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Abstract
Automatic speaker nativeness assessment has multiple ap-

plications, such as second language learning and IVR systems.
In this paper we view this as a regression problem, since the
available labels are on a continuous scale. Multiple approaches
were applied, such as phonotactic models, i-vectors, and good-
ness of pronunciation, covering both segmental and supraseg-
mental features. Different phonotactic models were adopted,
either trained with the challenge data, or using additional multi-
lingual data from other domains. The obtained values were later
combined in multiple ways and fed to a support vector machine
regressor. Results on the test set surpass the provided baseline
and are in line with the results obtained on the remaining sets.
This suggests that our models generalize well to other datasets.
Index Terms: nativeness, phonotactics, GOP, prosody

1. Introduction
Knowing the degree of nativeness of a speaker is relevant for a
number of applications. For example, a virtual language tutor
could adapt selected materials according to the degree of na-
tiveness of a student, making the lessons more compelling and
productive. Since models are usually trained with native speech,
it has a strong impact in Automatic Speech Recognition (ASR)
tasks. Information about the degree of nativeness could be used
by an ASR system to swap or adapt its language models, mini-
mizing recognition errors in the presence of non-nativeness.

This paper reports our experiments in automatically iden-
tifying the degree of nativeness, in the context of the INTER-
SPEECH 2015 Computational Paralinguistics Challenge [1].
Since the challenge data is labeled in a continuous scale, we
have tackled it as a regression problem. Multiple approaches
were applied, such as phonotactic models, i-vectors, and Good-
ness of Pronunciation (GOP), covering both segmental and
suprasegmental features. The resultant information was com-
bined in multiple ways to feed a Support Vector Machine
(SVM) regressor.

This paper is structured as follows: Section 2 presents the
related work. Section 3 describes the datasets, features and ap-
proaches adopted. Results are presented and discussed in Sec-
tion 4, and Section 5 concludes and presents future work.

This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
and under post-doc grant SFRH/PBD/95849/2013, EU-IST FP7 project
SpeDial under contract 611396, and by the Spanish Government and
FEDER through project TIN2011-28169-C05-02.

2. Related Work
Nativeness assessment is a challenging task that has been ex-
plored for years. It is usually seen as a binary classification,
predicting whether speakers are native. However, there has also
been some work tackling this task in terms of the degree of na-
tiveness, using both discrete and continuous scales. The latter
is the focus of the challenge and, consequently, of this paper.

Literature on binary classification of nativeness uses dis-
tinct methods. Shriberg et al. [2] applied speaker recogni-
tion approaches to the non-nativeness detection task. The
authors used systems based on Maximum Likelihood Linear
Regression (MLLR) adaptation transforms, prosodic informa-
tion, phone and word N-grams. By combining all systems, re-
sults around 8.6% Equal Error Rate (EER) were obtained. Omar
and Pelecanos [3] were able to achieve 9.5% EER on the Fisher
database, using an SVM classifier trained with ASR-based fea-
tures integrated with an Universal Background Model (UBM).
A sequential modeling of prosody to classify nativeness was
proposed by Rosenberg [4]. In this approach, both symbolic
and direct representations of prosody were used. Although
symbolic representations outperformed direct ones, they were
only able to do so when manual annotations were provided.
This suggests that the first have limited scope, while the latter
are more generically applicable, in spite of being less informa-
tive. Lopes et al. [5] developed a nativeness classifier for TED
talks. Both prosodic features and Gaussian supervectors ob-
tained from acoustic features were used. The fused system was
able to achieve 10.6% EER. Mehrabani et al. [6], also using
prosodic features, were able to exceed the accuracy of a Gaus-
sian supervector by over 10.0%. The features were extracted
from the Accent Group level, meaning, f0, energy, and duration
were extracted from an accented syllable and all the following
unaccented syllables until the next accent or boundary.

These former approaches were posed as binary classifica-
tion tasks. However, we can also pose the degree of nativeness
as a continuous task. Teixeira et al. [7, 8] assessed the impor-
tance of different prosodic features and their combinations for
the task. Results were obtained using Decision Trees for both
discrete and continuous scores. Of particular interest for the
present work are the studies by Hönig et al [9, 10, 11]. The
authors used the same data made available in this challenge,
as well as acoustic-prosodic features. Therefore, their exper-
iments are more directly comparable to the ones described in
this paper. The first experiments applied Multiple Linear Re-
gression on a large prosodic feature vector in order to automat-
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ically assess nativeness scores in terms of four dimensions –
intelligibility, accent, melody, and rhythm. More recent exper-
iments compare the performance of prosodic features, acous-
tic features extracted with openSMILE [12], and a Gaussian
Mixture Model - Universal Background Model (GMM-UBM)
trained with purely acoustic features to assess the levels of the
same four dimensions. Further experiments were performed
on the C-AuDiT and AUWL datasets assessing the influence
of speaker and sentence dependency for the assessment of the
rhythmic quality of non-native speech. In this sense, the evalu-
ation performed in this challenge is both speaker and sentence
independent. In that setup, using a cross-validation evaluation,
the authors obtained 0.64 and 0.52 Person correlation coeffi-
cient scores on the C-AuDiT and AUWL corpora, respectively.

Summing up, nativeness has been analyzed either as a bi-
nary or a continuous prediction task, supported in distinct meth-
ods. However, the use of acoustic-prosodic features is almost
transversal in the literature.

3. Experimental Setup
As the title of this paper suggests, we used different approaches
in our experiments. These approaches have been used on this
or similar tasks, but vary both in terms of nature and features
used. Furthermore, we performed multiple combinations of the
approaches in order to assess their complementarity. This sec-
tion describes these approaches, the used datasets, and how the
multiple feature sets were extracted.

3.1. Datasets

In addition to the provided datasets, some of our experiments
involve the use of model-based features and approaches trained
with external datasets. This is the case of acoustic models and
phonotactic language recognition (LR) models that are part of
the set of previously available technologies at the group.

3.1.1. Challenge datasets

The AUWL, ISLE, and C-AuDiT datasets are provided for the
challenge and thoroughly described in the challenge’s paper [1].
The first two are used for training while the last is used for
development. The material from AUWL corresponds to 5.5
hours (3732 files) of pre-scripted dialogues spoken by learn-
ers of English as a second language. From ISLE, only 5 dis-
tinct sentences from 36 speakers are used, comprising 0.3 hours
(158 files). C-AuDiT contains sentences read by non-native En-
glish speakers. 999 speech files containing 19 distinct sentences
were selected. All the files were annotated by five phoneticians.
However, while a five-point scale was used for the training data,
a three-point scale was used for the development set.

3.1.2. Additional datasets

AUDIMUS The AUDIMUS acoustic modeling dataset consists
of multilingual data used for training our in-house ASR sys-
tem [13]. For the European Potuguese (pt) acoustic models, 57
hours of Broadcast News (BN) down-sampled data and 58 hours
of mixed fixed-telephone and mobile-telephone data were used.
The Brazilian Portuguese (br) models were trained with around
13 hours of BN down-sampled data. The European Spanish
(es) networks used 36 hours of BN down-sampled data and
21 hours of fixed-telephone data. The American English (en)
system was trained with the HUB-4 96 and HUB-4 97 down-
sampled datasets, containing around 142 hours of data.
WSJ The Wall Street Journal (WSJ) database [14] is an US En-

glish native speakers database that contains high-fidelity speech
recordings with excerpts from the Wall Street Journal. Only the
SI-84 training material from WSJ0 was used for the develop-
ment of a pronunciation quality measurement approach, con-
sisting of approximately 15 hours of speech material.
euTV The euTV corpus consists of data used to develop the
euTV [15] system for media monitoring and publishing. One
of its services is able to identify the 12 most spoken languages
across the European Union – English, Spanish, Polish, Greek,
Portuguese, Hungarian, Czech, German, Italian, French, Dutch,
and Swedish. Data was obtained from previously existing cor-
pora used for automatic speech recognition, from the podcasts
and archives made available online by the respective national
radios and TV stations, and also from the podcasts and archives
of the SBS 1 multi-language radio site.
LRE2011 The LRE2011 corpus consists of data used by
INESC-ID’s Spoken Language Systems Laboratory to develop
the language recognition systems [16] submitted to the 2011
NIST Language Recognition Evaluation. It comprises data
from 24 different languages obtained from different sources,
including the data provided for the challenge; previous LRE
campaigns; and several available Linguistic Data Consortium
(LDC) sets.

3.2. Features
Our experiments use both segmental and suprasegmental fea-
tures extracted from each speech file.

OpenSMILE [12] was used with the ComParE 2013 con-
figuration file to extract the features also used by the existing
baseline approach. The HTKToolkit [17] was used to extract
Mel-Frequency Cepstral Coefficientss (MFCCs), and a module
from our hybrid ASR system AUDIMUS [13] was used to ex-
tract Relative Spectral Transform - Perceptual Linear Prediction
(RASTA-PLP) features. For each feature set, 7 static values
were extracted. After that, mean normalization was applied in a
per file basis. Shifted Delta Coefficients (SDCs) were computed
from each feature set using a 7-1-3-7 configuration, originating
two new feature sets. Finally, low-energy frames were detected
with the alignment generated by a bi-Gaussian model of the log
energy distribution computed for each speech file, and then dis-
carded.

We performed a multi-language phone tokenization using
the neural networks that are part of AUDIMUS [13]. The rec-
ognizer for each language combines four Multilayer Percepton
(MLP) outputs trained with Perceptual Linear Predictions
(PLPs) (13 static + 1st deltas), RASTA-PLPs (13 static + 1st

deltas), Modulation-Filtered Spectrogram (MSG) (28 static),
and ETSI (13 static + 1st and 2nd deltas). A phone-loop gram-
mar with phoneme minimum duration of three frames is used
for phonetic decoding. The language-dependent MLP networks
were trained with the AUDIMUS dataset described previously.
Each MLP network is characterized by the size of its input layer
that depends on the particular parametrization and the frame
context size (13 for PLP, RASTA-PLP and ETSI; 15 for MSG),
the number of units of the two hidden layers (500), and the
size of the output layer. MLPs are composed by two hidden-
layers with a relatively small number of hidden units in order
to accelerate the tokenization process. In this case, only mono-
phone units are modelled, resulting in MLP networks of 41 (39
phonemes + 1 silence + 1 respiration) soft-max outputs in the
case of en, 39 for pt (38 phonemes + 1 silence), 40 for br (39

1http://www.sbs.com.au/
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phonemes + 1 silence) and 30 for es (29 phonemes + 1 silence).
The obtained phonetic tokenizations provide phone align-

ments for each speech file which can be used to generate more
complex features. Based on the tokenizations, we have created
what we have called pseudo-words and that consist on group-
ing phones into sequences separated by silences for each one
of the languages (en, pt, br, es). From the phone alignments
we were also able to extract a set of durational features. For
instance we were able to extract silence and speech duration ra-
tios, namely silence ratio, speech ratio, and silence to speech
ratio. Furthermore, we were able to extract the speech rate in
terms of phones per second, either taking or not pseudo-words
into account. The phone tokenizations also provided means to
characterize each audio segment using n-grams of phones for
each one of the languages. As elongations may play a relevant
role in nativeness detection, we have created additional n-gram
variations whenever phones longer or equal than a given thresh-
old (200 ms) were involved. For example, when in the presence
of the phone n followed by the elongated phone ay, the bigrams
n.ay and n.ay+ would be activated.

Finally, we also used the Snack Sound Toolkit2 as an alter-
nate way of extracting pitch and energy from the speech signal.
We have calculated pitch and energy metrics, such as maximum,
minimum, standard deviation, range, and slope, inside and be-
tween pseudo-words [18]. Pitch related results were calculated
based on semitones rather than frequency. On top of such fea-
tures, we calculated elaborated prosodic features for the whole
sentence, involving the sequence of calculated pseudo-words,
that were measured in terms of standard deviation and slope.

3.3. Approaches
Although we used multiple approaches in our experiments, the
final labels are always given by a SVM regressor. This means
that the approaches described in this section were used to pro-
duce features to be used by that regressor. Furthermore, it is
important to notice that some of the features described in the
previous section are very informative by themselves and were
used directly, without influence of any of these approaches. Fi-
nally, it is also important to refer that, for each experiment, we
explored different combinations of the regressor’s C (complex-
ity) and epsilon parameters.

3.3.1. Phonotactic Models
To our knowledge, phonotactic models have not been used for
degree of nativeness assessment. However, they have good
performance on language recognition tasks and, thus, we be-
lieve they can be used for this task. Our models are obtained
using Phone Recognition followed by Language Modeling
(PRLM) [19]. To develop such systems, we exploit the infor-
mation provided by the phonetic tokenizers described in Sec-
tion 3.2. First, phonetic sequences are obtained for every file.
Then, for each target language and for each tokenizer a different
phonotactic n-gram language model is trained with the training
sequences.

In order to train the models, we split the training data in
classes relative to the level of nativeness. We used both a 2-class
– Native and Non-Native – and a 3-class – Good, Average, and
Bad – splits. Using these splits, we were able to train a model
for each class and for each tokenizer language. The outputs
of these models for the development and test datasets are the
likelihoods of a given speech segment fitting each model. These
likelihoods can be used as features for the SVM regressor.

2http://www.speech.kth.se/snack/

Furthermore, we used euTV and LRE2011 models for each
of the present languages, which output the likelihood of a given
speech segment belonging to that language. These likelihoods
can also be used as features for the regressor.

3.3.2. Goodness of Pronunciation

The GOP algorithm is widely used in Computer-Assisted Lan-
guage Learning (CALL) systems [20] for automatic assessment
of phone pronunciation comparing speakers’ realizations with
native phone models [21, 22]. In this work, GOP-based fea-
tures have also been considered for the Degree of Nativeness
task. In order to estimate them, we set up a four-step pro-
cess. First, the conventional GOP algorithm is used to obtain
phone-level confidence measures, by aligning reference phones
from manual transcriptions and free-loop recognized phones.
Second, we conduct a phone-dependent mean score normal-
ization. The phone means are estimated taking into account
all the phone realizations of the training corpus. Then, GOP
values are first grouped at word-level, considering three differ-
ent arithmetic operators: sum, average, and maximum. These
three operators create three word-level GOP-based features. Fi-
nally, three sentence-level features are obtained for each arith-
metic operator by simply accumulating the GOP values of all
the words in a given sentence. This approach exploits mono-
phone acoustic models for American English trained with the
WSJ corpus using the HTKToolkit [23].

3.3.3. Phone N-gram Sequences

In this approach each audio segment was described in terms
of using n-grams of phones, ranging from unigrams to tri-
grams, based on the previously produced phone tokenizations
for each language. Elongated phones with duration above
200ms were represented using additional n-grams, as described
in Section 3.2. The n-gram counts (or simply their binary pres-
ence) were then used as features for the SVM regressor, dis-
carding the ones not present in the training set. However, this
process led to more than 80 thousand features, considering all
possible languages (en, pt, br, es), making experiments very
slow. For that reason, most of our experiments restrict n-grams
to those occurring at least 10 or 25 times in the training data.

3.3.4. I-Vectors

In the experiments using this approach, we used both SDC sets
as features. The first step of this approach consists on train-
ing a GMM-UBM using all the training data. We performed
experiments with different numbers of mixtures, ranging from
64 to 1024. Next, zero and first-order sufficient statistics are
computed from the training data and used to estimate the T ma-
trix. In order to do so, 10 Expectation-Maximization (EM) it-
erations are applied. In the first 7 iterations only Maximum
Likelihood (ML) estimation updates are applied, while in the
last 3 EM iterations both ML and minimum divergence updates
are applied. The covariance matrix is not updated in any of the
EM iterations. We also performed experiments with different
total variability sub-space dimensions, ranging from 16 to 400.
The estimated T matrix is then used for extraction of the total
variability factors of all speech data. Finally, the resulting fac-
tor vectors are normalized to be of unit length. These vectors
are referred to as i-vectors. The i-vectors extracted from the
provided datasets were later used as features for the regressor.
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development test
PCC ρ ρ

OpenSMILE ComPaRe 2013 0.403 0.415 0.425
Phone-based speech rates (SR) 0.570 0.565
[P1] SR, pwords, sil.ratio, energy 0.591 0.609 0.559
[P2] SR, pwords, sil.ratio, energy, F0 0.588 0.597 0.557
Phone N-gram Sequences 0.406 0.457
Phonotactic 2-Class 0.379 0.435
Phonotactic 3-Class 0.394 0.443
Phonotactic euTV 0.543 0.589
Phonotactic LRE2011 0.543 0.589
Phonotactic euTV + LRE2011 0.544 0.589
Goodness of Pronunciation (GOP) 0.305 0.368
Normalized GOP (NGOP) 0.260 0.277
i-Vectors: RASTA-PLP SDC 0.145 0.135
i-Vectors: MFCC SDC 0.214 0.222
SR + euTV + LRE2011 0.576 0.609
SR + euTV + LRE2011 + GOP 0.580 0.621 0.580
SR + euTV + LRE2011 + NGOP 0.599 0.638 0.564
[P1] + euTV + LRE2011 + NGOP 0.605 0.638 0.576
[P2] + euTV + LRE2011 + GOP 0.617 0.644 0.559

Table 1: Results obtained by the most relevant approaches.

4. Results
We performed multiple experiments combining the different
features and approaches described in the previous sections. Ta-
ble 1 summarizes the results achieved by the most relevant
approaches on the development and test sets. The Spear-
man’s Correlation Coefficient (ρ) is our primary evaluation
measure [1], but the Pearson Correlation Coefficient (PCC) is
also presented for the development set. The first line shows re-
sults for the baseline approach. The first relevant point to notice
is the importance of prosodic features, shown on the second
group of approaches. Both speech rate and silence ratio were
able to surpass the baseline on their own. However, our Speech
Rate experiments worked better with multiple language align-
ments produced by our phone tokenizers, while Silence Ratio
performed better when only the Portuguese alignment was used.
A possible explanation is that the Portuguese tokenizer is the
one with more effort put into and the most accurate one, which
makes its silence detection more reliable.

All phonetic-based approaches, shown on the third group
of approaches, were also able to surpass the baseline. N-gram
phone sequences produced acceptable results, but required sev-
eral thousands of features, which increased considerably the re-
gressor’s training time when compared to other approaches. For
that reason, reported experiments restricted N-gram features to
those occurring at least 25 times in the training data. Such
an approach relies on sequences seen during the train, which
may constitute a problem when generalizing to other data. The
phonotactic models trained using the provided train dataset per-
formed well in cross-validation (ρ>0.70). However, such value
reduced considerably when the evaluation was performed on the
development dataset, suggesting that the models needed to be
trained with more data in order to generalize well. In terms of
the class split, the system using 3 classes performed slightly bet-
ter than the 2-class one. This means that the introduced entropy
is beneficial. Furthermore, it is important to notice that perfor-
mance increased with each new language model added, which
suggests that using data provided by phone tokenizers for other
languages would improve the overall performance. Further evi-
dence of this are the results obtained by the models trained using
euTV and LRE2011 data, which contain larger training datasets
and different languages. Also, by combining the models trained

with those datasets, a more robust system can be build, improv-
ing generalization capabilities.

Goodness of Pronunciation approaches were not able to sur-
pass the baseline on their own, which can be surprising since
pronunciation is a very important factor to identify non-native
speech. The most surprising factor is the negative effect of nor-
malization, for which we have no plausible explanation.

Although i-vector approaches have performed well in lan-
guage identification tasks, the results obtained in this task have
been disappointing. Although we performed experiments us-
ing multiple combinations of the number of Gaussian mixtures
used to train the UBM and the number of total variability sub-
space dimensions, the results were always in line with the ones
presented in Table 1, which are far from the baseline.

By fusing some of the previous approaches we were able to
further improve the results. For instance, merging the combined
euTV and LRE2011 phonotactic model with the speech rate, we
were able to achieve ρ>0.60. By appending non-normalized
GOP features to that system, that result improved to 0.621. Sur-
prisingly, appending the normalized GOP features, which had
worse performance on their own, improved that result to 0.638.
This represents a 54% relative improvement over the baseline.

In order to have more training data, we merged the train
and development datasets by linearly scaling the development
set labels. Using this approach, our best trial on the test set
achieved ρ=0.580, representing a 36% relative improvement
over the baseline. Such result was achieved by merging the
speech rate, euTV and LRE2011 phonotactic models, and un-
normalized GOP. Contrarily to what happened on the develop-
ment set, using normalized GOP decreased the score to 0.564.

Finally, it is important to compare our results with related
work. Our 3-class phonotactic models trained with the pro-
vided data achieved a 0.75 PCC score when evaluated using
cross-validation. Under the same evaluation conditions, Hönig
et al [11] obtained a 0.52 PCC score. This represents a rela-
tive improvement of 44%. By performing cross-validation on
the development dataset, we were able to achieve a 0.66 PCC
score. Although not completely comparable, this result is still
slightly better than the 0.64 score obtained by Hönig et al [11]
on the C-AuDiT corpus.

5. Conclusions
This paper reports experiments towards the advance of the state
of the art on the degree of nativeness assessment task. This
was partially achieved using approaches that, to our knowl-
edge, had not been used for this task. In this sense, although
phonotactic models have been proven efficient, especially when
merged with other approaches, large amounts of training data
are needed to develop models that generalize well to different
datasets. Furthermore, we were able to confirm the importance
of prosodic features, such as speech rate, which achieved high
results on its own.

In terms of results, we surpassed the baseline for the de-
velopment set by over 0.2, which represents a relative improve-
ment over 50%. Also, our best trial on the test set surpassed the
baseline by 0.17, representing a relative improvement of 36%.

We applied multiple approaches and different features.
However, more have been left unexplored which could improve
our results. For instance, we have not explored the potential
of Gaussian supervectors, which have been proven to perform
well in some related work. In terms of features, we have not ex-
plored extraction at the Accent Group level, which has also been
proved efficient. We leave these and other possible approaches
for future work.
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