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Resumo

O objetivo principal desta dissertação é desenvolver modelos para pro-

por moléculas de interesse que podem se tornar em princípios ativos

no tratamento da �brose quística. Neste projeto apresenta-se uma

abordagem in silico para a seleção de moléculas que possivelmente

têm capacidades terapêuticas em relação à �brose quística. Este pro-

cesso é efetuado computacionalmente com a utilização de ferramentas

de prospeção de dados e os objetivos primordiais deste processo são

a identi�cação e seleção de moléculas que podem ajudar no combate

à doença para posterior teste em laboratório. Para este efeito foram

desenvolvidos previsões para a capacidade terapêutica das moléculas

em dois espaços: i) espaço vetorial; ii) espaço métrico. No espaço

vetorial as previsões foram realizadas tendo em conta os descritores

moleculares das moléculas, com recurso ao método estatístico e com-

putacional random forest. As moléculas foram também representadas

num espaço métrico construído com a dissemelhança molecular entre

as mesmas, onde ocorreu uma redução de dimensões tornando pos-

sível a representação das instâncias num plano bidimensional - este

espaço métrico foi subsequentemente analisado por uma ferramenta

estatística denominada kriging.

Para comprovar os métodos escolhidos, usaram-se dois conjuntos de

dados; potenciadores e ativadores de anoctaminas (moléculas de pos-

sível interesse para o tratamento da �brose quística) e corretores

da proteína causadora da �brose quística (CFTR - Cystic �brosis

transmembrane conductance regulator). No âmbito desta dissertação,

foram identi�cadas 10 moléculas provenientes do estudo com poten-

ciadores de anoctaminas e 18 moléculas provenientes do estudo com

corretores da CFTR, para serem testadas em laboratório.



Adicionalmente, foram recolhidos dados de repositórios de informação

biológica para validar os métodos utilizados. Este passo adicional

permite concluir que algumas das moléculas escolhidas têm ligações

diretas e indiretas à �brose quística, dando credibilidade ao método

desenvolvido.

É importante referir que a forma como este projeto foi desenvolvido

permite a utilização de diferentes conjuntos de dados de ligandos para

proteínas alvo, o que torna este método �exível e adaptável à doença

que seja objeto de estudo.

Palavras Chave: Chemoinformatics, Aprendizagem Automática,

Fibrose Quística, Design de Medicamentos In Silico



Abstract

The main goal of this dissertation is to develop models in order to

identify and propose lead chemical molecules that can possibly become

principal actives against the cystic �brosis disease.

In this project it is presented an in silico approach to perform a molec-

ular screening on possible therapeutic candidates for the cystic �bro-

sis disease. This process is done computationally with data mining

tools and the main objectives are the identi�cation and selection of

molecules to further testing in the laboratory. To achieve this goal the

data mining exercise was developed on two spaces: i) vectorial space,

ii) metric space. On the vectorial space, molecular descriptors were se-

lected to implement a random forest algorithm (a supervised machine

learning method) in order to realize forecasts on the molecule ability

to treat the disease. The studied molecules were also represented in

a metric space that was developed using molecular dissimilarity be-

tween all molecules. This dissimilarity values were modelled to �t in

a 2 dimensional representation - In this metric space the statistical

tool chosen was kriging.

To prove the chosen methodology, two main datasets were used: A

dataset with Anoctamin activators or potentiators (molecules of inter-

est to treat the cystic �brosis disease) and a dataset with correctors

of the protein which causes cystic �brosis (CFTR - Cystic �brosis

transmembrane conductance regulator). Based on these datasets, 10

and 18 molecules were selected respectively to be further tested in a

lab environment.

To conclude the work and validate the work�ow results, an additional

analysis was performed using selected information repositories. This

additional step has con�rmed that some of the chosen molecules are



directly and indirectly related to cystic �brosis, giving some credibility

to the proposed method.

Finally, the way this project was developed enables the use of di�er-

ent datasets with ligands of the target proteins as input, making the

method �exible and adaptable to any disease in study.

Keywords: Chemoinformatics, Machine Learning, Cystic Fibrosis,

In Silico Drug Design



Resumo Alargado

Atualmente existem diversas doenças para as quais se conhecem os

seus mecanismos biológicos, mas para as quais ainda não existe qual-

quer tipo de medicamento, ou os disponíveis não são su�cientemente

e�cazes. Nos últimos anos, o número de novas moléculas a chegar

ao mercado tem sido cada vez menor, como tal é necessário novas

abordagens para a descoberta e desenvolvimento de novos princípios

ativos. Além disso, todo o processo para criar um novo medicamento é

extremamente caro e demorado e a grande maioria dos compostos de-

senvolvidos nunca chegam a ser comercializados. Como tal, qualquer

hipótese de reduzir o tempo e o preço da investigação bem como de

aumentar as probabilidades de sucesso é importante para estudo. O

desenvolvimento computacional de medicamentos apresenta-se como

um método capaz de contribuir para a resolução destes problemas.

Comparativamente aos tradicionais métodos de descoberta e desen-

volvimento de medicamentos, o desenvolvimento computacional uti-

liza algoritmos, conhecimento biológico prévio e grandes quantidades

de informação para uma seleção rápida e precisa de moléculas para

posterior análise em laboratório. O desenvolvimento pode ser baseado

na estrutura do alvo ou no ligando.

O foco deste projeto foi a seleção de moléculas de interesse com a

utilização de uma abordagem baseada na estrutura do ligando, mais

especi�camente, um modelo QSAR (da relação entre estrutura e ativi-

dade de forma quantitativa,) com uma pesquisa de moléculas uti-

lizando uma base de dados ZINC, que é constituída por todos os

compostos comercialmente disponíveis.

O caso de estudo escolhido para desenvolver a metodologia deste pro-

jeto foi a �brose quística, uma doença genética recessiva das mais co-

muns. Embora atualmente já existam alguns medicamentos para esta



doença, estes não são considerados e�cazes nem podem ser admin-

istrados em todos os pacientes. A CFTR (cystic �brosis transmebrane

condutance regulator) é uma proteína que quando tem alguma mu-

tação e subsequente malformação, leva à manifestação desta doença.

A mutação mais frequente é a F508del, uma deleção no resíduo 508,

uma fenilalanina. É uma proteína canal cuja função é transportar

cloro, mais especi�camente Cl− .

Para este método selecionou-se moléculas provenientes de dois con-

juntos de dados: i)moléculas potenciadoras ou ativadoras de anoc-

taminas e ii)moléculas corretoras da CFTR com a mutação F508del.

As anoctaminas são um grupo de proteínas também canal que trans-

portam Cl− ativadas por Ca2+ e que estão bem distribuídas em vários

tipos celulares. Estas características tornam as anoctaminas em alvos

interessantes para combater indiretamente a �brose quística. Neste

grupo de dados estão presentes 10 moléculas corretores ou ativadores

de anoctaminas. No conjunto de dados com corretores da CFTR es-

tão presentes 109 moléculas que foram testadas em laboratório com

recurso à técnica de Western Blot.

O método de desenvolvimento de medicamentos computacional foi

construído numa plataforma chamada KNIME, que permite alojar

pequenos programas (em diferentes linguagens de programação) de

forma interligada, bem como já contém diversos nodos de interesse

estatístico e/ou biológico entre outros. Tendo em conta o objetivo

�nal deste projeto - a seleção de moléculas de interesse para serem

posteriormente testadas em laboratório - este método foi assente em

dois ramos de trabalho, um que analisa os dados num espaço vetorial

e o segundo num espaço métrico. Os resultados de ambos foram con-

jugados para selecionar as moléculas a serem testadas posteriormente.

Mais detalhadamente, existiu uma seleção na base de dados ZINC por

moléculas semelhantes às iniciais ( tanimoto > 0.75 ) sendo que estas

foram posteriormente alvo de previsões relativamente à sua capaci-

dade terapêutica em relação à �brose quística. Cada um dos ramos



recebeu as moléculas iniciais, os seus valores testados em laboratório

em relação à doença, bem como a estrutura das moléculas semelhantes

retiradas do ZINC. No ramo vetorial, as moléculas iniciais passaram

por um nodo do RDKIT que calculou os seus descritores moleculares.

Esta informação juntamente com os valores previamente obtidos em

laboratório, foram utilizados para treinar a random forest - método

estatístico e estocástico baseado na construção de uma �oresta de ár-

vores de decisão. O modelo foi assim criado e utilizado para prever

os valores das moléculas selecionadas do ZINC. No ramo métrico, as

moléculas foram comparadas utilizando o NAMS, um programa que

utiliza a estrutura das moléculas, nomeadamente os átomos e as lig-

ações entre átomos, para comparação da semelhança molecular. Neste

programa, seleciona-se uma das cinco matrizes de substituição de áto-

mos disponíveis, permitindo a escolha de uma matriz mais ou menos

estrita a substituições. Com a semelhança molecular foi calculada a

distância entre compostos com -log(semelhança). A partir da matriz

de distâncias entre moléculas con�rmou-se com a análise de compo-

nentes principais que era signi�cativo representar as moléculas em

duas dimensões. Foi também efetuada uma análise das coordenadas

principais para calcular as coordenadas das moléculas nesse espaço.

De forma a ser possível representar as moléculas semelhantes retiradas

do ZINC no mesmo plano, foi calculada uma matriz de transformação

com recurso à matriz de distâncias iniciais e à matriz das coordenadas

das moléculas iniciais. Foi então efetuado uma previsão dos valores

de melhoria da atividade das anoctaminas ou da CFTR (dependendo

do conjunto de dados) de cada molécula semelhante, com recurso a

uma técnica de geo-estatística, conhecida como kriging. Esta técnica

de geo-estatística baseia-se na interpolação espacial utilizando pontos

espaciais com valores já determinados para prever valores de outras

localizações.

Com as previsões resultantes de ambos os ramos de trabalho, foi con-

struído um grá�co dos valores previstos, para auxiliar na seleção de

moléculas com mais interesse para posterior análise laboratorial.



No que diz respeito aos dados dos potenciadores e ativadores das anoc-

taminas, a comparação molecular com recurso ao NAMS indicou que

a correlação só existia nas matrizes mais estritas, o que signi�ca que

substituições, mesmo que de átomos semelhantes, afetam muito a ca-

pacidade terapêutica da molécula. Neste conjunto de dados foram

selecionadas 10 moléculas : 8 com valores elevados nos dois ramos de

trabalho e 2 adicionais que apresentam um valor previsto elevado num

ramo e baixo no outro. Estas 2 moléculas com valores discordantes,

foram principalmente selecionadas para posteriormente se avaliar em

laboratório o ramo com a melhor previsão e identi�car possíveis mel-

horias. Após a escolha destas moléculas foram recolhidos dados de

repositórios de informação biológica para validar os métodos utiliza-

dos. Com base nesta recolha de informação, foi possível concluir que

as moléculas selecionadas apresentam ligações possíveis às anoctam-

inas e a uma proteína canal com algumas características em comum

com as anoctaminas. A recolha de informação permitiu também saber

que uma das moléculas selecionadas foi já testada como molécula que

poderia atuar como chaperona, indicando que poderia corrigir mal-

formações em proteínas.

Não se efetuou validação do método utilizando os dados das anoctam-

inas umas vez que o seu número é demasiado reduzido. Quando se

efetuou a validação com o conjunto de dados de corretores da CFTR

encontrou-se valores incoerentes com a previsão adequada, o que após

revisão de todas as técnicas e algoritmos levou a uma análise detal-

hada dos dados. Estes revelaram-se como erros de etiquetagem das

moléculas, o que foi posteriormente corrigido com a utilização de sup-

port vector machine. Os dados corrigidos foram testados com recurso

a um estudo de atividade molecular sobre a CFTR, (retirado de um

repositório publico - Pubchem) e posteriormente utilizados então para

o processo de virtual screening.

Em relação aos dados de corretores da CFTR, foi possível observar

que as matrizes de substituição apresentaram correlação nas duas ma-



trizes mais estritas, bem como numa mais equilibrada. Com os resul-

tados obtidos após a combinação das previsões foi possível escolher

18 moléculas para posterior análise: 6 com valores elevados nos dois

ramos de trabalho e nas 3 matrizes, 4 com valores elevados nos dois

ramos e em 2 matrizes, 3 com um valor elevado no espaço vetorial

mas baixo no métrico, 3 com um valor elevado no espaço métrico e

baixo no vetorial e 2 com valores discordantes entre matrizes. Tam-

bém neste caso foram recolhidos dados de repositórios de informação

biológica con�rmando que algumas moléculas tinham ligações à �-

brose quística, especialmente as anoctaminas e histonas deacetilases

que já foram referidas em artigos cientí�cos como tendo in�uência na

doença.

As informações encontradas nos repositórios parecem dar credibili-

dade a todo o processo apresentado nesta dissertação, no entanto

testes em laboratório são necessários para um maior entendimento

e até possível melhoria do método. Sugere-se que após obtidos os

resultados em laboratório, se faça outra iteração deste processo, de

forma a aumentar a sua capacidade de previsão. Para além disso,

como foram observadas diversas zonas de interesse no espaço métrico

onde não existiam moléculas, seria interessante desenhar moléculas

com as características necessárias para se localizarem nesses pontos,

e testar as mesmas quer no espaço vetorial quer em laboratório.

É importante referir que a forma como este projeto foi desenvolvido

permite a utilização de diferentes conjuntos de dados de ligandos para

proteínas alvo, o que torna este método �exível e adaptável à doença

que seja objeto de estudo.
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Chapter 1

Introduction

1.1 Motivation

�The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the

carbon in our apple pies were made in the interiors of collapsing stars. We are

made of starstu�.�

Carl Sagan, Cosmos

Today it is already possible to understand how a big number of diseases

work in a biologically way, however, the information is scattered across di�erent

databases while several work groups keep trying to solve the same issues around

the same diseases. Plus, the �nancial landscape in the investigation sphere is not

always aligned with the current spending needs for each problem.

One may try to tackle some of these problems by using previous informa-

tion about biological targets stored across the aforementioned databases and a

computational methodology. The traditional drug design approach requires a

tremendous amount of money, time, as well as human resources to identify and

bring into the market a completely new drug (�gure 1.1). This in combination

with the ever-increasing demand for new drugs, has called in recent times for more

e�cient and cost-e�ective computational and automated drug design approaches.

Automated programs being fed by the vast amount of biological data currently

available predict how substances would react and require fewer investigators and
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1. INTRODUCTION

less utilization of consumables at the lab (reagents or otherwise), resulting in

fewer resources (human and �nancial) needed to reach the desired outputs.

Figure 1.1: Cost of di�erent stages in drug investigation from 1970 to 2010. From
(DiMasi et al., 2016)

For the purposes of this dissertation, cystic �brosis (CF) was chosen as the

target disease to be further studied and analysed. This disease causes a thick

mucus in the respiratory and digestive system, with several deadly complications,

mainly, di�culty in breathing and bacterial infection in the lungs. It is also

common to have digestive problems like di�culties in absorbing nutrients and

constipation (Boucher, 2007). The average life expectancy for CF patients is

about 37 years old, with lung or cardiorespiratory complications being the main

causes of death. Cystic �brosis is one of the most common recessive genetic

diseases, a�ecting 1 in every 2500 newborns in Caucasian populations, (Zielenski

and Tsui, 1995) with di�erent prevalences across countries and within human

populations. It is characterized by a misfolding of a channel protein called CFTR

(cystic �brosis transmembrane conductance regulator,) which is a ABC (ATP-

binding cassette) transporter of chloride. The deletion of a phenylalanine at
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residue 508 (F508del) is the most common cause of CFTR misfolding (Wang

and Li, 2014b). More than 90% of cystic �brosis patients carry at least one

copy of the CFTR gene with the F508del mutation, causing impaired exocytic

tra�cking (Cheng et al., 1990), and the retention of the malformed protein in the

endoplasmic reticulum, leading to its consequent degradation.

The drugs available by the end of 2016 are very expensive1, scarce, not very

e�ective and were only designed to work in speci�c patients groups (Cholon et al.,

2015). As such it becomes truly important to �nd drugs that cure and/or coun-

teract the CF e�ects. To treat this disease there are two possible courses, the

correction of the protein responsible for the illness,(cystic �brosis transmembrane

conductance regulator,) or potentiating another channel protein that transport

the same ions (like the anoctamins family) and therefore, counteract the poorly

functioning CFTR. It is very clear that allying the need for a new CF drug and

the feasibility of predicting chemical compounds reactions in an automated way is

compelling and most important, a necessary evolution that many patients expect.

1.2 Objectives

The main goal of this dissertation is to propose lead chemical molecules that can

possibly become principal actives against cystic �brosis. Although all the follow-

ing work was developed for this disease, the methods used in this dissertation can

be applied for other diseases, depending only on the input dataset.

Hypothesis: Using datasets from cystic �brosis drug response in combination

with machine learning methods, it is possible to predict the therapeutic

capacity of chemical compounds present in databases.

1DRG blog, While Kalydeco Sailed Through, Vertex's Orkambi Faces Strong Headwinds in
Europe, last accessed in 19 July 2016
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1.3 Contributions

The main contributions of this work will be:

Contribution 1: Create a new computational model to predict therapeutic ca-

pability of each compound using metric and vectorial distances.

Contribution 2: Identify molecular features of interest.

Contribution 3: Select lead compounds to be tested in vitro.

In this dissertation, the drug design process will use di�erent methods to

assert the capability of each compound, (retrieved from a database,) to become

a possible drug for cystic �brosis. This method can support the decision process

around the selection of which molecules should be tested, reducing the human

and �nancial resources, as well as the time needed for the drug design process.

1.4 Drug Discovery and Development

Drug discovery is considered the process from the start of the investigation of a

speci�c disease until the designed drugs are ready for in vitro and/or in vivo test-

ing. The development phase includes pre-clinical, clinical, approval and surveil-

lance steps.

The process of drug research has changed dramatically over the years. Ini-

tially, drugs were developed using traditional remedies from natural medicine

that were analysed using old-fashioned methods, in order to identify the respec-

tive active component, and subsequently transform it into a usable drug. Along

the years, techniques evolved and became more complex and capable, such as,

using cells to perform tests on molecules and natural extracts. Nowadays, drug

design techniques are far more complex involving several scienti�c �elds such as

medicine, biotechnology, pharmacology, structural biology, computational chem-

istry and much more.

The entire drug discovery and development process - that starts with un-

derstanding the disease in study, and ends when a drug reaches the market -

includes several re�nements of the selected compounds, where the objective is to
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1.4 Drug Discovery and Development

Figure 1.2: Representation of Drug research stages, incuding the continuated
selection of compounds. Adapted from Genome Research Limited

�nd the cure and at the same time be relatively inclusive to not lose any impor-

tant compound in one of this re�nements (�g 1.2). The complete process can be

described in 8 steps: First, it is necessary to understand the disease, this means

�nd patient symptoms and possible targets, and proceed to isolate and test this

targets for their functions and relations with the disease in study (Anderson,

2003). After this, the target needs to be validated, with several tests being per-

formed to ensure the connection with the disease, their speci�c function as well

as their mechanism of biological control (for example binding partner molecules)

(Chen and Chen, 2008). Once the targets are found and validated, it is necessary

to �nd compounds with the ability to interact with the drug target in a positive

way - lead identi�cation (Kalyaanamoorthy and Chen, 2011). It is very important

to select several lead compounds to ensure a broader probability to identifying a

clinical candidate. After the identi�cation, an analysis of the selected compounds

should be performed to �nd important characteristics, evaluate their potency and

improve it. Some pharmacological or biological properties are required to be eval-

uated as well and can be done with the aid of computational biology. After this
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process, the selected compounds are synthesized into a drug and the preclinical

stages begin where in vitro and/or in vivo tests are performed on the synthesized

drug (and potential reformulations) to evaluate the toxicity and the potency of

the compounds. If the preclinical tests show positive and promising results, the

selected compounds move on to the clinical trials stage, where for the �rst time,

humans are used to evaluate the e�ectiveness and safety of the drug. A clinical

trial is carried out to ascertain safety, side-e�ects, dosage, and e�cacy and it is

divided into several phases as described in �gure 1.2. The compound candidates

that passed the 2 previous phases are subjected to a �nal evaluation from the

regional regulatory entity. This is the last barrier to get the required approval to

start marketing the drug. The regulatory entities who evaluate the drugs di�er

from country to country and are very restrictive and demanding on this process

to ensure the safety of the population, as well as the e�ectiveness and the eco-

nomic impact of the drug. After a drug is approved, it continues under evaluation

during its lifetime. Even with the clinical trials, it is possible that the entire or a

portion of the population reacts di�erently than predicted.

1.5 Computational Drug Design

Computational Assisted Drug Design (CADD) is the use of computational meth-

ods to facilitate the design and discovery of new therapeutic solutions and its

main objective is to help identify and select the most promising candidate drugs.

It is during the drug discovery process, where a signi�cant number of molecules

can be identi�ed as candidate compounds, that CADD can intervene the most.

Using in silico testing, CADD can help on the selection of the molecules more

prone to have better results. Currently, there are two ways to design a drug using

the CADD process:

Structure-based drug design Using the 3D information about the biological

target, one can create molecules from scratch (de novo approach) or use

molecular databases for screening - virtual screening.
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Ligand-based drug design When the 3D information about the target pro-

tein is not available, it is possible to use a set of ligands to identify some

properties. This identi�cation uses one of the following approaches:

- QSARs Quantitative structure-activity relationships models

- Pharmacophore based models that use functional groups and enforces

small changes in the molecules but with similar structures.

In this thesis, the approach chosen was a QSAR model because the provided

dataset was based on molecular information and structure of ligands to the target.

1.6 QSAR - Quantitative structure�activity rela-

tionship

With the ever growing number of chemical compounds available in databases, it

is necessary to �nd robust and e�cient ways to select interesting molecules with

the ability to become drugs (Tropsha, 2010). Quantative structure-activity rela-

tionship model is a ligand-based drug design, which creates a model from tested

chemical compounds, to perform virtual screening in order to predict character-

istics of new compounds.

This approach relies on a simple similarity principle: compounds with similar

structures are expected to have similar biological activities.

QSAR can be divided into metric and vector approaches: the metric approach

usually relies on some type of molecular comparison and a subsequently statistic

analysis like k-nearest neighbour (Paredes and Navarro, 2006); the vector ap-

proach uses data mining techniques such as support vector machines (Hasegawa

and Funatsu, 2010) over the calculated molecular descriptors.

1.7 Current Cystic �brosis available treatments

Currently, the few drugs available (ivacaftor and lumacaftor) are not very e�ec-

tive, as they only target certain CFTR mutations (Cholon et al., 2015). Some-

times it is still necessary to perform a lung transplant, with the complications
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associated with that surgery being very considerable. Also, to avoid the prolifer-

ation of bacteria from one lung to another it is necessary the transplantation of

both lungs.

Ivacaftor is a potentiator and its main goal is to help the channel to transport

the chloride, targets the G551D substitution mutation - the CFTR can reach

the membrane but is not very competent on transporting chloride (only 4-5% of

cystic �brosis patients have it).

Lumacaftor, as a corrector, doesn't have a medical use by itself since it only

corrects some of the protein misfolding ("chaperone-like" e�ect). When used in

combination with ivacaftor, it can help in the treatment of F508del mutation.

However, lumacaftor has a restrictive use and can only be applied in homozygous

patients with more than 12 years old. Orkambi (lumacaftor 200 mg and ivacaftor

125 mg) was rejected by the U.K.(in March 2016) and by Ireland (in June 2016)

national healthcare system due to lack of cost e�ectiveness 1.

1.7.1 The Anoctamins hypothesis

Anoctamins are a family of channel proteins that produce Ca2+ activated Cl−

currents. They are present in several tissues like endothelium, visceral smooth

muscle Cajal cells, heart, airways, alveoli and colon. This family of proteins does

not show any obvious homology to other ion channels(Kunzelmann et al., 2011).

Since they transport the same molecule and are present in several important tis-

sues, these channels are a possible way to counteract the e�ects of a dysfunctional

CFTR. Ano 1 is the most promising target candidate since it exists in di�erent

cell types spread throughout the human body (Kunzelmann et al., 2011).

1DRG blog, While Kalydeco Sailed Through, Vertex's Orkambi Faces Strong Headwinds in
Europe, last accessed in 19 July 2016
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1.8 Overview

The rest of this dissertation is organized as:

2nd Chapter: State of the art with more detailed information about the tools

that will be used and also some contextualization to in silico drug design.

3rd Chapter: Description and explanation of the datasets origin.

4th Chapter: Overview of the entire work�ow.

5th Chapter: Presentation of the results.

6th Chapter: Discussion of the results and selection of molecules.

7th Chapter: Conclusions.

The appendices contain:

A - List of molecular descriptors used.

B - Work�ow images.

C - Table with selected molecules SMILES.
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1.9 Timeline

This project consisted in 3 main areas of activities across 21 months: Research

of state of art and available tools (4 months); work�ow development, testing,

improvement, and validation (14 months); and report (9 months).

Figure 1.3: Gantt diagram representation of the project.
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Chapter 2

Background

"Knowledge has to be improved, challenged, and increased constantly, or it

vanishes."

Peter Drucker

Given the current cost to bring a new drug to the market (around US$2.5

billion (2013 dollars) as well as the 10-15 years needed to go through the entire

process (DiMasi et al., 2016) (Clark, 2008) it is necessary to develop tools that

ensure the investment is applied to the most promising molecules. The number

of new molecular entities (NMEs) is growing substantially each year but the

number of molecules that reach the market continues to diminish (Paul et al.,

2010). The adoption of CADD increases the probability of commercializing a

drug, since, compared with other methods (like high-throughput screening (HTS))

this rational drug design approach is based on knowledge instead of testing and

aims to understand the disease giving information about the ligands a�nity and

their mechanism (Lionta et al., 2014).

2.1 Computer assisted Drug Design

CADD is the development of drug design with the aid of computational methods.

As in (Martins et al., 2012), computational models can be a viable alternative

to high throughput screening, as computer power becomes more a�ordable and

more data available, complex and accurate models may be produced.

11
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Figure 2.1: Work�ow of LBDD and SBDD in computer-aided drug design. From
(Joy et al., 2015)

The amount of molecules with probability to become a drug is extensive,

making it impractical to test them all in vitro. In silico testing can help solve

this situation, as well to aid in decreasing the costs when compared to HTS.

This method can reduce the time needed for the initial steps of drug discovery

diminishing the time-to-market (Martins et al., 2012).

As previously described, computational drug design refers to the discovery

and optimization of drug candidates and can be divided into two categories (�g-

ure 2.1): structure based (SBDD) and ligand based (LBDD) drug design.The

previous biological knowledge of either the target structure or ligands with bioac-

tivities is the determining factor in choosing which approach should be used.

12
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2.1.1 LBDD - Ligand based drug design

When the 3D structure of the target is not known it is possible to use several

active ligands of the target and make predictions about the structure of the target

(or of the ideal candidate molecule). Also, with the molecular structure of the

ligands, it is possible to make predictions of their chemical/molecular properties.

This type of design is based on the premise that similar structural compounds

will interact with the same target. As this approach relies on the similarity

between compounds, choosing the correct algorithm/formula to compare them is

a determinant step. LBDD techniques can be used even when the information

about the target and the ligand are scarce or nonexistent, by using the genetic

sequence of the target and assuming that similar receptors interact with similar

ligands (Klabunde et al., 2009). The most common methods are QSAR/QSPR

and Pharmacophore modelling.

2.1.1.1 QSAR/QSPR - Quantitative structure-activity/property re-

lationship

This method relies on the principle of similarity were molecules with similar

structure will be more prone to have similar bioactivities and the variation in

bioactivities is related with structural and/or molecular variations. Using a set of

ligands, statistical tools, and a machine learning method, the goal of this project

is to create an algorithm that can predict characteristics of new entities, using

only information about their structure. (Tropsha, 2010) has de�ned a generic

representation of a QSAR model as:

Pi = k(D1, D2, ..., Dn)

2.1.1.1

Where;

Pi - Characteristic of interest to predict;

k - Transformations to the data executed by the model;

D1, D2 and Dn - Molecules;

13
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QSAR modelling can be divided into two broader categories: i) regression,

where the variable to predict is continuous and ii) classi�cation, where the algo-

rithm will predict in which class does one element belong.

There are several commercial and free software available, some with a black-

box approach. CoMFA (Comparative Molecular Field Analysis) uses a superim-

posed strategy to compare the molecular structure and make inferences about

their biological activities (Cramer et al., 1988). GOLPE, (Generating Optimal

Linear PLS Estimations) program obtains partial least squares estimations with

the best possible prediction (Baroni et al., 1993). ADAPT (Automated Data-

Analysis and Pattern Recognition Toolkit)1 is a commercial program that predicts

values using a training set and has several subsystems to receive the graphical

input of molecules, stored them in connection tables and create and evaluate

the substantial structure molecular descriptors available(Stuper and Jurs, 1976).

Regardless all the programs currently available, other statistical or data min-

ing software (not created speci�cally for drug design) can be used, such as: R2,

MatLab3, SPSS4, KNIME5.

2.1.1.2 Pharmacophore modeling

Pharmacophore modeling uses compounds with a similar 3D structure on the

principal functional groups, and a wide range of structure and di�erent atoms in

the other groups not considered as principal (Vuorinen and Schuster, 2015) there-

fore, selects the common chemical features that represent the ability of that set

of ligands to interact with the target. This type of modeling has two main steps:

i)represent the conformational �exibility of the ligands and ii) �nd the minimum

required common features, to develop the pharmacophore model (Yang, 2010).

There are several programs for this technique: the Ligand Scout is a very speci�c

1ADAPT http://research.chem.psu.edu/pcjgroup/adapt.html, last accessed on 14 August
2016

2R https://cran.r-project.org/, last accessed on 14 August 2016
3MatLab http://www.mathworks.com/products/matlab, last accessed on 14 August 2016
4SPSS http://www.ibm.com/analytics/us/en/technology/spss/, last accessed on 14 August

2016
5KNIME https://www.knime.org/
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program that uses only a set of six types of chemical features and volume con-

straints when searching in databases(Wolber and Langer, 2005); the Discovery

studio software suite1 has several tools available including pharmacophore ap-

proach with validation and a virtual screening; the MOE (Molecular Operating

Environment)2 has an automatic pharmacophore generation.

These programs have di�erent algorithms for conformational �exibility of the

ligands and molecular comparison. Regarding �exibility issues, there are two

main approaches, either every possible conformation is calculated before or at

the same time the pharmacophore model is created. The molecular similarity

can be done in a superimposed way, (posing a challenge if the ligands are very

di�erent and a similar origin point for comparison is di�cult to determine) or,

using molecular �eld descriptors.

2.1.2 SBDD - Structure based drug design

Structure based drug design approach uses the structure of the receptor to �nd

molecules of interest and can be achieved in two steps:

1 - Identi�cation or Prediction of the binding site.

2 - Docking and Scoring.

A concave region with several chemical functionalities is the ideal binding site

(Anderson, 2003). Docking a molecular combination requires a prediction using

the structure of the binding site and calculates their a�nity with ligands (Cheng

et al., 2012). Scoring a docking prediction is not an easy task as one protein

cannot be seen as a static entity; each protein can have a signi�cant number

of conformations, so scoring the ability of proteins to be docked by molecules

becomes a key and di�cult step to achieve. This is the main reason why di�erent

scoring functions exist, mainly based on force �eld, empirical and knowledge-

based (Huang et al., 2010). Consensus scoring (using more than one type of

scoring in a combination) has been described as a more reliable way to �nd the

1Discovery studio http://accelrys.com/products/collaborative-science/biovia-discovery-
studio/, last accessed 15 August 2016

2MOE http://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm, last
accessed 15 August 2016
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correct ranking of lead compounds (Houston and Walkinshaw, 2013). There are

several software tools available for the binding site, docking and scoring prediction

(table 2.1).

Table 2.1: Binding site and Docking prediction softwares based on table from
(Joy et al., 2015)
Predicts Program/server Description

Binding site CASTp
Uses weighted Delaunay triangulation and the
alpha complex for shape measurements

Cavitator
Pocket prediction using a grid based geometric
analysis

ConCavity
Based on combining evolutionary sequence
and 3D structures

eFindingSite
Common ligand binding site prediction using
set of evolutionary related proteins

SiteComp
Binding site comparison based on molecular
interaction �elds

Docking AutoDock Flexible side chains (genetic algorithm)

GOLD
Complete solution for docking small molecules
into protein binding sites

BP-Dock Flexible docking

Glide
Ligand exhaustive search and �exible
side chains

idock Flexible ligand docking
SwissDock Rigid ligand with less than 10 rotational bonds

2.2 Molecular descriptors

In computational drug design, there is the need to represent compounds in such a

comprehensive way where it is possible to quantify their characteristics in a useful

manner. Molecular descriptors are numerical values which express properties of a

molecule and can be theoretical or a result of an experimental standardized test

(like dipole moment or polarizability). In theoretical descriptors, it is possible

to �nd 5 classes (molecular descriptors 0D to 4D) each one more complex than
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the last. The �rst class (0D) encompass descriptors directly obtained from the

chemical formula, like molecular weight, in the second class (1D) the structure

is represented in structural fragments (e.g. funcional groups) , the third class

(2D) have topological representations of the molecule, fourth class (3D) is a rigid

geometrical representation and the last class (4D) adds �exibility to the 3D de-

scriptors giving the possibility to evaluate, for example, molecular interaction.

This values can bring insights between molecular structure and their associated

properties, as well as their biological activities. This makes them very useful

as input for the statistical methods in QSAR/QSPR and virtual screening stud-

ies (Karelson, 2000). Such as the blood-brain barrier penetration model (Martins

et al., 2012) and the prediction of standard enthalpy of formation of hydrocarbons

(Teixeira et al., 2013).

2.3 Supervised machine learning in QSAR

Supervised machine learning has a very important role in CADD (computer aided

drug design) since it is the way to refer to several methods of inferring results after

receiving a training data set with examples. This data set should contain the ob-

ject (it is usually a vector with a set of variables, e.g. molecular descriptors ) and

the expected output. The training data set is analysed and a learning algorithm

builds a model. Afterwards, the machine receives a test set, and using the model

constructed in the last phase, assigns each new data to a category, returning a

predicted class or value. The output of the supervised machine learning depends

on the characteristic to predict, either is in form of classes (classi�cation), or in

form of a value/ number (regression problem).
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2.3.1 Linear models

2.3.1.1 Multiple Linear Regression

MLR(multiple linear regression) is the simplest regression model where a linear

relation between molecular descriptors and relevant biological activities is as-

sumed. The generic representation of this linear relation with speci�c weights for

each molecular descriptor can be represented as follows:

Y = β0 + β1X1 + β2X2 + ...+ βkXk

2.2.1.1

Where;

Y - Characteristic of interest to predict;

X0,...,k - Molecular descriptors;

β0,...,k - Weight of each molecular descriptor;

This linear approach can give us information of which molecule descriptors

have positive or negative e�ects in the characteristic of interest since it is possible

to see the weight of each descriptor. However, the descriptors chosen to be used

with this method should be non-linear from each other, since the weights can

be in�uenced by linear related descriptors. The relation between the number

of molecules and the number of molecular descriptors should be around �ve to

one (Topliss and Edwards, 1979). There are several papers using multiple linear

regression, in (Yang et al., 2016) was used to predict the anti-androgenic activity

of bisphenols, in (Min et al., 2016) aid in the prediction of inhibitors of hepatitis

B virus replication and (Grzonkowska et al., 2016) predicting the toxicity of ionic

liquids to Vibrio �scheri gram-negative bacteria.

2.3.2 Non-linear models

2.3.2.1 Neural networks

Neural network is an algorithm based on a neuron where inputs are received and

transformed in outputs using a mathematical function. The idea behind a neural
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network is a series of nodes with di�erent mathematical functions and weights,

which pass their outputs from one node layer to the next. In this type of approach,

several weak characteristics are used to obtain a good classi�cation. The current

approaches are based in a perceptron, an algorithm created with the objective

to recognize patterns using only addition and subtraction functions (Rosenblatt,

1958). In supervised learning, the neural network is trained, and the weight

of each node is adjusted to achieve the best prediction possible (Ter�oth and

Gasteiger, 2001). Some examples of studies where neural networks algorithm was

applied are the aqueous solubility prediction of drugs (Huuskonen et al., 1998),

prediction of hepatic drug clearance in humans (Schneide et al., 1999) and QSAR

study of anti-HIV activity for a large group of HEPT (protein family) derivatives

(Jalali-Heravi, 2000).

2.3.2.2 Support vector machines

Support vector machines (SVM) proposed by (Vapnik, 1998) , can address classi-

�cation and regression problems. In this supervised machine learning method the

training data is mapped in a very high dimension feature space or hyperplane,

which allows the representation of all instances. Given the classes or values in

each training instance and their location in the hyperplane, the algorithm creates

areas that will be used to determine predictions for the new data. The high-

dimension space is established using a Kernel function (linear, polynomial, radial

basis and sigmoid) (Yao et al., 2004). SVMs are broadly used, for example in

SAR/QSAR study of phenethylamines (Niu et al., 2007), prediction of mutagenic-

ity of compounds (Ferrari et al., 2009), QSAR models for predicting anti-HIV-1

activity of TIBO (molecule) derivatives (Darnag et al., 2010).

2.3.2.3 Ensemble methods

Ensemble methods are a combination of several supervised machine learning al-

gorithms, that give a �nal result usually by weighted or unweighted voting of all

the results from individual models. This combination of methods are often much

more accurate than the individual models(Dietterich, 2000) and can be used for

classi�cation or regression.

19



2. BACKGROUND

Bootstrap aggregating (or bagging) is an ensemble method where a sub-

set/sample with the same number of instances from the original training set

with replacement is created, therefore some instances will be repeated and some

will not be present in the sample. For each bootstrap, a classi�er is created and

then aggregated to form the �nal model. This method encompasses several small

models, therefore, can be a very robust tool reducing the over-�tting problem.

Random forest algorithm (RF) develops decision trees using a di�erent boot-

strap sample of the data apart from the past tree already constructed, the vari-

ables are arbitrarily selected at each node and chosen by their ability to divide the

sample. RF can be used for classi�cation and regression, this forest of decision

trees, performs a classi�cation depending on the class predicted by the majority

of trees, and the regression by the average of each tree prediction. Given its

construction is insusceptible to noisy variables and can operate with more vari-

ables than examples. Random forest is widely used from QSAR prediction of

compounds aquatic toxicity (Polishchuk et al., 2009), to prediction of standard

enthalpy of formation of hydrocarbons (Teixeira et al., 2013), or even QSAR

based model for discriminating EGFR inhibitors and non-inhibitors (Singh et al.,

2015).

Support vector machines and random forest provide good results despite a

large number of variables, making them the most used algorithms in QSAR and

virtual screening studies (Martins et al., 2012) (Teixeira et al., 2013). Given their

characteristics, this type of statistic methods needs to be performed in a vectorial

space environment.

2.4 Molecular similarity

Automated prediction (like QSAR) relies heavily in similarity tools, as such a

very small di�erence between molecules can have critical consequences in their

chemical properties and activities. It is then important to use methods with a

good ability to di�erentiate similar compounds (Martins et al., 2012). When

comparing small molecules, there are several problems that arise: �rst of all
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2.4 Molecular similarity

the representation of this type of data is di�cult, since molecules have very

speci�c structures and their size varies, becoming a true challenge to store them

in structured databases. Therefore when there is an attempt to de�ne a molecule

it is necessary to know that some information will be lost and that there are several

other ways to represent the same molecule. Even if representation strategies exist,

for example, SMILES (Simpli�ed Molecular Input Line Entry System, where a

string represents the three-dimensional location of atoms and the type of bond

they share), there is always the challenge of choosing the right methodology

for comparison. Currently there are some methods for this comparison, however,

none seems to work universally (Teixeira and Falcao, 2013). All these methods can

be classi�ed in three groups: i) structural descriptors (as in molecular descriptors

previously referenced), ii) molecular fragments (E.g. molecular �ngerprints), iii)

graph theory.

2.4.1 Molecular Fingerprints

The �ngerprints technique is a way of encoding the structure of a molecule and

is one of the most used techniques for molecular similarity. There are two main

types: a)hashed and b)circular.

Hashed �ngerprints are a bit string representation of the molecule were "0"

represents the absence of a certain characteristic and "1" the presence of the same

characteristic. Depending on the type of �ngerprint these characteristics can come

from a previous list (called keyed �ngerprints) or can be a spatial representation

of each molecular fragment of a speci�c size, for example, of each N atoms and

N-1 bonds in each linear substructure.

Circular �ngerprints (e.g. Morgan) evaluate the neighbours of each atom with

a de�ned radius. The radius parameter de�nes the distance between one atom

to their neighbour; when radius=1 the atoms evaluated are all the atoms bonded

to the atom in study, if the radius=2 it is possible to evaluate the atoms who

have a bond to an atom connected with the atom in study, as well as the atoms

with radius=1. Usually, the radius is set between 2 to 3 bonds. It is attributed

to each atom an unique identi�er that is updated according to the evaluations of

the neighbour atoms, after each iteration, there is a duplicate structural removal
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step. When the last evaluated neighbour reached the de�ned radius, all the

repeated identi�ers are removed again and then converted to a bit string.(Rogers

and Hahn, 2010)

To examine the similarity, these string bits have to be evaluated and a score

from zero to one is calculated. The most used metric is Tanimoto similarity or

Jaccard similarity coe�cient that is calculated using all presented characteristics

common (shared) to both molecules divided by the total number of characteristics

present in both molecules (shared and unshared). The formula to �nd the Jaccard

similarity is :

jaccardx,y =
X

⋂
Y

X
⋃
Y

2.3.1.1

Where;

X - characteristics present in X's �ngerprint.

Y - characteristics present in Y's �ngerprint.

Which can be also represented as:

jaccardx,y =
c

a+ b− c

2.3.1.2

Where;

a - number of ones(or characteristics) in X's �ngerprint.

b - number of ones(or characteristics) in Y's �ngerprint.

c - number of ones(or characteristics) in both X and Y �ngerprints.
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2.4 Molecular similarity

2.4.2 Non-contiguous Atom Matching Structural

Similarity

Non-contiguous Atom Matching Structural Similarity (NAMS) is a tool to com-

pare the structural similarity between small molecules(Teixeira and Falcao, 2013).

For a given pair of molecules, NAMS aims to �nd a pair of atoms (one from each

molecule) that are the most equivalent between each other, representing each

molecule in a graph with atoms and their respective bonds. All the pair combi-

nations identi�ed by NAMS are evaluated with the best match being selected for

the molecular comparison. However, one atom of a given molecule can only be

matched to one atom of a second molecule and vice-versa. The non-contiguous

part of this method relies on �nding the best matching score, using all the pos-

sible combinations of atoms. Such matching process does not require contiguous

atoms or bond pro�les. After this step, NAMS calculates the Jaccard similarity

coe�cient (as mentioned in 2.3.1.2). In this situation, the variable "c" from Jac-

card formula is the common substructure in both molecules, where variables "a"

and "b" represent the self-similarity of each molecule. The main di�erentiation

of NAMS is the ability to discriminate molecules by chirality or double bound

stereoisomerism that are rarely present in other similarity approaches.

NAMS also allows to choose between 5 scoring matrices that weight in di�erent

ways the comparison of the replaced atoms:

�Atom distance matrix 0: The most strict matrix, where each atom has only

100% similarity with itself and 0 from the remaining atoms.

�Atom distance matrix 1: Almost as strict as matrix 0, but instead of 100%

similarity the value given is 90%.

�Atom distance matrix 2: Similarity matrix based on literature.

�Atom distance matrix 3: Empirical matrix constructed with known infor-

mation regarding the atoms.

�Atom distance matrix 4: This matrix is the least strict matrix possible were

all the atoms as 0% similarity with all possible substitutions including itself,

which gives all the attention to the structure of the molecules.
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Fingerprints method and NAMS were already tested by (Teixeira and Falcao,

2013) using three datasets containing molecules with very similar characteristics

(therefore more di�cult to di�erentiate). In the end, only NAMS was able to

recognize the di�erences and separate the molecules. Given this result, NAMS

was chosen as the main method for the comparison of molecules to the metric

branch of this dissertation, even though it has a higher computational cost.

2.4.3 Vector and metric spaces

In a vector space, one instance is represented as one vector, with several charac-

teristics and therefore dimensions. When one instance is represented in a metric

space with 2 dimensions, the distance between all the other occurrences is the

only characteristic that de�nes the instance, for example, dissimilarity between

instances. This dissimilarity cannot be represented directly in a 2-dimensional

metric space because the number of instances is the same as the number of dimen-

sions and this number is always greater or equal than 2, for example, a dataset

with 5 instances has 5 dimensions, but only 1 characteristic. To reduce to a

2-dimensional representation it is possible to do a principal component analy-

sis. The principal component analysis can study all the linear correlations be-

tween the data and transform them in non-linear components, these components

can be a combination of linear correlations, therefore the number of components

will be equal or less than the number of variables ( in this case the total of

instances). Each component is constructed in a non-linear correlation with the

previous established components and they are build up in a sequence from the

most explicative component to the less one. This statistic procedure returns a

summary of the information of the variance that is explained in each component,

so it is possible to verify if the datasets are properly expressed in two dimensions

- this procedure can be done in the R environment using prcomp function. To

organize these instances in a 2-dimensional graph, it is necessary to perform a

principal coordinate analysis or classic metric multidimensional scaling, which

arranges the instances in a plot with the minimum distortion possible - for which
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2.4 Molecular similarity

there is a function available in R denominated cmdscale1.

2.4.4 Inference in metric spaces

To infer in a metric space it is necessary to search the plotting points most similar

to the location where the inference is being performed since instances more close

to each other should be more related and a�ect the inference of the point to

be predicted. The proximity search between plotting points is calculated with a

function that satis�es the triangle inequality (where the sum of any two sides of

the triangle, must be greater or equal to the length of the remaining side) (Chavez

et al., 2001).

After this search, it is necessary to perform the interpolation of the data.

The geostatistical tool denominated kriging is a possible algorithm to execute

this process, interpolating the data in a geospatial space. This interpolation can

also be called Gaussian process regression since the interpolations are modelled

by a Gaussian curve. This geostatistical method aims to minimize the variance

of errors and to reduce the mean residual of error to zero (Teixeira and Falcao,

2014) and can use the variogram of the initial data to �t the model - Ordinary

kriging is available in Gstat2 a R library. This technique was already used in

QSAR/QSPR approaches ((Fang et al., 2004), (Yin et al., 2007),(Teixeira and

Falcao, 2014)). Also, considered as a widely �exible technique, it has been used to

perform interpolations in several di�erent �elds: soil quality (Smith et al., 1992),

atmospheric temperatures (Hudson and Wackernagel, 1994) and epidemiologic

map (Carrat and Valleron, 1991). When applied to a non-spatial problem it

is required to transform the data into spatial data, in order to represent the

problem in a metric space. To the best of our knowledge only one study used

structural similarity and a kriging algorithm (Teixeira and Falcao, 2014), all the

other researches used molecular descriptors sometimes previously selected.

1cmdscale https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html, last
accessed 17 August 2016

2Gstat https://cran.r-project.org/web/packages/gstat/index.html, last accessed 17 August
2016
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2.5 Cystic �brosis

The most common mutation that causes cystic �brosis is F508del-CFTR which

originates a misfold and subsequently the retention in the endoplasmic reticulum.

CFTR is present throughout several cells in the body, more speci�cally in the

membrane of epithelial tissues (eg: airways, intestine, pancreas, sweat ducts)

controlling the secretion of Cl− and �uid, which when CFTR is defective increases

the viscosity (Wang and Li, 2014a).

CFTR is a ABC (ATP-binding cassette) protein. Most of these proteins

are active transporters ( were the transportation of a substrate is done against

the electrochemical gradient at some ATP expense). Usually, ATP binds to a

nucleotide-binding domain which can alter the conformation of transmembrane

domains and, therefore, enforce the substrate transport. CFTR, however, does

not function as an active transporter, since the �ux of Cl− is done in favour of

the electrochemical gradient (Chiaw et al., 2011) .

In (Lewis et al., 2005) X-ray crystallography studies from F508del-CFTR

mutated protein suggests that the deletion of this phenylalanine does not block

the �rst nucleotide-binding domain(NBD1) folding, but should a�ect domain-

domain assembly, and therefore causes a global conformation change resulting in

loss of channel function.

2.6 In silico screening

Several treatments have already been proposed for cystic �brosis, however, most

of them failed to pass the drug development phases. Since this condition is

caused by mutations in CFTR (almost 2000 individual mutations identi�ed so

far (Brodlie et al., 2015)), it is logical to consider the wild-type CFTR protein

as a treatment itself. Therefore it was developed a non-viral liposomal vector

to transport wild-type CFTR gene directly to the airway epithelial cells. The

introduction of this gene seems to work for several di�erent mutations, however,

it only enhances the lung function and not the rest of epithelial cells a�ected

in the rest of the body (Alton et al., 2015). Another approach is the use of
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2.6 In silico screening

small molecules that interact with the defective CFTR, these molecules can be

separated into three categories:

Potentiators - molecules that enhance the channel function of proteins already

in the membrane;

Correctors - molecules with the aim to correct CFTR making it possible for

this protein to reach the membrane;

Read-through agents - which a�ects the ribosome to ensure that a mutation

in the CFTR gene does not result in a premature interruption of the protein

production resulting in a shortened non-functional CFTR.

Ivacaftor as already described before, is a potentiator that targets the Gly551Asp

CFTR mutation and can be applied to patients with at least one allele with this

mutation (Accurso et al., 2010).

Regarding the correctors, there are 2 molecules of interest: Lumacaftor (VX-

809) and VX-661. However, in this type of mutations the problem relies upon

the defective protein as it has di�culties to achieve the membrane and even when

it reaches it, their gating function does not work properly. For this reason, the

correctors by themselves are not proposed as the solution, but a combination

of correctors and potentiators could help to treat this type of mutations(Cholon

et al., 2015) (Pilewski et al., 2015).

Ataluren (PTC124) is a read-through agent which targets non-sense muta-

tions that produce a premature stop signal, representing around 10% of cystic

�brosis patients. This signal will stop ribosomal production of the protein before

achieving the right stop codon resulting in a loss of function. Ataluren enables

the ribosome to skip the premature stop signal originating a functional protein.

Some other e�orts are worth mentioning: a study to use DHPs (used in a drug

to treat hypertension) as CFTR potentiators (Vietin et al., 2012) and a study

that targets CFTR to treat cystic �brosis and secretory diarrheas (Verkman et al.,

2006).
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Chapter 3

Data

�Data! Data! Data!� he cried impatiently. �I can't make bricks without clay!�

Sherlock Holmes,The Adventure in the Copper Beaches

The main objective of this chapter is to describe each dataset, as well as their

origins and the pre-processing methods if applied, and also describe the selected

database.

Can we use datasets from Anoctamins potentiators & activators and CFTR

correctors in order to predict these capabilities in new molecules, and furthermore

proceed to a selection of molecules of interest? It is important to refer these two

datasets: i)Anoctamins potentiators and activators, ii)CFTR correctors, were

never tested in silico.

For the purpose of this project, the ZINC database was selected; ZINC is a

free database with a wide range of commercially available compounds organized

into subsets. To evaluate the �nal results it was selected a published bioactivity

assay in CFTR.

3.1 Anoctamins potentiators and activators dataset

The molecules available in this dataset are the outputs of a similarity search

that uses a previous discovered anoctamin 1 activator. The lab design involved a

cell-based functional screening where mutant and non-mutant cells were used for
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high-throughput screening using �uorescence to measure the I− in�ux. A protein

immunoblot was also performed to con�rm the protein interaction.

3.1.1 Description

In this dataset, it is possible to encounter potentiators and activators. While

these molecules have the same function - reduction on [Ca2+] needed to activate

Cl− currents - there is a di�erence in the amount of Ca2+ needed.

An activator strongly increases Cl− current at 0 [Ca2+], whereas a potentiator

is not active at a 0 [Ca2+] but reduces the EC50 - concentration where the e�ect

is half of the maximum - for Ca2+ dependent activation (Namkung et al., 2011).

There are 10 compounds with their respective mean value and SMILES. The

data is available for di�erent compound concentration 0.1µM, 1µM, 10µM, 50µM

and in several cases, 100µM - all the considered concentrations of compound were

tested with 0.5µM [ATP] and without ATP. The concentration chosen for in silico

testing was 10 µM from the test without ATP to ensure that the results were not

a�ected by a purinergic receptor (ATP or ADP receptor).

3.2 Cystic �brosis transmembrane conductance

regulator correctors dataset

This dataset includes several groups of molecules (secondary and tertiary group)

which originated from a similarity search using 4 primary CFTR correctors.

The CFTR correctors dataset comes from a western blot lab design. This tech-

nique also called protein immunoblot is used to �nd speci�c proteins in samples,

and it considers the following three steps:

1 - Gel electrophoresis: Where the proteins are separated by a gradient of size

(if they are polypeptides ) or by type of structure. This gel has a variable

number of wells where to deposit the samples.

2 - Transfer to a membrane : Transfer of molecules to a membrane that has

a�nity to proteins and ensures afterward that all the proteins are locked in

place and that the membrane becomes not reactive to new bondings.
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dataset

3 - Marking proteins: Marking the target proteins with antibodies. An anti-

body can react to more than one protein but the location on the molecule

(that depends on the gel electrophoresis) and the marking make it possible

to discard false positives.

Once these steps are �nished, it is possible to identify the marked proteins. This

detection can range from �uorescent to colorimetric or even radioactive. To quan-

tify the amount of proteins in each band there are some tools that count the

number of pixels giving the ability to compare measurable results.

3.2.1 Description

The �les available in this dataset contain the values obtained in the western blot

lab design for 4 primary molecules, 41 molecules from the secondary library and 64

from the tertiary library. One of those compounds was double counted resulting

in a total number of 108 compounds. The CFTR folder presents the results of

95 membranes for 108 molecules and for all of the controls: DMSO (Dimethyl

sulfoxide), F508del-cftr, Wild Type and C4a (CFTR corrector 4a). For in silico

testing, all the compounds were selected plus the C4a - a positive control known

to correct CFTR (�gure 3.1).

Figure 3.1:
2D representation of CFTR corrector 4a.
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3.2.2 Pre-Processing

Given that each membrane has a di�erent exposure time, a pre-processing of the

data was required to normalize the lab results used as inputs. To cover this, the

following formula was applied on each membrane results for each compound:

enhance =
Vc − VF508del

VWT − VF508del

3.2.3.1

Where;

Vc - compound lab result

VWT - positive control value, for each membrane

VF508del - negative control value, for each membrane

When the MF508 lab results for one membrane are not available, the median

of all the MF508 data is used. The positive control represents the highest value

in that membrane and the negative value should be the lowest.

If the result from this formula is negative, meaning a compound enhance value

lower than the MF508 value, then the enhance value of that compound will be

set to zero.

In the �gure 3.2 it is possible to visualize the di�erence after the data was

processed. After the treatment the enhance values of the majority become zero

or close to zero; in this data, more than 50% of the molecules have an enhance

value equal or below the value of the CFTR 4F508del.
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3.3 ZINC - Database for virtual screening

Figure 3.2: Density representation of the enhance values in the initial data. A -
Before pre-processing. B - After pre processing.

3.3 ZINC - Database for virtual screening

The virtual screening step used in this project requires a compound database as

a dataset to infer the medical viability of several molecules. For this purpose, the

ZINC database was chosen.

As mentioned before, ZINC is a free database of commercially available com-

pounds that contains over 35 million molecules organized into subsets (by physical

properties and purchasable availability). It is possible to create small subsets for

personal use and there are several queries available: by name, structure, biologi-

cal activity, physical properties or even CAS number (unique identi�er assigned

by Chemical Abstracts Service to every chemical substance published from 1957
1) (Irwin et al., 2012).

This database is widely used in virtual screening approaches: structure-based

discovery to identify novel Smoothened (a Hedgehog group of proteins related

to cancer) ligands with di�erent chemotypes in an e�ort to combat treatment

resistance (Lacroix et al., 2016); virtual screening approach to �nd new leads

1CAS - A division of the American Chemical Society, CAS REGISTRY and CAS Registry
Number FAQs , website last accessed 15 August 2016
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against bovine brucellosis (Li et al., 2016); search for non-streroidal CYP17A1

inhibitors to treat prostate cancer (Bonomo et al., 2016); ligand-based drug design

for beta-1,3-glucan synthase inhibitors to conceive less toxic antifungal molecules

(Meetei et al., 2016).

It is important to mention the ability to download the entire database or

subsets in di�erent formats, making it easy to run virtual screening locally. For

this project, the "all now" subset was chosen as it contains all the molecules

available in stock.

3.4 CFTR bioactivity assay

The assay selected is an already published bioactivity study from The Broad

Institute of MIT and Harvard 1. This assay uses halide-sensitive yellow �uores-

cent protein (therefore, sensitive to Cl−) to determine the active concentration

of a drug in a cystic �brosis bronchial epithelial cell line. In this assay, 1170

compounds were tested in the 4F508 mutation in Human bronchial epithelial

cells. Out of these 1170 compounds, 605 were considered active, 559 inactive

and 6 inconclusive. To facilitate the analysis these 6 inconclusive molecules were

removed from the set.

1the study was published in 2014 with the PubChem AID 743267, external ID - 7017-
01_Other_Dose_CherryPick_Activity

34



Chapter 4

Methods

�Truth has nothing to do with the conclusion, and everything to do with the

methodology.�

Stefan Molyneux

4.1 Software

R1 is an open source programming language and environment which is designed to

perform an ample range of statistical methods. There is a large number of libraries

available that can aid in the construction of a program. This language was

chosen to do several statistical evaluations as well to create plots and graphical

representations of the data.

KNIME®2 Analytics Platform was the chosen software to support the

construction of the project work�ow. It is an open source data analytics platform

that allows the construction of work�ows using a graphical interface. In KNIME

there is a wide range of nodes available, including those with the ability to read

di�erent input �les, column sorting, machine learning, or even database con-

nections. Also, this program supports scripting in several coding languages like

Python3, R and Java, and allows the utilization of external tools in the computers

command line.
1R - https://www.r-project.org, last accessed 18 August 2016
2KNIME - https://www.knime.org/, last accessed 17 August 2016
3Python - https://www.python.org/, last accessed 17 August 2016
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RDKIT 1 is an Open-Source Cheminformatics Software that can be used to

calculate substructure searching, calculate di�erent molecular �ngerprints and

be used to �lter functional groups. This software has several nodes available in

KNIME and can be used in Python and C++ coding languages.

4.2 Work�ow visualization

Figure 4.1: Work�ow main view screenshot.

1RDKIT - http://www.rdkit.org/, last accessed 17 August 2016
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4.3 Work�ow input

The main view of the work�ow is available in image 4.1 where there are several

meta nodes (grey squares) which represent a group of nodes. Each part of this

work�ow will be explained in the next sections.

4.3 Work�ow input

In the project work�ow, the input information will be divided into three �les:

i).smi �le with SMILES and identi�cation numbers of the dataset in use; ii).txt

�le with the enhance values as well as their identi�cation; iii).smi �le from ZINC

with "all now" subset which has all the molecules available in stock.

4.4 Virtual screening candidates

Figure 4.2: Work�ow ZINC similarity representation.

The �rst step of this work�ow is to select molecules from the zinc database that

are similar to the ones of the dataset in study ( 4.2 and B.1). With that objective

in mind, Morgan binary �ngerprints will be calculated using RDKIT node present
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in KNIME. The parameters to be chosen are a radius of 2 atoms and a 1024 bits

length �ngerprint (default values). To compare the �ngerprints the similarity

metric selected will be the Tanimoto coe�cient, and the ZINC compounds picked

for further analysis will have 0.75 Tanimoto similarity or more, as they are more

accurately to predict. Otherwise, the whole process will be time-consuming and

imprecise.

4.5 Vector space mining

Figure 4.3: Representation of vector space work�ow branch.

In the vector space mining branch (�gure 4.3 and B.4) both molecular data (i)the

dataset being studied, ii)previous selected molecules from ZINC) will have their
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descriptors calculated via an RDKIT node (molecular descriptors list available at

Appendix A). The descriptors of the initial molecules and their enhance values

will be used to train the random forest learner node.

Since random forest is insusceptible to noisy variables and can operate with

more variables than instances, a decision was made to keep all the molecular

descriptors without a previous selection.

The model created in the random forest learner node, as well as the molecular

descriptors of the ZINC molecules, will be used in the random forest node to

perform a regression analysis. Here the enhance values will be predicted using an

average of each prediction from individual trees.

4.6 Metric space mining

In the metric space mining part of this work�ow several steps were taken:

1 - The �rst step of the metric space mining work�ow branch (�gure 4.4 and

B.2) will be to calculate similarities between all the initial molecules. The

selected comparison method will be NAMS.

2 - The similarity values will be transformed in distance using the following

formula:

D = −log(s)

4.6.1

Where;

D - compound distance to other compound

s - compound similarity to other compound

3 - A principal component analysis will be then performed to evaluate the diver-

sity to be accounted into two dimensions using prcomp in R.

4 - A principal coordinate analysis or classic metric multidimensional scaling will

be performed to represent the compounds in a two-dimensional graph with

cmdscale in R.
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Figure 4.4: Representation of metric space work�ow branch.

5 - Perform interpolation using kriging (B.3). This prediction will be executed

in the R environment using ordinary kriging available in Gstat library.

In order to cmdscale perform a principal coordinate analysis, it needs the dis-

tances from each point to all the other points. This distance is the dissimilarity

or distance calculated using NAMS results in formula 4.6.1. Since an evaluation

of all the initial and new molecules would be time-consuming (due to the compu-

tational cost of NAMS), it will be necessary to construct a transformation matrix

that when multiplied by the distances between the initial molecules and the new

ones gives the coordinates for the new molecules. Thus, a similarity search will

be performed using NAMS to return the similarity values of each new molecule to
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the initial dataset and subsequently convert to distance as already described. The

development of the transformation matrix depends on the following principles:

A ∗ T = B

4.6.2

Where A is the distance matrix between all the initial molecules, T is the

transformation performed by the cmdscale function and B is the matrix with the

�nal coordinates. Since the objective is to have the new molecules represented

in the same two-dimensional plan, the transformation matrix is required to cal-

culate the coordinates of the new compounds using their distances to the initial

molecules.

In order to obtain the T matrix the following formula was used:

T = A−1 ∗B

4.6.3

The T matrix will be calculated and then used to obtain the new coordinates

using the new distance matrix as in the formula 4.4.2. After these steps, all the

new and initial compounds can be represented in the same metric space and the

prediction can be performed.

4.7 Selection of molecules of interest

The selection of lead compounds will be done by choosing the most promising

molecules present in the upper right quadrant of the consensus plot. Only the

top 10 molecules from all the matrices (or the majority of matrices) selected for

that speci�c dataset will be identi�ed for further analysis. Molecules that have

a prediction higher than the midpoint value in one method and a lower than

midpoint value on the other method may be considered as outliers. From this

group of molecules, the selection for further testing relies on the largest di�erence

from predictions.
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Chapter 5

Results

�The devil is in the details.�

Anonymous

5.1 Anoctamins

In this dataset, the random forest algorithm can be less accurate as there are

only 10 molecules in the dataset, which is considered a low number to train this

statistical method. Also, a proper cross validation is di�cult to achieve, because

each molecule contains a large amount of di�erent information to be considered

in the model; for this reason, a validation was not performed.

Considering a tanimoto score of 0.75 or above, 71 molecules were selected

from ZINC database.

5.1.1 Variograms from metric space

The variogram plot is a good measurement to check if the data is spatially

correlated allowing the choice of an atom distance matrix for further analysis.

Considering this, the atom distance matrices that show some correlation are ma-

trix 0, matrix 1 (�gure 5.1). As matrix 2, matrix 3 and matrix 4 do not show

enough correlation they were not chosen for further analysis.
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Figure 5.1: Variograms from anoctamins data with di�erent matrices. A - matrix
0. B - matrix 1. C-matrix 2. D - matrix 3. E - matrix 4.
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5.1 Anoctamins

5.1.2 Kriging prediction

Figure 5.2: A - Matrix 0 B - Matrix 1. Kriging image interpolations, the numbers
correspond to the initial molecules ids and the blue asterisks represent the loca-
tions of the new molecules from ZINC. The color palette expresses the predicted
values in that metric space where green is the lower prediction and white the
highest.

Giving the previously presented variograms the rest of the kriging prediction

was performed for matrices 0 and 1 with the respective kriging interpolation

plots (�gures 5.2). The cumulative proportion of two components in the prin-

cipal component analysis for matrix 0 was 0.8084 and for matrix 1 was 0.8115,

demonstrating that two components are enough to substantially represent this

data. In the kriging images represented in the �gure 5.2, it is possible to observe

the location of the hotspots as well as the new molecules location in the metric

space. Both images show a low number of molecules even before the selection

for further analysis. Also, it is possible to observe that between the clusters and

even between molecules from the same cluster there is a lot of metric space to

explore, because there were no molecules in ZINC for this locations. This can be

solved with a de novo approach.
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5.1.3 Consensus plot graph

Figure 5.3: Random forest vs kriging prediction values with matrix 0 (A) and

matrix 1 (B) , from the new molecules from ZINC, the numbers represent this

project given ids.
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5.2 CFTR

When using two methods for the same prediction it is possible that some molecules

will have a good prediction in one method and a bad one in the second method.

Therefore a consensus plot was developed to represent the di�erences and the

concordances in the prediction values. This plot will show the predictions for

each molecule, where the X axis are enhance values predicted by kriging and the

Y axis are enhance values predicted by random forest.

The consensus plot graph (�gure 5.3) clearly shows, that molecule 61 as the

best prediction values in both methods while molecule 62 and molecule 13 are

outliers to be considered. For the remaining molecules further analysis is needed,

using a supporting table where the coordinates for each molecule can be analysed.

5.2 CFTR

Using the CFTR dataset, 301 molecules were selected from ZINC to be evaluated

by random forest and kriging methods. The molecules selected had a tanimoto

similarity score greater or equal to 0.75.

5.2.1 Initial modelling

5.2.1.1 Variograms of the data

The methods used in the metric space depend on the correlation of the data, and

for this purpose, a variogram graph can indicate the reliability and feasibility of

such prediction for each individual matrix (�gure 5.4 ). In this case, the validation

was performed using matrices that revealed some correlation. It was not possible

to perform this method with matrix 3 and 4 since the molecules were too similar

and several were categorized as equal.

5.2.1.2 Validation

When performing a 5-fold cross validation of the random forest method using

CFTR dataset (which have a standard deviation of 0.0387) the RMSE obtained

was 0.0382 and a explained variance of 0.0227. In the out of the bag validation,

the results were 0.0387 for RMSE and a negative explained variance of -0.0004.
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Figure 5.4: Variogram of CFTR data with matrix 0 (A) , matrix 1 (B) and matrix
2 (C).

These results show that the random forest model that receives the molecular

descriptors (the standard and widely used approach) is not able to explain the

data and therefore to predict values in new molecules.

The validation of the kriging algorithm was performed using a 5-fold cross

validation for the matrices 0 and 1. The RMSE for matrix 0 was 0.0413 and

for matrix 1 was 0.0403. As for the explained variance, the result for matrix 0

was -0.1419 and for matrix 1 was -0.0860. These results are aligned with the

validation results observed in the vector space branch, where random forest was

not able to predict the characteristics of new molecules accurately.
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5.3 Con�rmatory model with raw data

5.3 Con�rmatory model with raw data

Based on this validation, all the processes were analysed for errors where no is-

sue was found. Looking at the negative values of the explained variance in the

vector space method (already a widely tested process), a decision was made to

perform several cross validations using the random forest method; additionally,

changes to the initial input data were also performed. When all the instances

for each molecule and without the preprocessing treatment were tested, the ex-

plained variance obtained was 0.69. When the information about the membrane

and well of each molecule were removed, the explained variance dropped to nega-

tive values (-0.1053). These new tests indicate that the decisive characteristics for

the prediction was the molecule location (membrane and well) and the molecule

compound id but not the molecular descriptors, therefore the only plausible op-

tion is the mislabeling of our initial data. In order to be possible to perform the

molecular virtual screening is necessary to correct the mislabeling �rst.

5.4 Identifying experimental mislabeling data

5.4.1 Mislabelling identi�cation

Mislabelling of the data is di�cult to correct since the experimental part was

performed by another party. Repeating the entire experiment was impossible

given time and money constraints, therefore the suitable solution was to create a

machine learning algorithm with the only information considered to be less prone

to have experimental errors. This machine learning algorithm iterates in all the

remaining data and one by one exchanging the compounds enhance values to try

to understand which changes a�ect the explained variance and subsequently the

prediction capability. This machine learning algorithm was iterating in molecular

similarity comparison and performed permutations until the explained variance

could not be enhanced any further. In this case, the data chosen as correct was

the primary molecules as well as the C4a corrector. Using the data from this 5

compounds a support vector machine was created.
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5.4.2 Reality check

Given the problems with the initial dataset and to ascertain if the model created

with this transformed data can predict the activity of molecules from within the

dataset and the activity of new compounds foreign to the initial dataset. To test

the model created with this corrected dataset the already mentioned bioassay

available at Pubmed was used.

A classi�cation using random forest was performed to validate the model and

predict the activity or inactivity of the compounds as tested by the study. A

confusion matrix was created with the results of this classi�cation. A confusion

matrix is a 2x2 table were in the columns the variables are predicted positives

and predicted negatives and in the rows, the variables are real positives and

real negatives. Here, the values considered as real are the positive and negative

classi�cations from the published assay. From the same classi�cation, precision

and recall values were also obtained. The precision values can help realize the

proportion of true positives in all the predicted positives from the algorithm. This

precision or positive predictive value are obtained following this formula:

Precision =
TP

FP + TP

6.2.1

TP - True positives - predicted positives that are real positives;

FP - False positives - predicted positives that are real negatives.

The recall value shows the rate of true positives in all the actual positives

predicted or not. Recall value or true positive rate can be calculated using:

Recall =
TP

FN + TP

6.2.2

TP - True positives - predicted positives that are real positives;

FN - False negatives - predicted negatives that are real positives.
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5.4 Identifying experimental mislabeling data

Given that the virtual screening selection relies on the true positives predicted,

both these values (precision and recall) are important to understand the rate of

true positives in all the predicted positives, as well as to realize from all the real

positives in the data which are predicted as positives.

The molecules available in the published dataset have a di�erent range of

similarity when comparing to our initial dataset, as the values of similarity score

obtained with NAMS (using matrix 0) can range from 0.0269 to 0.9321. When

performing a prediction is necessary to have a degree of similarity, therefore in

order to achieve proper validation results, the top 10 and 20� similar molecules

were selected to be tested and the respective precision and recall values were

calculated. With the top 10� of molecules the precision obtained was 0.60 and

with the top 20� the precision obtained was 0.58. For both subsets, the recall

obtained was 0.12.

Regarding the metric branch, several di�erent approaches were performed be-

cause the enhance value is calculated using di�erent processes, making it di�cult

to ascertain the validation directly. First, the values of enhance for the top 10�and

20� similar molecules were predicted using kriging, then these values were cate-

gorized as positives and negatives using the average values of the ∆F508 CFTR

mutation as a threshold. With this categorization was possible to create another

confusion matrix and evaluate the already mentioned metrics. The results were

0.48 for the precision value and 0.46 for the recall value. Considering that this

classi�cation was performed after the prediction there is the possibility of error

associated with the prediction and associated with the classi�cation (primarily

the choice of the correct threshold), therefore a method for evaluation using only

NAMS was required.

For each primary molecule a plot with the predicted density of positives and

negatives throughout the similarity score was generated (graph 5.5). In these

density plots, is possible to observe that the actives have higher density values

than the negative compounds. The di�erence sometimes is more visible than

others but suggests that similar compounds to the active ones are themselves

active as well.

Using the similarity calculated with NAMS (matrix zero) between the pri-

maries from our dataset and the molecules from the pubchem study, as well as
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Figure 5.5: Fraction of actives and inactives per similarity and per primary com-
pound.

their activity, a spline graph was created. A spline graph has a line which is

de�ned piece by piece using polynomial functions, in order to be approximated

to the real numbers and at the same time, construct a smooth line. This graph

was build considering the molecules with more than 0.3 similarity score, given

that a lower similarity score would not give pertinent information for this matter.

When analysing graph 5.6, the primary molecules 1 and 4 show an increasing

fraction of positives when advancing into more similar molecules. The primary

molecule 1 is the best of all primaries, thus it is very important that this molecule

has a good result, considering the positive fractions in increasing similarity. The

primary molecules 2 and 3 have similar results (as expected as they are very

similar). In both cases, the fraction of actives follows the increasing similarity

and starting from ∼ 0.5 similarity the fraction of actives decreased, mainly due

to several negative molecules closely similar to these two primaries.
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Figure 5.6: Fraction of actives per similarity and per primary compound consid-
ering only compounds with more than 0.3 similarity score

5.5 Final modelling

As previously mentioned 301 molecules were selected from ZINC to be subjected

to the virtual screening approach.

5.5.1 Vector Space

5.5.1.1 Cross-validation

The cross-validation of the corrected data was executed using a 5-fold and out-

of-the bag validation. This time the explained variance was 0.37 and 0.36 respec-

tively. The MSE was 0.004 with a standard deviation of 0.083. The mean error

of 100 iterations is available in a density graph 5.7. A confusion matrix was also
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5. RESULTS

Figure 5.7: Density representation of the mean error in 100 iterations of the
transformed data. A - 5-fold cross-validation. B - Out-of-the-bag cross-validation

created to compare with the results obtained in the reality check section. The

results of this confusion matrix were 0.61 for the precision value and 0.12 for the

recall value. These results are aligned with the ones observed in the previous

section: 0.60 for the precision value and 0.12 for the recall value.

5.5.2 Metric Space

The metric space was created using matrices 0, 1 and 2. Matrices 3 and 4 de-

scribed several molecules as equal given that some molecules are very close to

each other.

5.5.2.1 Variograms of the data

New variograms had to be calculated given the modi�cations performed on the

data. As it is possible to observe in graph 5.8 all the three matrices show corre-

lation, thus the cross-validation will be performed on all of them.
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5.5 Final modelling

Figure 5.8: Variogram of CFTR corrected data with matrix 0 (A) , matrix 1 (B)
and matrix 2 (C).

5.5.2.2 Cross-validation

The 5-fold cross-validation was performed for matrices 0, 1 and 2. The mean error

of 100 iterations is represented in graph 5.9. The RMSE was 0.071 for matrix 0,

0.72 for matrix 1 and 0.070 for matrix 2. The MSE value was 0,0051 , 0.0052 and

0.0049 respectively. Matrix 2 had the best explained variance with 0.29, followed

by matrix 0 with 0.27 and matrix 1 with 0.25.
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Figure 5.9: Density representation of mean error in the metric branch in 100
iterations. A - matrix 0. B - matrix 1. C - matrix 2.

5.5.2.3 Kriging - metric space prediction

The metric space prediction constructed with a principal coordinate analysis algo-

rithm is illustrated in graph 5.10, where it is possible to see the metric space and

the molecules positioning and distribution. It is also possible to see the di�erence

between di�erent areas concerning the amount of molecules.

The cumulative proportion of the two components ("X" and "Y" axis) range

from 0.79 in matrix 2 and 0.83 for matrix 0, therefore with this values is possible

to consider this metric space a good representation of the molecules in a two-

dimensional space.
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Figure 5.10: Kriging prediction image with initial and new molecules. A - Matrix
0. B - Matrix 1. C - Matrix 2. The initial molecules are represented by their
id, and the new molecules are represented by blue asterisks. The color palette
chosen was terrain, where green represents a low value and white a high value.
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5.5.3 Consensus plot graph

The consensus plot graph (�gures 5.11 ) represent the molecules predicted values

in two axes: The X axis represents the kriging method, while the Y axis represents

the random forest method. In the plots is possible to see the top molecules in

both techniques, and also the molecules with low prediction values across the two.

Together with the supporting table, these plots will be used to select the top

molecules and possible outliers in all the matrices. Even considering the overlap

of several molecules, some molecules can be considered to be selected: molecule

9 and 208 which are top molecules across the three matrices. Molecule 49 can

also be considered as it has a very low prediction from kriging and a considerable

value from the vector space (49 is overlapped by molecule 50 and in the consensus

plot in matrix 2). It is interesting to see a trend in the results of both spaces,

which are in accordance with our theoretical assumptions.

58



5.5 Final modelling

Figure 5.11: Consensus plot with the predicted values from metric branch on the
x axis and the predicted values from the vector branch on the y axis. A - Matrix
0. B - Matrix 1. C - Matrix 2. 59





Chapter 6

Discussion

�Tell me and I forget, teach me and I may remember, involve me and I learn.�

Xun Kuang

6.1 Anoctamins results

6.1.1 Most relevant descriptors in Anoctamins modelling

To evaluate the importance of each descriptor, every model created during the

cross-validation had the number of trees which use the attribute as split on level

0 and 1 (root and the next immediately split) summed up and then ordered from

the most used in this principal splits.

The most important variable seem to be SMR which calculates the molecular

refractivity assuming the washed structure, followed by Slogp the logarithm of the

coe�cient octanol/water for washed structures (in the correct protonation state).

The 3rd most important variable is LabuteASA (Labute's aproximate surface

area) gives the surface of each atom that is not inside or coincide with other atom

surface, giving the exposed surface of the molecule. The 4th and 5th most relevant

descriptors are the average and exact molecular weight. There are other variables

that can be also considered as relevant descriptors such as the TPSA (topological

polar surface area - which acts as a representation of the molecular permeability),

the number of hydrogen bond acceptors, the connectivity descriptors Chi1v and
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Chi2v 1, the number of heavy atoms and �nally the total number of atoms.

With these descriptors in mind, it is safe to assume the importance of the sol-

ubility characteristics of the molecule as well as the connectivity between atoms

(especially the heavy) are very important characteristics to determine the poten-

tiation or activation of anoctamins.

6.1.2 Chosen matrices

The matrices that show some correlation in variograms 5.1 presented in the last

chapter were 0 and 1, the most strict matrices which can led to the assumption

that a substitution of one single atom can severely a�ect the molecule ability to

potentiate anoctamins action.

6.1.3 Selected molecules

As already referred in the methods section, it is important to select the best

combined predictions from both spaces, as well to choose some outliers of each

method (if there is some,) as a way to ascertain the error of this predictions when

compared to in vitro testing.

Based on the methods previously described there are 8 top molecules that

have the best results in both methodologies. These molecules are represented in

image 6.1. Two outliers were also selected and represented in �gures 6.2 and 6.3.

1the atomic valence connectivity index and can be calculated by the sum of 1/sqrt(viji)
where i<j for all the bonds enclosed by heavy atoms i and j
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Figure 6.1: Final chosen molecules with good score from both methods.
Molecular representations retrieved from ZINC.
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6. DISCUSSION

Figure 6.2: Final chosen molecule with high score in random forest and low in
kriging.
Molecular representations retrieved from ZINC.

Figure 6.3: Final chosen molecule with high score in kriging and low in random
forest.
Molecular representations retrieved from ZINC.
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6.1.4 Con�rmatory analysis

There are some evidences that support these results. It was performed a search

in di�erent information repositories and some data was collected.

In Pubchem 1 ZINC09657902 can possibly target a calcium-dependent protein

kinase in Plasmodium Falciparum (malaria causing protozoan parasite) which can

be interesting because anoctamins are calcium-activated channel. ZINC06969746

can possibly target anoctamin 1 in Mus Musculus (commonly called as house rat).

ZINC08726656 was tested as potential chaperone treatment of Gaucher Disease.

6.2 CFTR results

6.2.1 Most relevant descriptors in CFTR modelling

The selection of important variables were performed in the same way as for the

anoctamins dataset. The most important descriptor seems to be SMR, followed

by LabuteASA. Then, two descriptors for the molecular weight (both average and

exact) seem to have almost the same importance. In 5th place, a connectivity

descriptor appears, Chi1v. There are other variables that can be also considered

as relevant descriptors such as Slogp, the number of atoms, TPSA, PSA (polar

surface area - de�ned as the sum of the surface of all the polar atoms), two

connectivity descriptors (Chi2v and Chi2n - simple molecular connectivity index

for path), and �nally the number of heavy atoms.

These important variables are in accordance with the important character-

istics in the anoctamins data namely the solubility and the number of atoms

(especially heavy atoms).

6.2.2 Chosen matrices

Given the variograms presented in the last chapter, the top molecules were chosen

from the matrices that have a good variance/distance relation. These matrices

are matrix 0, matrix 1 and matrix 2 (�gure 5.8). Given matrices 0 and 1 strictness

1last accessed in 15th of March of 2017
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it is possible to assume that the enhance value is correlated to strict con�gura-

tions changes and that a substitution of one single atom is really important for

the molecule ability to correct CFTR. Nevertheless, this does not diminish the

structure importance of the molecule but gives a remarkable penalization of atom

substitution.

6.2.3 Selected molecules

Figure 6.4: Final chosen molecules from virtual screening with top results for
both techniques in the three matrices.
Molecular representations retrieved from ZINC.
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Figure 6.5: Final chosen molecules from virtual screening with top results for

both techniques in two matrices.

Molecular representations retrieved from ZINC.

Analyzing the X and Y coordinates allowed the selection of molecules that

had top predicted values for both methods in three matrices (6 molecules, �gure

6.4), and two matrices(4 molecules, �gure 6.5). A selection of 6 outliers was

also performed with high random forest value and low kriging value or vice-versa

( �gure 6.6 and 6.7 ). Also, for further analysis, 2 more molecules were selected

(�gure 6.8). These molecules presented a top or good result for matrices 0 and

2 but a bellow midpoint prediction using matrix 1, these molecules should be

study to understand which matrix is more prone to accuracy in this dataset for

the continuation of this project.
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Figure 6.6: Final chosen molecules with high score in random forest and low in
kriging.
Molecular representations retrieved from ZINC.

Figure 6.7: Final chosen molecules with high score in kriging and low in random
forest.
Molecular representations retrieved from ZINC.
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6.2 CFTR results

Figure 6.8: Two molecules considered outliers in matrix 1 but with good results
in matrices 0 and 2.
Molecular representations retrieved from ZINC.

6.2.4 Con�rmatory analysis

As in the anoctamins dataset, further information about each of the selected

molecules was searched in the information repositories.

In Pubchem1, ZINC00257699, ZINC11077642 and ZINC00443340 can possibly

target anoctamin-1 in Mus Musculus (house rat). The molecule ZINC00257699

has a WIPO IPC ontology (World intellectual property organization International

Patent Classi�cation) of "Drugs for disorders of the respiratory system".

According to Surechembl 2 ZINC04207443 is an inhibitor of histone deacety-

lase. This inhibition capability is interesting because there are reports showing

that reducing histone deacetylase 7 activity can restore function to misfolded

CFTR (Hutt et al., 2010).

1Pubchem https://pubchem.ncbi.nlm.nih.gov/, last accessed 13th of March of 2017
2https://www.surechembl.org, last accessed 13 March
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Chapter 7

Conclusions

In this dissertation, a new methodology combining a widely used QSAR technique

and a new way to use machine learning in the molecular research environment to

predict therapeutic capabilities of several molecules was presented. Cystic �brosis

is a disease were CFTR protein can have a large number of di�erent mutations

that can be treated and/or controlled by correcting the CFTR malformations.

Another possible treatment course is to potentiate anoctamins action, as they

are present in several di�erent cell lines and produces Cl− currents as CFTR.

Using an anoctamins potentiators and activators dataset as a starting point,

a query was performed to �nd similar molecules in ZINC database. As a result

of this query 71 molecules were selected for further prediction. In order to in-

fer the therapeutic potentiator capability, two methods were applied. The �rst

method is widely used in QSAR studies where each molecule is characterized

using molecular descriptors and a machine learning method is used (in this case

random forest) to learn from the initial dataset where the values to predict are

known and produce forecasts using the molecular descriptors of new molecules.

In this method, the molecular descriptors that seem to be more relevant to this

particular potentiation are related to the molecule's solubility, molecular weight,

and connectivity between atoms with a higher regard for heavy atoms. The sec-

ond method uses kriging as a data mining method; this method requires data

correlation and uses a topological representation of the data to infer values. In

order to predict the therapeutic potentiator capability kriging receives the simi-

larity between molecules calculated by NAMS program and represented them into
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a two dimensional-plot. In this method, the selection of the atom substitution

matrices from NAMS can give us some information about the molecules. In the

anoctamins dataset the matrices chosen was number 0 and 1, the two more strict

matrices available and therefore suggesting that a simple and similar change in

one atom is su�cient to a�ect their ability to enhance the anoctamins function.

The outputs of both methods were then combined in a consensus plot to

select the most promising molecules for further testing. In total 8 top molecules

plus 2 outliers were selected based on the methods previously described. Once

the molecules were selected a search in biological repositories was performed to

review information about the molecules known targets or published bioassays.

Several interesting �ndings arose in this search like a molecule that can target a

calcium channel protein like anoctamins, another that can target Anoctamin-1

or even a molecule that appears to have some interaction like a chaperone.

Regarding the CFTR correctors dataset the same methodology from

anoctamins could no be applied directly as the dataset had a mislabeling

problem. Knowing that it would not be possible to perform new laboratory

tests to the CFTR correctors, machine learning techniques were used to correct

the mislabeling error. To guaranty that this corrected dataset could be used to

infer characteristics of the molecules not present in the dataset, an evaluation of

the prediction was performed using a pubchem bioassay with F508del-CFTR (this

bioassay determines the activity or inactivity of molecules). After this correction,

it was possible to apply the same methodology from the anoctamins dataset. In

the CFTR dataset the matrices chosen were 0, 1 and 2, the two more strict matri-

ces, and one more equilibrated matrix, which allow us to infer that in this case,

very small di�erences in the atoms can a�ect the molecules capacity to rescue

CFTR; but also that the matrix based on literature (matrix 2) have some e�ect

on this capability, suggesting that some molecular behaviour is explained with

this type of matrix and that these molecules are able to receive similar atoms and

maintain the relation of enhancing CFTR function.

Based on this, 301 molecules were selected from ZINC in order to be

evaluated by both methodologies. The important descriptors were also evaluated

and the important characteristics seem to be similar to the anoctamins dataset
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with solubility, weight, connectivity, and number of atoms as the most relevant

characteristics.

Similarly to the anoctamins potentiators dataset several molecules were se-

lected for further study: 10 top molecules with high predictions in both kriging

and random forest methods, 3 outliers with high prediction in molecular descrip-

tors and low in kriging and 3 other molecules with high prediction in kriging and

low from molecular descriptors. Also, 2 extra molecules were also selected given

that their predictions were good ou even top molecules in two matrices but below

midpoint result in another matrix - these should be further tested to understand

the di�erences in predicting using di�erent matrices.

A con�rmatory analysis considering the literature available was also performed

showing a molecule that can possibly target Anoctamin-1 and another molecule

that is an inhibitor of histone deacetylase (which can possibly restore function to

misfolded CFTR).

In the CFTR dataset a 5-fold cross-validation was performed for each method:

in the vector space the explained variance was 0.37, a precision of 0.61 and a recall

of 0.12; in the metric branch the explained variance was 0.25 to 0.29 (depending

on the matrix used).

Given the cross-validation and con�rmatory analysis results, the tested method-

ology seems to have some predictive power, however it is necessary to test the

molecules in the laboratory and improve the methodology with this results.

7.1 Future work

The immediate task is to test in vitro the selected molecules with a western

blot lab design to evaluate the methods used in this project. It is also possible

to perform another run in this work�ow using this new lab results to get more

precise predictions.

It is important to mention the several areas without molecules present in the

metric space. Although some areas were interesting (giving the kriging predic-

tions) they were not studied in this project because in the ZINC database was not

possible to �nd molecules for those areas. One way to cover this issue is to design
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7. CONCLUSIONS

speci�c molecules in silico to perform computational tests, and subsequently, or-

der tailored molecules to test them. This speci�c molecular design can be done

either in pharmacophore based models or de novo approach.

It can also be interesting to create a similar double space approach with a dif-

ferent methodology in the vector space, maintaining this direct Kriging approach

since at the moment it is poorly explored in in-silico drug design methodology.
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Listing of molecular descriptor in

RDKIT
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A. LISTING OF MOLECULAR DESCRIPTOR IN RDKIT

Table A.1: Table of molecular descriptors available in RDKit
SlogP slogp_VSA1 MQN4
SMR slogp_VSA2 MQN5
LabuteASA slogp_VSA3 MQN6
TPSA slogp_VSA4 MQN7
AMW slogp_VSA5 MQN8
ExactMW slogp_VSA6 MQN9
NumLipinskiHBA slogp_VSA7 MQN10
NumLipinskiHBD slogp_VSA8 MQN11
NumRotatableBonds slogp_VSA9 MQN12
NumHBD slogp_VSA10 MQN13
NumHBA slogp_VSA11 MQN14
NumAmideBonds slogp_VSA12 MQN15
NumHeteroAtoms smr_VSA1 MQN16
NumHeavyAtoms smr_VSA2 MQN17
NumAtoms smr_VSA3 MQN18
NumRings smr_VSA4 MQN19
NumAromaticRings smr_VSA5 MQN20
NumSaturatedRings smr_VSA6 MQN21
NumAliphaticRings smr_VSA7 MQN22
NumAromaticHeterocycles smr_VSA8 MQN23
NumSaturatedHeterocycles smr_VSA9 MQN24
NumAliphaticHeterocycles smr_VSA10 MQN25
NumAromaticCarbocycles peoe_VSA1 MQN26
NumSaturatedCarbocycles peoe_VSA2 MQN27
NumAliphaticCarbocycles peoe_VSA3 MQN28
FractionCSP3 peoe_VSA4 MQN29
Chi0v peoe_VSA5 MQN30
Chi1v peoe_VSA6 MQN31
Chi2v peoe_VSA7 MQN32
Chi3v peoe_VSA8 MQN33
Chi4v peoe_VSA9 MQN34
Chi1n peoe_VSA10 MQN35
Chi2n peoe_VSA11 MQN36
Chi3n peoe_VSA12 MQN37
Chi4n peoe_VSA13 MQN38
HallKierAlpha peoe_VSA14 MQN39
kappa1 MQN1 MQN40
kappa2 MQN2 MQN41
kappa3 MQN3 MQN42
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Appendix B

Work�ow images
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B. WORKFLOW IMAGES

Figure B.1: Screenshot of the selection of ZINC molecules. Were it is possible to
see the �ngerprint calculation and further selection. RDKit from molecule node
shows a yellow triangle given certain errors as duplication already mentioned
about ZINC database.
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Figure B.2: Screenshot of the metric branch were all the steps can be seen, since
NAMS similarity and coordinates calculation to Kriging prediction.
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B. WORKFLOW IMAGES

Figure B.3: Kriging metanode were it is possible to see all the calculation and
graphs from this statistical method.
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Figure B.4: Vectorial branch screenshot with the calculation of RDKit descriptors
for both sets of molecules, Random forest learner and predictor node, as well as
the validation metanode.
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B. WORKFLOW IMAGES

Figure B.5: Screenshot of reality check node were all the calculation using Ran-
dom Forest and Kriging can be observed.
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Appendix C

Selected molecules SMILES

C.1 Molecules SMILES from Anoctamins

Table C.1: SMILES of selected molecules from Anoctamins potentiators and

activators.
Project ID ZINC ID SMILES

Molecules with high score in both techniques

61 ZINC06414243 COc1cc(cc(c1OC)OC)C(=O)Nc1nc(cs1)c1ccccn1

29 ZINC09657902 COc1cc(cc(c1OC)OC)C(=O)NCC(=O)Nc1nc(cs1)c1ccccn1

46 ZINC06969746 COc1cc(cc(c1OC)OC)CC(=O)Nc1nc(cs1)c1ccccn1

56 ZINC01516590 COc1cc(cc(c1OC)OC)C(=O)Nc1nc(cs1)c1ccccc1

50 ZINC09014219 COc1cc(cc(c1OC)OC)C(=O)NC(=S)Nc1nc(cs1)c1ccccc1

57 ZINC01048113 COc1cc(cc(c1OC)OC)C(=O)NC(=S)Nc1nc(cs1)c1ccc(cc1)F

17 ZINC09360757 COc1cc(cc(c1OC)OC)C(=O)NC(=S)Nc1nc(cs1)c1ccc(cc1)Cl

45 ZINC01127308 Cc1ccc(cc1)c1csc(n1)NC(=S)NC(=O)c1cc(c(c(c1)OC)OC)OC

High value in random forest and low prediction from kriging

62 ZINC08726656 Cc1ccc(cc1OC)C(=O)Nc1nc(cs1)c1ccccn1

High value in kriging and low prediction from random forest

13 ZINC00929111 COc1ccc(cc1)c1csc(n1)N(CCc1ccccc1)C(=O)c1ccc(cc1)OC
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C. SELECTED MOLECULES SMILES

C.2 Molecules SMILES from CFTR

Table C.2: SMILES of selected molecules from CFTR rescuers.
Project ID ZINC ID SMILES

Molecules with high score in both techniques in the majority of matrices

208 ZINC00781515 c1ccc(cc1)C[C@H]1C(=O)NC(=NC1=O)SCC(=O)Nc1cccc2c1cccc2

207 ZINC00781516 c1ccc(cc1)C[C@@H]1C(=O)NC(=NC1=O)SCC(=O)Nc1cccc2c1cccc2

185 ZINC006362256 Cc1ccc(cc1)N(CCC#N)C(=O)COC(=O)c1ccc(cc1)N1CCCC1=O

9 ZINC00257699 c1cc(ccc1C(=O)[O-])N1CCCC1=O

5 ZINC06530212 c1ccc(cc1)c1[nH]nc(n1)SCC(=O)[O-]

187 ZINC06362258 Cc1cc(cc(c1)N(CCC#N)C(=O)COC(=O)c1ccc(cc1)N1CCCC1=O)C

290 ZINC11077642 c1ccnc(c1)C(=O)OCC(=O)c1cccc(c1)Br

126 ZINC00443340 c1ccnc(c1)C(=O)OCC(=O)c1ccc(cc1)Br

287 ZINC02730436 c1ccc(cc1)C[C@@H]1C(=O)NC(=NC1=O)SCC(=O)Nc1ccc2ccccc2c1

43 ZINC02730435 c1ccc(cc1)C[C@H]1C(=O)NC(=NC1=O)SCC(=O)Nc1ccc2ccccc2c1

High value in random forest and low prediction from kriging

23 ZINC00340377 c1cc(ccc1N1CCCC1=O)N1CCCC1=O

287 ZINC02730436 c1ccc(cc1)C[C@@H]1C(=O)NC(=NC1=O)SCC(=O)Nc1ccc2ccccc2c1

49 ZINC00286745 CC[C@@H]1C(=O)NC(=NC1=O)SCC(=O)Nc1ncccn1

High value in kriging and low prediction from random forest

28 ZINC03412609 CCOc1ccc2c(c1)c(c(o2)C(=O)OCC(=O)Nc1cc(on1)C)C

103 ZINC04670502 c1ccc(cc1)C[C@@H]1C(=O)NC(=NC1=O)SCC(=O)Nc1ccccc1C#N

192 ZINC00888768 Cc1c(sc(n1)NC(=O)c1ccccc1)c1csc(n1)Nc1cc(ccc1OC)OC

Interesting molecules with severe di�erences in results between matrices

31 ZINC04207443 CC(=O)c1ccc(cc1)N1CCCC1=O

288 ZINC32945329 CCN(CC)c1ccc(cc1)NC(=O)COC(=O)c1ccc(cc1)N1CCCC1=O
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