2. Direct Voxelwise Conversion 

Instead of manually segment different tissue types and assigning bulk HU values, which leads to 

an increased workload to the clinicians, the pseudo-CT can be obtained using a direct conversion of 

MRI values into HU value, adopting a patient specific tissue modelling by finding a prior correlation 

between MRI intensity signals and HU values. However, this approach faces some difficulties once 

there is no distinction between the MR signal in cortical bone and air when using conventional MR pulse 

sequences. This is due to the short T2* relaxation time of cortical bone, making the signal to quickly 

Figure 2.7 – Several Types of manual bulk density assignment [68] 
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disappears, and the low proton density of air. Thus, both areas appear as dark in a MRI. To overcome 

this problem, UTE sequences were developed[19]. 

In UTE imaging, the signal is sampled during the FID, allowing the acquisition of the MR signal 

in the cortical bone before the signal vanishes. Thus, this pulse sequence uses TEs ranging between 

0.008 ms and 0.15 ms, being 10 to 200 times shorter than conventional sequences, by using a hard-

rectangular RF pulse with a small flip angle in combination with a radial, center-out k-space sampling. 

Here, the FID is mainly proton-density weighted, lack soft tissue contrast, but providing contrast 

between bone and air. In order to obtain more soft tissue contrast, the acquisition of another echo is 

needed. The addition of a new echo to the pulse sequence followed by its image subtraction from the 

first echo is called differential UTE (dUTE) imaging, enabling the distinction between short T2* species 

(bone and air) and long T2* species[25]. 

For the generation of pseudo-CTs using UTE sequences, automatic segmentation using bulk 

density assignment [25] or continuous model based methods may be used[17] [22] [23] [70] [71]. 

Regarding the bulk density assignment, a pseudo-CT may be constructed using dUTE imaging 

with 2 TEs, followed by the calculation of a R2* map using equation 2.8. Then, a simple segmentation 

by thresholding is performed, segmenting the R2* map into 3 tissue types: air, bone and soft tissue. 

Then, a bulk HU value is assigned to each one of the tissues creating a stratified pseudo-CT [25]. 

The use of continuous model based conversion methods relies on statistical models, describing 

the relationship between the voxel intensities in MR and CT data. The application of these statistical 

models involves using a set of CT and MR images co-registered to each other and resampled to the same 

resolution. Several statistical models were applied for pseudo-CT generation, namely a fuzzy c-means 

clustering technique and a Gaussian mixture regression procedure. For the first case, a dUTE sequence 

is acquired with three TEs. Then, an R2* map is constructed using the first and third echo through 

equation 2.8. Also, a water-fat separation is also performed using a 2-point Dixon technique with the 

second and third echo, using equation 2.11. Then, for each image voxel, a probability between 0 and 1 

of belonging to one of the tissue classes defined (air, bone, water and fat) is calculated. The pseudo-CT 

value of a voxel is then obtained by the product of the posterior probability of each voxel belonging to 

each one of tissue types defined and the mean HU value of each tissue class. The final pseudo-CT is 

obtained by summing the results across all classes. As a result, the probability weighted sum of the 

attenuation properties of each voxel yields an attenuation map capable of producing a pseudo-CT based 

on MR information of a new patient (figure 2.8)[17]. Regarding the use of a Gaussian mixture regression 

procedure, three sequences were acquired, two dual echo UTE sequences with different flip angles and 

one T2 weighted spin echo sequence. Thus, five images are obtained. For each of the obtained images, 

two new images are derived by calculating the mean and standard deviation in a 27-voxel neighbourhood 

around each voxel, increasing the number of images to 16. Then, the joint distribution of these sixteen 

images and the CT image was calculated using a Gaussian mixture regression procedure (as explained 

in section 2.4), allowing the creation of a pseudo-CT[22]. 
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These methods were successfully applied to areas with a small FOV, such as the head and neck. 

However, its application in areas with larger FOV, such as the pelvic area, become difficult due to 

questions related to the hardware tweaking and noise considerations. Thus, some methods were 

developed using conventional sequences. These methods focus on developing a conversion model 

between the MR data and CT data, excluding the automatic bone segmentation as normally a manually 

segmentation of the bone is performed[73] [74]. Methods of bone segmentation such as anatomy-based 

segmentation or the development of a shape model of the bone can be added to the conversion models 

in order to obtain a fully-automated method. Furthermore, these methods usually consider the air in the  

rectum as soft tissue, due to the difficulty in segmenting it from areas with low T1 relaxation time, such 

as the liquid in the bladder. However, it has been proven that the this fact doesn’t introduce significant 

errors in dose calculation as well as attenuation correction[70].  

One of these methods acquires three MR pulse sequences, namely: a 3D T1 weighted Fast Field 

Echo (FFE) sequence, a 3D T2-weighted turbo spin echo sequence and 3D balanced turbo field echo 

sequence[23]. Then after the manual segmentation of the bone anatomy (cortical bone and bone marrow), 

the voxel intensity in the resulting pseudo-CT is obtained using: 

 

𝐼𝑝𝐶𝑇 =∑𝑤𝑖𝑀𝑖

3

𝑖=1

 

 

(2.29) 

Where 𝑀𝑖 represents the MR voxel intensity in the ith MR image acquired and 𝑤𝑖 the weight 

assigned to it. This weight can be calculated using the following procedure: 

1. The weights are initialized with random values 

2. Pseudo-CT is generated  

3. The difference between the obtained pseudo-CT and the CT is calculated 

4. Minimization of the Euclidean Distance 

5. Resulting weights are used to build the new pseudo-CT 

Another method for generating a pseudo-CT for the pelvic area is based on a dual-model 

conversion method for the bone segment and for outside the bone segment, that are defined after manual 

segmentation, using a T1/ T2* -weighted sequence[70] [71]. For the model outside the bone segment, the 

MR image intensity was segmented into 3 classes, urine, fat and water, and the HU assignment for this 

area was made by linear interpolation. For the bone model, this method takes advantage of the complex 

relation between T2* and HU, by generating a simplified model to explain it. First, the signal in the bone 

anatomy is normalized to the signal from water. Finally, a second order polynomial regression is 

Figure 2.8 – Illustration of the workflow of pseudo-CT generation using a fuzzy c-means algorithm [21]. 
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performed between the HU values in the bone and the normalized values. The result of this regression 

can then be applied to other subjects to obtain the bone pseudo-CT. The final pseudo-CT is generated 

by the simple overlapping of the two images obtained.  

2.4. Gaussian Mixture Regression 

2.4.1. Gaussian Mixture Model 

The foundation for doing Gaussian mixture regression (GMR) is to model the joint density of the 

input/output (X/Y) space by a weighted sum of K multivariate Gaussian probability density functions 

(pdfs)[75]: 

 

𝑓𝑋,𝑌(𝑥, 𝑦) =∑𝜋𝑗𝜙(𝑥, 𝑦; 𝜇𝑗, Σ𝑗)

𝐾

𝑗=1

 

 

(2.30) 

 

Where 𝜋𝑗 is a prior weight subject to the constraint ∑ 𝜋𝑗
𝐾
𝐽=1 = 1 and 𝜙 is a multivariate Gaussian 

pdf with mean 𝜇𝑗 = [
𝜇𝑗𝑋
𝜇𝑗𝑌
] and covariance matrix Σ𝑗 = [

Σ𝑗𝑋𝑋 Σ𝑗𝑋𝑌
Σ𝑗𝑌𝑋 Σ𝑗𝑌𝑌

]. By definition Σ𝑗 is symmetric so 

Σ𝑗𝑋𝑌 = Σ𝑗𝑌𝑋. 𝑥 and  𝑦 are spatially corresponding voxel values in the input and output, respectively. 

Equation 2.30 represents a Gaussian mixture model (GMM). Each Gaussian, or component, in the model 

is sought to explain the distribution of a sub-population in the data. 

The parameters 𝜃𝑗 = (𝜋𝑗, 𝜇𝑗 , Σ𝑗) of each Gaussian in the GMM are often not known in advance 

and needs to be estimated from the data at hand. A common way of doing this is by maximizing the log-

likelihood function which explains the probability of the data given the parameters: 

 𝜃 = argmax
𝜃
(𝑝(𝑋, 𝑌|𝜃) (2.31) 

The expectation maximization (EM) algorithm can be used to achieve this[76]. This optimization 

method iteratively estimates the maximum likelihood parameters from an initial guess of the parameter 

values. Although it is beyond the scope of this dissertation to go into details on how the EM algorithm 

optimizes the log-likelihood, this algorithm estimates the best parameters in two steps. Thus, the EM 

iteration alternates between performing an expectation step, which creates a function for the expectation 

of the log-likelihood evaluated using the current estimate of the parameters, and a maximization step, 

which computes parameters maximizing the expected log-likelihood found in the expectation step. 

Then, the estimated parameters are then used to determine the distribution of the latent variables in the 

next iteration of the expectation step.  Furthermore, two important things should be noted about the 

method. Firstly, the EM algorithm cannot determine the number of components to use. This means that, 

for a good estimation of the GMM, one needs a prior knowledge of the number of components or sub-

populations that exist in the data. Also, the EM method may converge to a local (and not global) 

maximum of the log-likelihood function depending on the initial starting point. Hence, the initial 

parameter guess is quite important as it may affect which optimum is found. In order to come up with a 

qualified initial guess on the composition of the components in the GMM, a k-means clustering 

algorithm can be applied to the data to make a rough estimation of 𝜃 [77]. 
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2.4.2. Regression using a Gaussian Mixture Model 

Gaussian mixture regression (GMR) consists of a training phase and a test phase. When a decision 

has been made as to the number of components to use in the GMM, the training phase is, as described 

in the previous section, composed of estimating the parameters of the GMM using the EM algorithm. 

Once the GMM has been estimated, it can be used for regression. This is the test phase, which means 

the GMM is used on previously unseen input data, to make a prediction on the appearance of the output. 

To make predictions, the expected value of Y given an observed value of X=x should be found. From 

the definition of joint density, each Gaussian in equation 2.30, can be partitioned as the product of the 

conditional density of Y and the marginal density of X of each Gaussian: 

 𝜙(𝑥, 𝑦; 𝜇𝑗 , Σ𝑗) = 𝜙(𝑦|𝑥; 𝑚𝑗(𝑥), 𝜎𝑗
2)𝜙(𝑥, 𝜇𝑗𝑋, Σ𝑗𝑋𝑋),   𝑗 ∈ 1,2,… , 𝐾 

 

(2.32) 

Where 

 𝑚𝑗(𝑥) = 𝜇𝑗𝑌 + Σ𝑗𝑌𝑋 Σ𝑗𝑋𝑋
−1 (𝑋 − 𝜇𝑗𝑋) 

 

(2.33) 

 

 𝜎𝑗
2 = Σ𝑗𝑌𝑌 − Σ𝑗𝑌𝑋 Σ𝑗𝑋𝑋

−1   Σ𝑗𝑋𝑌 

 

(2.34) 

are the conditional mean function and variance of Y. Inserting the result of equation 2.32 into 

equation 2.30 yields: 

 

𝑓𝑋,𝑌(𝑥, 𝑦) =  ∑𝜋𝑗

𝐾

𝑗=1

𝜙(𝑦|𝑥; 𝑚𝑗(𝑥), 𝜎𝑗
2)𝜙(𝑥, 𝜇𝑗𝑋, Σ𝑗𝑋𝑋) 

 

 

(2.35) 

The condition density Y|X is now defined as 

 
𝑓𝑌|𝑋(𝑦|𝑥) =

𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋(𝑥)
 

(2.36) 

 

Where  

 

𝑓𝑋(𝑥) = ∫𝑓𝑌,𝑋(𝑦, 𝑥) 𝑑𝑦 =  ∑𝜋𝑗

𝐾

𝑗=1

𝜙(𝑥, 𝜇𝑗𝑋, Σ𝑗𝑋𝑋) 

 

 

(2.37) 

 

is the marginal density of X. Inserting the definitions of 𝑓𝑌|𝑋(𝑥, 𝑦) and 𝑓𝑋(𝑥) into equation 2.36 

finally yields: 

 
𝑓𝑌|𝑋(𝑦|𝑥) =

∑ 𝜋𝑗
𝐾
𝑗=1 𝜙(𝑦|𝑥; 𝑚𝑗(𝑥), 𝜎𝑗

2)𝜙(𝑥, 𝜇𝑗𝑋, Σ𝑗𝑋𝑋)

∑ 𝜋𝑗
𝐾
𝑗=1 𝜙(𝑥, 𝜇𝑗𝑋 , Σ𝑗𝑋𝑋)

 

 

(2.38) 

This can also be expressed as: 
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𝑓𝑌|𝑋(𝑦|𝑥) =∑𝑤𝑗(𝑥)𝜙(

𝐾

𝑗=1

𝑦; 𝑚𝑗(𝑥), 𝜎𝑗
2) 

 

 

(2.39) 

with the mixing weight 

 
𝑤𝑗(𝑥) =

𝜋𝑗𝜙(𝑥; 𝜇𝑗𝑋 , Σ𝑗𝑋𝑋) 

∑ 𝜋𝑗
𝐾
𝑗=1 𝜙(𝑥, 𝜇𝑗𝑋, Σ𝑗𝑋𝑋)

 

 

 

(2.40) 

The expected value of Y for a given X=x can now be found as the conditional mean function of 

equation 2.39: 

 

𝐸[𝑌|𝑋 = 𝑥] = 𝑚(𝑥) =  ∑𝑤𝑗(𝑥)𝑚𝑗(𝑥)

𝐾

𝑗=1

 

 

(2.41) 

Equation 2.41 is the regression function in a GMR model and as can be seen, once the GMM has 

been established all the parameters needed for the regression are contained in equation 2.30. In other 

words, the crucial part of doing GMR lies in estimating a proper GMM. A simple example of GMR 

illustrating the steps involved can be seen in Figure 2.9[78].  

 

2.4.3.  Impact of changing the number of components 

Once the k-means algorithm is used with random seeds to make the initial parameter guess for 

the EM algorithm, the only parameter to tweak in GMR is the number of components to use in the 

GMM. As mentioned, ideally, one should have a prior knowledge of the number of sub-populations in 

the data in order to estimate a model that correctly explains the data. In the example in figure 2.9, it was 

known a priori that the regression problem consisted of three linear functions and, for these reasons, it 

made sense to use three components to model it. In figure 2.10, the impact of varying the number of 

components is illustrated. As can be seen, using too many components leads to over-fitting the data, 

Figure 2.9 - Illustration of GMR using a simple univariate input and output. Left: Data generated by adding Gaussian noise to 

3 linear functions. Middle: A GMM consisting of K=3 components is estimated using the EM algorithm with K-means 

initialization, mean values are marked as red dots. Right: GMR estimation of the expected value of y (green line) [78].  
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which is undesirable if noise is present. Also, over-fitting also leads to a more complex model, making 

more difficult the correct estimation of the model and the comprehension of it. On the other hand, using 

too few components leads to a higher degree of smoothing of the data, which may mean that important 

variations are missed. This is called under-fitting. Thus, the goal is to choose a model that is simple as 

possible by choosing the smallest number of components that can explain all the important variations in 

the data. However, with real-world multidimensional data, it can be difficult to know how many 

components should be used. A way to find the optimal number of components is to set up a measure of 

regression accuracy, evaluate different models and choose the one that performs best[78]. 

The Akaike information criterion (AIC) is a measure of the relative quality of statistical models 

for a given set of data[79]. Given a collection of models for the data, AIC estimates the quality of each 

model, relative to each of the other models. Thus, AIC can be calculated using 

 𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿̂) 

 

(2.42) 

Where k is the number of components in GMM and 𝐿̂ = 𝑝(𝑋, 𝑌|𝜃), designed by likelihood. Given 

a set of candidate models for the data, the preferred model is the one with the minimum AIC value. AIC 

rewards goodness of fit (as assessed by the likelihood function), but it also includes a penalty that is an 

increasing function of the number of estimated parameters. The penalty discourages over-fitting, 

because increasing the number of parameters in the model almost always improves the goodness of fit. 

In this way, the simplest model as possible that can explain the data can be determined. 

 

 

  

Figure 2.10 – Illustration of GMR using different number of components. Data is the same as in figure 2.9. Left: The GMM 

has been estimated using 25 components (over-fitting). Right: The GMM has been estimated using 2 components (under-

fitting) [78]. 
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Chapter 3 

Methods and Materials 

3.1. Data Specification 

This study includes data from 6 anonymized prostate cancer patients (Patients 1 to 6). The datasets 

for each patient include a 3D CT image and a 3D MRI dataset, which were not acquired on the same 

day. Small discrepancies o the anatomy of the patient may be observed due to inter-scan variation caused 

by repositioning and the non-simultaneity of the acquisitions.  

3.1.1.  CT acquisition 

Pelvic CT images were acquired using a Brilliance Big Bore (Philips Medical Systems, Best, The 

Netherlands) scanner operated at 120 KVp, with a 512 x 512 in-plane reconstruction. For patient 1, 1.28 

x 1.28 mm2 in-plane image dimensions with a slice thickness of 5 mm were used. For the remaining 

patients, 0.84 x 0.84 mm2 in-plane image dimensions with a slice thickness of 5 mm were used. Specific 

immobilization devices, such as a knee wedge and a flat table top, were used during imaging. 

3.1.2.  MR acquisition 

Pelvic MR images were acquired using an Ingenia 3.0 T system (Philips Medical Systems, Best, 

The Netherlands. A T1-weighted Fast Field Echo sequence was acquired for all the patients using three 

echoes (TE=2.1/3.5/4.9 ms, TR=6.8 ms, Flip angle= 10°, Bandwidth=1122 Hz/pixel). The images were 

reconstructed with 336 x 336 x 75 matrix dimensions with an isotropic voxel size of 1.2 x 1.2 x 1.2 mm3. 

3.2. MR/CT Registration 

The MR/CT image registration was done using the Elastix Registration software (Image Science 

Institute, Utrecht, The Netherlands)[80]. The MR data was considered as reference due to its smaller slice 

thickness. The process of registration was accomplished using two transformations, both using a mutual 

information algorithm. 

First, in order to obtain a first alignment between the MR and CT data, the CT image was first 

registered using a rigid transformation[81]. However, due to inter-scan variation, some differences in 

patient’s anatomy that could not be solved by a rigid registration were found. 

Thus, a non-rigid registration was applied using a cubic bspline transformation[82]. However, bone 

anatomy is rigid and, therefore, a non-rigid registration cannot be applied to it, as it may cause unreal 

deformations. By applying a rigidity penalty, this problem may be solved[83]. The rigidity penalty defines 

areas where the registration should be governed by a rigid transformation by including a binary mask of 

these areas as an input to the registration process. Thus, a bone binary mask was derived, using the 

following procedure, as illustrated in figure 3.1: 
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• First, a threshold of 100 HU was applied to the rigidly registered CT image in order to create a 

binary mask. Voxels with higher HU values were assigned with 1 and voxels with lower HU values 

were assigned with 0. 

• A 2D morphological operation of removing objects with less than 5 connected voxels was 

applied to remove spurious voxels that were result of the thresholding[84]. 

• Finally, a hole filling 2D morphological operation was applied[84]. 

 

 

The derived bone binary mask was used as input in the non-rigid registration with a rigidity 

penalty. In this way, the voxels included in the binary mask were subjected to a rigid transformation, 

while the registration in the remaining voxels was governed by a cubic bspline transformation. 

The result of this registration was evaluated by visual inspection and the resulting CT image was 

saved for further evaluation.  

 

Figure 3.2- Representation of the derivation of the CT bone binary mask. Figure 3.1-A represents the CT image. 

Figure 3.1 -B represents the bone binary mask after the thresholding. Figure 3.1-C represents the binary mask after 

the removal of the spurious objects and figure 3.1-D represents the final bone binary mask after the morphological 

hole filling operation. 

A B 

C D 
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3.3. Water/Fat Decomposition and R2* estimation 

The MR water-fat decomposition in the acquired MR images was performed using the graph-cut 

algorithm explained in section 2.2.2.2.1.1, by using the MATLAB (The Mathworks, Natick, MA) code 

provided by the Water-Fat decomposition toolbox, that was the result of the ISMRM Workshop on 

Water/Fat decomposition, that took place in California, United States of America in 2012[85]. This 

toolbox provides code for several water-fat decomposition algorithms, as well as code for evaluating the 

noise performance of the algorithm. The use of the water-fat decomposition by using a graph-cut 

algorithm was chosen among the available algorithms once it was demonstrated to obtain an accurate 

water-fat decomposition within a reasonable time. 

The algorithm was performed without including the R2* estimation. Forty iterations were used. 

The original code was modified and partially parallelized to allow the estimation of a multi-slice water-

fat decomposition. Furthermore, in order to improve the speed performance and under the assumption 

that the field map varies smoothly, before the field map estimation, the original MR images were 

downsampled from a factor of 4. The obtained field map was then upsampled using the same factor. 

This field map was then used for the calculation of the water and fat images. The input parameters are 

detailed in Appendix I. The existence of water-fat swapping was assessed by visual inspection of the 

water and fat images. 

The noise performance of the water-fat decomposition was also evaluated. The noise performance 

of a water-fat decomposition algorithm can be described by the effective number of signal averages 

(NSA), defined as[86] [87]: 

 
𝑁𝑆𝐴 =

𝜎2

𝜎𝑃
2 

 

(3.1)  

Where 𝜎2 is the variance of the noise in a source image and 𝜎𝑃
2 is the variance of the noise in a 

calculated water or fat image. 

After the calculation of the water and fat images, two different features were calculated based on 

these images: in-phase image and a quantitative fat-fraction (FF) image. The FF image was obtained 

using equation 2.22 while the IP images were obtained using: 

 𝐼𝑃 = 𝑊 + 𝐹 (3.2)  

 

The R2* image of each patient was calculated using a mono-exponential fit with the first and third 

echo images, according to: 

 

 1

𝑇2
∗ = 𝑅2

∗ = −
log 𝑆(𝑇𝐸3) − log 𝑆(𝑇𝐸1)

𝑇𝐸3 − 𝑇𝐸1
 

 

(3.3)  

Where 𝑆(𝑇𝐸3) represents the signal at 𝑇𝐸 = 𝑇𝐸3. 

The R2* image here calculated was specific for the TEs used in this work. For a true quantitative 

estimation of the R2* values, the TEs should be in-phase[88]. Therefore, the R2* images obtained in this 

work cannot be comparable to other studies using different TEs. 
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3.4. MR and CT masking 

In order to exclude objects that don’t belong to the pelvic area, such as arms and hardware 

fixations, a binary mask covering only the pelvic area was created. 

The masking of the MR features was achieved using a slice-by-slice procedure, also illustrated in 

figure 3.2: 

1. Selection of the IP image 

2. Automatic Otsu’s thresholding and creation of binary mask[89] 

3. Morphological hole filling operation[84] 

4. Connected component analysis and automatic removal of all objects, except the largest, creating 

in this way a binary body mask[84]. 

5. Multiplication of binary body mask with each MR-related image 

The masking of the CT image was achieved using a similar approach. Here, the CT image replaces the 

in-phase image during the first step. Then, steps 2,3 and 4 were the same. In step 5, instead of a 

multiplication, the voxels outside the binary body mask were assigned with the value -1000 HU, 

characteristic of air. 

1 2 3 

4 5 

Figure 3.2 – Workflow of the masking in MR features. 
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3.5. Pseudo-CT generation and Validation 

The pseudo-CT was generated using a dual-model regression approach. The first regression 

model was applied to the soft tissues and possible air, while the second was applied to the bone anatomy. 

This means it was necessary to have a segmentation of the bone anatomy. 

The dual-model regression approach was validated using a Leave-One-Out-Cross-Validation 

(LOOCV) procedure. The dual-model was estimated from specific MR data and the corresponding CT 

data from five patients (training set) and applied to the same specific MR data of the remaining patient 

(validation set) to generate a pseudo-CT image. This procedure was repeated for all six combinations of 

training and validation data. The obtained pseudo-CT was then compared to the corresponding CT. The 

software to carry out the cross-validation procedure was developed in the context of this thesis in 

MATLAB 2016a. 

3.5.1. MRI bone segmentation 

The bone anatomy in MRI was manually contoured using the in-phase image. The manual 

segmentation is possible since the outer edges of the cortical bone, which appear as dark in the IP image, 

are clearly distinct from the surrounding outer tissue, as represented in figure 3.3. Thus, after the 

calculation of the in-phase image, this image was loaded into MeVisLab (MeVis Medical Solutions AG, 

Bremen, Germany) software, which enables the manually contouring of the bone anatomy. After this 

segmentation, the purple structure in figure 3.2 will construct a bone binary mask, while the remaining 

voxels inside the body mask will be part of the soft tissue binary mask. 

 

The accuracy of the MR bone segmentation was evaluated by comparing its overlapping with the 

bone anatomy in the corresponding CT image. The segmentation of the bone anatomy in the CT image 

was performed using the same approach that was used in the MR-CT registration step, section 3.3, to 

derive the bone binary mask. The evaluation was done by calculating the Dice coefficient between the 

MR and CT bone masks[90]. The Dice coefficient is an index used to evaluate changes in size, position, 

orientation and shape between two overlapping volumes. A value of 0 indicates no overlap between 

volumes and a value of 1 indicates a perfect agreement. A good overlapping occurs when the value of 

Figure 3.3 – Bone segmentation according the IP image using Mevislab. Purple 

structures represent the segmented bone anatomy. 
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the Dice coefficient is higher than 0.7[91]. In the context of this work, the Dice coefficient was calculated 

as following: 

 
𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =

2(𝐵𝑜𝑛𝑒𝐶𝑇 ∩ 𝐵𝑜𝑛𝑒𝑀𝑅)

𝐵𝑜𝑛𝑒𝐶𝑇 ∪ 𝐵𝑜𝑛𝑒𝑀𝑅
 

 

(3.4)  

Where 𝐵𝑜𝑛𝑒𝐶𝑇 represents the bone mask in the CT image and 𝐵𝑜𝑛𝑒𝑀𝑅 the bone mask that was 

manually segmented.  

3.5.2. Soft tissue HU conversion model 

The possibility to construct a pelvic soft tissue HU conversion model was investigated by 

comparing the quantitative FF values in soft tissue with the corresponding HU values in the CT image. 

As soft tissues are mainly constituted by water (muscle) or fat, a relative measure of the amount of water 

and fat signal within a voxel was considered sufficient. Possible existing air was also included in this 

model. The relation between FF values in soft tissue and HU values was obtained through a polynomial 

fit: 

 𝐻𝑈 = 𝑎 + 𝑏×𝐹𝐹 + 𝑐×𝐹𝐹2 + … 

 

(3.5)  

Where 𝑎, 𝑏, 𝑐 are the fitting parameters of the polynomial model and FF is the fat fraction in a 

voxel. 

The order for the polynomial fit was chosen based on the minimization of the mean absolute error 

(MAE) between the obtained pseudo-CT and the real CT. Further description of MAE is provided in 

section 3.6.4.  Thus, the LOOCV procedure was carried out for soft tissue areas using different 

polynomial orders. Then, the polynomial order that leads to a lower MAE was chosen to be used in the 

pseudo-CT generation procedure, and the results were saved for future application. 

3.5.3. HU conversion model for bone anatomy 

A MATLAB implementation of Gaussian mixture regression was used throughout this project[92]. 

This implementation used the built-in k-means function of the MATLAB Statistics toolbox to give an 

initial estimate of the component mean values and covariance matrices for the EM algorithm. EM was 

stopped when the increase in the log-likelihood value was smaller than 10-10. The input variables (X) 

were MR related features while the output (Y) is the CT image. This toolbox was used instead of the 

MATLAB built-in functions due to its superior speed performance. 

The R2*, fat, water and fat fraction images that were previously calculated were included in the 

bone regression model. The inclusion of this set of variables as an intuitive explanation. The R2* image 

provides information about the T2* decay, which was proven to be correlated with the bone mineral 

density[17][24] [25] [26] [27]. Moreover, the FF image provides information about the relative presence of fat 

or water within a voxel and it was also proven to be correlated with the bone mineral density. At last, 

the water and fat images provide information about the signal intensity of these species when they are 

in-phase. As the MR sequence used in this project was a gradient-echo sequence type and the signal 

intensity is governed by the T2* decay, the water and fat images can also provide information about it, 

at the same time that they provide information about the source of the signal.   
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Furthermore, for each variable included in the model, information about its neighbourhood was 

also included by calculating an image of the standard deviation of the 27-neighbourhood of each voxel. 

Thus, two different sets of variables were used for HU estimation in the bone: 

• Model I: R2*, Fat, Water and Fat Fraction 

• Model II: R2*, Fat, Water, Fat Fraction and an image of the standard deviation of 27-

neighbourhood of each voxel from each original variable. 

The impact of including neighbourhood information in GMR was assessed by comparing the 

MAE in the GMR that includes neighbourhood information to the MAE obtained when no 

neighbourhood information was included. The statistical significance of the improvement obtained by 

including the neighbourhood information was assessed by a one tailed t-test. A significance level of 0.05 

was assumed. The null and alternative hypothesis were formulated as: 

H0: MAE of GMR with no neighbourhood information is equal or lower than MAE with GMR 

with neighbourhood information 

H1: MAE of GMR with no neighbourhood information is higher than MAE with GMR with 

neighbourhood information 

The number of Gaussians to use in each model, with and without neighbourhood information, 

was calculated by calculating the minimum of the AIC, as described in section 2.4.3., for each model. 

The procedure for estimating the pseudo-CT for the bone anatomy is illustrated in figure 3.4. 

 

List of variables 
F, W, R2*, FF 

Model with neighbourhood information 

Calculation of neighbourhood’s standard 

deviation 

GMR and bone pseudo-CT construction 

Selection of the best model and statistical analysis 

Model without neighbourhood 

information 

Selection of Number of Gaussians 

GMR and bone pseudo-CT construction 

Selection of Number of Gaussians 

Figure 3.4 – Workflow of model selection and pseudo-CT construction in the bone using a GMR procedure. The left side 

of the scheme represents the pseudo-CT construction using a model which doesn´t include neighbourhood information, 

while in the right side, the workflow of generating a bone pseudo-CT through a model which includes neighbourhood 

information is explained. 



 

 

31 
 

3.5.4. Final Pseudo-CT generation and metrics of evaluation 

The final pseudo-CT was obtained by overlapping the pseudo-CTs that were obtained for soft 

tissue and bone anatomy, according to sections 3.5.2 and 3.5.3, respectively. Due to the manual 

segmentation of bone, sharp edges in the bone anatomy contours may be present. To overcome this 

problem, the pseudo-CT was smoothed by applying a Gaussian filter with a standard deviation of 0.5[93].  

Furthermore, the application of the Gaussian filter may allow a smoother transition between the 

overlapping of the intermediate pseudo-CTs. This procedure is illustrated in figure 3.5. 

 

 The comparison between each pseudo-CT and the real CT was done using three different 

evaluation metrics. The first and main one was the calculation of the mean absolute error (MAE), which 

was also used for the optimization of the regression models[18]. A lower MAE indicates a better 

agreement between the pseudo-CT and the real CT. The MAE can be calculated by: 

 

𝑀𝐴𝐸 =∑
|𝑝𝐶𝑇(𝑖) − 𝐶𝑇(𝑖)|

𝑁

𝑁

𝑖=1

 

 

(3.6)  

Where represents the number of voxels in the CT body mask. 

To evaluate the presence of bias, especially, if the pseudo-CT is overestimated or underestimated, 

the mean error (ME) was also calculated by[23]: 

 

𝑀𝐸 =∑
𝐶𝑇(𝑖) − 𝑝𝐶𝑇(𝑖)

𝑁

𝑁

𝑖=1

 

 

(3.7)  

Final Pseudo-CT  

Gaussian 
 
 Filter 

Pseudo-CT soft tissue 

Pseudo-CT bone 

Pseudo-CT  

Figure 3.5 – Illustration of the workflow to obtain the final pseudo-CT. After estimating the dual-model regression parameters 

for soft and bone tissues, the resulting pseudo-CTs were overlapped. After, a gaussian filter is applied for smoothing. 
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Furthermore, the peak signal.to-noise-ratio, PSNR, was also computed. This metric calculates the 

ratio between the maximum possible power of a signal or image and the power of corrupting noise that 

affects the fidelity of its representation. A higher value of PSNR represents a better reconstruction. 

PSNR is usually expressed in terms of the logarithmic decibel (dB) scale and it can be calculated by: 

 
𝑃𝑆𝑁𝑅 = 10 log10 (

𝑀𝐴𝑋2(𝐶𝑇)

𝑀𝑆𝐸
) 

 

(3.8)  

Where 𝑀𝐴𝑋(𝐶𝑇) represents the maximum HU value in CT image and MSE the mean squared 

error:  

 

𝑀𝑆𝐸 =∑(
𝐶𝑇(𝑖) − 𝑝𝐶𝑇(𝑖)

𝑁
)

2𝑁

𝑖=1

 

 

(3.9)  

Furthermore, the structural similarity (SSIM) index was also used for measuring the similarity 

between the pseudo-CT and the real CT. This metric, in contrast to the other methods, also incorporates 

perceptual phenomena, including both luminance and contrast in the calculation. Higher values of SSIM 

demonstrate a better agreement between the two images. SSIM can be calculated using: 

 
𝑆𝑆𝐼𝑀(𝑝𝐶𝑇, 𝐶𝑇) =

(2𝜇𝑝𝐶𝑇𝜇𝐶𝑇 + 𝐶1)(2𝜎𝑝𝐶𝑇,𝐶𝑇 + 𝐶2)

(𝜇𝑝𝐶𝑇
2 + 𝜇𝐶𝑇

2 + 𝐶1)(𝜎𝑝𝐶𝑇
2 + 𝜎𝐶𝑇

2 + 𝐶2)
 

 

(3.10)  

Where 𝜇𝑝𝐶𝑇 , 𝜇𝐶𝑇 and 𝜎𝑝𝐶𝑇
2 , 𝜎𝐶𝑇

2  are the average and variance values of the pseudo-CT and CT, 

respectively, 𝜎𝑝𝐶𝑇,𝐶𝑇 is the covariance between the pseudo-CT and the CT. 𝐶1 = (𝑘1𝐿)
2 and 𝐶2 =

(𝑘2𝐿)
2 are two variables to stabilize the division, where 𝐿 is the dynamic range of the pixel-values. By 

default, 𝑘1 = 0.01 and 𝑘2 = 0.03. 
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Chapter 4 

Results and Discussion 

4.1.      Water-Fat Decomposition and R2* estimation 

Figure 4.1 shows the obtained maps by performing the water-fat decomposition without R2* estimation. 

Figure 4.1-A and 4.1-B represent the fat and water-only images, respectively. As it can be seen in these 

figures, an accurate separation of the water and fat signal was achieved. Also, no water-fat swapping 

was found by visual inspection. Although no water-fat swaps were seen, some leakage of the fat signal 

into the water image was observed, as represented by the green arrow in figure 4.1-B. This leakage of 

the fat signal can be explained by the bipolar readout gradient that was used in this study to increase the 

scan efficiency and to allow the use of a shorter echo spacing, in order to eventually decrease the 

scanning time. When using bipolar readout gradients, the field map may comprise significant 

contributions from eddy currents caused by the bipolar readout gradient, that alternate with the readout 

gradient and thus violate the linear relation between the field map and TE assumed by a 3-echo method. 

An eddy-current correction method may be applied to correct for the presence of eddy-currents, but it 

was beyond the scope of this project[54]. Figure 4.1-C represents the field map obtained. As, a smooth 

field map was obtained, excepting for some tissue-air interfaces. The presence of air complicates the 

estimation of the field map. However, it did not result in water-fat swaps.  

 

The noise performance of this algorithm was also studied, by calculating the NSA map for the fat and 

water images, as illustrated in figure 4.2-A and 4.2-B, respectively. Theoretically, for a water-fat 

B A C 

Figure 4.1 – Illustration of the results obtained through the water-fat decomposition algorithm without R2* estimation. Figure 

4.1-A represents the fat image, figure 4.1-B the water image with the green arrow representing the effect of eddy currents 

and figure 4.1-C illustrates the obtained field map in Hertz. All these images are from patient 2. 
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algorithm that uses 3 echoes, the maximum value of NSA that can be obtained is 3, since only 3 echoes 

are used. As it can be seen in those figures, most voxels have values higher than 2 and close to 3. For 

the 6 patients used in this study, an average NSA of 2.64 ± 0.03 was achieved for the water images. 

Regarding the fat images, the average NSA was 2.66 ± 0.05 for the 6 patients. These values prove that 

the use of a graph-cut algorithm for water-fat decomposition without R2* estimation has a noise 

performance close to the optimal values when only 3 echoes are used, proving the high SNR 

performance of this algorithm.  

 

Then, the R2* map was calculated, as it can be seen in figure 4.3. This R2* map is specific for the 

TEs used in this project. Normally, an R2* value is specific for each tissue, regarding all the acquisition 

parameters, if the calculation is performed when the water and fat signal are in-phase. If this happens, 

the R2* map can be used for the assessment of iron concentration among other applications[26]. The TEs 

of the first and third echo used in this study are not completely in-phase, causing the R2* values to 

depend on the actual TE values. However, as it can be seen in figure 4.3, this “apparent” R2* map is 

capable of providing contrast between the different tissue types. This is clearly visible from the figure 

4.3, showing that water, fat and bone tissues present different R2* values.  

 

A B 

Figure 4.2- Illustration of NSA maps obtained for patient 2 when the water-fat decomposition algorithm is performed without 

R2* estimation. Figure 4.2-A represents the NSA map of the fat image, while figure 4.2-B represents the NSA map of the 

water image. 

Figure 4.3 – Illustration of R2* map of patient 2. The R2* values are 

described in terms of ms-1 
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A possible solution to estimate a “true” R2* image relies on estimating it jointly with the water 

and fat images, by including it in the decomposition algorithm. As already referred, the water-fat 

decomposition algorithm allows the R2* estimation. Theoretically, the simultaneous water-fat 

decomposition and R2* estimation may be performed using three echoes. However, in the presence of 

noise, the algorithm may become very unstable when only three images are acquired. Figure 4.4 

illustrates the results obtained by using the water-fat decomposition algorithm that includes the R2* 

estimation. It is possible to observe that the water and fat images, figures 4.4-A and 4.4-B respectively, 

present a noisier decomposition, especially the water image. In this image, we can see that the left part 

of the body presents more troubles, since the issues related to the leakage of the fat signal are even more 

visible. Also, the R2* estimation is not accurate, since there are discrepancies in the estimated R2* values 

for a single tissue type. It is well known that a single tissue type should have a homogeneous R2* value. 

As it can be seen in figure 4.4-C, the R2* values are different for the same tissue type, varying from the 

left part of the body to the right part. This discrepancy is especially visible in muscle, where in the left 

part of the body, the R2* values are clearly distinguishable from the surrounding tissues, while in the 

right part, there is no contrast between the R2* value of muscle and the R2* values of the surrounding 

fat. It is also important to notice that, while in the water image it is the left part of the body that is more 

affected by the presence of noise, in the R2* map it is the right part of body that presents these difficulties. 

The fact that the water-fat decomposition with R2* estimation is noisier than the one performed without 

R2* estimation is most likely caused by its high sensitivity to noise when only 3 echoes are collected. 

As referred before, each echo contributes with an imaginary and a real image. Thus, the number of input 

images to include in the water-fat decomposition algorithm is 6.  If the R2* estimation is included in the 

procedure, the number of unknows to estimate is 6 (real and imaginary fat, real and imaginary water, 

field map and R2* map), while without R2* estimation the number of unknows is only 5. Although 

theoretically, to obtain an accurate water-fat decomposition as well as the R2* map, the number of input 

images has to be equal or higher than the number of unknows, this may not hold when noise is present. 

Thus, using 6 input images to obtain 6 unknowns may turn the algorithm very sensitive to noise. When 

only 5 unknowns are estimated, the remaining input image may be used for noise compensation. In this 

way, it can be concluded that for performing the R2* estimation, the number of input images used in the 

algorithm has to be always higher than the number of unknowns to be estimated. Acquiring one more 

echo, it would be possible to estimate the R2* map without having problems related to noise 

performance. However, this would increase the scanning time. In figure 4.4-D, we can see the obtained 

field map. This field map is similar to the field map obtained when no R2* estimation is made. Since the 

field map estimation is the first step of the water-fat decomposition algorithm, it is less influenced by 

noise.  
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The influence of noise in water-fat decomposition including the R2* estimation was also evaluated 

by calculating the NSA maps of the water and fat images in order to evaluate the noise performance. 

Figures 4.5-A and 4.5-B illustrate these NSA maps of the fat and water images, respectively. It is visible 

that the NSA values for both images are significantly lower than the optimal value of 3 for 3-echoes 

water-fat decomposition algorithms[87]. An average NSA value of 1.18±0.07 for the NSA map of the fat 

image, while the average NSA value of the water image was 0.67±0.10. By comparing these NSA values 

with the ones obtained using the water-fat decomposition algorithm without R2* estimation, it is possible 

to conclude that the inclusion of the R2* estimation leads to a poorer noise performance when only 

3echoes are included, as well as an inaccurate R2* map. 

 

B 

D C 

A 

Figure 4.4 - Illustration of the results obtained through the water-fat decomposition algorithm with R2* estimation. Figure 

4.4-A represents the fat image, figure 4.4-B the water image. Figure 4-C illustrates the obtained R2* map, while figure 

4-D represents the obtained field map (Hertz). All these images are from patient 2. 
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In this way, due to the poor noise performance as well as an inaccurate R2* estimation of the 

water-fat decomposition with R2* estimation algorithm, it can be concluded that the R2* estimation is 

not possible to be performed jointly with the water-fat decomposition algorithm when only 3 echoes are 

acquired. As the goal of this project is to predict HU values through regression models, the “apparent” 

R2* map was considered sufficient since it provides contrast between different tissues, as well as it 

describes the signal decay for the specific echo times used in this study. In this way, the “apparent” R2* 

image was used for future application. 

After obtaining the water and fat images, other features can be derived from the conjugation of 

these two images. The calculation of the fat fraction image is important since it provides a relative 

measure of the amount of the fat signal within a voxel. In this way, it is possible to find a relation 

between the relative amount of the fat signal and the HU values of fat and water, which will be important 

for the generation of the pseudo-CT. Figure 4.6 illustrates the obtained fat fraction image. Specifically, 

figure 4.6-A illustrates the calculation of the fat fraction which includes noise correction, while figure 

4.6-B doesn’t include the noise correction. Figure 4.6-C represents the absolute difference between these 

two images. As it is possible to see, figure 4.6-A has a homogeneous fat fraction within a single tissue 

type. In contrast, it is visible in figure 4.6-B that this homogeneity doesn’t occur, since the fat-fraction 

values in muscle varies from the right side of the body to the left side, where the fat fraction values seem 

to be lower. This discrepancy can also be observed in figure 4.6-C, where the absolute difference 

between the fat-fraction images with and without noise correction is higher in the muscle in the left side 

than in the right side. Thus, it can be concluded that the calculation of the fat fraction image applying a 

noise correction can successfully correct for the presence of noise in tissues mainly constituted by water.  

 

A 
B 

Figure 4.5- NSA maps of water and fat images of patient 2 when a water-fat decomposition with R2* estimation algorithm is 

performed. Figure 4.5-A represents the NSA map of the fat image, while figure 4.5-B illustrates the NSA map of the water 

image. 
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Furthermore, also the in-phase image was calculated based on the water and fat images. The in-

phase image allows the distinction between low-signal and high-signal areas, as it can be seen in figure 

4.7-A. In this figure, it is possible to see that the cortical bone appears as dark due to its fast T2* decay. 

This facilitates the manual segmentation of the bone, since there is a contrast between the outer edge of 

the cortical bone and the surrounding tissue, as it can be seen from the figure 4.7-B. In this figure, the 

signal profile along a line that crosses a bone structure (green line in figure 4.7-A) is represented, 

allowing to see the contrast between the outer edges of the bone structures and the surrounding tissue. 

 

Outer 

edge   

of 

bone 

Outer 

edge of 

bone 

Figure 4.7 – Representation of in-phase mage obtained for patient 2 in Figure 4.7-A. The green line represents a row 

where the signal profile is represented in Figure 4.7-B. As it can be seen the outer edges of the bone structure crossed by 

the green line are clearly distinguishable from the surrounding tissue, allowing the bone segmentation. 

A B 

A B C 

Figure 4.6 – Illustration of the fat fraction images obtained for patient 2. Figure 4.6-A represents the fat fraction obtained 

using a noise correction approach, while figure 4.6-B doesn’t include the correction of the noise. Figure 4.6-C illustrates the 

absolute difference between figure 4.6-A and 4.7-B. 
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The estimation of the water-fat decomposition related images, as well as the R2* image was 

performed using an Intel 7 Core computer, with 2.6 GHz and 16 Gb of RAM, and for each patient, it 

had the duration of 217 seconds.  

4.2. Pseudo-CT generation 

4.2.1. MRI bone segmentation 

The accuracy of the manual bone segmentation that was performed using the in-phase image was 

evaluated by calculating the Dice Score, having as reference the previously segmented bone anatomy in 

the CT image. 

Figure 4.8 illustrates the obtained Dice Score per patient. An average Dice Score of 0.91±0.02 

was obtained for all the patients, showing a good agreement between the bone segmentation in CT and 

MRI. The errors that were obtained may be explained by the natural ambiguity that the manual 

segmentation has, leading to imperfections when contouring the bone anatomy. Also, registrations errors 

are an important source of error, since a perfect alignment between the CT image and the MRI is almost 

impossible to obtain. Furthermore, the quality of the registration was assessed by visual inspection, 

leading to errors related to the subjectivity of the human condition. These contouring and registration 

errors will not be only important in the evaluation of the bone segmentation, but also in the subsequent 

steps of the pseudo-CT, since the errors are propagated throughout the whole pseudo-CT generation 

procedure.  

 

4.2.2. Soft tissue HU conversion model 

As soft tissues are mainly constituted by water (muscle) and/or fat, a quantitative measure of the 

MR signal present in a voxel may be useful to estimate the HU values in soft tissues. As the fat fraction 

provides the relative amount of fat signal in a voxel, it may be used for HU estimation.  

Figure 4.8 – Bone dice score per patient between the bone MR segmentation and the CT 

bone tissues 
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Thus, Figure 4.9 represents the joint histogram of the fat fraction and the HU units in the soft 

tissue mask. As it can be seen, most of the tissues with a lower fat fraction (FF<50%), representing 

tissues mostly constituted by water, have a HU between 0 and 100, which is the typical value for mainly 

consisting of water, such as the muscle. Also, fatty tissues (FF>=50%) have HUs between 0 and -100 

HU, which again, is the typical values for these tissues in a CT image. Thus, a negative linear correlation 

between the HUs and fat fraction values can be found, having a Pearson Correlation Coefficient of -

0.63.  

 

Furthermore, in this joint histogram, it is possible to see the presence of high HU values, typical 

of bone, that are related to low fat fractions. The presence of these voxels in the soft tissue mask is due 

to the errors in the bone countering which makes that not all the bone tissues in CT are overlapped with 

the MR bone mask. Moreover, in the bottom of the joint histogram it is possible to see the presence of 

air in the CT images (-1000 HU).  This air is located in the rectum. The inclusion of air voxels in the 

soft tissue model may be explained for several reasons. First, the urine in the bladder (with HU close to 

the water) presents a very long T1 relaxation time, which makes it to appear as dark in T1-weighted 

images. In this way, the distinction between the bladder and the air in the rectum becomes difficult. 

Also, as the MR and CT images were acquired at different time points and with different patient 

positioning, differences in the position and volume of the air in the rectum were observed. These 

differences would lead to higher errors when the air MRI and CT air does not overlap consistently. At 

last, for dose calculation and attenuation correction purposes, it was proven that the assignment of a soft 

tissue HU value to the air in the rectum during pseudo-CT generation didn’t lead to significant errors[70]. 

However, if a bone HU value was assigned, the error in dose calculations and in attenuation correction 

calculations would be significant, proving the necessity of bone segmentation. Thus, it was decided to 

include air voxels in the soft tissue conversion model. 

The order of the polynomial fit to use in the soft tissue regression model was chosen based on the 

minimization of the MAE in soft tissue using the LOOCV procedure. In figure 4.10-A, we can see the 

MAE per patient using the first four polynomial orders, while figure 4.10-B illustrates the average MAE 

per polynomial order. As it can be seen in these two figures, using the first polynomial leads to a higher 

MAE in all patients when compared to the others polynomial orders, which was proven to be statistically 

significant (p-value=0.002). In contrast, there was no statistical difference between the means of MAE 

Figure 4.9 – Joint histogram between the fat fraction values and the HU values in soft 

tissue 
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for each subsequent polynomial order (p-value=0.13). A level of significance of 0.05 was assumed for 

these tests. A second order polynomial fitting model was chosen to maintain the regression model as 

simple as possible, without compromising the results. An average MAE obtained for soft tissue using a 

second order polynomial regression was 33.61 ± 2.91 HU. In figure 4.11, it is possible to see an example 

of the pseudo-CT for soft tissue. 

 

 

4.2.3. HU conversion model for bone anatomy 

The number of components (gaussians) to use in each GMM was assessed by the minimization 

of the AIC of each model using different numbers of components. Figure 4.12 illustrates the values of 

AIC for each model using different number of gaussians. As it is possible to see, the minimum value of 

the AIC of Model I is obtained when two gaussians are used, AIC=52.80, while, for the Model II, the 

B A 

Figure 4.10 – Representation of the values of MAE in soft tissue. Figure 4.10-A represents the MAE of each patient while 

Figure 4.10-B represents the average MAE per polynomial order. 

Figure 4.11 – Illustration of the pseudo-CT for soft tissue of 

patient 3. The black areas inside the body represent the bone 

anatomy. 
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minimum value is obtained when three gaussians are used, AIC=86.70. In this way, Model I, which 

doesn’t include neighbourhood information, is modelled by a mixture of two subpopulations. Since, in 

contrast to other bone tissues, there is no signal in the cortical bone, the existence of two subpopulations 

may be explained. Regarding Model II, which includes neighbourhood information by calculating the 

standard deviation of the 27-neighbourhood of each voxel of the MRI features, it is modelled by three 

populations. Thus, the inclusion of neighbourhood information may turn the distinction of another 

subpopulation of voxels possible. This may be explained by the fact that non-cortical bone tissues may 

be divided in bone marrow and cancellous bone, of which the cancellous bone has higher HU values. In 

this way, the inclusion of neighbourhood information is capable of modelling these different bone 

tissues. 

 

Figure 4.13-A and figure 4.13-B represent the MAE in bone anatomy for each patient and the 

average MAE in all the patients, respectively. As it is possible to see, Model II, which includes 

neighbourhood information, presents a lower MAE for every patient as well as a lower average MAE 

than Model I, which doesn’t include the neighbourhood information. The average MAE of Model II was 

101.49±10.80 HU, while the MAE obtained for Model I was 113.99±17.72 HU. Thus, it is possible to 

conclude that the inclusion of neighbourhood information in GMR leads to a significantly lower MAE, 

p-value=0.02, using a significance level of 0.05. However, the superior predicting  performance of the 

the model including neighbourhood information may be related to the fact that more Gaussian 

components are used in the parameter estimation, which usually leads to an increase in the log-likelihood 

function, even though the AIC criterium suggests that two gaussians are sufficient to explain the 

variability in the model which doesn’t include neighbourhood information. To depict for this possibility, 

the LOOCV was also performed for Model I using 3 gaussians. The average MAE, in this case, was 

113.45±18.42 HU, which doesn’t introduce significant improvements.  

Figure 4.12 – Representation of AIC values for each model using different number 

of Gaussians in GMR. For Model I, the variability present in the model is sufficiently 

explained by a combination of two gaussians, while for Model II, three gaussians are 

required to explain its variability. 
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Thus, Model II was chosen to be the best model and the results were saved for the generation of 

the final pseudo-CT. Figure 4.14 illustrates an example of the pseudo-CT for bone anatomy. 

 

 

4.2.4. Final pseudo-CT generation and evaluation 

The final pseudo-CTs were generated by overlapping the obtained pseudo-CTs for soft and bone 

tissues of the same patient and smooth them with a Gaussian filter. As already referred, the pseudo-CT 

for soft tissues were obtained by using the LOOCV procedure applying a second order polynomial fit 

regression, and the pseudo-CT for bone anatomy by a GMR procedure using a model that includes 

neighbourhood information. In figure 4.15, we can see examples of slices of the obtained pseudo-CTs, 

B A 

Figure 4.13 – Representation of the MAE for bone anatomy using different models. Figure 4.13-A represents the MAE for 

each patient and model used, while figure 4.13-B represents the average MAE using each model for bone anatomy HU 

estimation. As it is possible to see, Model II exhibits superior predicting performance in terms of MAE for all the patients used 

in this study. 

Figure 4.14 – Illustration of the pseudo-CT obtained for bone 

anatomy of patient 3. 
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as well as the respective slices of CT and the absolute difference between the pseudo-CT and the CT. 

As it is possible to see, some differences between the pseudo-CT and respective CT. 

The biggest difference is shown in the rectum as the air in rectum it was included in the soft tissue 

mask. Therefore, a soft tissue HU value was assigned to these voxels in the pseudo-CT. As referred 

before, this fact was proven to not introduce significant errors in dose calculations, as well as the 

calculations for attenuation correction[70]. However, it does influence other evaluation metrics, such as 

the MAE and the ME, suggesting results with less agreement to the CT image than if the air was treated 

separately.  

Another important source of error comes from registrations errors. As it is possible to see in figure 

4.15, some errors are placed in tissue/outside air and tissue/bone interfaces. Small errors during the 

registration step produce systematic errors that will propagate during the validation procedure. Although 

these errors are taken into account for the evaluation of the pseudo-CT generation, these errors will not 

be visible when the pseudo-CTs are applied in a MR-only workflow, since no MR-CT registration is 

needed, apart from the necessary to estimate the regression parameters. 

Errors in the delineation of the bladder are also found. These errors are due to the fact that the 

MR and CT images were not acquired at the same moment. As result, there are some differences in the 

position and filling, that lead to the discrepancies between the pseudo-CT and CT. 

Finally, it can be seen that the absolute error in bone anatomy is higher than in the remaining body 

of the patient. Also, it can be seen that higher the HU value in the CT image, higher the absolute error 

in those voxels, as it is also represented in figure 4.16. As the higher HU values represent the cortical 

bone, and as there is no signal is those areas in the MR images, the pseudo-CT cannot provide contrast 

within cortical bone voxels. Furthermore, it is also possible to see the errors in bone/tissue interfaces. 

These errors are due to registration errors, as well as imperfections during the manual segmentation of 

the bone. 
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Figure 4.15 – Representation of the obtained pseudo-CTs (first column, figures A, D, G, J, M), the corresponding CT slices 

(second column, figures B, E, H, K, N) and the absolute difference between the pseudo-CT and CT (third column, figures C, 

F, I, L, O). The first three rows represent transverse slices for patient 3,5 and 6, respectively. The fourth and fifth rows represent 

sagittal and coronal slices from patient 5, respectively. The upper scale bar belongs to the pseudo-CT and the real CT whereas 

the lower belongs to the absolute difference images. 
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The application of a Gaussian filter as the final step in the pseudo-CT generation workflow had 

as goal the mitigation of the sharp edges caused by the bone manual segmentation. Furthermore, it can 

provide a smoother pseudo-CT, especially in the areas where the two intermediate pseudo-CTs touch 

each other. The effect of the application of the Gaussian filter was analysed by comparing the evaluation 

metrics before and after applying the Gaussian filter. 

 

 

Figure 4.16 – Relation between the MAE and the true CT values, showing that the higher 

the HU, higher the MAE, excepting for the air (-1000 HU) which was not considered in 

the soft tissue regression model. 

Figure 4.17 – Mean Absolute Error between the pseudo-CT and CT before and after the application of the gaussian filter. Figure 

4.17-A represents the MAE in the body for all the patients, while figure 4.17-B represents the MAE in bone anatomy for all the 

patients. 
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Figure 4.17-A represents the MAE in the body of the patient before and after applying the 

Gaussian filter, while figure 4.17-B represents the MAE in bone anatomy in the same conditions. As it 

can be seen, the application of the Gaussian filter results in a lower MAE for the whole body of the 

patient, as well as for the bone anatomy. For the whole-body evaluation, an average MAE of 43.32 ± 

4.01 HU was found before the application of the Gaussian filter, while after an average MAE of 37.76 

± 4.01 HU was obtained. Also, an average ME of -2.68 ± 6.32 HU was found after the application of 

the Gaussian filter, meaning that there is small bias in the pseudo-CT estimation. For bone anatomy, an 

average MAE of 101.49±10.80 HU was found before the application of the Gaussian filter, while after 

an average MAE of 96.61±10.49 HU was obtained. The average ME after the application of the 

Gaussian filter was -10.01±48.04 HU, meaning that the estimation of the HU in bone anatomy is 

underestimated, mainly due to the presence of cortical bone. 

The pseudo-CT was also evaluated using different evaluation metrics as the SSIM and the PSNR. 

Figure 4.18-A represents the SSIM of the whole body of each patient before and after the application of 

the Gaussian filter, while figure 4.18-B illustrates the PSNR under the same conditions. As it can be 

seen in both figures, the application of the Gaussian filter results in higher values of SSIM and PSNR. 

An average SSIM value of 0.90±0.01 was obtained before the application of the Gaussian filter, while 

after its application an average SSIM value of 0.91±0.01 was obtained. This fact means that a higher 

structural resemblance between the pseudo-CT and the respective CT after the application of the 

Gaussian filter. In the same way, an average PSNR of 23.42±1.43 dB was found before applying the 

filter, while after a higher average PSNR of 23.92±1.62 dB was obtained. These values of PSNR mean 

that the reconstruction of the pseudo-CT is less affected by the corrupting errors when the Gaussian 

filter is applied. 

The higher performances in terms of MAE, SSIM and PSNR leads to the conclusion that the 

application of the Gaussian filter can mitigate the sharp edges caused by the manual segmentation by 

smoothing the interfaces between different tissue types. In this way, a smoother pseudo-CT is obtained. 

Figure 4.18-A and figure 4.18-B – Representation of the obtained value for each patient of the SSIM and the PSNR, 

respectively, before and after the application of the gaussian filter 
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Figure 4.19 represents the joint histogram between the true HU values and the predicted HU 

values. The green line in this histogram represents the ideal case where the predicted HU values are 

exactly the same as the true HU values. This green line means that the points above this line are 

overestimated, while the points below this green are underestimated. Also, further the distance of each 

point to the green line, higher the difference of that value to the true HU value. Analysing this joint 

histogram, a good correlation between the predicted and true HU values may be found. Also, some of 

the problems that were already discussed may be visible. It can be seen the presence of underestimation 

of the higher HU values, corresponding to cortical bone, once the majority of the points in this area in 

the joint histogram are below the green line. Also, it can be seen that the air in the CT image was 

classified as soft tissue, as it was already discussed. Furthermore, the effect of misregistrations is here 

represented by the horizontal deviations from the green line in the area of the soft tissue (-100 HU to 

100 HU).   

 

 

 

The full process of training and validation in the LOOCV had the duration of 6 minutes to perform 

all the patients, excluding the manual segmentation of the bone. Specifically, the training phase lasted 

for 5 minutes, while the validation phase only last 1 minute to be performed. The majority of the time 

required is spent in the bone pseudo-CT generation, once the Gaussian mixture regression is 

computationally much more expensive than a simple polynomial regression.  

  

Figure 4.19 – Joint histogram between the true CT number and the predicted 

CT number. The green line represents the ideal scenario where the pseudo-CT 

is exactly equal to the real CT. Points below this line indicate a higher HU in 

the real CT compared to the pseudo-CT, while points above indicate a higher 

HU in the pseudo-CT compared to the real CT.  



 

 

49 
 

Chapter 5 

Conclusions and Future Work 

MRI is receiving a lot of attention due to its wide range of applications which can bring benefits 

for techniques such as PET and RTP. However, the lack of correlation between the MR-signal and the 

attenuation properties of the tissues necessary for calculating the attenuation correction in PET and doses 

in RTP is a challenge that needs to be overcome to enable PET-MRI and MR-RTP procedures without 

the use of a CT scan. 

In this thesis, a novel pseudo-CT generation method for the pelvic area was developed relying on 

the exploitation of prior knowledge of the characteristics of the MR signal formation and tissue 

properties. This method is based on a dual-model regression approach, one for the soft tissues and 

another one for the bone anatomy based on the water and fat signal and the T2* decay to construct the 

pseudo-CT. The input of both models includes the fat fraction image, for the soft tissue regression 

model, and the fat fraction, water and fat, and R2* images for the bone regression model. These images 

were obtained from multi-gradient echo data, whereas the aim of the models was to accurately reproduce 

the HU estimation as in a traditional CT scan, by constructing pseudo-CT images. Furthermore, it was 

demonstrated that the inclusion of neighbourhood information, obtained by calculating the standard 

deviation of each voxel in the 27-neighbourhood, in the regression model for the bone anatomy can 

significantly improve the estimation of HU values in those areas. 

The results obtained in this project present large improvements when compared to other voxel-

based methods used for the pelvic area. In this work, an average MAE of 37.76 ± 4.01 HU was obtained. 

Kim et al. obtained a MAE of 75 HU using several different MR sequences[23], and Korhonen et al. 

obtained a MAE of 125 HU, by using a T1/ T2* weighted MR sequence[70]. This fact proves the superior 

predicting capability of this approach. Furthermore, it is possible to compare the results with anatomy-

based methods. Dowling et al. obtained a MAE of 40.5 HU[66], while Burgos et al. obtained a MAE of 

42.9 HU. Burgos et al. also reported a MAE in bone around 100 HU[67]. These results are in the same 

order in the same order as the ones that were obtained in the method here presented. Thus, it can be 

concluded that this method allows the generation of a pseudo-CT for the pelvic area with better or 

identical agreement with the real CT than the methods described in literature. However, the validation 

in an independent and bigger training and validation group should be performed. 

This method presents several advantages over other methods present in literature. First, no 

registration is needed avoiding the ambiguities caused by registration errors, excepting for the 

registration errors during the parameter estimation[66] [67]. Moreover, the entire set of features (water, fat, 

fat fraction and R2* images) used in this method are obtained through post-processing of a single MR 

scan, as opposed to multiple scans with different contrasts, which makes it robust against interscan 

motion and renders the method fast[23]. Furthermore, the computational burden of this method may be 

reduced in institutions who possess an integrated water-fat decomposition scheme provided by the 

vendor. In this case, the water-fat decomposition algorithm may be replaced by the water and fat images 

that are already reconstructed. Thus, the parameter estimation should be performed once per institution 

and machine in order to overcome possible differences in the hardware and software used. 
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However, this method also presents some drawbacks. The major limitation of this method is that 

the bone segmentation is performed manually, increasing the workload and preventing a fully automatic 

clinical introduction of the method. This drawback is not exclusive of our method, since most voxel-

based methods present in literature also rely on manual segmentation[23] [70]. Another limitation of this 

study is related to the R2* estimation, which is specific for the echo times used in this project. Although 

it is expected that the method may be possible to apply with different echo times (requiring the parameter 

estimation for each set of values used), this hypothesis still needs to be validated. At last, the number of 

patients used in the training sets is relatively low. By increasing the number of patients in the training 

set, it is expected to obtain more robust results. 

Some improvements to the presented method can be done in order to obtain better results as well 

as a fully automatic method. First, the acquisition of more data will provide more robust training sets 

which it is expected to lead to a better HU values estimation.  

Also, the inclusion of an automatic MRI bone segmentation method is necessary to turn this 

method completely automatic and, therefore, can be used in clinical practice without requiring an extra 

workload for the clinicians. Although, this is still an active area of research, the inclusion of an atlas 

based segmentation of the bone or the construction of a shape model of the bone are possible solutions 

to turn this method fully automatic[73] [74]. The resulting method would be a hybrid method, by combining 

the anatomical information of the bone with the voxelwise conversion of the MR related features into 

HU values. 

Furthermore, the inclusion of other MR features into the bone regression model is possible, 

allowing a better HU estimation in bone anatomy. Quantitative Susceptibility Mapping (QSM) is a post-

processing MR technique which allows the quantification of the susceptibility in different tissues[94] [95]. 

It is well known that susceptibility values are correlated with the bone mineral density[27]. In this way, 

another variable may be added to the model. Furthermore, recent advances in QSM techniques allow 

the quantification of susceptibility values in air and cortical bone even if no signal is available in these 

areas[96]. As cortical bone and air present different susceptibility values, the segmentation of these tissues 

may be possible without requiring any anatomic information[97]. Also, it may be possible with the 

inclusion of this variable that the GMR may be applied to the whole image, allowing the distinction 

between bone, fat, water and air, and therefore obtain a more accurate pseudo-CT. 

At last, it was recently demonstrated that the use of a multi-gradient echo scheme, as well as 

water-fat reconstructions were useful for the identification of fiducial markers in prostate that are 

necessary for radiotherapy[98] [99]. In this way, the development of a complete MR-only RTP procedure 

may be possible only using the features used in this project. 

As a final conclusion, we envision that this method may facilitate the development of PET-MRI 

and MR-only RTP workflows by providing a method to completely replace the use of CT acquisitions, 

reducing costs associated with its acquisition and sparing the patient to radiation exposure. 
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Appendix  

Appendix I 

This appendix presents the MATLAB list of input parameters for the water-fat decomposition 

algorithm used in this project. 

 

algoParams.species(1).name = 'water'; 

algoParams.species(1).frequency = 0; 

algoParams.species(1).relAmps = 1; 

algoParams.species(2).name = 'fat'; 

algoParams.species(2).frequency = [-3.80, -3.40, -2.60, -1.94, -

0.39, 0.60]; 

algoParams.species(2).relAmps = [0.087 0.693 0.128 0.004 0.039 

0.048]; 

  

algoParams.size_clique = 1; algoParams.range_r2star = [0 0]; % Range 

of R2* values 

algoParams.NUM_R2STARS = 1; % Number of R2* values for quantization 

algoParams.range_fm = [-700 700]; % Range of field map values 

algoParams.NUM_FMS = 301; % Number of field map values to discretize 

algoParams.NUM_ITERS = 40; % Number of graph cut iterations 

algoParams.SUBSAMPLE =4; % Spatial subsampling for field map 

estimation (for speed) 

algoParams.DO_OT = 0; % 0,1 flag to enable optimization transfer 

descent (final stage of field map estimation) 

algoParams.LMAP_POWER = 2; % Spatially-varying regularization (2 

gives ~ uniformn resolution) 

algoParams.lambda = 0.05; % Regularization parameter 

algoParams.LMAP_EXTRA = 0.02; % More smoothing for low-signal 

regions 

algoParams.TRY_PERIODIC_RESIDUAL = 0; 

  


