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Resumo

Infeções bacterianas que apresentam resistência a um ou mais an-

tibióticos não são um problema recente na prática da Medicina. Uma

prova disso é Alexander Fleming, autor dos primeiros registos rela-

cionados com antibióticos, que foi também dos primeiros a observar

situações de resistência. No entanto, ao longo dos últimos anos, esta

problemática tem-se agravado e tornou-se uma prioridade global no

que diz respeito à Saúde Pública. A gravidade é de tal nível que esta

situação já é reconhecida como uma ameaça colossal ao núcleo da

Medicina Moderna pela Organização Mundial da Saúde, tendo esta

instituição também já lançado uma lista de agentes bacterianos para

os quais é mais urgente o desenvolvimento de novas terapêuticas. Para

além disto, esta temática apresenta impactos de carácter económico

que têm aumentando, o que tornam ainda mais urgente o controlo e,

num nível mais avançado, a prevenção da resistência a antibióticos.

Vários campos de pesquisa, como a Epidemiologia Evolutiva e Clínica

ou a Modelação Matemática de Infeções e Transmissão de Doenças

têm focalizado grande parte das suas pesquisas nesta questão.

Dado o aumento signi�cativo do número de agentes bacterianos re-

sistentes a um ou mais medicamentos antimicrobianos e a incapaci-

dade da indústria química de criar novos antibióticos a um ritmo que

faça frente a esta onda de resistência, a comunidade cientí�ca tem-se

dedicado a este assunto de diferentes formas. Para além de já exis-

tirem, por exemplo, bases de dados onde é possível identi�car a que

substâncias é resistente cada bactéria, é frequente encontrar, na liter-

atura cientí�ca, vários modelos biomatemáticos associados ao tema.

Na maioria deles, o principal objetivo é identi�car, entre os diversos

potenciais tipos de tratamento antibacteriano, aqueles que minimizam

tanto quanto possível a seleção de resistência a medicamentos, sem



comprometer a saúde do paciente. Serão os tratamentos mais agres-

sivos os ideais para alcançar este propósito? Ou a resposta implicará

alterar todo a paradigma associado ao uso dos antibióticos, tornando

a sua administração �exível e em função da resposta do paciente, em

tempo real?

Apesar de todo o progresso signi�cativo alcançado nos últimos anos,

continua a ser uma tarefa árdua travar o surgimento de resistência a

novas terapias antimicrobianas. Para além disso, lidar com agentes

bacterianos que já apresentam resistência continua a tratar-se de uma

tarefa ingrata ao nível da prática clínica. Neste momento, tudo aponta

para que a chave deste enigma implique explorar e conhecer os difer-

entes mecanismos de controlo durante as infeções bacterianas e ainda

as dinâmicas evolutivas nos diferentes cenários de doença.

Nesta dissertação, abordamos essa questão desenvolvendo vários mod-

elos matemáticos e explorando-os através de diferentes ferramentas

computacionais, desde análise numérica até séries de simulações. Para

isso, estabelecemos inicialmente três cenários biológicos que descrevem

o estado da infeção bacteriana. Um primeiro, denominado coloniza-

ção, para a situação em que, apesar do hospedeiro estar infetado

por bactérias, não há estimulação de resposta imunitária e a infeção

mantém-se sob controlo por ação da densidade equilibrada máxima.

Um outro, apresentado como persistência em que, por sua vez, a ex-

istência de bactérias, em valores mais elevados, implica uma conse-

quente resposta imunitária. Este cenário pode ser associado na prática

clínica a uma infeção estacionária crónica. Um último é de�nido como

eliminação, momento a partir do qual o hospedeiro está livre da in-

feção, panorama comum após uma infeção aguda.

Primeiramente, recorremos a modelos determinísticos. As grandes

novidades, quando comparados com os modelos já propostos na lit-

eratura, surgem na modelação logística do crescimento bacteriano e

ainda na utilização de uma equação única para descrever toda a re-

sposta imunitária. Estes são utilizados para analisar as condições de



equilíbrio que permitem a passagem de um cenário de infeção para

outro, entre colonização, persistência e eliminação. Estes resultados

são repetidos para infeções bacterianas sem e com tratamento. A

administração de agentes antimicrobianos é modelada, nesta disser-

tação, recorrendo a diferentes abordagens, que em última análise, são

comparadas entre si. Os resultados apontam para que a modelação

clássica e mais simples, que implica uma dose constante ao longo do

período de tratamento, é representativa do processo. Contudo, tanto

a farmacodinâmica das drogas como a sua e�ciência podem ser mod-

eladas de outras maneiras, o que poderá in�uenciar os resultados e

trazer novos conhecimentos para a área.

Este tipo de modelo permite um estudo assintótico, descrito acima,

mas também uma análise das dinâmicas transientes. Nesse campo,

foram comparadas infeções bacterianas crónicas e agudas. No primeiro

caso, foi observado que o início da administração do antibiótico em

diferentes dias, que correspondem a diferentes combinações de bac-

térias sensíveis e resistentes, vai resultar em diferentes desenlaces

para o hospedeiro. No caso de se tratar de uma infeção aguda e

considerando os valores dos parâmetros usados na dissertação, o hos-

pedeiro é capaz de eliminar todas as subpopulações bacterianas, sem

recorrer a qualquer tratamento, apenas por ação do seu sistema imu-

nitário. As consequências do uso de antibióticos podem, neste caso,

ser dúbias: o tratamento tanto pode resultar na seleção de bactérias

resistentes, fazendo com que a infeção piore e acabe por progredir para

um caso crónico, como pode acelerar o processo de cura, reduzindo os

efeitos prejudicais para o hospedeiro.

Os últimos resultados da dissertação surgem associados às dinâmicas

evolutivas das infeções bacterianas com tratamento. Neste campo,

são estudadas em particular infeções bacterianas agudas cujo trata-

mento é iniciado antes do sistema imunitário estar a funcionar no

seu pleno. O modelo matemático híbrido apresentado aqui tem uma

componente na qual a estocasticidade é imposta no surgimento de



novas estirpes bacterianas e uma outra componente determinística,

associada ao crescimento bacteriano. Cada estirpe bacteriana é car-

acterizada por dois traços fenotípicos: o custo na taxa de crescimento

exponencial intrínseca e a suscetibilidade aos antibióticos. Este mod-

elo é usado como uma ferramenta exploratória para simular e estudar

a seleção de resistência. É também através dele que se estuda o im-

pacto de diferentes tipos de tratamento, variando a sua dose e duração

e que nesta dissertação surgem em cinco grupos diferenciados: trata-

mento com dose baixa e duração baixa; tratamento com dose alta e

duração baixa; tratamento com dose média e duração média; trata-

mento com dose baixa e duração alta; e ainda tratamento com dose

alta e duração alta. Os resultados preliminares mostram que a ideia

geral de que tratamentos agressivos (doses e durações mais altas) re-

sultam numa maior probabilidade de cura acoplada a uma diminuição

da seleção não pode ser comprovada. Por sua vez, doses baixas ou cur-

tas durações geram mais oportunidades para uma maior evolução, e

estão, portanto, associadas a cenários de maior resistência. No geral,

as simulações fazem crer que se o tratamento se iniciar no momento

adequado, com uma dose moderada e considerando que o hospedeiro

é competente a nível imunitário, é estimulada uma interação sinérgica

entre hospedeiro, infeção e tratamento. Neste caso, a probabilidade

de eliminação torna-se mais elevada. Um dos maiores desa�os que

advém da elaboração desta dissertação prende-se com a capacidade

de associar ao modelo observações experimentais de sistemas partic-

ulares compreendidos pelo hospedeiro e pela população bacteriana,

onde uma visão mais geral e realista das dinâmicas de tratamento e

evolução da infeção possam ser integradas.

Em linhas gerais, esta investigação assenta na modelação matemática

de infeções bacterianas e comprova, de novo, o poder avassalador desta

ferramenta quando associada a análises numéricas e simulações com-

putacionais. Todo o trabalho levado a cabo durante esta dissertação

permite-nos a�rmar que, no campo da resistência a antibióticos, es-



tamos agora mais perto do objetivo último: o seu controlo e a sua

prevenção.

Palavras Chave: Infeções bacterianas, Modelos matemáticos, Re-

sistência a antibióticos, Dinâmicas de tratamentos, Evolução





Abstract

Antimicrobial resistance in bacterial infections is not new. However,

in the last years, it has become a global public health priority, already

recognized as a colossal threat to the core of modern medicine by

World Health Organization. In view of the urgency of its management

and, at a more advanced level, its prevention, several research �elds,

such as Evolutionary Epidemiology, focus their work in this major

problem.

Given the dramatic increase in the number of bacterial agents resis-

tant to one or more antimicrobial drugs, it is frequent to �nd, in the

scienti�c literature, biomathematical models whose main goal is to

identify, among the diverse potential treatment regimes, those that

minimize selection for drug resistance while seeking for general quan-

titative principles of infection clearance.

Despite this progress - and because several gaps are found when the

scope of this problem is being determined - it still remains a di�-

cult task to stop the emergence of resistance to new antimicrobial

therapeutics and to deal with already resistant bacterial pathogens.

In this study we visit this question by developing several mathematical

models of infection under treatment and exploring them computation-

ally. Speci�cally, deterministic models are used to analyze the equi-

libria conditions which allow to move from one infection scenario to

another, among colonization, persistence and clearance. These �nd-

ings, in the absence and in the presence of treatment, are conjugated

with evolutionary dynamics. Evolution is modeled through a series of

stochastic events, giving rise to bacterial strains with di�erent growth

and antibiotic resistance phenotypes. The hybrid model, in which

stochasticity is imposed in the emergence of new bacterial strains and



followed by deterministic growth, is used as an exploratory tool to

simulate and study resistance selection and treatment outcomes. Our

preliminary �ndings show that high cost, high resistant mutations are

not directly favored by aggressive treatments. Sub-inhibitory doses

or short durations generate more opportunity for further evolution.

Finally, we discuss future directions for improving the mathematical

models and assess their realism; and also propose a series of extensions

worth exploring with this framework.

Keywords: Bacterial infections, Mathematical models, Antibiotic

resistance, Treatment dynamics, 2-trait Evolution
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Chapter 1

Introduction

1.1 Motivation

The earliest records on antibiotic drugs date back to 1929 and are authored by

Alexander Fleming, who notticed that Penicillium notatum produced a substance

with antibacterial e�ects (Bush, 2010). Penicillin only started to be used for

therapeutic purposes in the early 1940s (Fleming et al., 1946). Since then, the

use of these drugs has contributed to a signi�cant decrease of illness and deaths

due to infections (Cohen, 1994). But from the beginning of this era of discovery,

the optimism was being questioned. Fleming was aware that not all microbes

were sensitive to this drug (Fleming et al., 1946). In 1942, particular cases of

resistance were already being described in scienti�c articles (Rammelkamp &

Maxon, 1942). Antimicrobial resistance became a reality to almost every new

antimicrobial substance, after the beginning of its use in the clinical practice,

predominantly in hospital environment (Macfarlane et al., 1960; McGowan Jr,

1983; Peacock et al., 1980; Webb et al., 2005). As time passes by, there are more

resistant organism, more geographically spread, and several of them not respond

to many substances, instead of just one (Levy, 1998; Levy & Marshall, 2004).

Beyond the adverse in�uence on the public health, this problem has had a big

economic impact in the last decades (Holmberg et al., 1987; Rubin et al., 1999).

Each day, antimicrobial resistance of infectious agents increases dramatically

worldwide (Organization et al., 2014, 2015). The situation is so critical that

1



1. INTRODUCTION

World Health Organization already published a priority list of resistant bacte-

ria for which new antibiotics should be developed faster (Organization et al.,

2017). More and more, human and monetary resources are being promptly ap-

plied in this �eld of investigation, in order to control this issue (Roca et al., 2015;

Theuretzbacher et al., 2017). There is even a comprehensive antibiotic resistance

database, in which knowledge about antibiotic resistance genes is concentrated

(McArthur et al., 2013). It is expected that, in a near future, new infections will

not be treatable and the prophylactic strategies working nowadays will fail. So

far, there are no other pratical and e�ective alternatives to antibiotics, despite all

the e�orts from the scienti�c community (Allen et al., 2014). To �ght this global

threath is urgent and imperative (Perron et al., 2015).

Concerning antimicrobial resistance, this question can be adressed in two dis-

tinct perspectives. First of all, resistance to the majority of antimicrobial drugs

in use already exists (Lipsitch et al., 2000). If that is the case, there is the need

to manage resistance, in an individual and populational levels (Purohit et al.,

2017). A resistant bacterial subpopulation, present in an infection, is su�cient to

threat the success of the treatment and compromise the host health. Focusing on

the community, many people su�er from resistant bacteria acquired in hospital

envinronment, after they are already infected (Lipsitch et al., 2000; McGowan Jr,

1983).

On the other hand, resistance may emerge by de novo mutations (Davies &

Davies, 2010; Munita & Arias, 2016). In that particular case, a better under-

standing of how di�erent types or strategies of treatment a�ect selection and

spread of drug resistance may allow to expand the life span of the drugs (Geli

et al., 2012). Resistance emergence is even in�uenced by how these drugs are

consumed in the community (Bell et al., 2014). If an antibiotic is e�ective for

more time, the probability of resistance evolution decreases and the consequences

for the host are less likely to be adverse. Evolutionary epidemiologists have spent

a lot of time focused on this. A direct e�ect is in the hospital procedures and,

consequently, on hospital antimicrobial swetwarship programs (Allerberger et al.,

2016; Hamilton et al., 2015).

Nowadays, it is possible to �nd, in the literature, many mathematical models

whose main goal is to identify, among the diverse potential treatment regimes,

2



1.1 Motivation

those that minimize selection for drug resistance while not compromising patient

health (Spicknall et al., 2013). Di�erent therapeutic strategies were already pre-

sented by many authors, corroborated by empirical and theoretical evidences.

Mathematical models are used to study not only bacterial infections but also

other diseases or other types of therapeutics (Schirm et al., 2013). Biomathemat-

ical modelling is, without any doubt, a simpli�cation of the study case and its

outcomes are always approximations of the reality. However, its success comes

from the possibility to start with a complex biological system, summarize the

available knowledge about it and end it up with a formal representation. Addi-

tionally, through a set of parameters and variables, it is possible to access the

dynamics of the system and to distinguished which components play a bigger role

in each. Summarily, a more realistic model implies a higher number of variables

and parameters. Because some of them are approximations, the more authen-

tic the model, the higher the error associated to it. At the end, mathematical

modelling implies a good harmony between how close it is to reality to be repre-

sentative of it and how it is not too detailed in order not to have a higher error

than desired. The key word in this process is balance.

A big part of the scienti�c community advocates to use an antimicrobial treat-

ment as agressive as possible to deal with bacterial infections (Ankomah & Levin,

2014). A high dose of drug, tolerable by the host, was thought to be enough to

kill the host and, at the same time, to reduce the rate of de novo mutations and

its evolution. However, many cases have been described in which this strategy

did not work (Day & Read, 2016). For low mutation rates pathogens, it is very

questionable if this option succeeds since higher doses seem to favor selection of

resistant pathogens, specially if the resistance already exists. Contrarily to what

happens with community acquired infections, such as TB (Pienaar et al., 2015),

if the pathogen is able to mutate at a high rate, as it happens with HIV, this

treatment strategy may work (Read et al., 2011). Based on this, new alternatives

started to be studied (Goulart et al., 2013; Jassim & Limoges, 2014). That is

when one might consider the option of prescribing a more moderate treatment,

or to discard the classical regime and opt by an adaptive one, in which treatment

is �exible and follows the changes in the host health (Gjini & Brito, 2016).
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Currently, all alternatives are being debated, both on experimental and theo-

retical levels, and this amount of results shows that we are far away from having

de�ned general practices for treatment of bacterial infections. It is from this state-

of-art that the main idea of this thesis is constructed and motivation emerges.

Several models assume for simplicity an exponential growth of bacteria in

acute infections, either they are sensitive or resistant (Ganusov et al., 2002; Gjini

& Brito, 2016). In this thesis, resource limitation is taken into account, which

means we will be dealing with a logistic growth model, a very useful approach

to control bacterial growth setting a maximal carrying capacity in the absence

of immunity. The main simpli�cation from the model in Gjini & Brito (2016) is

in the process of the immune system modelling. Instead of considering di�erent

types of immune cells, since they play di�erent roles in the organisms, or com-

pare di�erent immunity models for the same system (Handel et al., 2009), here

we represent immune response by a single variable. A major step forward in this

master thesis is an extensive analysis of the equilibria of the model. The output

are explicit mathematical expressions which produces the necessary conditions to

adjust the therapeutics, if parameters involved in the antibiotic prescription are

known. To end in great, deterministic and stochastic versions of the same model

are compared. Individual bacterial cells present a heterogeneous behavior, which

is not usually considered when bacterial populations are modelled (Koutsoumanis

& Lianou, 2013). In here, pathogens can mutate, in a pleitropic manner (Perron

et al., 2015), and consequently evolve, which may in�uence the infection dynam-

ics. We model evolution as stochastic emergence of new bacterial sub-populations

with di�erent �tness cost and antibiotic susceptibility (Kepler & Perelson, 1995).

This approach/ simpli�cation, focusing only on phenotype, may not be too re-

strictive since there is a dissociation between genotype and phenotype (Hughes &

Andersson, 2017). Factors, such as antibiotic administration, change the pheno-

typic expression of resistance mutations and this information leads, in practice,

to the comparison of a larger number of various antimicrobial treatments. At

the end, ideally, the model will predict the probability of resistance selection and

identify the phenotypic traits of the selected strains (Oz et al., 2014) and related

that to a successful bacterial infection treatment.
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1.2 Objectives

The main ambition adressed in this thesis is to study the dynamics of bacterial

infections under di�erent types of treatment, based on the de�nition of mathe-

matical models and computational simulations.

To start this research, deterministic bacterial infection models are used, mostly,

for the precise identi�cation of the conditions with parameters combinations that

allow an infection, either acute or chronic, to go from one state to another, be-

tween colonization, persistence and clearance. Initially we �x the phenotypes of

two bacterial subpopulations (sensitive and resistant) that compete within a host.

Besides that, bacterial dynamics study concede the opportunity to compare "the

same infection", when in the presence or in the absence of antibiotics. Therefore,

a better understanding of the concept of ideal treatment regime depending on the

pathogen and the host (in particular its immunity) is achieved. When stochas-

ticity is incorporated in the model, the focus shifts to answer these questions:

How does evolution of a pathogen a�ect the dynamics of a bacterial infection

under treatment? And even, how do dynamics of infection a�ect the evolution

of the pathogen? Here, the infection will be composed by multiple heterogeneous

subpopulations which compete for resources and grow under immunity and an-

tibiotics. If we are working with the correct mathematical models, the main focal

point is to better distinguish the distinct infection types and to reveal the key

strategies to deal with them, focusing always on resistance control.

1.3 Contributions

As slightly revealed before, to pursue the main goals of this thesis, two mathemat-

ical modelling approaches are chosen. In a �rst technique, a deterministic model

which aggregates three ordinary di�erential equations is designed. Through it,

sensitive and resistant bacterial subpopulations and immunity of the host can be

studied. This model, with an array of adequate parameters, generates graphic

interpertable simulations and mathematical expressions of equilibria conditions.

The second one needs to be planned even with more detail, due to the imposed

stochasticity. This element allows the pathogen to have some variability in traits
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1. INTRODUCTION

such as its �tness cost and its antibiotic susceptibility, which is re�ected in the

infection process and evolutionary dynamics. The main message of all this inves-

tigation high-lights the interdependency between host immunity, pathogen char-

acteristics and evolution and type of treatment in order to obtain a successful

treatment regime for bacterial infections.

1.4 Overview

The thesis architecture is as follows. Chapter 2 focus on the dynamics of bacterial

infections, without treatment. It starts to provide an overview of the mathemat-

ical modelling process. Besides that, key biological concepts are introduced, such

as colonization, persistence and clearance. Study of the stability of the system

brings out a set of conditions of equilibria enumerated in here. It ceases with sim-

ulations focused on the role of carrying capacity and host immunity. Chapter 3

arises with the administration of antibiotics. Asymptotic analysis of stability of

the system is performed for di�erent treatment modelling approaches: constant

antibiotic dose, with pharmacodyanmics and with the e�ective dose. Chapter 4 is

centered on the transient behavior of the system. Two dissimilar infection types

are compared: a persistent infection (with variation of treatment onset) and an

acute infection. Bacterial dynamics in the presence of treatment are studied in

order to compare types of treatment and obtain an adequate high-light of the best

treatment regime. The mathematical expressions computed in here are the start

point for Chapter 5, in which the types of treatment are distinguished in a more

systematic way. Besides that, stochasticity allows to mimic the pathogen evolu-

tion, using di�erent mutation rates and generating di�erent random evolutionary

trajectories even for the same parameters. Again, acute infections are scrutinized

through their bacterial dynamics and interpretation of summary measures and

infection outcomes scenarios. On all produced models, numerical computations

and simulations were performed using Wolfram Mathematica 11.0 and MATLAB

R2016a. In the �nal chapter, central messages are reviewed. Aside from the

wealth of thesis results to the scienti�c community, the potential applicability in

the clinical practice is discussed. The last point adressed are the future perspec-

tives of this �eld, reinforcing the usefulness of interdisciplinarity.
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Chapter 2

Bacterial Infection Dynamics

Without Treatment

2.1 Mathematical Model

The general mathematical model is designed to explore the interplay between

antibiotic treatment strategies and host immune response, during a partial drug-

resistant bacterial infection. The major formulation is based on a previous within-

host model of bacterial infection dynamics (Gjini & Brito, 2016), in which two

pathogen phenotypes are identi�ed: the sensitive bacterial subpopulation, BS,

and the resistant one, BR. These two subpopulations can be distinguished by

two essential rates: their intrinsic growth rates, r0 (Stromberg & Antia, 2011;

Tuomanen et al., 1986) and r1 (Levin et al., 2000), and the killing rates by the

antibiotic, δ0 and δ1, respectively. Two major parameters are considered in this

model: the �tness cost of resistance, c = r0-r1 (0 ≤ c ≤ r0), and, on the other

hand, the �tness bene�t of resistance, a = δ1
δ0

(0 ≤ a ≤ 1). In this model, the

�tness bene�t of resistance can be seen as the way in which bacterial resistance

reduces the killing capacity of the antibiotic.

One of the main di�erences remains on the fact that the action of host immu-

nity is simpli�ed. Instead of having one equation for each type of immune cell,

there is only one equation that describes the entire action of the immune system.

This mathematical model is inevitably a simpli�cation of complex interactions
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TREATMENT

between immunity, bacteria and antimicrobial drugs but the underlying assump-

tions do capture the major dynamics of the immune system: growth by antigen

stimulation (at equal rates by any types of bacteria) and possible decline.

Another crucial assumption in the model is that the killing rate d by the action

of the immune system cells (Barber et al., 2003; Stromberg & Antia, 2011; Yates

et al., 2007), known as immune response, is equal for BS and BR, independently

of their antimicrobial susceptibility. Another one regards the function of the stim-

ulation of immunity, by the entire bacterial population within host, BTOT . For

immune stimulation by antigen, a monotonically increasing saturating function

of pathogen density (Hill function, coe�cient 1) is assumed, by default. In this

function, the parameter k (De Boer et al., 2001; Stromberg & Antia, 2011) repre-

sents the half-saturation constant for activation of the immune response, in this

work, as the host immunity threshold. Other parameters are σ and h (Allan et al.,

2004; De Boer et al., 2001; Stromberg & Antia, 2011), which represent maximum

immune cell recruitment and immune system action decay rate, respectively.

To the general mathematical model described above will be added some dis-

tinct extensions, in order to study di�erent scenarios, which are considered critical

in this investigation. A detailed description of model parameters is given in Ta-

ble 2.1. Aditionally, other parameters will be described later. The simulations are

based on a limited set of parameter values, likely to apply to a range of diferent

infections types. Another important feature of the model is that the parameters

values do not re�ect any particular antibiotic-species combination.

The �rst extension to the previous described model is to consider that both

subpopulations experience a logistic growth, instead of exponential. This asump-

tion provides another way to control the bacterial growth, beyond the control

via host immune responses. This alteration requires a new parameter: the car-

rying capacity, C, known as the maximum population size of the species that

the within-host environment can sustain inde�nitely. This parameter takes into

account the within-host resources, habitat, other necessities available in the envi-

ronment and even the crowding e�ects and bacterial competition. At this point,

the model is more general and C can take every value. It will be important to

study the interaction between this limit for pathogen growth and the immunity

stimulation threshold.
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2.1 Mathematical Model

Table 2.1: Model parameters and interpretation
Symbol Interpretation Value Range Units

r0 Sensitive bacteria growth rate 3.3 1-8 day−1

r1 Resistant bacteria growth rate 1.1 ≤ r0 day−1

d Pathogen killing rate by immunity 10−5 10−5-10−4 µl/cell/day
δ0 Killing rate of BS by antibiotics 1 Scaled l/mg/day
δ1 Killing rate of BR by antibiotics aδ0 Scaled l/mg/day
σ Maximum immune response growth rate 2 1.2-3 day−1

k Host immunity threshold 105 104-105 cell/µl
h Immunity action decay rate 0.35 0.1-0.8 day−1

Am Average antibiotic concentration 1-50 0.03-128 mg/l
C Carrying capacity 105 102-109 cell/µl

Within-host dynamics for a mixed infection with a drug-sensitive, BS, and

pre-existing partially resistant, BR, bacterial strains and additionally the immune

system (I) are described by the following set of ordinary di�erential equations:

dBS

dt
= r0BS

(
1− BS +BR

C

)
− dBSI − δ0BSAm (2.1)

dBR

dt
= r1BR

(
1− BS +BR

C

)
− dBRI − δ1BRAm (2.2)

dI

dt
=

σI(BS +BR)

k +BS +BR

− hI (2.3)

The initial conditions of the model are BS(0) = 10, BR(0) = 2 and I(0) = 200,

which satis�es B(0) � k and I(0) � r0
d
. To be able to consider the pathogen's

discrete nature, an extinction threshold is assumed, when pathogen density of

either bacterial subpopulation falls below a critical level Bext = 10−1cell/µ.

A special case of this model is Am = 0, which means that part of both equa-

tions (Equation 2.1 and Equation 2.2) are not considered in the analysis. Bio-

logically, the infection is not being treated. This particular case of the equations

system is essential because the main goal, in this chapter, is to study the dynamics

of bacterial infections that are not going under any antimicrobial treatment.
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2.2 Equilibria for the case Am = 0

From the analysis of a mathematical model, several points of equilibria can arise,

by solving a system of equations:

dBS

dt
= 0 (2.4)

dBR

dt
= 0 (2.5)

dI

dt
= 0 (2.6)

Each of them can be interpreted biologically, corresponding to a known infec-

tion �xed scenario, summarized in this dissertation as colonization, persistence

or clerance. By the term colonization we refer to the situation in which the

pathogen is present in the host system, and there is no immune response to �ght

it. By the term persistence, we mean that the presence of the pathogen in the

host system stimulates an immune response, that persists at equilibrium. Clin-

ically, it stands for a chronic infection. Clearance represents the scenario in

which the host is free of pathogen and the immune response, at that time point,

is null. This picture can arise as a direct outcome of an acute infection.

2.2.1 Fixed Points

The �xed points of the mathematical model of bacterial dynamics without any

antimicrobial treatment are enumerated and described below:

� Colonization by BS at C and no BR, by BR at C and no BS and by BS and

BR where BR +BS = C:B∗S = C
B∗R = 0
I∗ = 0

 ,
B∗S = 0
B∗R = C
I∗ = 0

 and [B∗R = C −B∗S
I∗ = 0

]
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2.2 Equilibria for the case Am = 0

� Persistence of BS with some immunity and no BR, and persistence of BR

with some immunity and no BS:B
∗
S = hk

σ−h
B∗R = 0

I∗ = r0
d

(
1− B∗

S

C

)
 and

B
∗
S = 0

B∗R = hk
σ−h

I∗ = r1
d

(
1− B∗

R

C

)


� Clearance of the infection: B∗S = 0
B∗R = 0
I∗ = 0


All these �xed points can be compared to each other, concerning the values of

BS, BR and I (Figure 2.1). It is possible to check that, in the absence of immune

response, at equilibrium, there is no simultaneous persistance of both bacterial

subpopulations. However, their coexistence without immune response is possible.

Figure 2.1: Summary of Equilibria of the Mathematical Model.

2.2.2 Conditions for Stability

Next, we check if the equilibria have the robustness against perturbations of the

bacterial subpopulation sizes and the immune response levels around the steady

state. Linear stability analysis requires studying the properties of the Jacobian

matrix, evaluated at (B∗S, B
∗
R, I

∗) and allow to determine the stability, identifying

the critical parameter values. The real part of all eigenvalues of the Jacobian

Matrix must be negative for the equilbria to be stable.
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� Stability of Colonization

When only one of the bacterial subpopulations is responsible for the coloniza-

tion of the host (equilibrium (C, 0, 0) and (0, C, 0)), the eigenvalues are:

λ1 = 0

λ2 = −r

λ3 = −h+
Cσ

C + k

. where r = r0 or r = r1 for colonization by BS or by BR, respectively. Regarding

bacterial subpopulations coexistence (equilibrium (B∗S, C−B∗S, 0)), λ1 and λ3 are

the same. Di�erences are only found in the second eigenvalue:

λ2 =
(r1 − r0)

C
B∗s − r1.

For all the above cases, the �rst eigenvalue, λ1, being zero, gives one neutrally

stable direction for free variation between BR and BS, always ensuring that B∗S +

B∗R = C. The second eigenvalue is always negative because r0 is always positive

and because B∗
S

C
< 1, leading to (r1 − r0)

B∗
S

C
< r1. For the last eigenvalue to be

negative, λ3 < 0, the condition C < hk
σ−h has to be satis�ed. Thus, only when the

carrying capacity is low enough, relative to host immune activation parameters,

that the bacterial populations will be controlled exclusively by resource limitation.

� Stability of Persistence

The eigenvalues of these �xed points (equilibrium (B∗S, 0, I
∗) and (0, B∗R, I

∗))

follow this structure:

λ1 = (r0 − r1)
( 1

C

hk

σ − h
± 1
)
for BR and BS persistence, respectively

λ2,3 = −A±
√
B,

where A = hkr
2C(σ−h) and B = hr[4Chk(σ − h)2 + hk2rσ − 4C2(σ − h)3], where

r = r0 or r = r1 depending on which equilibrium we are dealing with.
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The conditions for existence of these �xed points are σ > h, to ensure B∗S > 0

or B∗R > 0, and C > hk
σ−h , to ensure I∗ > 0.

Considering r the growth rate of the bacterial subpopulation that persists,

if B ≥ 0, λ2 and λ3 are real, which generates a node and the equilibrium is

approached in a monotonous manner. For B ≥ 0, requires the satisfaction of the

following condition:

hk

σ − h
< C ≤ 1

2

(
hk

σ − h
+
√
H

)
, where H =

hk2(h2 − (h+ r)σ)

(h− σ)3
.

Given the parameters values, A > 0, which means −A < 0. Following that

idea, −A −
√
B < 0, which ensures eigenvalue λ3 < 0. λ2 = −A +

√
B will be

negative when B < A2, ensured by C ≤ 1
2

(
hk
σ−h +

√
H
)
.

If B < 0, the eigenvalues λ2 and λ3 are complex. This occurs for values of

carrying capacity C exceeding a critical value

C >
1

2

( hk

σ − h
+
√
H
)
.

In that situation, the stability of the equilibrium can be veri�ed just considering

the real part of the eigenvalues (Re(λ2,3)), given by −A < 0. Thus whenever

a focus exists, it is always stable. In these cases, persistence is approached in

an oscillatory manner. As C increases further, the amplitude of the oscillations

increases.

� Stability of Clearance

The �xed point associated with the scenario of clearance (equilibrium (0, 0, 0))

is the trivial one and the correspondent eigenvalues are:

λ1 = −h

λ2 = r0

λ3 = r1.

This point is always unstable, given that both growth rates are always positive.
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2.3 Simulations

2.3.1 The Role of Carrying Capacity

Here we study, through simulations, the role of the new parameter, C, since now

it is a model containing logistic growth dynamics independently of immunity or

antibiotics.

In order to get as much information as possible, the simulations can be di-

vided into di�erent scenarios that di�er on the value of C, in order to satisfy the

conditions of stability of each scenario. These four scenarios allow to compare

the logistic growth model against the exponential one, making our results and

investigation more general.

� Case 1: Colonization

Taking into account the fact that the carrying capacity, C = 102, is way lower

than the immunity threshold, k = 105, which allows to satisfy the condition of

stability of colonization, there is no su�cient stimulation of the immune system

and the immune response decreases over time from its initial levels (Figure 2.2,

Panel E). Without control by immune system, both bacterial subpopulations,

individually or simultaneously, can grow up to the value near to the carrying

capacity, where they remain inde�nitely (Figure 2.2, Panel A). In this case, the

host is colonized by the pathogen and it will su�er from a chronic infection.

� Case 2: Persistence

When, for example, the carrying capacity C increases to 105 and has the same

value of the immunity threshold k, the critical condition for stability of persistence

is satis�ed. There is a �ne incentive of the immune system's action (Figure 2.2,

Panel F). Considering our default value of h, the immune response will be able to

result in the clearance of the resistant bacterial subpopulation and the persistence

of the sensitive one (Figure 2.2, Panel B). The values of BS load, when persistent,

are lower than C, as expected from the stability analysis abovementioned. This is
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consequence of the action of immune system. It can happen to occur persistence

of BR instead of BS, but not both simultaneously.

� Case 3: Persistence with oscillations

We �nd some special cases in which C slightly exceeds the value of the immunity

threshold, k, leading to a particular scenario of persistence. Mathematically, when

C = 106 the condition of stability of oscillatory persistence is satis�ed. Both

BS (Figure 2.2, Panel C) and immune response (Figure 2.2, Panel G) present

oscillations. Over time, there is a general damping of the oscillatory behavior.

This can be seen approximately after 5 months of persistence of bacteria and it

is maintained over time (Figure 2.3).

� Case 4: Clearance

If the value of the carrying capacity C increases further, for example 108, greatly

exceeding the value of k, the model approaches the exponential growth scenario.

It means the dynamics mimic a system in which there is no limitation of resources.

If this is the case, asymptotically we will observe the extinction of both bacte-

rial subpopulations, and the host will be free of the infection, a process known

as clearance (Figure 2.2, Panel D). This will correspond to an acute infection.

It happens because bacteria are able to grow until a level in which there is a

continuous stimulation of the immune system (Figure 2.2, Panel H).

The clearance observed here does not correspond to the �xed point. Because

an extinction threshold is considered, when the amplitude of the oscillations in

the persistence scenario are high enough, BS hits Bext and clearance is imposed

on the system via our numerical threshold.

Overall, it is possible to check that Case 1 mimics a Logistic Growth Model,

while Case 4 is a closer scenario to Exponential Growth Model. Clearance is a

more likely outcome when C increases, in comparison to k.
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Figure 2.2: Simulations of the dynamics of BS, BR and I, during 30 days.

Panels A-D for Pathogen Load and Panels E-H for Immune Response. Panels A

and E C = 102; panels B and F C = 105; panels C and G C = 106; and panels D

and H C = 108. Other parameters as in Table 2.1.

Figure 2.3: Simulations of the dynamics of BS, BR and I, during 200

days. On both panels C = 106. Other parameters as in Table 2.1.
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2.3.2 The Role of Host Immunity

Although C plays a major role in the growth logistic model, immunity is also

an important player on these interactions. Here we focus on persistence cases.

This has been veri�ed by the equations of the �xed points of persistence and by

the stability conditions. To illustrate further the role of the immune parameters,

the following simulations are focused on the outcome of the relation between σ,

rate of immune activation, and C, carrying capacity. To have a wider spectrum

of values, di�erent outcomes are compared: the �nal pathogen load, the total

pathogen burden and the maximum value obtained during the simulation.

� Final Pathogen Load

Final pathogen load corresponds to the value in the simulation's last time point,

which in this case is T = 30 days.

Figure 2.4: Contour plots of Final Values of the simulations of BS, BR

and I. Panel A presents the �nal value of BS load, B for BR and C for immune

response. σ varies from 2 to 4. C varies from 0.5x105 to 105. All values are their

common log values. Other parameters as in Table 2.1.

In cases of lower σ, the levels of BS are high, independently of C; the decrease

of the burden follows the increase of σ, since the value of the bacterial loas, at

equilibrium, is only dependent of immunity parameters (Figure 2.4, Panel A).

Concerning BR, the pattern di�ers, and this measure almost does not change

varying C and σ (Figure 2.4, Panel B). Concerning immunity, if C is too low,

it won't be activated (because k won't be exceeded by the bacterial population

size); on the other hand, when C is higher, and more if σ is high too, the immune

system is acting at its maximum capacity (Figure 2.4, Panel C).

17



2. BACTERIAL INFECTION DYNAMICS WITHOUT
TREATMENT

� Total Pathogen Burden

We de�ne total pathogen burden as the cumulative value of the pathogen over the

interval [0, T ], mathematically known as BTOT =
∫ T
0
B(t)dt, where T = 30days.

BS, BR and I burdens are, respectively,
∫ T
0
BS(t)dt,

∫ T
0
BR(t)dt and

∫ T
0
I(t)dt.

Concerning pathogen burden of BS, it is more dependent of the immunity

activation, de�ned by σ (Figure 2.5, Panel A). This value is maximum with the

highest C and the lowest σ. Nevertheless, when the focus is on BR, the values of

the pathogen burden are dependent of other parameter combinations (Figure 2.5,

Panel B). Here, it is possible to verify that the higher the σ, the lower the burden,

as expected. Additionally, higher values of the pathogen tend to be related to

higher C. In the last plot (Figure 2.5, Panel C), related to immunity, the higher

the C and the higher the σ, the greater the immune response, because of the

activation and stimulus due to bacteria presence.

Figure 2.5: Contour plots of total bacterial burden as a function of

carrying capacity and immune activation rate. Panel A presents the BS

burden, panel B for BR and panel C for the immune response burden, all over

30 days. σ varies from 2 to 4. C varies from 0.5x105 to 105. All values are their

common log values. Other parameters as in Table 2.1.

� Maximum Values

Another summary measure of infection we can study is the maximal value of

each variable in the system. Looking at each bacterial subpopulation (Figure 2.6,

Panels A and B), the maximum value of bacteria during the pre determined time

span of the simulation does not depend on the parameter σ. This value allows to

have some clues about the transient dynamics of the system.
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The higher the C, the higher the maximum value, because bacteria will grow

more if there are more resources. Notice that this value is not the value at

equilibrium, which is always lower (Figure 2.2, Panel B). This will typically lead

to an acute infection, brought to control only via action of the immune response.

This shows that the peak of the infection does not depend on the immune system

activation. However, this parameter σ will interfer with the duration of the

infection. Parameter σ also plays a role on the immune response (Figure 2.6,

Panel C), since these values are lower if σ is lower as well. High values of both

parameters will result in a more e�cient stimulation of the immune response.

Figure 2.6: Contour plots of Maximum Values of the simulations of

BS, BR and I. Panel A presents the BS maximum value, panel B for the BR

maximum value and panel C for the immunity response maximum value, during

the 30 days simulation. σ varies from 2 to 4. C varies from 0.5x105 to 105. All

values are their common log values. Other parameters as in Table 2.1.

In summary, regarding the �nal load, higher values of σ, and in particular

higher values of C, lead to a less likely clearance. A higher immune response,

at the end, depends on high values of one or both parameters. On the other

hand, total pathogen burden depends on di�erent conditions, concerning which

subpopulation is the focus: the higher the C, the higher the BS burden; however,

the BR burden essentially depends on σ, except when C is very low. The I

burden increases when these two parameters increase as well. To �nish, maximum

values simulations allow to point some interesting facts: bacterial population peak

during infection, that increases with a higher C, does not depend on σ, which

a�ects the infection duration. A good immune response depends on high values

of both parameters.
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2.4 Sensitivity of the model

2.4.1 Sensitivity to intrinsic growth rates

Initially, there is the need to study how the ratio between BR and BS is a�ected

by some parameters of the model or the initial conditions of the simulation.

The �rst study is focused on the in�uence of the ratio of both growth rates, r1
r0

(Figure 2.7). The closer the growth rates are, the higher the ratio BR

BS
is, due to

the advantage of the resistant bacteria compared to sensitive bacteria. However,
BR

BS
never exceeds 0.2 if r1 ≤ r0, which biologically means that the plateau value

of BS is always much higher than the plateau value of BR (Figure 2.2).

Another perspective to study this in�uence is to check the impact of the

�tness cost of resistance, c = r0−r1, on the ratio BR

BS
(Figure 2.8). The higher the

�tness cost of resistance, the lower the ratio BR

BS
. If the cost is higher, resistant

bacteria have less chances to proliferate and the di�erences between the bacterial

subpopulations become more signi�cant.

Figure 2.7: In�uence of the ratio of growth rates on the ratio of bacterial

subpopulations at day 7. With r0 �xed to 3.3, r1 varies from 0.33 to 3.3. Other

parameters as in Table 2.1. Default ratio value, as in Table 2.1, is 0.3.
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Figure 2.8: In�uence of the �tness cost of resistance on the ratio of

bacterial subpopulations at day 7. With r0 �xed to 3.3, r1 varies from 0.33

to 3.3. Other parameters as in Table 2.1. Default di�erence value, as in Table 2.1,

is 1.1.

2.4.2 Sensitivity to ratio BR

BS
in the initial conditions

The second one is focused on the in�uence of the ratio BR

BS
on the beginning of the

simulation (Figure 2.9). The main goal is to verify if di�erent initial conditions

a�ect the ratio of the plateau values.

Figure 2.9: In�uence of the ratio of bacterial subpopulations in the initial

conditions on the ratio of bacterial subpopulations at day 7. The total

bacterial load is mantained constant in the plot. Other parameters as in Table 2.1.

Default ratio value, as in Table 2.1, is 0.2.
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It is evident that an increase of the ratio at day 0 results in an increase of

the same ratio at day 7. However, at day 7 the ratio BR

BS
is much smaller than

in the beginning of the infection, which means that, over time, the two bacterial

subpopulations tend to be more similiar in size.

A new question arises at this point: how does this relation between both

ratios at di�erent time points is a�ected by the carrying capacity of the system?

In general, the higher the carrying capacity, the smaller is the ratio BR

BS
, which

means that the sizes of bacterial subpopulations are closer (Figure 2.10).This

happens because the smaller the carrying capacity, the less time the bacterial

subpopulations have to grow, which means initial conditions determine more

strongly the dynamics. It is even possible to verify that with a higher C, the

in�uence of the ratio of bacterial subpopulations in the initial conditions on the

ratio of bacterial subpopulations at day 7 becomes less signi�cative, proved by

smaller slopes.

Figure 2.10: In�uence of the ratio of bacterial subpopulations in the

initial conditions on the ratio of bacterial subpopulations at day 7,

for di�erent carrying capacity values. The slope becomes smaller with a

higher C, which means the in�uence becomes less representative (C = 104 in

blue, C = 105 in orange and C = 106 in yellow). The total bacterial load is

mantained constant in this plot. Other parameters as in Table 2.1.

22



Chapter 3

Asymptotic Analysis of Bacterial

Infection Under Treatment

The next three sections will approach asymptotic dynamics of bacterial infections

considering that the host is being treated with antimicrobial drugs. These sections

di�er on the manner how the treatment is modelled and the main goal is to verify

which is the most realistic way to model antibiotic treatment.

3.1 Constant Antibiotic Dose

In this particular section, it is considered that the host receives a constant dosage

of antibiotic, Am > 0. Another important assumption is that the drug concen-

tration in host body does not su�er any alterations over time. This is the most

simple way to model the use of antimicrobial drug during an infection, similar to

previous studies (Day & Read, 2016; Gjini & Brito, 2016).

3.1.1 Mathematical Model

Mathematically, this scenario can be modelled by the same system of equations

(Equations 2.1, 2.2 and 2.3), presented in the last chapter (Chapter 2). However,

the main di�erence is that Am has to have a constant positive value, instead of 0.

Combining the value of the average antibiotic concentration, Am, with the value
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of δ, the killing rate of bacteria by the antibiotic (δ0 for BS and δ1 for BR), it is

possible to decrease the bacterial subpopulation sizes.

3.1.2 Equilibria

From the analysis of this mathematical model, several points of equilibria arise.

It is possible to check that if any antimicrobial drug is administrated there is no

chance to have colonization of the host by both bacterial subpopulations simul-

taneously, at equilibrium, as it happens in cases of infections with no treatment.

Therefore, there are fewer distinct equilibrium scenarios (Figure 3.1). Neverth-

less, asymptotic exclusion of one bacterial subpopulation does not mean that BS

and BR do not coexsit transiently.

Steady states

The �xed points of the mathematical model regarding treatment, which can be

compared to each other, concerning the values of BS, BR and I, re�ect:limt→∞BS(t) = B∗S
limt→∞BR(t) = B∗R

limt→∞ I(t) = I∗


They are enumerated and described below:

� Colonization by BS and no BR, and colonization by BR and no BS:B∗S = −C(Amδ0−r0)
r0

B∗R = 0
I∗ = 0

 and
B∗S = 0

B∗R = −C(Amδ1−r1)
r1

I∗ = 0


� Persistence of BS under some immunity and no BR, and persistence of BR

under some immunity and no BS:B∗S = hk
σ−h

B∗R = 0
I∗ = −−r0+Amδ0

d
+ hkr0

Cd(h−σ)

 and
B∗S = 0
B∗R = hk

σ−h
I∗ = −−r1+Amδ1

d
+ hkr1

Cd(h−σ)


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3.1 Constant Antibiotic Dose

� Clearance of the infection: B∗S = 0
B∗R = 0
I∗ = 0



Figure 3.1: Summary of Equilibria of the Mathematical Model, consid-

ering classical treatment. A constant and continuous dose of antibiotic is

administrated during a bacterial infection.

Conditions for Stability

� Stability of Colonization

The existence and stability of both cases of colonization equilibrium are com-

parable between them. In order for both �xed points to exist, the dose of antibi-

otic has to be lower than a speci�c value: the ratio between the intrinsic growth

rate and the killing rate by antibiotic. Therefore, colonization by BS or by BR,

respectively, is biologically realistic if

Am <
r0
δ0

or Am <
r1
δ1
.

Concerning stability, a stable node is a �xed point that exists and it is stable.

Both �xed points mentioned above are stable nodes, under similar conditions,

as well. When focusing on sensitive bacteria, assuming that the condition for

existence is satis�ed, one of the conditions for stability is

r0 >
r1δ0
δ1
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(r0 > r1
a
if the concept of �tness bene�t of resistance, a, is used). The equiv-

alent condition for the resistant strain is

r1 >
r0δ1
δ0

(r1 > ar0). Additionally, one of two other conditions needs to be satis�ed

to ensure stability. Both of them are responsible to constrain the growth of

bacteria. This kind of control can be obtained by the immune system action

(condition h ≥ σ) or if the carrying capacity presents a maximum value. For the

colonization by BS or BR, respectively:

C <
−hkr0

(r0 − Amδ0)(h− σ)
or C <

−hkr1
(r1 − Amδ1)(h− σ)

.

� Stability of Persistence

Both steady states corresponding to persistence scenarios exist under the two

same conditions, h < σ and C > hk
σ−h . The lower the decay of the immune

response, the higher is the minimum value of the carrying capacity. The �rst

condition allows the maintenance of the immune system response and the second

one ensures that there is enough "space" for the resistant bacteria to grow until

they reach an equilibrium. There is a third condition, which establishes a max-

imum dose of antimicrobial drug during treatment, which di�ers for persistence

of BS and BR subpopulations, respectively:

Am <
r0(Ch+ hk − Cσ)

δ0C(h− σ)
and Am <

r1(Ch+ hk − Cσ)

δ1C(h− σ)
.

Concerning stability, the conditions are more complex. For both BS and

BR persistence cases, there is, in �rst instance, a distinct range of values that C

needs to be in. After that, it depends on the antimicrobial drug dose and the ratio

between both intrinsic growth rates. Regarding BR, the mandatory conditions

are

r1 > ar0 and
hkr1

(r1 − Amδ1)(σ − h)
< C <

hk(r1 − r0)
(r0 − r1 + Am(δ1 − δ0))(h− σ)

.
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With regard to the dose, or r0−r1
δ0−δ1 ≤ Am < r1

δ1
or, in case the dose is lower, h

is equal or lower than a determined value or it is higher and there is the need to

assign σ a maximum value as well.

Sensitive bacteria present almost the same conditions for stability pattern.

First of all, carrying capacity starts from the maximum value established for BR

and besides that has to satisfy the condition

C ≤ 1

2

(
−hkr0

(r0 − Amδ0)(h− σ)
+

√
hk2r21(h

2 − (h+ r1 − Amδ1)σ)

(r1 − Amδ1)2(h− σ)3

)
.

And then it depends on the antibiotic dose:
r0 = r1

a
, if Am < r1

δ1

r0 >
r1
a
, if Am < r0

δ0

r0 <
r1
a
, if Am < r0−r1

δ0−δ1

For the last situation, there are additional conditions, as it happens with BR:

h is equal or lower than a determined value or, if it is higher, there is the need

to assign σ a maximum value as well.

However, if C exceeds the maximum value presented in the stability conditions

of BS, and the antimicrobial drug is low enough, Am < r0
δ0

for BS and Am < r1
δ1

for BR, there is room for oscillations. In that case, the antibiotic dose is too

low to clear the infection and a high carrying capacity allows bacteria to grow

enough to activate and to be killed by the immune system. This defensive action

decreases with the decrease of bacteria load, which allow them to grow again and

this process perpetuates in time, generating an oscillatory behavior.

� Stability of Clearance

The �xed point associated with the scenario of clearance is the trivial one.

It is a stable node if satis�es one of two pairs of conditions, closely related to

the conditions of existence and stability of both colonization scenarios. If the

antimicrobial drug dose exceeds the maximum value to maintain colonization,

while satisfying the condition of stability related to the growth rate, clearance of

the infection will happen.
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Mathematically, clearance of the infection is a stable node if Am > r0
δ0

and

r0 >
r1
a
or Am > r1

δ1
and r1 ≥ ar0.

Figure 3.2: Simulations of the dynamics of BS, BR and I, over 30 days,

under a classical treatment. Panels A and D represent a case of colonization

of BR, Am = 3 and σ = 0.3. Panels B and E represent a case of persistence

of BR, Am = 4. Panels C and F represent a case of clearance, Am = 11.5.

Colonization and persistence of BS are omitted because are equivalent to BR.

Other parameters as in Table 2.1.

3.2 Antibiotic Dose with Pharmacodynamics

Despite the insights provided by the constant-dose approximation, it is known

that there is an elaborated quantitative interaction between the possibly varying

concentrations of the antibiotic and the growth and death rates of the target

bacteria (Abdul-Aziz et al., 2015; Ankomah & Levin, 2014). This role of phar-

macodynamics of the drug is adressed in this section. The main goal is to verify if

the increase in complexity of the model has repercussions on the results obtained.
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3.2 Antibiotic Dose with Pharmacodynamics

3.2.1 Mathematical Model

Within-host dynamics for a BS and BR mixed infection, and additionally the

immune system (I) and the antimicrobial drug concentration in the host (A), are

described by the following set of ordinary di�erential equations:

dBS

dt
= r0BS

(
1− BS +BR

C

)
− dBSI − δ0BSA (3.1)

dBR

dt
= r1BR

(
1− BS +BR

C

)
− dBRI − δ1BRA (3.2)

dI

dt
=

σI(BS +BR)

k +BS +BR

− hI (3.3)

dA

dt
= 1− A

Am
(3.4)

where B(t) = BS(t) +BR(t) is the total pathogen load at time t.

There are no additional parameters in this model, because we impose the same

equilibrium concentration of the drug given by Am, as in the constant dose model

(Section 3.1) and we assume a drug in�ow rate of 1 per unit of time (Equation 3.4).

However, a new variable, A, changes over time to represent the alterations of the

antibiotic concentration in the host, which a�ects the way bacteria are killed.

3.2.2 Equilibria

From this more complex mathematical model, arise the same steady states, con-

cerning their biological interpretation and the values of the variables at equilib-

rium. Additionally, there is only A that, at equilibrium, is always Am, fact that

comes directly from the ordinary di�erential equations system.
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Steady states

The �xed points of the mathematical model of bacterial dynamics with treatment

considering pharmacodynamics are enumerated and described below:

� Colonization by BS and no BR, and colonization by BR and no BS:
B∗S = −C(Amδ0−r0)

r0

B∗R = 0
I∗ = 0
A∗ = Am

 and

B∗S = 0

B∗R = −C(Amδ1−r1)
r1

I∗ = 0
A∗ = Am


� Persistence of BS under some immunity and no BR, and persistence of BR

under some immunity and no BS:
B∗S = hk

σ−h
B∗R = 0
I∗ = −−r0+Amδ0

d
+ hkr0

Cd(h−σ)
A∗ = Am

 and

B∗S = 0
B∗R = hk

σ−h
I∗ = −−r1+Amδ1

d
+ hkr1

Cd(h−σ)
A∗ = Am


� Clearance of the infection: 

B∗S = 0
B∗R = 0
I∗ = 0
A∗ = Am


Because all �xed points are the same, this more realistic model (in theory)

does not bring any possibility to know more about the role of treatment during

a bacterial infection, when compared to the initial model presented in this work.

Conditions for Stability

Given the resemblance between the �xed points of this model and the ones of

the previous model, it is not a surprise that all conditions for both existence and

stability are exactly the same, reason why they are not present them here again.

We cannot state the same about the bacterial transient dynamics, which will

surely be di�erent.
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3.3 E�ectiveness of Antibiotic Dose

Another option is to assume that not all of the administrated antibiotic is able

to kill bacteria. In other words, only an amount of the dose given to the host

is e�cient and it can be represented by Am

α+Am
. Assuming this Hill-function with

coe�cient 1 describes that as we increase the antibiotic dose Am, the actual

potency of the drug saturates, and the maximal e�ective dose is 1. The parameter

α represents the drug concentration where half-maximal potency is obtained and

δ becomes then the maximal killing rate of the drug per unit of time.

3.3.1 Mathematical Model

The system is composed by three equations, related to both sensitive and resistant

bacterial strains (BS and BR, respectively) and to the immune system of the host

(I):

dBS

dt
= r0BS

(
1− BS +BR

C

)
− dBSI − δ0BS

(
Am

α + Am

)
(3.5)

dBR

dt
= r1BR

(
1− BS +BR

C

)
− dBRI − δ1BR

(
Am

α + Am

)
(3.6)

dI

dt
=

σI(BS +BR)

k +BS +BR

− hI (3.7)

where B(t) = BS(t) +BR(t) is the total pathogen load at time t.

Besides all the parameters in Table 2.1, this extension has an additional pa-

rameter, α, with the same units of Am.

3.3.2 Equilibria

As a result of the study of stability of the model, the same �ve steady states

arised, concerning their biological interpretation (Figure 3.3). However, the val-

ues of bacteria at equilibrium in colonization scenarios and the values of the
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immune response, both for cases of colonization and persistence, show some al-

terations, not observed before. Also in this model, there is no �xed point where

there is colonization or persistence of both bacterial subpopulations BR and BS

simultaneously, as it happens in all cases in which antibiotics are administrated.

Figure 3.3: Simulations of the dynamics of BS, BR and I, during 60

days, to mimic infection equilibrium scenarios considering e�ective

dose. Panels A and D represent a case of colonization of BR, σ = 0.3 and

Am = 1. Panels B and E represent a case of persistence of BS, Am = 6. Panels

C and F represent a case of clearance, Am = 12. Colonization of BS and persis-

tence of BR are omitted because are equivalent to the ones already shown. Other

parameters as in Table 2.1.

Steady states

The �xed points of the mathematical model of bacterial dynamics considering

the e�ectiveness of the treatment are enumerated and described below:

� Colonization by BS and no BR, and colonization by BR and no BS:B∗S = −C(Amδ0−r0(α+Am))
r0(α+Am)

B∗R = 0
I∗ = 0

 and
B∗S = 0

B∗R = −C(Amδ1−r1(α+Am))
r1(α+Am)

I∗ = 0


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� Persistence of BS under some immunity and no BR, and persistence of BR

under some immunity and no BS:B∗S = hk
σ−h

B∗R = 0

I∗ = −−r0(α+Am)+Amδ0
d(α+Am)

+ hkr0
Cd(h−σ)

 and
B∗S = 0
B∗R = hk

σ−h
I∗ = −−r1(α+Am)+Amδ1

d(α+Am)
+ hkr1

Cd(h−σ)


� Clearance of the infection: B∗S = 0

B∗R = 0
I∗ = 0


Conditions for Stability

Considering the alterations in the �xed points, due to the changes in the mathe-

matical model in the �rst instance, it is expected that the conditions for stability

su�er some changes as well.

� Stability of Colonization

Concerning the steady states corresponding to colonization scenarios, exis-

tence can be obtained by two distinct paths. One option is for them to grow at

least at the same rate that they are killed by the antibiotics: r0 ≥ δ0 for BS and

r1 ≥ δ1 for BR. On the other hand, that same outcome can be achieved with a

maximum antimicrobial drug dose, that can be written as a minimum value of

e�ectiveness of the drug. Concerning colonization of sensitive bacteria, there is

the need to satisfy

Am >
r0α

δ0 − r0
For the resistant subpopulation, the condition is equivalent:

Am >
r1α

δ1 − r1
.

The other conditions for stability are the same presented for the case of Con-

stant Antibiotic Dose. The only di�erence is where we had r0 or r1, the net

growth rate per capita becomes r0 − δ0Am

Am+α
or r1 − δ1Am

Am+α
.
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Comparing to the model in which is considered a constant dose (or even con-

sidering pharmacodynamics), and concerning existence, one of the conditions is

equivalent: a maximum antimicrobial drug dose. However, in this last model,

this condition can be substituted by other which relates growth and killing rates.

Regarding stability, the behavior is similar: there is a minimum value for the

intrinsic growth rate and the two same mechanisms for growth control: balance

between parameters related to the immune system or a maximum carrying ca-

pacity (although this maximum value di�ers in both models).

� Stability of Persistence

The same happens concerning the stability conditions for the persistence case.

The only di�erence is where we had r0 or r1, the net growth rate per capita

becomes r0 − δ0Am

Am+α
or r1 − δ1Am

Am+α
.

� Stability of Clearance

The �xed point associated with the scenario of clearance is the trivial one. In

order to be considered a stable node, this equilibrium has to satisfy two conditions:

Am
α + Am

δ0 > r0 and
Am

α + Am
δ1 > r1.

Comparing to the model in which is considered a constant dose (or even con-

sidering pharmacodynamics), in this case, it does not exist a mimimum antibiotic

dose. Instead, the �nal condition becomes:

Am
α + Am

> max
(r0
δ0
,
r1
δ1

)
.

After all these modelling approaches, the main conclusion is that the most

simple model, the �rst one presented in the chapter, captures the major dynamics

of treatment and no big advantages were found with the other extensions and that

is why we opt to choose that modelling approach from now on.
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Chapter 4

Bacterial Infection Dynamics Under

Treatment

So far, we studied the asymptotic behavior of bacterial infections for some spe-

cial cases, under antimicrobial treatment, namely in the limt→∞, which allows the

identi�cation of equilibrium states and the conditions needed to achieve them and

their stability. However, it is indispensable to do an in-depth investigation of the

transient dynamics of the infections. Long-term measures of bacterial subpop-

ulations growth and death rates do not capture the population's �uctuations in

the short-term. The study of transient infection dynamics provides more detailed

knowledge, which can be crucial to design the best treatment strategy. The

equation regarding immunity remains the same (Equation 2.3) and within-host

bacterial dynamics for a mixed infection are described by the following equations:

dBS

dt
= r0BS

(
1− BS +BR

C

)
− dBSI − δ0BSAmη(t) (4.1)

dBR

dt
= r1BR

(
1− BS +BR

C

)
− dBRI − δ1BRAmη(t) (4.2)

where η(t) =

{
1, if τ1 ≤ t ≤ τ1 + τ2

0, if t < τ1 or t > τ1 + τ2
represents the schedule of treatment

administration.
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Di�erent treatments di�er mainly in three aspects: the timing, also referred

to as onset (τ1), the dose (Am) and the duration (τ2). For contrasting timings,

the best treatment strategy implies an equilibrium between the dose and the

duration. Distinct combinations of these aspects result in divergent transient

dynamics and it is possible to identify a cluster of e�cient combinations for each

infection scenario based on one's optimization criteria.

4.1 Persistent Infection Scenario

The �rst studied scenario represents a persistent infection scenario, and its pa-

rameters were already studied in detail in Chapter 2. Biologically, starting with

more BS than BR gives them a growth advantage. Growing bacterial density

within-host stimulates an immune response and, over 30 days, only BS subpop-

ulation persists, in the absence of antibiotic administration. We choose to focus

on two interesting time points to start treatment here (Figure 4.1). The �rst one

happens at day 7, when both bacterial subpopulations have reached a plateau

and persist together (Case A, 4.1.1). The other one, temporally, happens later,

at day 21. At that point, BR has been cleared via competition with the sensitive

bacteria and only BS persists, although at a lower level (Case B, 4.1.2).

Figure 4.1: Simulations of persistent infection dynamics of BS and BR,

during 30 days, without treatment. The pathogen load value is its common

log value. Identi�cation of treatment onsets: the yellow vertical lines depict case

A (τ1 = 7), and case B (τ1 = 21). Other parameters as in Table 2.1.
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4.1 Persistent Infection Scenario

4.1.1 Case A: Treatment onset at day 7

In this scenario, treatment onset is at day 7, in which both bacterial subpopula-

tions persist together and the system can evolve to di�erent scenarios, depending

on the treatment strategy. Two of them are characterized by the persistence of

both subpopulations: one in which BS > BR (scenario I) and another one in

which BR > BS (scenario II). Another two possibilities are persistence of BS and

no BR and persistence of BR and no BS (scenario III and IV, respectively). The

last potential scenario is the total extinction, clinically known as clearance of the

infection (scenario V). The dynamics with antibiotics only remain the same that

without them or return to the pre-treatment level if the dose does not overcome

the critical value, Am = r0
δ0
, or if the duration τ2 is not long enough (scenario III).

To study all the possibilities numerically, Am has to vary from doses below

the minimal inhitory dose for BS (Am < A∗m = r0
δ0
) to doses above the minimal

inhibitory dose for BR (Am > A∗∗m = r1
δ1
), in the absence of immune response (Fig-

ure 4.2). An initial approach is to compare outcomes, for two speci�c durations

that are common in the clinical practice (τ2 = 7 and τ2 = 14). We illustrate

the behavior of the model for only 4 speci�c doses: Am = 1mg/l (Am < A∗m),

Am = 4mg/l (Am > A∗m but closer to A∗m), Am = 6mg/l (Am < A∗∗m but closer to

A∗∗m ) and Am = 20mg/l (Am > A∗∗m ) (Figure 4.2).

Shorter treatments (τ2 = 7)

� If Am < r0
δ0

(Am = 1mg/l), the antibiotic treatment has almost no e�ects

and the dynamics are similar to the ones without treatment, as expected.

� A small dose (Am = 4mg/l) allows BR subpopulation to overcome, for a

short period of time, the BS subpopulation. However, with the end of the

antimicrobial administration, sensitive bacteria recover and after 30 days of

simulation there is the persitence of both bacterial subpopulations.

� If the dose increases further (Am = 6mg/l), only BR can persist, with the

extinction of BR during the treatment period.

� With an even higher dose (Am = 20mg/l), both bacterial populations are

extinguished at the end of the treatment.
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4. BACTERIAL INFECTION DYNAMICS UNDER TREATMENT

Longer treatments (τ2 = 14)

� If Am < r0
δ0

(Am = 1mg/l), the antibiotic treatment has almost no e�ects

and the dynamics are similar to the ones without treatment, as expected.

This fact is due to dose and independent of the duration.

� Low doses (Am = 4mg/l) combined with longer duration give a greater

competitive advantage to pre-existing BR and are more likely to transform

a mixed infection into a totally resistant one.

� The same pattern happens if the dose increases (Am = 6mg/l). These last

two combinations are ine�cient to get clearance of the infection.

� Clearance is only achieved with a much more higher dose (Am = 20mg/l).

In this last case, sensitive bacteria subpopulation responds and it goes ex-

tinct imediatelly with treatment onset while resistant bacteria take nearly

a week to be cleared (but still during treatment).

Figure 4.2: Illustration of bacterial subpopulations model dynamics

considering dose-duration interactions. Panels A-D for shorter treatment

(τ2 = 7) and Panels E-H for longer treatment (τ2 = 14). A set of di�erent doses is

displayed: Am = 1 (Panels A and E), Am = 4 (Panels B and F), Am = 6 (Panels

C and G) and Am = 20 (Panels D and H). Yellow region identi�es the treatment

administration period. Other parameters as in Table 2.1.
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In summary, di�erent treatment regimens, di�erentiated by their timing, dose

and duration, result in di�erent infection outcomes, sometimes in clearance, some-

times in selection of resistance or relapses dominated by BS. In the last instance,

this is re�ected by harmful consequences for the host.

Independently of the duration of the treatment, we are dealing with a change

of the infection scenario only if the minimum dose required for clearance is

achieved (data obtained by the asymptotic analysis). If the dose is too low,

the infection will continue to persist. The host cannot get rid of the infection

because the immunity response is not stimulated enough to deal with it and the

dose of antibiotics is not su�cient either. However, a persistence scenario can

gradually progress into clearance if Am is higher than the critical minimum value

mentioned above. In that case, because the condition is satis�ed, clearance is

reached in a �nite time even if the duration of treatment is moderate. A free-

infection host, in this case, is only possible if it is used a su�cient high dose of

antibiotics, even for a short time.

Figure 4.3: Outcomes of treatment considering dose-duration interac-

tions. Am varies from 1 to 20 mg/l and τ2 from 3 to 14 days. Di�erent mark-

ers for each scenario at the end of the simulation: red diamonds for Scenario I

(BS > BR); blue stars for Scenario II (BR > BS); cyan triangles for Scenario III

(BS and no BR); green squares for Scenario IV (BR and no BS);and yellow circles

for Scenario V (clearance). Other parameters as in Table 2.1.
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4. BACTERIAL INFECTION DYNAMICS UNDER TREATMENT

A more complete picture is obtained by a general study of the dose-duration

interaction and the infection outcomes at the end of 30 days. For a wider range

of values for duration and dose, it is possible to verify which is the �nal infection

scenario (Figure 4.3).

It is clear, by the existence of scenarios which do not show any alterations

in comparison with no treatment (Figure 4.3, cyan triangles), that there are

mimimum values both for dose and duration. Signi�cant alterations on the values

ofBS andBR only start with Scenario I (Figure 4.3, red diamonds) and Scenario II

(Figure 4.3, blue stars), in which both bacterial subpopulations persist together.

The majority of combinations results in Scenario III (Figure 4.3, green squares),

in which resistant bacteria persist overtime. This shows that a greater part of

antibiotic administration strategies tends to select BR. In all these situations

mentioned so far, over 30 days, there is still infection. Clearance (Figure 4.3,

yellow circles) can only be achieved starting with a minimum dose of Am =

16mg/l and duration of 13 days. The minimal dose that achieves clearance with

a 7 days treatment is dose Am = 20mg/l. Only in this restricted number of cases,

the host is free of the infection.

The higher the ratio BR

BS
at treatment onset (τ1 = 7), the smaller the yellow

area will become. The green area is due to the seletion mechanism, which in

this case is to free up space for BR. Here, the free area expansion will be less

restricted, which results in a higher selection for BR. Graphically, this means

that the number of green squares will be higher too. In few words, the higher

the ratio BR

BS
at τ1, the more likely is to select BR and the less likely is to reach

clearance at day 30.

4.1.2 Case B: Treatment onset at day 21

Considering the conditions of the second scenario, when treatment is applied at

day 21, we start only with the persistence of BS, since BR was already extin-

guished. From here, it is possible to relate the subsequent decrease of sensitive

pathogen load with the dose and duration of the treatment and to verify if the

bacteria level falls below the threshold Bext. This can be written using a inequal-

ity, in which it is assumed an exponential rate of bacterial decline, dependent of
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4.1 Persistent Infection Scenario

the growth rate and treatment regime and neglecting the small role of killing by

the immune system:

B∗Se
(r0−δ0Am)τ2 ≤ Bext (4.3)

Asymptotic dynamics can help to estimate the value of sensitive bacterial

load, when these bacteria persist alone, in the presence of immune response.

Immunity plays a role only in the initial BS levels at treatment onset, B∗S = hk
σ−h .

Administration of treatment is only logical when B∗S > Bext, i.e when the h <

σ < h(Bext+k)
Bext

is satis�ed.

It also gives information about the minimum dose needed to initiate bacterial

decline, independently of the duration of treatment, Am > r0
δ0
.

At any time point, during treatment (between τ1 and τ1 + τ2), there is an

immune response, I > 0. This means that the net growth rate of sensitive

bacteria, dBS

dt
, is always lower than we assume, dBS

dt
≤ (r0−δ0Am)BS. In this case,

calculations are a conservative approximation, assuming the worst case scenario,

in which bacteria are only killed by the antibiotics and immune system may be

considered negligible during treatment.

Based on this, it is possible to calculate the dose, Am, needed for clearance,

at a particular duration τ2 (Figure 4.4). This inequality comes directly from

inequality 4.3, after having substituted the value of B∗S:

Am ≥
τ2r0 − ln

(
Bext(σ−h)

hk

)
τ2δ0

. (4.4)

Inequality 4.4 can be rewritten in the following way:

τ2 ≥
ln
(
Bext(σ−h)

hk

)
r0 − Amδ0

. (4.5)

These two last inequalities 4.4 and 4.5 represent the trade-o� between Am and

τ2.
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4. BACTERIAL INFECTION DYNAMICS UNDER TREATMENT

Figure 4.4: Duration-dose interaction during treatment to get clearance

of the infection. Minimum theoretical inhibitory dose for BS (red) and mini-

mum dose for each duration that allow infection clearance with that particular

treatment duration (blue), following from inequality 4.4 . Clearance is also ob-

tained by any combination above the blue line. Other parameters as in Table 2.1.

One major bene�t of analyzing infection clearance by a given treatment (Am,

τ2) is the opportunity to check the sensitivity of our criterion for clearance (in-

equality 4.4). We study sensitivity to σ, h and k, immune response parameters

which play the most crucial role in the starting bacterial load upon treatment.

If the focus is on parameter σ, related to the activation of an immune response,

there is almost no sensitivity to it because all σ values used in this simulations

satisfy the mentioned condition which ensures that B∗S > Bext (Figure 4.5).

Considering the immune system action decay rate, h, the lower this parameter

goes, the higher the dose has to be, for the same duration, to get clearance

(Figure 4.6). If the immune response decays faster, this mechanism will be less

e�cient to �ght the infection and antibiotics need to take action to compensate,

in order to get clearance as well. This di�erence becomes less signi�cant as the

duration increases. In general lines, the interaction between dose and duration is

not very sensitive to h, as observed in the numerical simulations (Figure 4.6).

This sensitivity is higher if the parameter in study is k, the host immunity

threshold, since the three curves are further apart. Biologically, if the immunity

plays a smaller role, treatment becomes the principal mechanism against infection.

An increase of k results then in an increase of Am (Figure 4.7).
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4.1 Persistent Infection Scenario

Figure 4.5: Sensitivity of duration-dose interaction to the parameter σ.

Theoretical investigations of minimum inhibitory dose for BS (red) and minimum

dose for each duration that allow clearance of the infection changes with di�erent

values of maximum immune cell recruitment (blue for σ = 1, orange for σ =

1.5 and yellow for σ = 2). Clearance is also obtained by any duration-dose

combination above the last mentioned lines. Other parameters as in Table 2.1.

Figure 4.6: Sensitivity of duration-dose interaction to the parameter h.

Theoretical investigations of minimum inhibitory dose for BS (red) and minimum

dose for each duration that allow clearance of the infection changes with di�erent

values of immune system action decay rate (blue for h = 0.01, orange for h =

0.2 and yellow for h = 0.35). Clearance is also obtained by any duration-dose

combination above the last mentioned lines. Other parameters as in Table 2.1.
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4. BACTERIAL INFECTION DYNAMICS UNDER TREATMENT

Figure 4.7: Sensitivity of duration-dose interaction to the parameter k.

Theoretical investigations of minimum inhibitory dose for BS (red) and minimum

dose for each duration that allow clearance of the infection changes with di�erent

values of host immunity threshold. Blue line for k = 104, situation in which sys-

tem responds rapidly to low bacterial loads. Orange line for k = 105 (parameter

as in Table 1). Yellow line for k = 106, which mimics an immune response that

acts more slowly against BR because it needs more stimulation. Clearance is

also obtained by any duration-dose combination above the last mentioned lines.

Other parameters as in Table 2.1.

These three plots (Figures 4.5, 4.6, 4.7) are elucidative about the small role of

immunity nonethless, noticing that not all the parameters of the immune response

are important in the same way. The lower BS is at treatment onset, which

means the better the immune response has controlled bacteria, the less demand

for treatment there is. This con�rms the balance between both mechanisms

responsible for bacterial growth control: immunity and treatment. An infection

that has been brought down to a lower level by the immune response, will require

less aggressive and less prolonged treatments.

For example, if the duration is 7 days, the minimum dose required to achieve

clearance is 5.052mg/l, considering no immunity and the other parameters values

by default (approximation in inequality 4.4).

But, if there is an immune response active also during treatment, the extinc-

tion of BS takes less time (Figure 4.8), since both mechanisms of immunity and

antibiotics act together.
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4.1 Persistent Infection Scenario

As expected, the smaller the duration of the treatment, the higher has to be

the dose of the antibiotic (Figure 4.9). A more agressive or a more moderate

treatment can be chosen to get clearance, depending on the duration.

Figure 4.8: Illustration of the clearance dynamics of BS and BR, over 30

days. The pathogen load value is its common log value. Treatment starts at

day 21, τ2=7 and Am=5.052. Yellow region identi�es treatment administration

period. Other parameters as in Table 2.1.

Figure 4.9: Illustration of the clearance dynamics of the total pathogen

load, with di�erent successful treatments. The total pathogen load value

is its common log value. Treatment starts at day 21. Di�erent combinations of

duration and dose. Other parameters as in Table 2.1.
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4. BACTERIAL INFECTION DYNAMICS UNDER TREATMENT

4.2 Acute Infection Scenario

The second scenario chosen to study the transient dynamics with treatment is

an acute infection (Figure 4.10), characterized by higher bacterial density and

higher immune response stimulated by the bacterial load. Due to that, clearance

is achieved thanks to the immune system. This scenario was already studied

in detail in Chapter 2. Whatever the bacterial mixture, immunity will clear the

infection in this case, as it does not care whether bacteria are sensitive or resistant.

The only di�erence lies in the net growth rate of BTOT . If it is composed of mainly

BS, the rate will be higher and hence stimulate faster immunity, resulting in a

shorter peak. If it is composed more of BR, it will grow slowly, stimulate more

slowly the immune response and result in a lower more extended peak.

Figure 4.10: Illustration of acute infection dynamics of BS and BR, over

30 days. Approximate bacterial peak at dat 7, when treatment starts. C = 107.

Other parameters as in Table 2.1.

What happen if, in this situation, antibiotics are administrated to the host?

One way to understand those e�ects is to do an analysis of the Am-τ2 interaction

and how it is re�ected on the �nal infection scenario, over 30 days (Figure 4.11).

Di�erent outcomes can be identi�ed: persistence of BS and no BR (Scenario III),

selection and persistence of BR (Scenario IV) and clearance (Scenario V). In this

case, arises a distinct mechanism of BR selection. Instead of the generation of

free space for BR, antibiotics do not play a role and selection is due to immune

response decay. If it decays less (Figure 4.11, Panels B and C), clearance becomes

a more common outcome. To apply treatment in this scenario creates a worst
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4.2 Acute Infection Scenario

outcome, since without them the infection would be always cleared. The only

possible advantage is, in the cases that clearance is achieved as well, the host is

infected for a smaller period of time, sufering less damage due to it.

Figure 4.11: Outcomes of treatment considering Am-τ2 interactions in an

acute infection for di�erent immune responses. Am varies from 1 to 20

mg/l and τ2 from 3 to 14 days. Markers represent di�erent scenarios at T=30

days: cyan triangles for Scenario III (BS and no BR); green squares for Scenario

IV (BR and no BS); and yellow circles for Scenario V (clearance). C = 107. Panel

A h = 0.35; B h = 0.3; C h = 0.25. Other parameters as in Table 2.1.
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Chapter 5

Exploring Evolution of Bacterial

Traits During Infection

Until now, we have studied competition between sensitive and resistant sub-

populations with �xed growth phenotypes (r0, r1) and antibiotic susceptibility

a. Now we will study the possibility of di�erent random combinations of pheno-

types and their dynamics during treatment. The main focus in this chapter is

to understand how pathogen's evolution a�ects the bacterial infection dynamics

under treatment and the other way around. Starting with an infection with only

sensitive bacteria we will model how de novo resistance evolution will happen

and how the infection can progress gradually into a resistant one. During this

investigation, we will have to de�ne and model what types of resistant strains are

generated and selected by di�erent treatments.

5.1 Mathematical Model

The mathematical model for infection dynamics described in the beginning of this

thesis is a deterministic one (Chapter 2). In this chapter, we add evolutionary

dynamics and stochastic emergence of new mutants. This hybrid model (Kepler

& Perelson, 1995), divided into a stochastic component focused on the emergence

of new resistant mutants and a deterministic component related to the subsequent

bacterial growth, is de�ned by the following set of ordinary di�erential equations:
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dBS

dt
= r0

(
1− B

C

)
BS − dBSI − δ0BSAmη(t) (5.1)

dBi
R

dt
= r0(1− ci)

(
1− B

C

)
Bi
R − dBi

RI − aiδ0Bi
Rη(t)Am (5.2)

dI

dt
= σI

(
B

k +B

)
− hI (5.3)

where B = BS +
∑n(t)

i=1 B
i
R and η(t) =

{
1, if τ1 ≤ t ≤ τ1 + τ2

0, if t < τ1 or t > τ1 + τ2
.

The initial conditions of the mathematical model are BS(0) = 10, BR(0) =

0 and I(0) = 200. At the time of emergence of each strain, Bi
R(0) = 10 ∀i.

Additionally, n(t) is the number of existing resistant mutants at time t.

Starting with sensitive bacteria, in consecutive steps we have the emergence

of the �rst new strain, initialized with index 1 and the other strains indexed 2, ...

until n. The emergence of each new resistant strain is based on the frequencies of

existing strains in that time point, giving rise to the pool of possible "parents".

Each new mutant is randomly assigned a parent sub-population. The parent is

sampled multinomially from the frequencies of all strains in a population, B
i
R(t)

B(t)
.

The arrival time of each new strain is exponentially distributed. P is the

probability of no next mutant generation. For all indexed mutants, when this

probability (Equation 5.4) hits a random threshold, the emergence of the next

mutant occurs and it changes by dP
dt

= −mPB, considering m the spontaneous

resistance mutation rate per cell per unit of time. Considering P (0) = 1, this

probability is given by:

P (t) = P (0)e−m
∫ t
0 B(s)ds (5.4)

50



5.1 Mathematical Model

Each strain is de�ned by two traits: the �tness cost of resistance, ci, and

antibiotic susceptibility, ai, which de�nes the resistance of the strain to the treat-

ment. The 2-d phenotype of each new mutant, indexed i, is randomly drawn from

a normal distribution with mean vector µ and an input covariance matrix Σ:(
cnew
anew

)
∼ N(µ, Σ) .

Traits of the new strain are based on the parent's traits, which determine µ,

and are thus more likely to be close to the most frequent subpopulation.

If a certain sub-population has a density below the extinction threshold, Bext,

it will be considered extinct and its density set to 0. All these processes take

space at the same time that treatment is applied. Treatment's onset happens at

day known as τ1 and it goes on for a duration of τ2 days.

5.1.1 Pathogen's trait space

In this model, evolution is implemented at a phenotypic level. Spontaneous mu-

tations are simulated by the discrete alterations in the phenotypic space. Each

bacterial strain, either sensitive or resistant, as described before, can be char-

acterized by two phenotypic traits, which can vary between 0 and 1, inclusive.

Fitness cost, here represented by ci = 1− ri
r0
, is described as a relative decreased

competitive ability of a drug-resistant mutant without treatment (Andersson,

2006). Notice that this de�nition of ci is slightly di�erent from the presented in

Chapter 2. Pleiotropy occurs when the same genetic mutation a�ects multiple

traits. This is the underlying assumption in our evolution model: one same mu-

tation event is associated to simultaneous changes in 2 phenotypes (ci, ai). This

parameter, ci, is imposed on the intrinsic growth of each Bi
R subpopulation. On

the other hand, susceptibility to antibiotics measures how bacteria respond to

treatment, by reducing, proportionally, the killing rate by antibiotics relative to

the wild-type sensitive bacteria. A wild type bacteria is the one which presents

a null �tness cost and a total susceptibility to the drugs. Any mutational event

which changes one or both of these traits is su�cient to consider the emergence

of a new resistant bacterial strain in the within-host population.
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The possible pathogen trait space can be conceptualized considering di�erent

assumptions, on the correlation between the magnitude of resistance and the as-

sociated �tness cost, explicited in the covariance matrix Σ. This matrix evidences

the mutation step size and how the other trait is a�ected.

A �rst approach is to consider a trade-o� assumption, for example, linear,

in which higher resistance mutations are associated to higher cost (Figure 5.1,

Panel A). Here, the two traits are related one to another. To obtain the covariance

matrix based on this trade-o� model, we do the following. The phenotypic trait

ci is randomly generated, between 0 and 1. Antibiotic susceptibility value is

calculated by ai = 1 − βci + error. The error follows a normal distribution

N(0, σ2) . In this chapter, parameters are σ2 = 0.1 and β = 0.5. One covariance

matrix, since ci is ramdomly generated, is Σ=
(

0.0828 −0.0441
−0.0441 0.03520

)
.

An alternative approach assumes no correlation between the two traits (Fig-

ure 5.1, Panel B). Here, a random covariance matrix is Σ=
(

0.0926 0.0087
0.0087 0.0968

)
.

Figure 5.1: Mutant's available trait space. Constrained �tness cost and an-

tibiotic susceptibiblity de�nition (σ2 = 0.1, β = 0.5) (Panel A) and unconstrained

random de�nition (Panel B).

5.1.2 Types of Treatment

The emergence and spread of antimicrobial resistance is in�uenced, among other

factors, by di�erent treatment strategies (Figure 5.2). In this model, we study

only classical treatment with �xed dose-duration regime.
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Two particular parameters are very important for the treatment design: dose

of antimicrobial drugs, Am, which we vary from 2 to 20 mg/l, and duration,

which we vary from 3 to 14 days. Here, the killing rate by the antibiotics, δ0, is

simply set to 1 mg/l/day and the in�uence of treatment on how resistant bacteria

respond to treatment is responsability of the parameter ai.

We grouped di�erent combinations of dose and duration into �ve types of

treatment de�ned in this investigation. For each type of infection will be assigned

a number, used to refer to that treatment strategy from now on. They are:

1. Low Dose and Low Duration treatment

2. High Dose and Low Duration treatment

3. Medium Dose and Medium Duration treatment

4. Low Dose and High Duration treatment

5. High Dose and High Duration treatment

Figure 5.2: Five broad types of treatment, de�ned by the combination

(Am,τ2). (Am,τ2) pairs (2,3), (2,5.75), (6.5,3) and (6.5,5.75) refer to treatment 1

(green markers). (Am,τ2) pairs (15.5,3), (15.5,5.75), (20,3) and (20,5.75) refer

to treatment 2 (red markers). (Am,τ2) pairs (11,3), (11,5.75), (2,8.5), (6.5,8.5),

(11,8.5), (15.5,8.5), (20,8.5), (11,11.25) and (11,14) refer to treatment 3 (yel-

low markers). (Am,τ2) pairs (2,11.25), (2,14), (6.5,11.25) and (6.5,14) refer to

treatment 4 (blue markers). (Am,τ2) pairs (15.5,11.25), (15.5,14), (20,11.25) and

(20,14) refer to treatment 5 (orange markers).
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5.1.3 Simulations: Stochastic Realizations

Simulations can focus on di�erent aspects: constraints on the evolution pathogen's

trait space, range of mutation rates of the pathogen, treatment strategy, varying

dose, duration and day of onset and type of infection (acute or chronic).

The conditions to generate each type of infection do not depend just on C,

the carrying capacity. But, if all the other parameters are �xed, the variation of

C can be used to shift from an acute infection (Figure 5.3, Panel A) to a chronic

one (Figure 5.3, Panel B). The �rst type is described by a high peak limited by

the immune response, associated to a C = 107. In contrast, a lower carrying

capacity, e.g. C = 105, gives rise to a chronic infection, with lower pathogen load

determined by limited resources and moderate immune stimulation.

Figure 5.3: Simulation of bacterial dynamics with evolution in the ab-

sence of treatment, during 30 days. Blue line represents the BS and the or-

ange BR. Black line corresponds to immune response of the host. The pathogen

load value is its common log value. C = 107 in Panel A and C = 105 in Panel B.

m = 1x10−7. Other parameters as in Table 2.1.

In each simulation, new strains will emerge with the possibility to reach a max-

imal number, N , restricted for computational purposes. Strains are ordered by

the time of emergence, before the simulation ends at day 30. Measures presented

from now on, with few exceptions mentioned when needed, imply the summary

of the results of 100 stochastic realizations, for the same parameter values. Pa-

rameter m can take three di�erent values in this model: 0.5x10−7, 0.75x10−7 or

1x10−7.
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5.2 Acute infection with treatment onset at day 4

The mathematical model described in the last section is used, in this chapter, to

study a self-limiting acute bacterial infection, with treatment onset on the fourth

day of infection (τ1 = 4) (Figure 5.3, Panel A).

The preference for day 4, in particular, does not relate to the particular day

itself, but to a time window in which pathogen load did not reach the peak yet.

Hence, BTOT is still in the growth phase. In this time point, sensitive bacterial

subpopulation load is around 106, which is less than the carrying capacity. For

this reason, the immune response is still expanding and it is insu�cient to control

the infection. Therefore, the administration of antimicrobials will give the oppor-

tunity to have a second layer of control on the bacterial growth and treatment

will have space to play a major e�ect.

5.2.1 Bacterial Dynamics

A good indicator to guide the study of evolutionary dynamics in an acute infection

is, in the beginning, to check the changes in bacterial load and immune response

over time, for di�erent types of treatment. In these simulations, extremes of

grouped treatments, concerning dose and duration, are selected. Results are

compared for three mutation rates and two pathogen trait spaces. Independently

of all these conditions, the qualitative results are similar for all of them.

Focusing on a paticular example, all infections, during or after treatment,

are cleared (Figure 5.4, Panels A-C,E). The only exception is when lowest dose

(Am = 2mg/l) and highest duration (τ2 = 14days) characterize the treatment

(Figure 5.4, Panel D). In that case, bacterial load will decrease signi�cantly during

treatment. However, when it ends, the value is sligthly above the extinction

threshold which is enough for both BS and BR to be able to grow again. That is

the treatment that allows the infection to relapse, which is a very bad scenario

for the host. Here, low doses are more e�ective if given over shorter duration to

minimize interference with immune activation, which was already described in

previous studies (Gjini & Brito, 2016).

Another message that can be read in this �gure is related to the immunity

activation and following response. The real values of immunity in the presence
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of antibiotics can be compared to the expected immunity in the absence of it. It

is possible to verify that this two values are not always coincident because of the

treatment interference. In some cases, both bacterial growth control mechanisms

work together and deliver a postive outcome. However, there are other situations

in which treatment application decreases the activation of immunity and, at the

end of the antimcirobial administration, the conjunct action of both mechanisms

is not enough to clear the infection.

Figure 5.4: Illustration of bacterial dynamics under treatment for 5 com-

binations dose-duration interactions. Blue line for BS and orange for BR.

Black solid line corresponds to immune response of the host, with treatment.

Black dashed line corresponds to the expected immune response of the host, in

the absence of treatment. The pathogen load value is its common log value.

Each panel represents a type of treatment, with a particular (Am, τ2) combi-

nation. Panel A for treatment 1, in particular combination (2,3). Panel B for

treatment 2, in particular combination (20,3). Panel C for treatment 3, in par-

ticular combination (11,8.5). Panel D for treatment 4, in particular combination

(2,14). Panel E for treatment 5, in particular combination (20,14). Constrained

trait space with m = 0.75x10−7. Yellow region identi�es the treatment adminis-

tration period. Other parameters as in Table 2.1.

These results can be used to predict the sucess of an antimicrobial treatment,

a relevant mark in the clinical practice. If both values of immunity discussed

before coincide, both mechanisms will be enough to clear the infection, even if that

only happens some days after treatment cessation. In contrast, very low levels of

bacterial load, at the end of treatment, do not ensure that infection will be cleared

(if those values are above Bext). The main message is that the determination of

the e�cacy of treatment implies a good perception of the relationship between

bacterial load and immune response values, independently of m.
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5.2.2 Infection Outcome Scenarios

So far, we illustrated only particular cases (Figure 5.4). But more accurate results

are obtained when the entire range of treatments is taken into account. One

process to accomplish that is to check what is the most likely infection outcome

scenario, at the end of the simulation. A bacterial infection, after a certain

number of days, can be in four states: both BS and BR coexist (scenario I); only

one of the bacterial subpopulations is present in the host organism (scenario II

for BS, and scenario III for BR); or both of them have values below the extinction

threshold and the infection is cleared (scenario IV). Knowing these probabibilities

for each (Am,τ2) combination allows a more conscient choice of treatment strategy

(Figure 5.5).

For each parameter combination, we simulated 100 independent stochastic

realizations. Afterwards, we computed the proportion of stochastic realizations

that ended up, at day 30, in each scenario [p1, p2, p3, p4], where p1+p2+p3+p4 = 1.

In Figure 5.5, we plot these probabilities, knowing that the max(p1, p2, p3, p4) is

the most likely outcome scenario for each treatment.

Independently of the pathogen trait space or the pathogen mutation rate,

there are only two (Am, τ2) combinations in which the probability of clearance

of the infection is not 1: (6.5, 3) and (11, 3). These combinations belong to

treatment 1 and 3, associated to intermediate doses and low durations.

In the constrained trait space (Figure 5.5, Panels A-C), the outcome scenarios

found in these two combinations are the same (scenario I and II), but they di�er

in the proportions. Even in those cases in which scenario II is the most likely,

because mutational events can occur, to have sensitive bacteria persistence is

enough to expand to coexistence, and switch to scenario I. With higher doses,

the proportions between these two scenarios are closer, but again, moving from

one setting to another is easy because of pathogen evolution.

If the evolution of the pathogen is unconstrained (Figure 5.5, Panels D-F), a

similar pattern is found for (Am, τ2) combination (6.5, 3). However, in the case

with a higher dose (11, 3), for the two highest mutation rates, scenario I becomes

more likely than scenario II, but the proportions are similar between them.
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All these results do not seem to coincide with the evidence obtained through

the study of bacterial dynamics, for which only one stochastic realization was run.

However, it cannot be ignored the fact that calculations of these probabilities were

done with data of day 30, at the end of the simulation, with 100 realizations.

To have a cleared infection at that time point, does not imply that the treat-

ment was e�cient. There may even have been a relapse of bacterial load that

cannot be detected, using this measure, as it happens with treatment 4 (Fig-

ure 5.4, Panel D). On the other hand, for treatments 1 and 3, were not detect

relapses in one stochastic realization (Figure 5.4, Panels A,C), but evidences show

that they can occur with high probability.

Figure 5.5: Most likely outcome scenario of a self limiting acute infection

at day 30, under treatment. Panels A-C for constrained and Panels D-F for

unconstrained evolutionary dynamics. Panels A,D with m = 0.5x10−7, Panels

B,E with m = 0.75x10−7 and Panels C,F with m = 1x10−7. Red stands for

scenario I, blue for scenario II, yellow for scenario III, and green for scenario

IV. Single color marker means that the probability of that outcome is 1. Bi-

color marker implies that probability of the most likely outcome is below 1. For

combinations (6.5, 3) and (11, 3) the proportions [p1, p2, p3, p4] are, respectively:

[0.01, 0.99, 0, 0] and [0.56, 0.44, 0, 0] (Panel A); [0.09, 0.91, 0, 0] and [0.58, 0.42,

0, 0] (Panel B). [0.05, 0.95, 0, 0] and [0.54, 0.46, 0, 0] (Panel C). [0.05, 0.95, 0, 0]

and [0.57, 0.43, 0, 0] (Panel D). [0.05, 0.95, 0, 0] and [0.46, 0.54, 0, 0] (Panel E);

[0.07, 0.93, 0, 0] and [0.48, 0.52, 0, 0] (Panel F). Other parameters as in Table 2.1.
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5.2.3 Cumulative Summary Measures

Since the observation of the scenario at the end of the simulation is not represen-

tative of the history of the infection, some other summary measures are calculated

to clarify this process (Figure 5.6).

Figure 5.6: Methods of generating Summary Measures. During the course

of an acute bacterial infection under treatment, there is the emergence of many

variants over time. Each simulation with �xed parameters, known as a stochastic

realization, lasts 30 days. Stochastic realizations are repeated 100 times and the

outputs are saved to be used later, in the generation of summary measures.

The cumulative summary measures are: number of emerged variants by a

certain time and the burdens of BS and total resistance over a certain period

from the beginning of the infection until time T , respectively obtained by:

BS_Burden =

∫ T

0

BS(t)dt (5.5)

and

BR_Burden =

n(t)∑
i=1

∫ T

0

Bi
R(t)dt. (5.6)

All of them are obatined in each stochastic realization and the mean of each

measure is calculated over the 100 repetitions. These particular measures are not

interpreted considering the di�erent types of treatment mentioned before.

Considering the results are similar for the three mutation rates we studied and

both pathogen trait spaces used in these simulations, we decided to display all
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these summary measures for the constrained evolution case with the intermediate

mutation rate 0.75x10−7 (Figure 5.7).

Concerning the number of resistant emerged variants, the higher values are

found for low doses, independently of the duration, and for medium doses if the

duration is short (Figure 5.7, Panel A). These are the types of treatment in which

relapses were identi�ed, and it is logical that the existence of a second peak of

bacterial load implies a generation of new variants, increasing this number. We

can see exactly the same qualitative pattern when we look at the burden of BS

over the entire simulation, which is also explained by the relapses of sensitive

bacterial subpopulation due to less aggressive treatments (Figure 5.7, Panel B).

Concerning the burden of BR over the entire simulation, we see that it is orders

of magnitude lower than the burden of BS (Figure 5.7, Panel C). Competititon

favors BS overall even if transiently BR may have been dominant.

Figure 5.7: Cumulative summary measures of a self limiting acute in-

fection until day 30, under treatment considering dose-duration in-

teractions. Number of emerged resistant bacterial strains during the simulation

(Panel A). Cumulative burden of sensitive bacterial subpopulation during the sim-

ulation (Panel B). Cumulative burden of resistant bacterial subpopulation during

the simulation (Panel C). Constrained evolutionary dynamics. m = 0.75x10−7.

Other parameters as in Table 2.1.

Another option is to look at the mean value and standard deviation of these

cumulative summary measures over the 30 days of simulation, averaging overall

types of treatments applied, but as a function of mutation rate (Figure 5.8).

We see variations in mutation rate only a�ect the resistant strains, since there

are no di�erences in the BS burden for the three values of mutation rate (Fig-

ure 5.8, Panel B). On the other hand, the higher the mutation rate, the higher
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the mean number of resistant emerged variants and the mean burden of BR (Fig-

ure 5.8, Panels A,C). If bacteria can mutate at higher rate, it is predictable to

have more variants, and as whole they can grow more and reach a higher bacterial

load. Stochaticity imposed by the model explains the variation in the standard

deviation values, more signi�cant in the BR burden. The constrast found be-

tween BS and BR burdens is due to the rarity of mutational events in a bacterial

infection landscape.

Figure 5.8: Cumulative summary measures of a self limiting acute in-

fection until day 30, under treatment with mutation rate variation.

Number of emerged resistant bacterial strains during the simulation (Panel A).

Cumulative burden of BS during the simulation (Panel B). Cumulative burden of

BR during the simulation (Panel C). All plots are in logarithmic scale. Error bars

indicate standard deviation and circles represent the mean value. Constrained

evolutionary dynamics. Other parameters as in Table 2.1.

5.2.4 Resistance Burden and Number of Emerged Variants

But is the increase of the total resistance burden related to the increase in the

number of resistant emerged variants? One way to determine it is to plot the

number of emerged variants against the respective BR burden for each infection

realization across all dose-duration scenarios and to verify if there is a clear pat-

tern between them (Figure 5.9).

Independently of the pathogen trait space or the pathogen mutation rate,

we see a clear pattern and it can be divided into two parts. Firstly, a vertical

cluster with a smaller number of emerged variants, in which the burden of BR can
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increase until 105, which can be related to a primary infection peak. And secondly,

a horizontal cluster, with a greater range of resistant emerged variants, in which

the burden of BR does not increase as much, representing a bacterial relapse.

The small increase in the BR burden from one cluster to another is due to the

di�erences in magnitude between the �rst and second infection peaks. In a second

peak, many new variants may emerge, but because space is already occupied and

immune control is increasing, they cannot grow considerably. Mutation rate

shifts the minimum number of emerged variants to the right, independently of

the evolutionary dynamics.

Figure 5.9: Relationship between the number of emerged variants and

the cumulative burden of BR, in a self limiting acute infection under

treatment. Panels A-C for constrained evolutionary dynamics and Panels D-F

for unconstrained evolutionary dynamics. Panels A,D with m = 0.5x10−7, Panels

B,E with m = 0.75x10−7 and Panels C,F with m = 1x10−7. Other parameters as

in Table 2.1.

5.2.5 What strains emerge during treatment?

Up to now, it is accurate to state that pressure for selection is a reality in acute

bacterial infections under treatment. But which strains of the resistant bacterial

subpopulation are selected, in the 2-d phenotypic space? To answer this, we
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use other summary measures, which in this case are related to two traits of

the pathogen: the �tness cost, ci, and the antibiotic susceptibility, ai. In each

stochastic realization (Figure 5.6), summary measures related to the two traits

are obtained across all dose-duration scenarios or for each of the �ve types of

treatment mentioned in this chapter.

First of all, we need to know the frequency of each strain i at time t:

fi(t) =
Bi
R(t)

B(t)
. (5.7)

Then, we compute the mean trait dynamics summing over all emerged vari-

ants:

c̄(t) =

n(t)∑
i=1

fi(t)ci (5.8)

ā(t) =

n(t)∑
i=1

fi(t)ai. (5.9)

Another layer arises when we calculate the mean cost or susceptibility of the

entire population over the entire simulation (T = 30days) for one run:

c̄T =
1

T

∫ T

0

c̄(t)dt (5.10)

āT =
1

T

∫ T

0

ā(t)dt. (5.11)

The last mean that is calculated regards the 100 stochatic realizations which

were run, and these are the values used as summary measures about the emerged

strains from now on:

E[c̄T ] =
1

100

100∑
k=1

c̄
(k)
T (5.12)

E[āT ] =
1

100

100∑
k=1

ā
(k)
t . (5.13)
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A �rst approach exploits the potentialities of a graphical techique called con-

tour plots. Variation of each trait, considering the treatment dose-duration com-

binations, was done for both pathogen evolutionary dynamics (Figures 5.10 and

5.11), by the mean over all stochastic realizations (Equations 5.12 and 5.13). A

modest alteration was performed: instead of plotting the antibiotic susceptibility,

we illustrate resistance. This trick is related to the visual advantages of having

both measures varying in similar ranges.

Figure 5.10: Mean �tness cost and mean resistance of bacterial popula-

tions over 30 days and over all stochastic realizations of a self limiting

acute infection under treatment for constrained evolutionary dynam-

ics. Fitness cost on top row (Panels A-C) and resistance at bottom row (Panels

D-F). Left column (Panels A,D) with m = 0.5x10−7, medium column (Panels

B,E) with m = 0.75x10−7 and the right one (Panels C,F) with m = 1x10−7.

Other parameters as in Table 2.1.

In the constrained pathogen trait space, both �tness cost and antibiotic re-

sistance values do not vary considerably with the alteration of the treatment

(Figure 5.10) and no clear pattern can be found to study the impact of mutation

rate variation.
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A similar behavior is found in the unconstrained pathogen trait space (Fig-

ure 5.11). The �tness cost, independently of the mutation rate, is lower than

when constrained evolutionary dynamics are considered. Fitness cost, although

only slightly, decreases with an increase of duration of treatment. However, the

opposite e�ect happens concerning resistance: this trait, in mean, is much higher

is this case, when compared to the unconstrained one. Here, resistance maximum

values are associated with shorter durations, if mutation rate increases.

Figure 5.11: Mean �tness cost and mean resistance of bacterial popu-

lations over 30 days and over all stochastic realizations of a self lim-

iting acute infection under treatment for unconstrained evolutionary

dynamics. Fitness cost on top row (Panels A-C) and resistance at bottom

row (Panels D-F). Left column (Panels A,D) with m = 0.5x10−7, medium col-

umn (Panels B,E) with m = 0.75x10−7 and the right one (Panels C,F) with

m = 1x10−7. Other parameters as in Table 2.1.

In general lines, which do not discard the need to look deeper into this subject,

the strains that emerge in an unconstrained trait space, are worst for the host,

since the higher resistance to antibiotics is coupled to a lower �tness cost.
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So far, we looked at the mean traits over infection separately. Next, we plot

the 2-d trait evolution for each scenario to answer several questions. What is

the relationship between these two pathogen phenotypic traits? And does this

relationship depend on the pathogen evolutionary dynamics?

Figure 5.12: Evolution of mean �tness cost vs. mean antibiotic suscep-

tibility of an infection over 30 days for a constrained trait space. Each

dot represents the mean of all strains over time of 1 stochastic realizations of the

simulation (Equations 5.10 and 5.11), independently of the dose-duration combi-

nation. Panel A with m = 0.5x10−7, Panel B with m = 0.75x10−7 and Panel C

with m = 1x10−7. Other parameters as in Table 2.1.

Figure 5.13: Evolution of mean �tness cost vs. mean antibiotic suscep-

tibility of an infection over 30 days for an unconstrained trait space.

Each dot represents the mean of all strains over time of 1 stochastic realizations of

the simulation, independently of the dose-duration combination (Equations 5.10

and 5.11). Panel A with m = 0.5x10−7, Panel B with m = 0.75x10−7 and Panel

C with m = 1x10−7. Other parameters as in Table 2.1.
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When we look at the constrained pathogen trait space, a de�ned pattern is

common to all mutation rates: a decrease in the antibiotic susceptibility results

in an increase of the �tness cost of the pathogen (Figure 5.12). The slope of this

straight lines arising after treatment dynamics is similar to the slope imposed in

the constrained pathogen trait landscape (Figure 5.1, Panel A), for the chosen

parameter values. A small but relevant detail is the higher dispersion in evolved

traits, associated to the highest mutation rates, despite the constraints. The

faster new strains are generated, the further from the sensitive wild type the

evolution during treatment.

The results become more interesting when pathogen trait space is uncon-

strained (Figure 5.13). In this case, there is more divergence between all stochas-

tic realizations. Here, a decrease in the susceptibility (which is equivalent to

say that resistance is increasing) does not necessarily imply a higher �tness cost.

Some of the infections move horizontally, which means that they contain strains

which su�er from a higher cost, on average, but are still very susceptible to the

antimicrobial administration. The �tness cost does not overcome the value of 0.2,

in the majority of cases, which means that bacterial growth overall is similar to

the case of constrained evolution (Figure 5.12). On the other hand, some other

treated infections progress vertically, towards strains with very high resistance.

Their antibiotic susceptibility is reduced by almost 50% and they present a small

cost. This type of trait combination is unique, i.e not observed in Figure 5.12.

Between these two extreme cases, all the other samples are found, with a more

pronounced dispersion if bacteria mutate at a higher rate.

The scattering of the stochastic realizations of this simulation can be described

in another perspective. There is a big cluster, whose characteristics are closer to

the sensitive wild type bacteria. A second and much smaller cluster can be found

in the lower left corner of the trait landscape, which is related to the resistance

selection. An increase in the mutation rate seems to facilitate the transition from

the �rst cluster to second one, which means that the infection becomes more

resistant to treatment, making the situation more complicated for the host.
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5.2.6 What strains emerge for each type of treatment?

Based on this, the question that arises is related to the origin of these clusters.

Is there any relationship between the distribution of the mean traits and the

type of treatment? And what is the impact of pathogen mutation rate variation?

The answer comes from the partition of these scatter plots considering the �ve

described types of treatment and the three distinct mutation rates.

In the constrained trait space, there are no di�erences in the relationship

between pathogen traits when di�erent types of treatment are compared, for

which reason the �gure is not shown here. However, discrepancies are found in

the unconstrained case (Figure 5.14).

Figure 5.14: Relationship between mean �tness cost and mean antibiotic

susceptibility over 30 days in an acute infection under treatment. Study

of the impact of m and type of treatment. Panels A-E with m = 0.5x10−7;

Panels F-J with m = 0.75x10−7; and Panels K-O with m = 1x10−7. Panels

A,F,K with treatment 1; Panels B,G,L with treatment 2; Panels C,H,M with

treatment 3; Panels D,I,N with treatment 4; and Panels E,J,O with treatment 5.

Unconstrained evolutionary dynamics. Other parameters as in Table 2.1.

When the dose is su�ciently high (treatment 2, High Dose and Low Dura-

tion, and treatment 5, High dose and High Duration), the infection is controlled
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quicker by the conjunct action of both mechanisms (Figure 5.14, Panels B,E).

Therefore, the main traits over each infection are more similar to the sensitive

wild type bacteria. A high dispersion of infections, with a clear movement for the

location of the second cluster mentioned above, is seen for treatments in which

clearance is not the most likely outcome at the end of the simulation and relapses

occur (treatment 1, Low Dose and Low Duration, and treatment 3, Medium dose

and Medium Duration) (Figure 5.14, Panels A,C). Relapses can also happen, but

for a shorter period of time, with a treatment 4, Low Dose and High Duration,

and that explains the intermedium level of dispersion (Figure 5.14, Panel D).

In general lines, more predictable evolution is found in more aggressive treat-

ments. More resistant infections are related to treatments previously recognized

for generating second peaks of bacterial load.

Next, we summarize quantitavely results by type of treatment focusing only

on the case of mutation rate of 0.75x10−7. We use two di�erent abstract measures

to describe evolution in the 2-d trait space: Divergence Distance and Divergence

Angle. Together, these measures allow to have a notion of how distant is each

resistant emerged strain from the original sensitive one.

Divergence distance is the mathematical Euclidian distance, between the mean

pathogen traits over a treated infection (c̄T , āT ), and the traits of sensitive wild

type bacteria,(c, a)=(0,1) . The greater this distance, the further the evolution

of the bacterial population over infection from the original sensitive strain. For

each infection, divergence distance is given by:

d =
√

(c̄T − 0)2 + (āT − 1)2 (5.14)

Divergence angle is measured between the y axis and the line which connects

the infection scatter point and the sensitive strain and it goes from 0 to 90 degrees.

The smaller the angle, the more vertical are the evolutionary dynamics in the two

traits landscape, which means the more resistant bacteria and the smaller the cost.

For each infection, divergence angle is given by:

α = arctan

(
c̄T

1− āT

)
(5.15)
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Concerning �tness cost, the highest mean over all stochastic realizations is

associated to treatment 3. The intermedium values are similar and lowest one

can be found in the more aggressive type: treatment 5. Standard deviation values

vary more between types of treatment than the mean itself. However, all these

values are very similar, which allow to state that, for these parameter values we

explored, on average, di�erent types of treatment do not have an extensive impact

on the evolved mean �tness cost of resistant bacteria over a 30 days simulation

of an infection (Figure 5.15, Panel A).

Focusing on the other pathogen trait, the antibiotic susceptibility, the di�er-

ences in the mean value are almost imperceptible and all of them are sligtly above

0.8. Even the variation in standard deviation among all types of treament can be

considered neglegible (Figure 5.15, Panel B).

The mean divergence distance is very similar when the duration is low or

medium, independently of τ2. The correspondent standard deviations are signif-

icant, in particular for treatment 3. In addition to similarity, these values are

higher since they correspond to the relapsed infections, in which resistant strains

are less related to BS. Higher durations impede resistant emerged variants to

evolve and become more distant to the initial spot, associated with BS. Quanti-

tavely, both means and standard deviations are lower (Figure 5.15, Panel C).

Much more variation, specially in the mean values, are found for the divergence

angles. Treatments 1 and 3 present the higher angles. Despite the formation

of the second cluster, in mean, for these cases, the angle shows a favoring of

the increase in the �tness cost, when compared to the decrease in the antibiotic

susceptibility. For the other types of treatment, the mean and standard deviations

are similar. However, on average, the divergence angle do not vary more than 10

degrees between all antimicrobial regimes (Figure 5.15, Panel D).

Once again, these same measures can be seen by other viewpoint, which can

concede a new interpretation. The study of the frequencies distribution of mean

divergence distances and angles allows to verify which are the most frequent values

and if there is a identi�able particular pattern (Figure 5.16).
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Figure 5.15: Mean summary measures of a self limiting acute infection

until day 30, with treatment administration considering distinct types

of treatment. Mean �tness cost of BR (Panel A). Mean antibiotic susceptibility

of BR (Panel B). Mean divergence distance of BR when compared to BS (Panel C).

Mean divergence angle of BR when compared to BS (Panel D). Error bars indicate

standard deviation and circles represent the mean value. All bars plot the mean

over 100 stochastic realizations. m = 0.75x10−7. Unconstrained evolutionary

dynamics. Other parameters as in Table 2.1.

Figure 5.16: Impact of the type of treatment on the frequencies distri-

bution of mean divergence distance and divergence angle of BR when

compared to BS. Panels A,F with treatment 1; Panels B,G with treatment 2;

Panels C,H with treatment 3; Panels D,I with treatment 4; and Panels E,J with

treatment 5. All bars plot the mean over 100 stochastic realizations of the simula-

tion, crossing overall dose-duration interactions. m = 0.75x10−7. Unconstrained

evolutionary dynamics. Other parameters as in Table 2.1.
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Concerning divergence distance, the distribution is similar between all regimes.

The greatest remoteness of this arises in the treatment 4 case (Figure 5.16, Panel

B), in which a �rst cluster seems more rectangular and there is a second smaller

peak. The same qualitative consistency arises in the case of divergence angle fre-

quencies distribution (Figure 5.16, Panels F-J). With a margin of error, a relation

between divergence distance and divergence angle can even be established.

However, the fact that we do not �nd big di�erence in these evolutionary

dynamics for di�erent treatments for these parameter combinations, does not

mean that if we increase m or change host immunity parameters, we will not �nd

signi�cant di�erences. This remains to be investigated in the future.

5.2.7 Evolution features by infection windows

Because the focus, in this chapter, is on the resistance selection in self limiting

acute infections under treatment, another important feature to pay attention

is the comparison between what happens before, during and after treatment is

applied.

Figure 5.17: Impact of timing on the relationship between mean �tness

cost and mean antibiotic susceptibility during the 30 days simulation

in a self limiting acute infection under treatment. Each dot represents

one infection, considering timing: Panel A with mean during the period before

treatment is applied (from day 0 to day τ1); Panel B with mean during treatment

administration (between day τ1 and day τ1 + τ2); and Panel C with mean during

period after treatment cessation (from day τ1 + τ2 until day 30). m = 0.75x10−7.

Unconstrained evolutionary dynamics. Other parameters as in Table 2.1.
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On a �rst approach, the relation between �tness cost and antibiotic suscep-

tibility is veri�ed in the three time windows. Before treatment is applied (Fig-

ure 5.17, Panel A), the �rst mutants emerge from BS, initially present in an

infection. Even those who emerge after it have parents whose traits are similar

to those found in the beginning of the infection. During the antimicrobial ad-

ministration (Figure 5.17, Panel B), mutants have more time to get away from

the initial conditions and, in mean, they do it in a direction where they become

more and more resistant, without almost any cost. During treatment, resistant

strains with no cost are selected. The majority of infections are cleared during

treatment. For those that are only cleared after treatment cessation, their BR

subpopulation have to be composed by mutants which cannot be very resistant.

In addition to those mutants, there are new emerged from the secondary peaks,

also mentioned as relapses. Because of this, the mean �tness cost and antibiotic

susceptibility of the bacterial mutants, after treatment, return to the values as-

sociated with sensitive bacteria (Figure 5.17, Panel C). Often, the second peak is

also dominated by BS.

So far, this scattering process allowed to distinguish between the three time

windows. But is it possible to �nd a connection between the time windows during

simulations and type of treatment?

Even though there are quantitative di�erences, qualitatively the mean �tness

cost and antibiotic susceptibility vary in the same way before and after treatment,

regardless of the type of treatment (Figure 5.18). Low or medium doses favor

a greater divergence between mutants, associated to relapses episodes. During

treatment, the expected behavior is found for treatments with low or medium

duration, disregarding the dose. Neverthless, high durations favor the loss of

bacterial mutants similar to the sensitive. Strains selection is more in�uenced by

the time window than the type of treatment itself.
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Figure 5.18: Study of the impact of timing and type of treatment on the

relationship between mean �tness cost and mean antibiotic suscepti-

bility over 30 days in a self limiting acute infection under treatment.

Panels A-E for before treatment period; Panels F-J for during treatment period;

and Panels K-O with after treatment period. Panels A,F,K with treatment 1;

Panels B,G,L with treatment 2; Panels C,H,M with treatment 3; Panels D,I,N

with treatment 4; and Panels E,J,O with treatment 5. m = 0.75x10−7. Uncon-

strained evolutionary dynamics. Other parameters as in Table 2.1.
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Chapter 6

Conclusions

The study of the dynamics of bacterial infections under di�erent types of treat-

ment, based on the de�nition of mathematical models and computational simu-

lations is not easy. We have generated several important new �ndings that will

be resumed and discussed now. From these, we can sketch a possible pathway to

follow with regard to control of antimicrobial resistance.

With respect to infection bacterial dynamics, when no treatment is applied,

studied in Chapter 2, the use of only one equation to describe the host immune

system has proved to be an advantageous choice. All major dynamics are cap-

tured and, in addition, the study of the mathematical model becomes simpler

and computationally lighter. The extension associated with the logistic model

revealed also new phenomena and feedbacks between density-dependent resource

limitation and immune control. Carrying capacity and host immune system work

together in this model to control bacterial growth and can be considered more

realistic for investigating di�erent biological scenarios. One example is that lower

carrying capacity limits bacterial load to lower levels, reducing the action of the

host immunity. It is safe to state that all �xed points of this system correspond to

biological scenarios, identi�ed in this thesis as colonization, persistence and clear-

ance. The absence of immune response, associated to the colonization scenario,

allows the coexistence of sensitive and resistant bacteria. However, if immunity is

activated, the possibility of coexistence disappears but there is an opportunity for

oscillations of the resistant bacterial subpopulation. All conditions that allow to

move from one state to another were identi�ed in detail, work that had not been
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developed yet, and that have a great theoretical revelance. Nonetheless, because

they depend on parameters related to the bacterial agent and the immune system

of the host, they have low applicability in clinical practice.

But antimicrobial treatment is almost mandatory during a bacterial infection

episode and it is introduced in Chapter 3. The way this treatment is added to

the mathematical model can di�er. Firstly, it was studied a classical type of

treatment, outlined by a constant dose administration during a certain period.

The main assumption, in this case, is that drug concentration does not su�er

any changes in host body over time. The equilibria analysis reveals that the

�xed point related to the coexistence of both bacterial subpopulation is lost. It

is even possible to state that it does not reappear, no matter how the treatment

is modelled. Modelling bacterial infections under treatment highlights the key

feedbacks between mechanisms of control, which, in the last instance, results in

the asymptotic impossibility of coexistence due to selection.

Besides the asymptotic analysis of these models, we studied also infection

history over time. To discover it implies the study of its transient behavior, found

in Chapter 4. If we are dealing with a persistence infection, di�erent timings may

occur to initiate the treatment, in the clinical practice, depending for example

on the host symptoms. If treatment starts when infection is mixed and contains

both BS and BR, doses above BR superinhibitory dose are more likely to clear

the infection, with an adequate duration of treatment. Another �nding is that

lower doses can also produce clearance, however this is coupled to a minimum

duration. By increasing the duration of treatment, serious consequences may

result for the host, in addition to increasing the chance of resistance selection.

When an infection starts, immunity is stimulated. So, it can happen that only

sensitive bacteria are present when treatment onset happens. When that is the

case, a mathematical expression was obtained to relate the dose and the duration

of treatment needed to get clearance of the infection, which is not very sensitive

to immunity parameters. But there is also a possibility that the host su�ers from

an acute infection, which would be cleared only by the action of the immune

system. But what happens if this infection starts to be treated at the stage

where the bacterial load is at the peak? In that case, treatment will have a

higher interference on the immunity levels and combinations of dose and duration
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which are able to get clearance are more a�ected by immunity parameters. For

immune responses depending on bacterial load, interaction with antimicrobial

drugs can be antagonistic. In this type of infection, treatment can result either

ways: the host may continue to be infected, which is a worst outcome than it

would be without treatment; or clearance is obtained anyway, but because the

host is infected for a shorter period, su�ers less harm due to it.

In conclusion, our preliminary results on deterministically modelling bacterial

infections has proven a useful tool to study their dynamics in the presence or

absence of treatment.

Chapter 5, the last part of this thesis dedicated to the evolutionary dynam-

ics, brings stochasticity to the mathematical model. Emergence of new bacterial

strains is very constrained by the approach selected during this thesis to generate

the changes in the phenotypic traits, specially the �rst mutation step. All the

results discussed from now on are very dependent on the evolutionary dynamics

used to design the pathogen's trait space, which creates the opportunity to do it

di�erently, in the future, and to understand the impact of this design on evolution

and resistance selection. In this chapter, evolutionary dynamics of a self-limiting

acute infections are studied in detail, using 100 stochastic realizations, with �xed

parameters. Treatments, which di�er on dose and duration, are grouped into �ve

types. A primary �nding related to treatment is that its success can be predict by

the conjunct analysis of the bacterial load and the host immune response, which

is not very a�ect by pathogen mutation rate. The general idea that aggressive

treatments favor more resistant but with high cost mutations needs further inves-

tigation in the future. Lower or moderate doses, reinforced by short durations,

create opportunities for the bacterial subpopulations to mutate and to overcome

the barriers imposed by treatment. These types of treatment are, in fact, those

that can be associated to second peaks of bacterial load, in which the most resis-

tant strains, with very low �tness cost, are found. The simulations allow to state

that, if treatment is administrated on the adequate timing, moderate treatments

applied in an immune competent host stimulate a synergistic interplay and, with

a high probabibility, clearance of the infection. To compare a treated bacterial

infection against a non treated one would allow a deeper investigation. Another

interesting point of research would be to de�ne a measure to calculate the time
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needed for clearance. Immunity was kept �xed during all simulations in this

chapter, so its role on the evolutionary dynamics cannot be examined. However,

that investigation would be very interesting to be carried out in the near future,

since it is known that bacterial dynamics di�er between hospitalized patients and

healthier hosts. The development of the computational tools associated with this

chapter was very demanding. Now that they are �nished and ready to use, in

addition to all the work already developed, they can be used for further investiga-

tion for di�erent parameter values representing di�erent host-pathogen-antibiotic

combinations.

Mathematical modelling and computational simulations are, undoubtedly,

tools of incalculable power to provide insights into antibioitic-immunity-pathogen

dynamics. The main goal, which was to explore the interplay of di�erent mech-

anisms of control during infection dynamics and to explore the evolutionary dy-

namics that can take place in di�erent scenarios, was successfully reached. All

the work and insights developed throughout this dissertation makes us one step

closer to the ultimate goal: to have the real power to deal with resistance to

antibiotics, from its prevention to its management.
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