
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS
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Resumo

A monitorização é uma ferramenta fundamental na gestão das redes de computado-
res ao oferecer uma visão sobre o seu comportamento ao longo do tempo. Diferentes
técnicas de monitorização têm sido aplicadas na prática, das quais se destacam duas: as
baseadas em amostras e as baseadas em sketches. Enquanto as técnicas baseadas em
amostras processam apenas um subconjunto do tráfego total (uma amostra), as técnicas
baseadas em sketches processam todo o tráfego, procurando obter maior precisão nos seus
resultados. Para poderem processar todo o tráfego e ainda assim serem escaláveis, os al-
goritmos baseados em sketches comprimem a informação monitorizada em estruturas de
dados que têm comportamento semelhante ao das hash tables. Apesar da inevitável perda
de informação resultante das colisões que ocorrem tipicamente quando se usam estas es-
truturas de dados, os algoritmos baseados em sketches apresentam ainda assim resultados
bastante precisos, uma vez que todo o tráfego contribui para a computação das variáveis
estatı́sticas monitorizadas.

A informação fornecida pelos algoritmos de monitorização é essencial para a correta
operação da rede. No entanto, se o algoritmo de monitorização puder ser corrompido,
os seus resultados deixarão de ser confiáveis, tornando a monitorização inútil. No pior
caso, o administrador de sistemas não deteta que o algoritmo de monitorização foi com-
prometido e acaba por tomar decisões inadequadas, baseadas em informação incorreta.
Este problema demonstra a utilidade de algoritmos de monitorização seguros. No en-
tanto, não temos conhecimento de nenhuma proposta que vise a segurança dos algoritmos
de monitorização. De facto, a generalidade dos algoritmos de monitorização ignora as
questões de segurança de forma a minimizar os seus tempos de execução e a memória uti-
lizada, o que se justifica pelas altas velocidades a que os pacotes têm de ser processados
e transmitidos nas redes atuais.

O objetivo desta tese consiste no desenho, implementação e avaliação de um algo-
ritmo de monitorização seguro e escalável. A base da nossa solução é o Count-Min,
um algoritmo baseado em sketches que permite estimar a frequência de itens observados
num dado stream de dados. Genericamente, o Count-Min utiliza uma matriz com duas
dimensões, definidas antes do arranque do algoritmo (número de linhas e número de co-
lunas), para armazenar os dados monitorizados. Além disso, necessita de uma função de
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dispersão diferente por cada linha da matriz, responsável por mapear os itens processa-
dos pelo algoritmo numa coluna da matriz. Cada função de dispersão fica associada a
uma linha da matriz e cada item vai ser processado por todas elas, sendo responsável pelo
incremento de um contador em cada linha da matriz.

Para identificar possı́veis vulnerabilidades de segurança na versão original do Count-
Min, assumimos um adversário que poderá estar localizado em qualquer ponto da rede,
mas que não tem acesso ao dispositivo em que o algoritmo está instalado. Verificámos
que, para diferentes capacidades do adversário (escutar a rede apenas, eliminar, modificar
ou gerar pacotes), a maioria das vulnerabilidades identificadas na especificação original
do Count-Min poderiam ser resolvidas com a utilização de funções de dispersão crip-
tográficas (ao invés de funções de dispersão pouco complexas, como as sugeridas pelos
autores do Count-Min) e de um mecanismo para impedir que os contadores excedam a
sua capacidade máxima.

Os algoritmos baseados em sketches foram desenhados para monitorizar uma dada
métrica durante um perı́odo finito de tempo, após o qual a sua estrutura de dados começa
a ficar demasiado preenchida e o número de colisões aumenta. Por essa razão, no fim
desse perı́odo a estrutura de dados deverá ser reiniciada. No entanto, no contexto da
monitorização de redes de computadores é necessário que o algoritmo de monitorização
esteja continuamente a executar a sua função, sem momentos de pausa. Nesse sentido,
além de adicionar segurança à versão original do algoritmo, desenvolvemos um meca-
nismo que permite utilizar algoritmos baseados em sketches, como o Count-Min, no con-
texto da monitorização de redes. Para tal, no final de cada perı́odo de monitorização, de-
finido pelo administrador de sistemas, a estrutura de dados usada é reiniciada em tempo
de execução.

Os switches e routers atuais não têm, no entanto, a capacidade de executar estas
técnicas avançadas de monitorização (isto é, os sketches). Felizmente, nos últimos anos
surgiram switches programáveis – existindo já alguns em produção – que criam final-
mente a possibilidade de adicionar ao plano de dados de uma rede estas funcionalidades.
Desta forma, o algoritmo de monitorização que propomos foi implementado em P4, uma
linguagem recente que permite a programação dos dispositivos de encaminhamento re-
programáveis. A utilização do P4 permitiu-nos programar diretamente no plano de dados,
dando-nos inclusivamente a possibilidade de alterar valores mantidos pelo algoritmo de
monitorização sem ter de parar a sua execução.

Decidimos usar o MD5 (Message-Digest Algorithm 5) para gerar as funções de dis-
persão criptográficas, por este ter uma complexidade temporal menor comparativamente
a outras funções criptográficas e porque ainda é considerado seguro se usado em conjunto
com uma chave de 128 bits. Esta chave é um número aleatório, gerado no arranque do
algoritmo de monitorização e guardado na memória do switch programável, podendo ser
acedida internamente pelo próprio código do algoritmo ou externamente através de uma
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interface oferecida pelo dispositivo. Uma vez que a segurança das funções de dispersão
vai depender desta chave, é fundamental impedir que o adversário a descubra. Por essa
razão, e porque os algoritmos baseados em sketches necessitam de reiniciar a sua estru-
tura de dados periodicamente, como já referido, desenvolvemos uma solução que não só
altera a chave que está a ser utilizada por uma nova, como também reinicia a estrutura
de dados do algoritmo, logo após a ter serializado e copiado para um ficheiro. Esta cópia
é necessária pois sempre que há um pedido ao algoritmo de monitorização para estimar
a frequência de determinado item, todas as estruturas de dados têm de ser consultadas,
incluindo as armazenadas no ficheiro, o que é feito de forma transparente pelo nosso
algoritmo.

Durante a implementação da nossa solução, tivemos de ultrapassar algumas dificul-
dades decorrentes não só das peculiaridades da linguagem P4 como da própria interface
entre o código P4 e o software utilizado para emular um dispositivo de encaminhamento.
Entre as principais dificuldades que o P4 nos colocou e que resulta das peculiaridades
de um switch, nomeadamente a necessidade de processar pacotes a altas taxas de trans-
missão, está o facto de este não permitir definir ciclos, o que nos era necessário para
repetir as ações para cada linha da matriz. Acabámos por resolver a situação com sucesso
de uma forma não convencional. A interface oferecida pelo dispositivo de encaminha-
mento virtual (software switch) também nos colocou algumas dificuldades, entre as quais
o facto de só permitir que as funções de dispersão devolvam um resultado com no máximo
64 bits. Uma vez que a execução do MD5 devolve 128 bits, para o seu resultado poder ser
utilizado tivemos de modificar o software do dispositivo de encaminhamento de forma a
garantir a interoperabilidade com o programa P4 desenvolvido.

A avaliação que executámos focou-se no desempenho e funcionalidade, comparando
a nossa solução segura com o Count-Min original (que também implementámos em P4)
e com um algoritmo base que apenas encaminha o tráfego sem fazer qualquer tipo de
monitorização. Ao nı́vel da latência, observámos que a monitorização através de um
algoritmo baseado no Count-Min induz um atraso no processamento efetuado pelo dispo-
sitivo de encaminhamento de cerca de 0,7 milissegundos por pacote (com uma matriz de
20 linhas). O atraso adicional inserido pela nossa versão segura foi, em média, de menos
de 0,2 milissegundos. Avaliámos também a taxa de transferência que o dispositivo de en-
caminhamento consegue atingir quando corre a nossa solução, tendo observado que esta
se mantém sempre muito próxima da taxa de transferência obtida pela versão original do
Count-Min. Comparámos ainda o erro das estimativas dadas pelo algoritmo com o erro
máximo teórico apresentado na especificação do algoritmo original para uma dada pro-
babilidade. Não observámos diferenças relativamente ao erro entre a versão original do
Count-Min e a segura. Assim, pudemos concluir que a utilização de uma versão segura
do Count-Min não introduz penalizações relevantes no desempenho e na funcionalidade
do algoritmo de monitorização, apesar das garantias de segurança oferecidas.
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viii







Abstract

Monitoring is a fundamental activity in network management as it provides knowl-
edge about the behavior of a network. Different monitoring methodologies have been
employed in practice, with sample-based and sketch-based approaches standing out be-
cause of their manageable memory requirements. The accuracy provided by traditional
sampling-based monitoring approaches, such as NetFlow, is increasingly being consid-
ered insufficient to meet the requirements of today’s networks. By summarizing all traf-
fic for specific statistics of interest, sketch-based alternatives have been shown to achieve
higher levels of accuracy for the same cost. Existing switches, however, lack the necessary
capability to perform the sort of processing required by this approach. The emergence of
programmable switches and the processing they enable in the data plane has recently led
sketch-based solutions to be made possible in switching hardware.

One limitation of existing solutions is that they lack security. At the scale of the dat-
acenter networks that power cloud computing, this limitation becomes a serious concern.
For instance, there is evidence of security incidents perpetrated by malicious insiders in-
side cloud infrastructures. By compromising the monitoring algorithm, such an attacker
can render the monitoring process useless, leading to undesirable actions (such as routing
sensitive traffic to disallowed locations).

The objective of this thesis is to propose a novel sketch-based monitoring algorithm
that is secure. In particular, we propose the design and implementation of a secure and
scalable version of the Count-Min algorithm [16, 17], which tracks the frequency of items
through a data structure and a set of hash functions. As traditional switches do not have
the capabilities to allow these advanced forms of monitoring, we leverage the recently
proposed programmable switches. The algorithm was implemented in P4 [11], a pro-
grammable language for programmable switches, which are now able to process packets
just as fast as the fastest fixed-function switches [12]. Our evaluation demonstrates that
our secure solution entails a negligible performance penalty when compared with the
original Count-Min algorithm, despite the security proprieties provided.

Keywords: Monitoring, Security, Computer Networks, Sketches, Programmable Data
Planes
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Chapter 1

Introduction

Monitoring is the activity of supervising something in order to ensure it is operating as
expected. Monitoring of a computer network is the only way a network administrator has
to know the state of the network, enabling quick responses to anomalies or to make the
required configuration adjustments. Selecting the right metrics to monitor is an important
decision to make, in order that the most useful information can be retrieved without wast-
ing resources. Some of the most used metrics include: network availability (amount of
time, in a specific time interval, during which the network infrastructure is operational),
utilization (ratio of the bandwidth used by the traffic being sent/received over the overall
capacity), packet loss rate (ratio of packets lost with respect to packets transmitted) and
network latency (time a packet takes to get from one designated point to another).

Different approaches can be used for monitoring. Ideally, for complete accuracy, the
monitoring task should store all transmitted packets for subsequent analysis. In practice,
however, this technique would lead to storage and processing scalability issues. Fortu-
nately, exact results are usually not necessary, and a high quality approximation is enough.
This fact suggests the use of probabilistic algorithms, that use smaller amounts of memory
and require less computation to achieve the desired goals.

Traditional Network Monitoring

To avoid the storage and processing of all packets, as would be required by naive mon-
itoring, traffic data can be reduced by sampling, with only a subset of the traffic being
captured. The frequency at which packets are collected is the sampling rate: the number
of samples taken per unit of time.

A proprietary (Cisco) protocol, NetFlow [3], uses sampling since the introduction of
Cisco 12000 [7] and has been considered a reference. Netflow is a protocol for moni-
toring of network traffic flow data generated by switches that support it. A network flow
can be defined as a unidirectional sequence of packets that share the following values:
ingress interface, source and destination IP addresses, source and destination TCP ports,
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IP protocol, and IP type of service.
A major problem of solutions based on sampling is the potential lack of accuracy

achieved, as many packets are ignored. To be scalable, the sampling frequency of these
solutions is kept at low levels, with sampling rates of 1:1000 (one packet in 1000) being
common [8]. This reduces the accuracy to a level that precludes its use for many of
the advanced monitoring capabilities required in today’s large scale networks that enable
cloud computing.

Sketch-Based Algorithms

To maintain memory and processing at acceptable levels, sketch-based algorithms sum-
marize the network data streams in the data plane (by employing hashing, counting, and
filtering techniques). These solutions have been shown to offer an interesting trade-off
between the accuracy achieved and the memory used, outpacing the alternative for vari-
ous monitoring tasks. Existing switches, however, lack the necessary capability to enable
this approach.

Sketches are data structures that use sub-linear space, meaning that the memory size
used grows sub-linearly with the input data. Whenever the size of the memory used
is smaller than the input, the accuracy loss is inevitable, leading to probabilistic re-
sults. Sketch-based algorithms, however, still provide high-quality results approxima-
tions, which very commonly is as useful as the exact results.

Programmable Networks

In this thesis we focus our attention in sketch-based algorithms. An initial problem that
we thus face is on their practicality. Until recently, network switches and routers did not
have the required capabilities for implementing sketches in practice. The emergence of
programmable switches has given operators the opportunity to run complex processing
in the data plane, radically changing the state of affairs. Recent proposals [37, 30] have
shown the feasibility of sketch-based solutions in real hardware data planes.

In traditional networks, network devices have the control plane, used to populate the
forwarding table, and the data plane, that entails the process of consulting the forward-
ing table to decide the interfaces where packets should be transmitted, coupled together
inside the same piece of equipment. Being hardware appliances, to achieve the required
performance, this kind of networks tends to be static due to the little flexibility hardware
provides for evolution.

On the other hand, software-defined networks (SDN) [28] decouples the data plane
from the control plane, allowing flexible control of the network. The decoupling of the
control plane makes logically centralized network control possible, which allows, among
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other things, to observe the whole network from a single vantage point. The SDN concept
has been recently extended to the data plane. Production-level programmable switches are
now available (e.g., Barefoot Tofino), allowing programmability of the data plane itself
– i.e., it is now possible to define precisely how packets should be processed in these
switches using a high-level programming language (such as P4 [11]).

These software-defined networks can be monitored using traditional techniques, but
also newer ones, such as those based on sketches. Some work has indeed already been
done in order to adapt sketch-based algorithms to the SDN architecture. OpenSketch [39],
for instance, is a software defined measurement architecture, with the data plane having
a library of predefined sketches that can be combined in the control plane to create the
required measurement algorithm. Hashpipe [37] is a very recent solution in P4, that takes
advantage of programmable data planes.

1.1 Motivation

Many efficient sketch-based algorithms have been proposed over the years to face the
requirements of real-time monitoring. With the growing network speeds, the proposed
solutions had to be able to fulfill their job faster. Since their focus has been on this
requirement, these solutions tend to neglect security in favor of optimal execution time
and memory usage.

Indeed, if the monitoring algorithm itself is not secure, its results may be corrupted.
In the worst-case scenario, the network administrator does not notice the results are cor-
rupted, and takes improper actions. For instance, an attacker may persuade the monitoring
system to route sensitive traffic to a location he or she controls. Unfortunately, there is
evidence that the problem is real. A recent report mentions malicious insiders as one of
the top threats in cloud computing [31], what is evidenced by the occurrence of instances
of this problem in companies such as Google [2, 27]. The security limitation of current
approaches is therefore already a serious concern.

There is already some initial work [33, 35] addressing the security of traditional SDN
monitoring but, to the best of our knowledge, no attempt has hitherto been made to address
the security of sketch-based algorithms. Our work starts filling that gap.

1.2 Goals

The objective of our work is to design, implement and evaluate a secure version of a
sketch-based algorithm – Count-Min [16, 17] – that enables secure traffic monitoring,
while still guaranteeing acceptable execution speeds and memory usage requirements.

The sketch should take advantage of the benefits SDN networks have to offer, namely
the possibility to program the data planes. For this purpose, the sketch will be imple-
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mented in P4 [11], a language that allows the programming of switches. The solution
should allow a network administrator to monitor his network securely. By employing
a sketch-based approach, monitoring outputs, despite not being exact, will be approxi-
mations of higher-quality than those provided by algorithms based on packet sampling.
Compared to the previous sketch-based alternatives, the monitoring results will be trust-
worthy, increasing the network administrator confidence that he is taking the proper man-
aging actions.

1.3 Contribution

The main contribution of this work is the design of a secure version of a sketch-based
algorithm, the Count-Min, which should be able to perform, in a secure way, the moni-
toring task it was designed for. Our solution addresses several technical challenges, many
of which arise from the constraints imposed by real switches. These include the use of
cryptographic hash functions (not supported in existing switches), avoiding loops (not di-
rectly available as they would limit throughput), and techniques for secret key renewal.
We prototyped our solution in P4 [11], a programming language for network switches.

In terms of performance, we measure the latency and throughput our solution achieves
and compare it with two other algorithms, also implemented in P4: the original Count-
Min algorithm and an algorithm that only forwards the traffic. We also calculate the
errors in the estimations returned by our solution, while monitoring by source IP address
and by flow. Our evaluation using the public-domain behavioral P4 switch model [1]
demonstrates that securing the sketching algorithm introduces a negligible performance
penalty. We also observe that flow-based monitoring requires the use of a larger data
structure to achieve the same errors in estimations, when compared with monitoring based
on source IP addresses only.

1.4 Planning

This section presents the proposed work plan. To help visualize it, a Gantt chart illustrat-
ing the schedule is shown bellow.

Figure 1.1: Work Plan



Chapter 1. Introduction 5

In the Survey task, a survey of sketch-based algorithms was done alongside reading
of other related work. The Security Considerations task included the investigation of
potential security problems of sketches. In Design Solution phase, a secure version of a
sketch was designed. The sketch was then implemented in the Implement Solution task,
and evaluated in the Evaluate Solution task. The Document Work task is related to the
writing of this document.

1.5 Structure of the document

This document is organized as follows:

• Chapter 2 - Related Work: This chapter presents a survey of sketch-based algo-
rithms, security considerations about them, and some context about programmable
switches.

• Chapter 3 - Design: In this chapter the design of the solution will be presented,
including the way the memory data structures are reconfigured over time.

• Chapter 4 - Implementation: In this chapter the most important P4 implementation
details are presented.

• Chapter 5 - Evaluation: This chapter presents the evaluation performed in terms of
performance and functionality of the proposed solution.

• Chapter 6 - Conclusion: A conclusion about the work done is presented in this
chapter.
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Chapter 2

Related Work

In this chapter, we start with a survey on sketch-based monitoring algorithms. For each
algorithm, we describe the data structure it requires, the methods it provides, and the ac-
curacy that it is able to guarantee. Afterwards, we investigate these algorithms, giving
special attention to the Count-Min, with respect to security. For different adversary capa-
bilities we tried to identify the possible actions a malicious user could take. Finally, in the
last section, we describe the emergent programmable switches. We give special attention
to the P4 language, that is used to program these switches, and that we use to implement
our solution. Besides identifying the language’s goals, structure and architecture, we also
present recent proposals that make use of the P4 language for network monitoring.

2.1 Sketch-Based Monitoring

Network monitoring algorithms used today are mostly sample-based or sketch-based.
These kind of algorithms, which aim to be memory and CPU efficient, are probabilis-
tic because they are not able to guarantee that exact results are always provided. Instead,
they aim to guarantee that high quality approximations are returned, which may be as
useful as the exact results. Sample-based algorithms monitor only a subset of the traffic
that arrives at that device. For that reason, many packets are not monitored, which leads
to accuracy problems. On the other hand, sketch-based algorithms process every packet,
performing a summarization (mainly by hashing and counting) for a specific statistic of
interest. Importantly, the algorithms are designed with provable accuracy-memory trade-
offs.

This section presents some of the most well-known sketch-based algorithms that can
be used to monitor networks. The algorithms are categorized according to the problem
they propose to solve. It is assumed a monitoring model where there is an external entity
that periodically collects the sketch’s counters. Immediately after this, all counters are
restarted and a new monitoring cycle begins.

7
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Figure 2.1: Count-Min sketch data structure with width w = 4 and depth d = 3

2.1.1 Heavy Hitters

This section presents a set of sketches designed to identify flows that are larger (in number
of packets or bytes) than a fraction of all flows seen during a time interval. Identifying
heavy-hitters is important for several network applications, such as traffic engineering,
anomaly detection and DDoS prevention.

Count-Min Sketch

The Count-Min sketch [16, 17] identifies the heavy hitters in a stream by solving the
Count Tracking problem, where the goal is to find the frequency of each item in a stream
with a large number of items.

Data Structure The data structure used is a two-dimensional array of counters with
width w and depth d, both fixed at the time of creation. These values, w and d, are chosen
based on the desired accuracy of the estimates. The counters are initialized with zero.

In addition, d hash functions must be chosen uniformly at random from a pairwise-
independent family. At update time, each of these functions maps the item onto the range
{1, 2, . . . ,w}.

Methods The sketch provides two methods: update(i,c), which updates the frequency
of item i by c, and estimate(i), which gives the estimated frequency of i.

Update(i,c): When a new item i arrives, for each d row the corresponding hash
function is applied to i in order to determine the position in that row of the target counter.
Value c, which may be positive or negative, is then added to the target counter.
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Estimate(i): In order to estimate the frequency of an item i, for each of the d rows
the corresponding hash function is applied to i. This gives the position of the target
counter in every row. After the d counters are found, the one with the smallest value is
chosen. The value of that counter is then returned.

Accuracy Summarizing a stream normally results in the loss of some accuracy. To
minimize this loss, the sketch dimensions should be as high as possible. This way, the
probability of collision is lower and, as a consequence, the average accuracy of the esti-
mates will be higher. Another factor contributing to the accuracy is the duration of the
monitoring cycles. Whenever the counters are restarted, the accuracy of the sketch is
perfect, starting to decrease after the occurrence of collisions.

If N is the sum of the values of all the counters in a row of a sketch of size w × d,
the frequency of an item i returned by the algorithm is at most 2

w
of N more than its true

frequency, with a probability of at least 1−
(
1
2

)d.
Example: For a query to have an error of at most 0.001 of N with a probability of

at least 0.999, the sketch dimensions should be the following:

• 2
w
= 0.001⇔ w = 2000

• 1−
(
1
2

)d
= 0.999⇔

(
1
2

)d
= 0.001⇔ d = log(0.001)

log(0.5)
⇔ d ' 10

Note: If the resulting value is not an integer, it must be rounded up in order to preserve
the guarantees.

Count Sketch

The Count Sketch [14, 15] can also be used to identify heavy hitters. While the Count-
Min sketch can be used to count packets or bytes, the Count sketch can only be used to
count packets, as there are only two possible update values: +1 and −1.

Data Structure The data structure is, like for the count-min sketch, a two dimensional
array with w width and d depth. The dimensions of the array are going to have an effect
on the accuracy achieved in the estimates. Each d row should be interpreted as an hash
table with all its slots initialized to zero.

The count sketch also needs d hash functions to map objects onto {1, ...w} and another
d hash functions to map those same objects to +1 or−1. Let i be the object to map. Then
the hash functions are: h1...hd : i→ {1...w} and s1...sd : i→ {+1,−1}.

Methods For the operation of the algorithm, two methods are provided: the update
method, called whenever a new item arrives, and the estimate method, that returns the
estimated frequency of the queried item.
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Figure 2.2: Count sketch data structure with width w = 4 and depth d = 3

Update(i): For a given item i, the algorithm applies for each row the corresponding
hash function h to i. This operation gives the position in that row where the target counter
is located for i. After that, a second hash function, s, is applied to i, which will produce
the value +1 or −1. Finally, the result of the function s is added to the value in the target
counter.

Estimate(i): Let j be an iterator over the rows, hj a function that identifies a position
in row j and sj a function that returns +1 or −1. For each row j, the product of hj(i) and
sj(i) is calculated. The median of these j products is the estimated frequency returned.

The median should be used instead of the mean because of the mean sensitivity to
outliers. For example, if there is a counter with a value far from the others, which will
probably happen due to collisions, the inaccuracy of the returned value would be higher
if the mean was used instead of the median.

Accuracy Let F2 be the sum of the squares of the frequencies of the items. For this
version of the Count Sketch algorithm, the data structure used should have w = 1/ε2

2
and

d = log(1
δ
), in order to have an error of at most ε

√
F2 with a probability of at least 1− δ.

2.1.2 Frequency Moments

The problem of calculating the frequency moments was defined in [9] as described next.
Consider a sequence of items S = (a1, a2, ..., am), where each ai is a number between
1 and n and mi denotes the number of occurrences of i in S. For each k ≥ 0, the kth
frequency is defined as:

Fk =
n∑
i=1

mk
i (2.1)

There are several frequency moments that have different applications by providing useful
statistics about the sequence. For example, F0 represents the number of distinct elements
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in a stream and F1 is the number of elements of a stream. The sketch shown below is used
to estimate F2, which is the Gini’s index of homogeneity, an index that is required in the
calculation of the surprise index [25] of a sequence. The surprise index is a measure of
the degree of surprise associated with the occurrence of an event. The larger the index,
the more surprising the occurrence of the event is. An event is surprising if its probability
is small compared with the probabilities of occurrence of other events. Considering Pr
the probability of the event that actually occurred, the surprise index is calculated with:

Surprise Index =
F2

Pr
(2.2)

AMS Sketch

The AMS Sketch is useful to estimate, using a compact data structure, the value of F2 of
the frequency vector containing the data stream. The second frequency moment (F2) of
a vector v is defined as the square of its Euclidean norm (also called L2 norm), which can
be represented as ||v||22.

The sketch was proposed originally in 1996 [9] but since then other authors have
optimized it [15]. In this newer version of the sketch, the update time is reduced by
O( 1

ε2
), maintaining the same guarantees and requirements of space.

Data Structure The data structure used by this sketch is an array of width w = 1
ε2

and
depth d = log(1

δ
). For each d rows, an hash function h maps the items to {1, 2, ...w}.

A second hash function, g, is needed to map those same items to {+1,−1}. Function g
must be fourwise independent [38]. All entries of the array are initialized to zero.

Methods The algorithm uses an update method to update the data structure whenever a
new item arrives and an estimate method that returns the second frequency moment, F2,
of the vector containing the data stream.

Update(i,c): For each row j between 1 and d, hj(i) is computed to obtain the po-
sition of the target counter in that row. After that, the result of c × gj(i) is added to the
value in the target counter, positioned in row j and column hj(i). At the end of each j
iteration, the target counter value is: target counter = target counter + c× gj(i).

Estimate(i): Let D be the data structure where D[j, k] represents the entry in row j

and column k. For each row j, compute
∑w

k=1D[j, k]2. The median of these sums is the
estimate of F2 returned by the algorithm.
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Accuracy Recall that v is an imaginary vector containing the full data stream. The
sketch guarantees that, given a certain sketch dimension, with a probability of at least
1− δ the estimate returned by the algorithm is between (1− ε)||v||22 and (1 + ε)||v||22 or,
in a simplified version, (1− ε

2
)||v||2 and (1 + ε

2
)||v||2.

2.1.3 Detection of Traffic Changes

The detection of traffic anomalies is crucial to identify failures and attacks in a network.
However, to do this perfectly it is necessary to analyze each flow individually, which may
be too expensive. For this reason, a solution that uses sketches is preferable due to its
capability to summarize the traffic and still provide an accurate estimate when queried.

There are two main approaches to identify traffic anomalies: (1) looking for anomalies
that match the behavior of some known anomaly and (2) compare the traffic with a model
of normal behavior constructed based on past traffic history. The first approach has the
same problem of blacklists: new anomalies/attacks are not detected because to identify
them it is required to know their behavior in advance. The second approach does not
require anything to be known a priori, allowing the detection of new anomalies. However,
sometimes what is considered an anomaly by this solution may in fact be the normal
behavior that is new.

K-ary Sketch

The k-ary sketch [29] was developed to identify traffic anomalies in an efficient, accurate,
and scalable way. The k-ary operation follows the second approach described above. It
looks for significant changes in the behavior of the traffic when compared to a model of a
behavior considered normal, constructed based on past traffic history. The algorithm has
three modules:

• Sketch module: Similar to other sketches, where the data stream is summarized in
a sketch So;

• Forecasting module: Produces a forecast sketch Sf using some forecast model
based on the observed sketches So;

• Detection module: A forecast error sketch Se is calculated Se = So − Sf . Using
the Se sketch, the change detection module verifies if the forecast error is above a
defined threshold and if so, a potential anomaly is identified.

Data Structure The k-ary sketch uses a two dimensional array of counters of width w
and depth d. Each row has an associated hash function that maps the items of the data
stream onto {1, 2, ...w}. These hash function must be, like in the AMS Sketch, fourwise
independent [38], in order to keep the sketch guarantees of accuracy.
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Methods The algorithm provides 4 methods: the update method, to update the sketch,
the estimate, to reconstruct an approximation of the stream of items with specific key, the
estimateF2, used to estimate the second frequency moment of the vector containing the
data stream, and combine to compute the linear combination of multiple sketches.

Update(S, i, c): Let S[j, k] represent the counter located in row j and column k of
sketch S. For each row j between 1 and d, add to the counter in [j, hj(i)] the value c.

Estimate(S, i): For each row of a sketch S, the following is calculated, where
sum(S) =

∑w
k=1 S[1, k] is the sum of all values in the sketch (computed only once):

S[j, hj(i)]− sum(S)/w

1− 1/w
(2.3)

The estimate returned for the given key i is the median among the results of all rows.

EstimateF2(S): For each row j of the sketch S, the following is calculated:

w

w − 1
·

w∑
k=1

(S[j, k])2 − 1

w − 1
· (sum(S))2 (2.4)

The second frequency moment estimated is the median between the results of all rows.

Combine(c1, S1, ..., c`, S`): Let c1...c` be scalars and S1...S` be sketches. The
linearity of the sketch data structure allows the linear combination of multiple sketches:

Result Sketch =
∑̀
k=1

ck · Sk (2.5)

Forecasting Module There are several models that can be used for forecasting and
change detection. There are relatively simple smoothing models that work with the
weights assigned to each previous sketch and models belonging to the family of AutoRe-
gressive Integrated Moving Average (ARIMA) models [13], which identify the linear
dependency of the future values on the past values.

Change Detection Module This is the module responsible for detecting the variations.
Initially, the forecast error sketch Se(t) is constructed, based on the observed sketch and
the sketch that results of the application of the forecast module: Se = So − Sf .

For any given i key, it is possible to reconstruct its forecast error in Se(t) at any time
using the Estimate(Se(t),i) method. The detection alarm is raised if the estimated forecast
error is above a threshold TA. The value of TA is calculated based on a variable T , defined
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by the application, and the estimated second moment of frequency of the forecast error
sketch Se(t):

TA = T · [EstimateF2(Se(t))]
1
2 (2.6)

Considering the data stream as a series of (key, value) pairs. The algorithm can only
indicate if, for a given key, the pairs with that key have considerable change. This process
is irreversible, meaning it is required to know the keys to query to find the streams that
changed more than the threshold.

One possible solution is to brute-force the keys. In this solution, all the keys of the
stream in an interval t are recorded and then replayed after the Se(t) is constructed. The
problem is that this approach is not scalable with a large set of keys. A solution that
reverses the k-ary sketch is presented in [34]. By modifying the algorithm’s update pro-
cedure with a set of techniques, it allows to efficiently infer the keys of target flows from
sketches.

Accuracy Like in the other sketches, the dimensions of the sketch, w and d, are crucial
to the accuracy that can be achieved. Consider vesti the estimated returned for the item i

by the method estimate and F est
2 the estimated frequency moment returned by the method

estimateF2 of the algorithm.

Estimate method: For an item i, T ∈ (0, 1) and α ∈ [1,∞), if |va| ≥ αT
√
F2, then

Pr
{
|vesti | ≤ T

√
F2

}
≤
[

4

(w − 1)(α− 1)2T 2

]d/2
(2.7)

EstimateF2 method: For any λ > 0,

Pr
{
|F est

2 − F2| > λF2

}
≤
[

8

(w − 1)λ2

]d/2
(2.8)

2.1.4 Counting the Number of Distinct Flows

The problem of counting the number of distinct header patterns (flows) seen during a
measurement interval is addressed by the algorithms presented in this section. An intru-
sion detection system (IDS) looking for port scans, for example, can count, for each active
source address, the distinct flows defined by destination port and IP address. If a source IP
has more than a defined number of distinct flows opened during the measurement interval,
it is probably performing a port scan.
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Direct Bitmap

A Direct Bitmap [20] is a sketch-based algorithm that addresses the problem of counting
the number of distinct flows among packets received on a link during a time period. This
task may be specially difficult if the right algorithm is not used because nowadays network
links work at very high speeds, allowing the execution of only a small number of accesses
to memory per packet.

Data Structure The data structure is an array of bits, also called a bitmap, of size b,
with all its bits set to zero at the beginning. It is also required an hash function h to map
each flow to a bit of the bitmap. Considering N as the maximum number of flows and
ε as the acceptable average relative error, then the size of the bitmap b is the result of
d N
ln(Nε2+1)

e.

Methods The algorithm has only two operations: update, called whenever an item
comes in; and estimate, used at the end of the measurement interval to get the number
of distinct items.

Update(i): Whenever an item (packet) i arrives, the hash function is applied to its
header pattern (used to identify the flow). The hash function returns the position of the
array where the bit associated to that flow is located. That bit is then set to 1, if it was not
already set by a previous item belonging to the same flow (or to a flow that maps to the
same bit).

Estimate(): Let z be the number of unset bits. The number of unique elements
returned is given by the following equation, where n̂ is the estimated number of distinct
elements (flows):

n̂ = b ln

(
b

z

)
(2.9)

Accuracy The algorithm’s accuracy is not perfect since the bitmap size is smaller than
the number of existing flows. Because of that, collisions will occur with a random proba-
bility.

Let n be the real number of distinct elements and ρ the flow density, defined as the
average number of flows that hashes to the same bit. In order to achieve the best possible
accuracy, the value for ρ should be the one that maximizes the accuracy. The standard
deviation of the ratio n̂

n
given by this algorithm is calculated with the following equation:

SD

[
n̂

n

]
≈
√
eρ − ρ− 1

ρ
√
b

(2.10)
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Virtual Bitmap

The Virtual Bitmap [20] derives from the Direct Bitmap algorithm, described above.
However, it uses less memory than the Direct Bitmap, by covering only a portion of
the flow space. A Virtual Bitmap that covers the entire flow space is a Direct Bitmap.

Because of the limited memory space, this algorithm samples the flow space. This
sampling factor must be chosen before the execution of the algorithm, based on the ex-
pected number of flows. For a given memory size, the larger the number of flows, the
smaller the flow space covered. For this reason, the sampling factor must be chosen care-
fully because if the number of flows is too large, the virtual bitmap will have the same
problems as an underdimensioned Direct Bitmap.

Data Structure Like in the Direct Bitmap, the Virtual Bitmap also uses an array of bits
of size b and an hash function h to map the flows to specific positions of the array.

Consider a threshold on the number of distinct flows that are allowed before the raise
of an alarm by the algorithm. In order to maximize the accuracy, at the threshold the
value of the flow density ρ (number of flows / b) should be 1.593624. By minimizing the
algorithm’s average error with equation 2.11, the algorithm’s authors concluded that this
was the optimal value for ρ. For that reason, the sampling factor chosen should allow the
value of ρ to be around 1.6 at the threshold. The value of b should be 1.54413865

ε2
, where ε

is the average relative error, for the best results.

Methods Similar to the Direct Bitmap, this algorithm also provides two methods: up-
date and estimate.

Update(i): An item i is hashed by h whenever it arrives. If the result of h is a
position in the Virtual Bitmap, the bit in that position is set to 1. Otherwise, i is ignored
and the Virtual Bitmap remains unchanged.

Estimate(): Let b be the size of the bitmap and s the flow space size. The number
of distinct active flows n̂ is given by the equation:

n̂ = s ln

(
b

z

)
(2.11)

Accuracy

Like the other sketch-based algorithms, the Virtual Bitmap does not provide perfect accu-
racy. Consider n̂ the estimated number of unique elements, n the real number of unique
elements and ρ the flow density. The standard deviation of the ratio n̂

n
is given by the next

equation:
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SD

[
n̂

n

]
/

√
eρ − 1

ρ
√
b

(2.12)

2.1.5 Count Traffic

The algorithms presented in this section are useful if one wants to count the number of
distinct source addresses that send traffic to a set of destinations. For example, this prob-
lem can be addressed with a combination of a bloom filter, to keep the set of destinations,
and a PCSA sketch, to maintain the count of distinct sources.

Bloom Filter

The Bloom Filter [10] is a sketch-based algorithm used to test whether an item i is con-
tained by a set s. Its main contribution is to allow this task to run in a space-efficient
way.

Data Structure The data structure needed for this algorithm is an array of bits of size
b. In addition, it requires k different hash functions, so that each one maps each element
of the set to a position in the array. Let n be the maximum number of items of the set and
p the false positive probability of the test that determines if an item is contained by a set.
To minimize the probability of false positives, b should be set to − n ln p

(ln 2)2
and k to b

n
ln 2.

Methods The Bloom Filter provides an add method to insert an item into the set and a
test method to determine whether an item is contained by the set.

Add(i): Whenever a new item i arrives, it is hashed by all the k hash functions. Each
hash function returns a position in the array where the bit stored is then set to 1.

Figure 2.3 represents a Bloom Filter of size b = 16 and k = 3 to which three elements
are inserted: a, b and c.

Figure 2.3: Inserted items in the Bloom Filter array with b = 16 and k = 3
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Test(i): To find out if an item i is in the set, the item is hashed by the k functions.
If the bits stored in the returned positions are all set to 1, then the item is contained by
the set with a probability of p. Since the algorithm does not support the removal of items,
which would generate false negatives, every bit set to 1 at update time remains with that
value. So, if at least one of those bits is unset, the item is definitely not in the set. The
removal of an item iremove would require the bits mapped by the k functions to be unset.
If at least one of the bits recently unset was shared with another item ikeep that is kept in
the set, the test operation for the item ikeep would generate a false negative.

Figure 2.4 shows how the operation test is able to determine whether item i is con-
tained by the set. The test failed as one of the hash functions (h2 in this case) is mapped
to a 0-bit, meaning that the item i has not been inserted in the set.

Figure 2.4: Test if the item i is in the set, with b = 16 and k = 3

Figure 2.5 illustrates a false positive. Item j is not in the set but it is mapped by all
hash functions of the test to positions with 1-bits. For that reason, the test will consider
that j is in the set, which is not true.

Figure 2.5: Test if the item j is in the set, with b = 16 and k = 3

Accuracy There are two different situations to consider regarding the result of the al-
gorithm’s test method: (1) it considers that the item is not contained in the set or (2) it
considers that the item is contained in the set. Since the algorithm does not allow false
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negatives, as explained above, the algorithm enjoys perfect accuracy in the first situation,
meaning that the item is definitely not in the set. In the second situation, however, there is
the possibility that the item has not been inserted in the set, which is a false positive. The
probability of the test method to return a false positive is the probability of all the k bits
stored in the positions where i hashes be set to 1. So, the probability p of a false positive
is given by the equation bellow:

p =

(
1−

[
1− 1

b

]kn)k

≈
(
1− e−kn/b

)k
(2.13)

Probabilistic Counting with Stochastic Averaging

The Probabilistic Counting with Stochastic Averaging (PCSA) algorithm [23] provides
the estimated number of distinct items in a collection of data. In the computer networking
area, it is often used to count the number of distinct values of a header field (e.g., the
source address of the packet).

Data Structure This algorithm uses w bitmaps with d positions each. The bitmaps
can also be seen as a two dimensional bitmap of width w and depth d. The value of w
determines the accuracy that can be achieved. The value of d should be at least log2(

n
w
)+4,

where n is the expected number of distinct elements. An hash function h is needed to
uniformly distribute the items over the bitmaps of length d, by mapping the items onto
the range {0...2d−1}. A function f to find the position of the least significant 1-bit in the
binary representation of a value is also needed. Let bit(y, k) be a function that returns the
position of the kth bit in the binary representation of y.

f(y) =

{
mink≥0 bit(y, k) 6= 0 if y > 0

d if y = 0
(2.14)

Methods The update(i) function is called when a new item i is detected, keeping the
algorithm’s data structure updated. At the end of the measurement interval, the estimate()
method is executed to estimate the number of distinct items that have been observed.

Update(i): Whenever an item i arrives, the algorithm starts by applying h to i. Let
a be the remainder of h(i) divided by w and b the result of applying f to the result of
the integer division of h(i) by w. The bit stored in bitmap[a, b] are then set to 1. The
update operation is represented in Figure 2.6 and described in Algorithm 1, where mod
represents the module operator and div represents the integer division operator.
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Figure 2.6: PCSA update operation with number of bitmaps w = 9 and depth d = 4

Algorithm 1 PCSA Update
1: procedure UPDATE(i)
2: a = h(i) mod w
3: b = f(h(i) div w)
4: bitmap[a, b] = 1
5: end procedure

Estimate(): Let S and R be variables initialized to 0 and it be the iterator of a cycle
made through w, starting with it = 0. For each iteration, if the bit in bitmap[it, R] has
value 1 and R is smaller than d, the value of R is incremented and, after that, the value of
S is set to S + R. The estimated number of distinct items returned is the integer part of

w
0.77351

× 2
S
w . This operation is described in Algorithm 2.

Accuracy The standard error ε of the value returned by the estimate method of this
algorithm decreases as the number of bitmaps used increases and is approximated by the
next equation.

ε ≈ 0.78√
w

(2.15)

LogLog and Super-LogLog Sketches

The LogLog and the Super-LogLog sketches [18] are used to estimate the number of
distinct items in a set, by employing only a small auxiliary memory space and a single
pass over each item.

The Super-LogLog Sketch is an improved version of the basic LogLog Sketch. In the
following paragraphs we describe both the basic LogLog algorithm and the techniques
through which the improvements are achieved. When nothing is said, the Super-LogLog
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Algorithm 2 PCSA Estimate
1: procedure ESTIMATE

2: S = 0
3: it = 0
4: while it < w do
5: R = 0
6: while bitmap[it, R] = 1 and R < d do
7: R = R + 1
8: S = S +R
9: end while

10: it = it+ 1
11: end while
12: return trunc

(
w

0.77351
× 2

S
w

)
13: end procedure

works the same way as the basic LogLog algorithm.

Data Structure The data structure needed is an array of m memory units taking only
dlog2(log2(Nmax))e bits each, where Nmax is the maximum number of distinct elements
expected. All positions of the array are initialized to zero. The value of m determines the
accuracy of the algorithm, as shown by equation 2.18.

Like in the PCSA sketch, an hash function h is needed to transform the input items
into binary strings of size H . The value of H , corresponding to the length of the hashed
items, must satisfy H ≥ log2m + dlog2(Nmax

m
) + 3e. A second function, f , is needed to

find the rank of the first 1-bit, counting from left, in a sequence of bits. Thus, f(1...) = 1,
f(001...) = 3, f(0k) = k + 1, etc.

In the Super-LogLog algorithm, it is possible to reduce the size of each m memory
unit to dlog2dlog2(Nmax

m
) + 3ee bits.

Methods The algorithm provides a method to add a new item to the data structure and
another one to estimate the number of distinct elements added.

Update(i): Whenever an item i arrives this method is called and i is immediately
hashed by h. Consider k = log2(m). The value of the first k bits of h(i) is an index j to
a position in the array. The position j in the array contains a value, say M(j), that is then
set to the maximum between its previous value and the output of function f applied to the
binary representation of h(i) without its first k bits.

Estimate(): This method is used to get the output from the algorithm. Consider
αm ∼ α∞− 2π2+log22

48m
, where α∞ = 0.39701. In a practical implementation with m ≥ 64,

αm can be replaced by α∞ without much detectable bias. The value E returned by the
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basic LogLog algorithm, corresponding to the estimated number of distinct items added
to the data structure, is given by the next equation:

E = αm ·m · 2
1
m

∑
j M

(j)

(2.16)

In the Super-LogLog algorithm, only a portion of the array is used to calculate the
number of distinct items. This portion corresponds to the m0 = θ0m smallest values
stored in the array. The constant θ0 is a real number between 0 and 1, producing near-
optimal results when its value is 0.7. The value returned by the Super-LogLog is given
by the equation below, where

∑∗M(j) indicates the sum of the values in the selected
positions of the array.

E = αm0 ·m0 · 2
1

m0

∑∗M(j)

(2.17)

Accuracy The standard error measures, in proportion to the real number of distinct
items, the deviation that is expected in the estimated result. An approximation of this
value, using the basic LogLog algorithm, is given by the next equation, where σ represents
the standard error.

σ ≈ 1.30√
m

(2.18)

Using the improvements of the Super-LogLog algorithm, the accuracy increases. The
standard error σ is now given by:

σ ≈ 1.05

m
(2.19)

As the quantity 1
m

∑
jM

(j) is closely approximated by a Gaussian, the estimate re-
turned by the algorithms are within σ, 2σ and 3σ of the exact number of distinct items
with a probability of 65%, 95% and 99%, respectively.

HyperLogLog

The HyperLogLog [22] is an improvement over the LogLog and the Super-LogLog Sketches.
The algorithm was developed to estimate the distinct number of elements of a set, while
being more memory efficient than its predecessors.

Data Structure The data structure needed is the same as its previous versions: an array
of m buckets with dlog2(log2(Nmax))e bits each. The m memory units are all initialized
with zero. There was a “raw” version of the algorithm that instead of initializing the m
memory units with zero, initializes them with −∞. However, for small cardinalities, the
algorithm was very inaccurate, since the value 0 was always assumed whenever one of
the memory units was not modified.
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The hash function needed, h, should map the input items into hashed values whose
bits are assumed to be independent and each one to have 0.5 probability of occurring. The
second function needed, f , should also be present so it is possible to find the leftmost
1-bit in a binary string (one plus the length of the initial run of 0’s).

Methods The algorithm provides the same two methods as the LogLog Sketch: Up-
date(i) and the Estimate().

Update(i): Whenever an item i arrives this method is called and the h function im-
mediately hashes i. Let k = log2(m) be the number of bits of the hashed value that
determines an index j to a position in the array. The value of j is obtained by adding 1 to
the value of the first k bits of h(i). Considering M(j) the value contained by the array in
its position j, the value of M(j) in this stage is set to the maximum between its previous
value and f(w), where w is the binary representation of h(i) without its first k bits.

Algorithm 3 HyperLogLog
1: procedure UPDATE(i)
2: x = h(i)
3: j = 1 + 〈x1x2...xk〉2
4: w = xk+1xk+2...
5: M [j] = max(M [j], f(w))
6: end procedure

Estimate(): This method returns the estimated number of distinct elements of the
data set. In the “raw” version of the HyperLogLog algorithm, the value calculated with
the equation bellow, where αm ∼ 0.72134 as m→ +∞, is returned directly.

E = αm ·m2 ·

(
m∑
j=1

2−M(j)

)−1
(2.20)

In addition to initializing the memory units with zero instead of −∞, some other
improvements were made to the “raw” version of the algorithm. These improvements
regard the algorithm’s estimate operation, being applied over the value of E, calculated
as described above.

Consider E∗ the improved estimate. To calculate its value the following rules are
applied, in this order:

1. If E ≤ 5
2
m, let V be the number of memory units with value 0. If V 6= 0, E∗ =

m log(m
V
), otherwise E∗ = E;

2. If E ≤ 1
30
· 232, then E∗ = E;
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3. If E > 1
30
· 232, then E∗ = −232 log(1− E

232
).

After that, the value of E∗ is found and can be returned, as it represents a good esti-
mation for the number of distinct elements in a set.

Accuracy The standard error to be expected from the estimated values of the Hyper-
LogLog are numerically close to 1.03896√

m
.

The estimates returned by the algorithm are also approximately Gaussian and, for that
reason, these values are expected to be within σ , 2σ, and 3σ of the exact count of distinct
elements with respectively 65%, 95%, and 99% probability.

Multistage Filters

Multistage Filters [19, 21] is the name of an algorithm used to identify large flows, defined
for sending, individually, more bytes than a defined threshold.

Data Structure The data structures used are a “flow memory”, which is an array of
flow IDs designed to contain the flows that sent more packets than a threshold T , and d
arrays (the stages) of counters, each one with a different and independent hash function
hj associated.

Methods The sketch provides two methods: the update method that is called to every
packet that arrives and an estimate method, that returns the flows that probably sent more
than a threshold of packets.

Update(i): Whenever a packet i arrives, the d hash functions compute the flow ID
of i. These calculations can be made in parallel. The result of each hash function is a
counter, that is then incremented by the size of i. After that, if all counters that are mapped
by the functions are above the threshold T , the flow ID of i is finally inserted in the flow
memory. This way, the effect of collisions is decreased, attenuating the probability of
false positives, as only the flow IDs that maps to counters with values above T at all
stages are inserted in the flow memory.

Estimate(): In this algorithm, this operation is very simple as the IDs of the flows
that are estimated to be “large” is the content of the flow memory array.

Accuracy This algorithm guarantees that all flows that sent more bytes than the thresh-
old are in the flow memory, as there are no false negatives, only false positives.

Consider the following notation:

• b the number of counters in a stage;
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• s the size of a flow (in bytes);

• d the number of stages;

• C the number of bytes that can be sent during the entire measurement interval;

• k = T ·b
C

.

The probability of a flow of size s < T (1− 1
k
) be inserted in the flow memory is given

by:

p ≤
(
1

k
· T

T − s

)d
(2.21)

2.2 Security in Sketch-Based Monitoring

A major problem that sketch-based algorithms have to face is the limited memory and
CPU available. Today’s network links operate at very high speeds, decreasing the time
budget a switch has to spend with each packet. This constraint has led to monitoring
approaches that completely neglect security in favor of ones that minimize the time and
space requirements. In some controlled environments this lack of security might be ac-
ceptable because threats are limited, but in general it is difficult to assume that no attacks
will ever occur. In addition, monitoring activities are often used in the context of network
defense applications, such as anomaly detection and intrusion prevention. Therefore, if
the monitoring algorithms are insecure then their results may not be trustworthy, what
makes their activities worthless or, in a worse case, counter-productive — since corrupted
results could lead the network administrator to take inappropriate actions. Therefore, se-
curing the monitoring function is crucial to ensure that the decisions are always adequate.

Every sketch-based algorithm makes use of one or more hash functions. If these
functions are not secure, the entire sketch is vulnerable. In the implementation guidelines
for the Count-Min sketch [17], for example, the authors say that the hash functions do not
need to be particularly strong (as the cryptographic ones are). Some sketch’s authors opt
not to specify what kind of hash functions are needed and others, like the AMS Sketch’s,
suggest polynomial ones based on the module operation. A malicious user can exploit this
fact to benefit himself, to harm someone else or to simply corrupt the correct operation of
the algorithm.

The severity of an attack to a sketch depends on the level of influence the adversary
has on the monitored network. We assume the adversary may be anywhere inside the
monitored network but that he is not in control of the device where the monitoring solution
is deployed. The next subsection tries to describe some vulnerabilities of the sketches,
according to adversaries with different capabilities.
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2.2.1 Adversary Capabilities

In this subsection, some malicious actions a user can take are described. We assume an
adversary that might be anywhere inside the network but that has not compromised the
device where the monitoring solution is deployed. All details about the implemented algo-
rithms are known to the adversary, and therefore he may be able to perform the following
actions. Depending on his privileges in the network, the malicious user may be able to
insert crafted packets into the link, to drop/modify other user’s packets or he may be only
able to eavesdrop the link. Table 2.1 summarizes the identified attacks that can be made
to the sketch-based algorithms we presented in section 2.1.

General Algorithm’s Dependent

Eavesdrop Only

– Predict the next algo-
rithm’s actions
– Find potential victims
for other attacks

– Not applicable

Delay Packets – Not applicable – Not applicable

Drop Packets
– Prevent the algorithm
to execute some action

– Not applicable

Modify Packets

– Preimage and colli-
sion attacks on the hash
functions;
– Corrupt packet’s data

– Overflow the counters
– Add negative values to counters
– Corrupt hash functions that map items
to +1 or -1
– Choose values that the hash function
of Virtual Bitmap will map to values out-
side the flow space covered

Generate Traffic

– Preimage and colli-
sion attacks on the hash
functions
– Overcounting of frag-
mented packets

– Overflow the counters
– Add negative values to counters
– Corrupt hash functions that map items
to +1 or -1
– Choose values that the hash function
of Virtual Bitmap will map to values out-
side the flow space covered
– Adjust the behavior considered normal
by the K-Ary algorithm to fit the behav-
ior of a future attack.

Table 2.1: Attacks against sketch-based algorithms

We also inspected the security vulnerabilities of one of the sketch-based algorithms in
particular – the Count-Min algorithm. The results are presented in Table 2.2. This table
differs from Table 2.1 by presenting the attacks naive implementations of the Count-Min
algorithm would be vulnerable to. Just to give an example, adding negative values to
the algorithms’ counters is an example of an exclusive attack to the Count-Min algorithm.
The Count-Min’s specification allows this operation since the algorithm was not originally
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designed to be used specifically in a network monitoring context.

Attacks Examples

Eavesdrop Only

– Predict the next algo-
rithm’s actions
– Find potential victims
for other attacks

By eavesdropping the network the adver-
sary will be able to build up the same
data structure as the monitoring entity.
He can use that to find out which buckets
are not close to the threshold, identifying
potential victims for future attacks.

Delay Packets – Not applicable

Drop Packets
– Prevent the algorithm
to execute some action

By dropping packets and using the same
data structure as the legitimate monitor-
ing entity, the adversary is able to pre-
vent the monitoring algorithm to take
some action just before it does.

Modify Packets

– Preimage and colli-
sion attacks on the hash
functions
– Corrupt packet’s data
– Overflow the counters
– Add negative values to
counters

Preimage: the adversary can choose a a
packet and modify a different packet so
that they both hash to the same value.
Both packets will increment the same
counters.
Overflow: by overflowing the counters,
the adversary prevents the monitoring
entity from reading an high value from
the counter.
Negative values: by making negative the
field in the packet that will be used to
increment the counters, the adversary is
able to decremented the counters instead.

Generate Traffic

– Preimage and colli-
sion attacks on the hash
functions
– Overcounting of frag-
mented packets
– Overflow the counters
– Add negative values to
counters

Fragmented packets: the adversary can
intercept packets and re-transmit those
packets in smaller pieces. This ac-
tion may trick the monitoring entity into
counting each small packet as an individ-
ual packet.

Table 2.2: Attacks against the Count-Min algorithm

Eavesdrop only

If the adversary is placed right before the monitoring device, he can fill his own data
structure, which will become the same as the built up by the legitimate monitoring task.
Knowing the implementation details of the algorithm and possessing the exact same cap-
tured information as the monitoring task allows the adversary to predict the actions that
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will be taken by the monitoring application. Being able to anticipate what will happen
next in the target network may be a tactical advantage to an adversary trying to compro-
mise some participant of that network.

Drop packets

Assuming that the adversary possesses the same knowledge as the legitimate monitoring
task, he can drop some packets in order not to trigger a specific event by the algorithm,
which could uncover an attack being executed in background. The dropped packets may
be chosen in a way that simulates the usual losses of the network, without any suspicious
activity.

Modify packets

If an adversary can capture, modify and then replay the packets being transmitted without
being noticed, he will be able to corrupt a monitoring algorithm that does not ensure the
authenticity of the monitored traffic. The adversary can, for example, modify the packets
in such a way that they will collide when the algorithm’s hash functions are applied to
them. This would cause counters to be incorrect. Depending on the intentions of the
adversary, he can attack the “collision-free” property (collision attacks) or the “one-way”
property (preimage attacks) of hash functions [26].

Another example attack is the overflow of counters before the monitoring entity reads
their values. If an adversary knows the capacity of each counter, he can play with that
in order to overflow several counters at the same time. This may be specially destructive
if some action is programmed to be taken when a counter is close to its limit [40]. For
example, right before counters overflow, their values may be collected and written to a
slower memory. Since in normal situations each counter overflows at a different time,
the algorithm may not be designed to handle situations in which there are many counters
overflowing at the same time. Depending on the algorithm being attacked, the adversary
can also subtract the counters’ values by passing negative values in the variable to be
added.

Some algorithms use a set of hash functions to map items to +1 or -1 at update time
and then calculates the median at estimation time. If the adversary corrupts the output of
these functions, the estimation returned by the algorithm will not be correct.

Finally, an attack that is specific to the Virtual Bitmap algorithm. As described in
the previous section, this algorithm does not cover the entire flow space, using an hash
function to select which packets are ignored and which are not. The adversary can find a
way to force some packets to hash to a position outside of the covered flow space.
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Generate traffic

In the context of the heavy-hitters, for example, assuming that the monitoring task is
keeping track of the frequency of each source IP address, the adversary can spoof his
IP address to one that, by applying the algorithm’s hash function, will collide with an
IP address of a legitimate user. By repeating this action, the adversary can trick the
monitoring task into thinking that a specific legitimate user is generating more traffic load
than he truly is.

In addition to the vulnerabilities that can also be possibly exploited by adversaries
with less capabilities, generating traffic allows the adversary to perform other attacks.
His capability to craft packets, allows him to craft large IP datagrams that may be frag-
mented in multiple packets of smaller size by switches. This process helps the adversary
to quickly fill specific counters of interest, as it decreases the number of crafted packets
needed to achieve that goal. The k-ary sketch is vulnerable to another attack where the
adversary corrupts the forecast sketch (built up based on previously observed sketches) by
slowly changing the behavior that is considered “normal”. To do this, the adversary can
craft and inject packets to the network with sizes slowly increasing, starting with packets
of a size considered normal. This way, the forecast sketch will eventually become the
one the adversary pretends, allowing him to send packets of larger sizes without being
detected.

2.3 Programmable Switches

Common switching chips are fixed-function. They run a fixed set of protocols, defined at
manufacturing time, and the sort of packet processing available is therefore restricted.

Recently proposed switch chips are finally able to process packets just as fast as the
fixed-function chips while allowing the reconfigurability of the data plane. The first pro-
posal of such switches was made by P. Bosshart et al. [12], by means of a reconfigurable
match table model that also allows new actions to be defined from a set of action prim-
itives, enabling to specify precisely how packets are processed. Its authors demonstrate
the performance penalty of having a reconfigurable match table to be small, in compar-
ison to a fixed one. One of the first proposals to make use of programmable switches is
M. Shahbaz et al. [36]. The authors propose a software switch, PISCES, derived from
the Open vSwitch (OVS), whose behavior is defined through a high-level language, P4
(explained next). The use of a high-level language allows the customization of the switch
forwarding behavior without requiring changes to the software switch implementation. As
a result, for the same switch reconfiguration, a PISCES program is orders of magnitude
shorter than the equivalent changes required to the OVS source code, while introducing a
performance overhead of only about 2%.
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2.3.1 P4

P4 [11] is an open-source language maintained by the P4 Language Consortium that al-
lows the programming of reconfigurable switches, such as [12]. Instead of providing only
a set of supported protocol headers (like OpenFlow, the main SDN protocol, does), P4
allows the definition of new headers programmatically, while taking advantage of the new
reconfigurable switches that are capable of processing packets just as fast as the fixed-
function ones. While OpenFlow has to extend its specification in order to support new
headers, at the cost of increased specification complexity, a P4 program can define any
header and reprogram the switch for this purpose.

A P4 program further defines the adequate parsing sequence for the expected packet
headers and the sequence of match+action stages to apply to the parsed packets.

Goals

The following paragraphs describe the three main goals of the P4 language:

• Reconfigurability – The operator is able to redefine how switches process packets
after they are deployed.

• Protocol independence – The language is not tied to any specific packet format.
Instead, the P4 program specifies a packet parser for extracting the required header
fields.

• Target independence – The P4 programmer does not need to know the details of the
underlying switch.

Structure

A P4 program is divided in the following components:

• Headers – Definition of the expected packet formats and specification of the header
fields name and width.

• Parsers – Extraction of the packet headers based on the parse graph defined.

• Tables – A set of control plane operated Match+Action tables used to process pack-
ets. Each table entry is composed of a lookup key and the corresponding set of
actions. The P4 program defines the fields the lookup keys are compared to and the
actions that may be executed.

• Actions – Definition of the manipulations to be done to the packet fields and meta-
data when a specific action is applied.
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• Control Programs – Sequence of operations that determine the order the Match+Action
tables are applied to each packet. For the definition of a control flow, if-else state-
ments may be used in this section.

Architecture

The P4 architecture is illustrated in Figure 2.7. Each packet received as input is processed
by a parser, which produces a representation of that packet so it can be matched against
the match+action tables. The parser operation follows the parse graph, previously defined.

The match+action tables, populated by the control plane, contain matching data and
references to the corresponding actions. When a parsed packet matches a line of a
match+action table, the action referenced by that line is applied to that packet. The ingress
match+action tables are responsible for the generation of the egress specification. This
egress specification determines to which ports the packet will be sent as well as the num-
ber of instances of the packet that are sent to each port. When the packet is in the egress
pipeline, its physical destination is already determined. The packet may be dropped or
have its headers further modified but its destinations does not change.

The queues mechanism, besides processing the egress specification, generates the re-
quired packet instances and submits them to the egress pipeline. When an output port is
overloaded with too many packets, then they may be temporarily stored in buffers.

When the packet finally leaves the egress pipeline, it is reconstructed from its modified
parsed representation and then transmitted by the determined output port.

2.3.2 P4 for Sketch-Based Monitoring

Emerging programmable switching hardware [12] gives an unprecedented level of flex-
ibility to packet processing. Leveraging on the advances brought by P4, recent work
has proposed solutions that enable, for the first time, sketch-based algorithms to run in
hardware switches.

Liu et al. [30] have proposed UnivMon, a framework that allows universal streaming:
a single universal sketch that is shown to be provably accurate for estimating a large class
of functions. The solution takes advantage of programmable switches through the P4
language for flow monitoring. Another P4-based monitoring solution is V. Sivaraman et
al. [37], which aims to identify heavy hitter flows entirely in the data plane. For this
purpose, it uses a pipeline of hash tables to keep track of the heavy flows at each moment.
Taking advantage of the ability to keep and manipulate state over multiple packets that
programmable switches have, hashpipe makes use of packets to carry results over multiple
stages.

As we can see, there are already a few proposals in the network monitoring context
that use the P4 language to leverage the flexibility provided by programmable switches.
However, contrary to our proposal, none of these works considers security in their design.
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Figure 2.7: P4 architecture (from [6])

2.4 Summary

In this chapter we review the most well-known sketch-based algorithms, describing the
data structures each one uses, its operations, and the accuracy guaranteed. Afterwards, we
identified the main security vulnerabilities of the generality of sketch-based algorithms,
in a network monitoring context. We then focused on the identification of the vulner-
abilities of a specific algorithm – the Count-Min. Finally, we introduced the emerging
programmable switches, and P4, a language to program them. We concluded by review-
ing solutions that leverage the advances brought by P4 in the network monitoring context,
but that still have limitations with respect to security.

In the following chapters we propose the design, and provide an implementation and
evaluation of a secure version of the Count-Min sketch. In addition to securing the Count-
Min algorithm, we also adapt the original algorithm and its secure version so they can
be used as network monitoring solutions. For this purpose, we take advantage of pro-
grammable switches, through the P4 language.
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Chapter 3

Design

In this chapter, the design of a secure version of the Count-Min algorithm (described
in section 2.1.1) is presented. The algorithm is implemented in P4 (section 2.3.1) and
can be deployed in P4-enabled forwarding devices, to allow efficient and secure traffic
monitoring.

Our objective is to take the Count-min algorithm and modify its operation in such
a way that it is no longer vulnerable to attacks, but without compromising its accuracy,
performance, and simplicity of design. Many of the problems that were identified can
actually be prevented if the attacker is no longer capable of predicting the behavior of
the algorithm. In particular, if he is unable to guess which entries in the Count-min data
structure are modified with the arrival of a packet, then he cannot emulate the algorithm
behavior just by observing the arriving traffic. Therefore, an effective way to achieve this
goal is to substitute the original hash functions by a fast cryptographic hash function that
receives as input also a strong key (128-bits). Since the key is unknown to the adversary, it
becomes extremely hard to brute-force in an attempt to create for instance hash collisions.
Since network monitoring is often required to be continuously active, we need to provide
the possibility to change this key at runtime (i.e. without having to restart the switch).
The periodicity of the key change is decided by the network administrator, who should
consider the accuracy guarantees of the Count-Min sketch (see 2.1.1). We also address
the overflows that could occur. We set an attribute in the P4 definition of the counters,
that does not allow increments if that operation will cause an overflow.

3.1 Sketch-Based Monitoring

In our sketch-based monitoring context, there is a controller, responsible for the man-
agement of switches and for making the adequate estimations, and the programmable
switches, that monitor and forward the traffic.

Figure 3.1 shows the operation sequence followed by switches for each packet they
process. As soon as a switch receives a packet, it stores information about that packet

35



Chapter 3. Design 36

(according to the monitoring algorithm deployed), and only after that, the packet is for-
warded.

Figure 3.1: Update operation in a sketch-based monitoring solution

In order to monitor the network, the controller can query several switches to make
assumptions about the network behavior. Figure 3.2 shows the operator making a query
to switches 1, 2, and 3. The order of operations is illustrated in the query to switch 2.
As we can see, after receiving a request from the monitor, the switch accesses the data
it has stored, and returns the requested information. Before the data is transmitted to the
operator, the estimate module makes the required calculations (according to the sketch
being used) in order to provide information that makes sense to the operator.

Figure 3.2: Estimate operation in a sketch-based monitoring solution

The design of our solution is illustrated in Figure 3.3. The initialization sequence must
be executed first. Algorithm 4 is responsible for initiating the P4 switch. The Update
algorithm 6 runs in P4, being executed automatically whenever a packet arrives at the
switch. The Estimate 7 and Change Key 5 are independent algorithms, that may be called
by the controller at any moment.
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Figure 3.3: Solution design

The following sections describe the algorithms that compose our solution.

3.2 Initialization Sequence

Algorithm 4 Initialize P4 Switch
1: procedure INITIALIZE SWITCH()
2: //read the dimensions of the sketch from a configuration file
3: width, height, slot size = read(“config.txt”)
4: number of slots = width× height
5: last row = width× (height− 1)
6: constants = width, height, slot size, number of slots, last row
7: //write constants to a header file
8: write(“input file.p4”, constants)
9: //start a new switch loaded with the p4 program

10: start p4 switch()
11: key = random(2128 − 1)
12: //set the key to be used by hash functions
13: switch.write register(“key register”, key)
14: end procedure

Algorithm 4 corresponds to the initialization sequence of the P4 switch. It starts by
reading the user’s desired sketch dimensions from a configuration file and, based on it,
calculates a set of values that are then written to a constants file. Those preprocessed
values are used inside the P4 program through the preprocessing directive #include,
which makes the constants file contents available to the P4 code. In line 10, the P4
switch is started. The following lines show the generation and storage of the key that
is going to be used by the hash functions. A 128 bits random number is read from Unix’s
/dev/urandom (line 11) and written to a switch register (line 13) as soon as it is up
and ready.



Chapter 3. Design 38

The width and height constants correspond to the number of columns and rows
of the data structure, respectively. The slot size defines the width of each counter in
bits. For example, a data structure with width = 10, height = 3 and slot size = 32

would take 120 bytes. Since the P4 syntax only allows linear arrays, the bidimensional
array required by the Count-Min algorithm is flattened and represented as a linear one
with length width× height, which corresponds to the number of slots constant.

3.3 Change Switch Key

Algorithm 5 Change Key
1: procedure CHANGE KEY()
2: //get data structure and key currently being used by the switch
3: sketch = switch.counter get all(“counters”)
4: key = switch.read register(“key register”)
5: //write sketch and key to a file
6: dump to file(“old sketches file”, sketch, key)
7: //set a new switch key
8: key = random(2128 − 1)
9: switch.write register(“key register”, key)

10: //reset switch data structure
11: switch.counter reset(“counters”)
12: end procedure

Lets call monitoring period to the period of time during which the same key and data
structure are used by a switch. Algorithm 5 changes the switch key in use, and is executed
at the end of each monitoring period. In addition to changing the key, it copies the data
structure’s content to a different memory before cleaning it. In line 6, the data structure
and the key being used by the switch are appended to a file named “old sketches file”,
which may already contain other data structures and keys from previous monitoring peri-
ods. When both the data structure and key are written to the file, the algorithm generates
a new key, inserts it in a switch register (key register) and cleans its main data struc-
ture (counters).

3.4 Update Operation

Algorithm 6 is implemented in P4 and can be run by programmable switches. Lines 5 and
7 define the memory structures that persist across packets: counters and key register.
The main data structure of the algorithm is the array counters, defined in line 5. The
key register is used to store the 128 bits key required by the hash function.

Line 9 onwards is executed for every packet that arrives. The number of packets/bytes
are tracked per item, which, in this representation, is the source IP address of the packet.
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Algorithm 6 P4 Sketch Update
1: // constants gathered during switch initialization
2: width, height, slot size, number of slots, last row = read(“input file.p4”)
3: /* stateful memories that persist across packets */
4: //array with number of slots counters, each one with slot size bits
5: counters = Array[number of slots] with slots of size slot size
6: //register with 128 bits to store the hash function key
7: key register = Register with 128 bits
8: /* Executed to every packet that arrives */
9: procedure UPDATE(PACKET)

10: //item can be any field of the packet header
11: item = packet.src ip
12: key = read register(“key register”)
13: //points to the start of each row
14: target row = 0
15: while target row <= last row do
16: //set the input of the hash function
17: hash input = {item, key, target row}
18: //get a column number
19: target column = hash function(hash input) mod width
20: //get the position of that column in the current row
21: target slot = target row + target column
22: //ensure incrementing the counter does not produce an overflow
23: if counters[target slot] < 2slot size − 1 then
24: counters[target slot] = counters[target slot] + 1
25: end if
26: //point to the next row
27: target row = target row + width
28: end while
29: forward packet(packet)
30: end procedure
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Figure 3.4: Simulated bidimensional array and counter linear array comparison

In line 12, the key previously generated and stored in the key register is read so it
can be used by the hash function.

The algorithm calculates an hash function to every row of the data structure. Towards
this goal, an iterator-like variable is used (represented in Algorithm 6 as target row)
that keeps pointing to a position of the linear array that corresponds to the beginning of
each row in the simulated bidimensional array. The last row constant, which points to
the beginning of the last row of the sketch, is compared in every iteration with target row,
to check if it is already the last iteration.

From line 15 to line 29 we show the operations performed to every sketch row. Line
17 defines the hash function input, function that is calculated in line 20. Here, the modulo
operation (represented as mod) with width is applied to the result of the hash function.
This allows the algorithm to find a value between 0 and width (exclusive), depending on
the result of the hash function. The resulting value, target column, is used as an index
to a column of the sketch. The target slot value is the index in the counters linear
array of the target column in the target row of the simulated bidimensional array.
Figure 3.4 illustrates this conversion. After the target counter index has been calculated,
its value is incremented if possible, i.e., if it does not produce an overflow.

3.5 Estimate Operation

Algorithm 7 is used to estimate the number of packets/bytes associated with a given
item. If the P4 program defines item as the source IP address of packets, for example,
the Estimate procedure returns an estimation for the number of packets/bytes received
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Algorithm 7 Count-Min Estimate
1: /* Estimates the frequency of item */
2: procedure ESTIMATE(ITEM)
3: //file containing all the past data structures and their respective keys
4: old sketches file = “old sketches.txt”
5: estimated = 0
6: for each element in old sketches file do
7: old sketch = element.get sketch()
8: key = element.get key()
9: estimated = estimated+ estimate sketch(old sketch, key, item)

10: end for
11: //get the key currently being used by the switch
12: key = switch.read register(“key register”)
13: estimated = estimated+ estimate sketch(NULL, key, item)
14: return estimated
15: end procedure
16:
17: procedure ESTIMATE SKETCH(SKETCH, KEY, ITEM)
18: width, height, slot size = read(“configuration file.txt”)
19: target row = 0
20: last row = width× (height− 1)
21: result = +∞
22: while target row <= last row do
23: hash input = {item, key, target row}
24: target column = hash function(hash input) mod width
25: target slot = target row + target column
26: //sketch to estimate is being used by the switch
27: if sketch == NULL then
28: //read from data structure kept by the switch
29: row result = switch.counter read(“counters”, target slot)
30: else
31: //read from a stored sketch
32: row result = sketch[target slot]
33: end if
34: //calculate the minimum between obtained values
35: result = minimum(result, row result)
36: target row = target row + width
37: end while
38: return result
39: end procedure
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from that particular IP address.
When the switch key is changed by Algorithm 5, the data structure being used must

be cleaned before the switch restarts its monitoring process to ensure that counters were
only modified by the associated item(s) in the present monitoring period. Otherwise,
there would exist different counters of the same row for different periods, modified by the
same item. Since it is required the estimations to be based on all monitoring periods, it
is necessary to store the data structure being used by the switch before it is cleaned at the
end of a monitoring period. From line 6 to 10 of algorithm 7, these past data structures
are fetched and an estimation for each one is done. When the estimation to be done by
procedure Estimate sketch is based on the data structure currently being used, the
algorithm queries the switch for its key and assign it to key in line 12. The sum of all
estimations, including the estimation based on the data structure currently being used by
the switch, is the value returned by the Estimate procedure.

In the Estimate sketch procedure, after the target slot has been calculated,
if sketch is NULL in line 27, then this is the structure currently in use, so the algorithm
queries the switch counters array for its content in that slot. If it is not, the algorithm
simply reads the content of the sketch that was passed as input at position target slot.
As for the Count-Min, the minimum of all values is the result returned by the algorithm.

3.6 Management of Old Sketches

Algorithm 5 is executed manually by the network operator. In order to maintain the
accuracy guarantees of the main algorithm, as explained in section 2.1.1, it should be
executed regularly, to clean the data structure being used. Since the algorithm’s accuracy
depends on the number of items already monitored, the network administrator can use
that number to decide if it is necessary to execute the algorithm.

Besides cleaning the data structure in use, Algorithm 5 also replaces the switch key.
The security of the solution depends on this key, that is given as input to the hash function,
influencing the counters to increment. To guarantee that this key is kept unknown by the
attackers, it should be changed periodically. This way, even if an attacker finds out the
key being used, he can only make use of that knowledge during that specific monitoring
period. The network administrator is responsible to keep the monitoring periods small
enough so it is highly unlikely that an adversary finds the key being used.

For each execution of Algorithm 5, both the data structure and the key are copied to
a file, meaning that for each monitoring period the size of the data structure plus the 128
bits of the key is taken from the available storage space. To avoid the devices running out
of memory, the network administrator will have to delete some of the old data structures
and keys in order to move to new monitoring periods. The old data structures can not be
merged because the items (source/destination IP, source/destination port, etc.) responsi-
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ble for incrementing the counters are not saved. To merge two different data structures
from different monitoring periods (different hash functions), sketches would have to be
reversible, to allow the items responsible for incrementing each counter to be obtained.
But this is not the case.

In order to keep memory usage limited, one data structure and its respective key may
be deleted at the end of each monitoring period or at the end of a monitoring period series.
There are a few alternatives:

• Delete the oldest one: This solution deletes the oldest data structure and its respec-
tive key from memory at the end of each monitoring period.

• Delete all: This is the simplest solution, where at the end of a set of monitoring
periods all data structures and keys are deleted.

• Keep representatives: A network administrator may want to keep some monitoring
data from the past but he may not need to keep data from all monitoring periods
until the present. This solution suggests to keep only a subset of the data structures
that will represent periods of time. An example where this solution works well is
if there are events of interest, separated in time, during which it is vital to keep all
monitoring data. The data structures recorded between those moments may not be
as important and be deleted after a shorter period of time.

It should be noted that estimations based on more than one data structure will not have
the same accuracy guarantees as the simple Count-Min algorithm, based on a single data
structure. For each stored data structure, an estimation for the given item is done and the
final estimation returned by the algorithm is the sum of the individual estimations. This
means that the final estimation will have an error of at most the error of the Count-Min
algorithm multiplied by the number of data structures the estimation is based on.
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Implementation

The implementation of the algorithm in P4 presented a few challenges, not only because
of limitations of the language but also due to the constraints imposed by the interface
between a P4 program and the software switch. This section briefly explains how the
main obstacles were overcome.

4.1 One-Dimensional Array

The main data structure of the algorithm had to be linearized to an array with a single di-
mension (instead of a two-dimensional array like in the original algorithm’s description).
There are two reasons for this modification: (i) P4 does not support multi-dimensional ar-
rays; and (ii) the size of the array has to be specified at start time (no dynamic allocation).

Consequently, to define the desired data structure’s size, the user writes a configuration
file with the width, height and number of bits in each entry. The P4 code bellow shows
the definition of the main data structure used by the sketch, where it can be seen we
count packets with a data structure which has NUMBER OF INSTANCES entries (equal
to the width ∗ height), each one with SLOT SIZE bits. The attribute saturating
prevents counters to wrap around by stopping to count if they reach their maximum value
(according to P4 version 1.0.3).

c o u n t e r c o u n t e r s {
t y p e : p a c k e t s ;
i n s t a n c e c o u n t : NUMBER OF INSTANCES ;
min wid th : SLOT SIZE ;
s a t u r a t i n g ; / / p r e v e n t s o v e r f l o w s

}

4.2 Repeat Actions

P4 does not support loops. Therefore, a workaround had to used: (i) the loop is unrolled,
creating an if statement per iteration; (ii) the if condition stops processing (becomes false)
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when a counter reaches a previously defined maximum value. Below, it is exemplified
a loop through the lines of the data structure, which could be executed up two times
(depending on the value of LAST ITERATION).

i f ( c u s t o m m e t a d a t a . t a r g e t r o w <= LAST ITERATION )
a p p l y ( u p d a t e t a b l e 1 ) ;

i f ( c u s t o m m e t a d a t a . t a r g e t r o w <= LAST ITERATION )
a p p l y ( u p d a t e t a b l e 2 ) ;

Since P4 does not allow to apply the same table multiple times, we had to create
distinct tables per iteration. To ensure the desired effect, all these tables are associated
with identical actions and memory locations, as exemplified in the next code listing.

t a b l e u p d a t e t a b l e 1 {
a c t i o n s { u p d a t e r o w ;}
s i z e : 1 ;

}
t a b l e u p d a t e t a b l e 2 {

a c t i o n s { u p d a t e r o w ;}
s i z e : 1 ;

}

4.3 MD5 Hash Function

To use a custom hash function we had to add it to the P4 target code. We used the
“simple switch” target from the behavioral-model [1], that restricts the exchange of data
between the switch and the P4 program to 64 bits, which is not enough to hold a MD5
hash function output (128 bits). To overcome this, we divided the hash computation in two
calls, where one calculates the actual MD5 function and returns the 64 most-significant
bits of the result and the other simply returns the 64 less-significant bits (of that same
result). The following code shows how the 64 bits returned values are aggregated into a
128 bit field in P4.

m o d i f y f i e l d w i t h h a s h b a s e d o f f s e t (
c u s t o m m e t a d a t a . f u l l h a s h , 0 , hash p1 , MAX) ;

m o d i f y f i e l d w i t h h a s h b a s e d o f f s e t (
c u s t o m m e t a d a t a . s e c o n d p a r t , 0 , hash p2 , MAX) ;

s h i f t l e f t ( c u s t o m m e t a d a t a . f u l l h a s h ,
c u s t o m m e t a d a t a . f u l l h a s h , 6 4 ) ;

b i t o r ( c u s t o m m e t a d a t a . f u l l h a s h ,
c u s t o m m e t a d a t a . f u l l h a s h , c u s t o m m e t a d a t a . s e c o n d p a r t ) ;
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The full hash is a 128 bits field but only its 64 less significant bits are being used
after the first two lines of code. To merge the hash functions (hash p1 and hash p2)
we start by shifting left 64 bits of full hash and then we do a bitwise OR with the
second part field, which contains the 64 less significant bits of the MD5 output. After
the last line of code the full hash contains the 128 bits output of MD5.

Constant MAX has the value 264, which is required by the P4 function modify field

with hash based offset to apply a modulo operation to the result of the hash func-
tion. This way we guarantee the modulo operation has no effect when applied to the hash
functions result since hash p1 and hash p2 return 64 bits each.

4.4 Define Flows

A flow is defined by the tuple (protocol, source IP address, destination IP address, source
port, destination port). Although in chapter 3 we exemplified our solution only by count-
ing packets based on the source IP, our solution is generic and can be used with flows,
or other combination of headers. To count based on TCP flows, we can not simply hash
those four fields, as traffic exchanged between the same applications, in opposing direc-
tions, would be classified as belonging to different flows. As such, we applied a bitwise
exclusive OR between source and destination IP addresses, and between source and des-
tination ports, to correctly identify the flows. Fields xor ips and xor ports are then
used as input of the hash function, instead of the individual source IPs and ports.

b i t x o r ( c u s t o m m e t a d a t a . x o r i p s , i pv4 . s rcAddr ,
i pv4 . ds tAddr ) ;
b i t x o r ( c u s t o m m e t a d a t a . x o r p o r t s , t c p . s r c P o r t ,
t c p . d s t P o r t ) ;





Chapter 5

Evaluation

We carried out two sets of experiments to evaluate the performance of our algorithm. The
first group measured the latency and throughput of the secure count-min sketch, while the
second set tested the error estimations in several settings.

5.1 Experimental Setup

Figure 5.1: Network Topology

As illustrated in Figure 5.1, the testbed was composed of three machines: one emulat-
ing a P4 switch inside a mininet [5] instance, and the other two acting as simple hosts that
send and receive traffic (host 1 and host 2). The switch machine has an Intel(R) Xeon(R)
CPU E5-2407 v2 @2.40GHz and 64GB of RAM, host 1 has an Intel(R) Core(TM)2 Duo
CPU E7400 @2.80GHz and 4GB of RAM, and host 2 has an Intel(R) Core(TM)2 CPU
4400 @2.00GHz and 2GB RAM. The three machines were connected by 1GB/s links.

The virtual switch used was the second version of the P4 software switch known as
behavioral-model (bmv2) [1]. It was loaded with our P4 monitoring algorithm which
enabled the switch to monitor and forward the traffic received.
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5.2 Performance of Traffic Forwarding

To evaluate the proposed solution, we compared it against two other P4 programs: (i) the
original Count-Min algorithm, used as baseline; and, (ii) a program that simply forwards
traffic, to understand the cost of monitoring.

As explained previously, the size of the data structure of the count-min sketch allows
to trade accuracy for overhead, as for each additional line in the data structure there should
be a performance degradation due to the computation of an extra hash function. Therefore,
we provide experimental results for different number of lines in the data structure. Like
section 2.1.1 demonstrates, a data structure with 20 lines guarantees, with a very high
probability, that the error does not exceed its maximum theoretical value.

5.2.1 Latency

To measure the delay introduced by the switch, we calculated the average round trip time
(RTT) of 10000 pings between the two end hosts. Figure 5.2 shows the observed average
latency and standard deviation for the three P4 programs.

As expected, the forwarding program got the smaller RTT values, with a constant
latency of around 500 microseconds. The secure version of Count-Min performed worse
than the original algorithm, with an average overhead of around 10%. The difference
between them was of approximately 40 microseconds for a sketch with one line, and
around 160 microseconds for a sketch with 20 lines. This is an interesting result because
it demonstrates that with a relatively small increase in the overhead, it is possible to offer
increasingly low error probabilities (see section 2.1.1). Of course, if we could have had
access to hardware support for P4, one should see a significant decrease on these values.

Figure 5.2: Latency between the two hosts
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5.2.2 Throughput

The throughput was measured with iPerf [4] between the two nodes. In order to obtain
the maximum throughput, the traffic rate of iPerf was increased until the network started
to drop packets (i.e., loss rate > 0). Although each experiment was repeated 20 times, the
calculated standard deviation was not big enough to be observable in Figure 5.3. Between
the iPerf client and server, executed by the hosts, was only the switch machine loaded
with our P4 algorithm.

The forward-only solution got the best results, as expected, achieving a throughput of
around 159 Mbits/second. The performance cost imposed by adding security to Count-
Min was on average of about 5 Mbits/second (i.e., around 7%). Our secure Count-Min
algorithm achieved a throughput of 112 Mbits/second with a data structure with 1 line.
With 10 lines, the throughput drop was to 44 Mbits/second, and to 27 Mbits/second with
20 lines.

Figure 5.3: Switch Throughput

5.3 Observed Errors in Estimations

The error associated with the estimations returned by our secure sketch was also evalu-
ated. We used a five minute trace of IPv4 traffic captured on a busy private network’s
access point to the Internet. We injected this set of well known packets in our network so
the switch could process them all. Then, for each distinct monitored item (source IP or
flow identifier, as we will explain next), we queried the sketch for that item’s estimated
frequency. The difference between the estimated frequency and its true frequency is the
estimation’s error for that item.

The goal was to compare how different data structure dimensions would affect the
errors observed in estimations of two monitoring conditions — count packets by sender
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(i.e., source IP address) and by flow (i.e., 5-tuple with source/destination ports and IPs
for TPC connections). Since there are many more distinct flows (22310) than source IP
addresses (1845), we expect to see larger errors when monitoring by flow for a given
memory size. The number of lines of the data structure was fixed to 10, since it would
only affect the probability of the error and not its extent. To test different memory usages,
we used data structures with increasing numbers of columns, starting from 25 (1 KB),
100 (4 KB), 200 (8 KB), 400 (16 KB), 800 (32 KB), 1600 (64 KB) and 3200 (128 KB).
Each individual counter occupies 32 bits.

5.3.1 Source IP Addresses

In this case the monitored item was the source IP address of 791179 packets. Calculating
the estimations error of all items allowed us to find the minimum and maximum error, and
the percentiles 10, 50 (median) and 90 for each experiment, as displayed in Figure 5.4.

Figure 5.4: Errors in estimations using different memory sizes when monitoring by source
IP address with our solution

It was observed that the error decreases as the data structure’s size increases. For a
data structure with width 25 (1 KB if its height is 10 and each counter occupies 32 bits)
the median of the errors was around 12000, which may not be tolerable. However, for a
data structure with just 400 columns (16 KB required), the sketch could already achieve
relatively small errors, with a median of around 20. Finally, by using 32 KB of memory,
the median of the errors was 0.

We also tested the functionality of the original Count-Min algorithm in order to com-
pare its results against our solution. As Figures 5.5a and 5.5b show, the errors in the
estimations returned by both algorithms were very similar (largest observed difference
was around 2500).
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(a) (b)

Figure 5.5: Errors in estimations returned by the secure and the original versions of Count-
Min when monitoring by source IP address. (a) using 1 KB of memory (b) using 4 KB of
memory

5.3.2 TCP Flows

We also monitored the traffic per flows, where the total number of relevant packets sent
through the monitoring device was 633746 (corresponding to all TCP packets).

Figure 5.6: Errors in estimations using different memory sizes when monitoring by flow
with our solution

Figure 5.6 shows that a data structure with 25 columns (1 KB) leads to a median of
errors around 18000. As the memory used increases, the error in estimations decreases,
with a median of 646 when 16 KB of memory was used. We also tested our solution using
128 KB of memory, where the median of the errors was only 36.

Again, we tested the functionality of the original Count-Min algorithm when monitor-
ing by flow and compared its performance against our secure Count-Min version. Again,



Chapter 5. Evaluation 54

(a) (b)

Figure 5.7: Errors in estimations returned by the secure and the original versions of Count-
Min when monitoring by flow. (a) using 1 KB of memory (b) using 64 KB of memory

the errors returned by both algorithms were very similar (largest observed difference was
around 1000), as we shown by figures 5.7a and 5.7b

5.4 Summary

The overhead of securing the Count-Min algorithm turned out to be relatively small, in
terms of latency (about 10%) and throughput (7%). The solution that only forwards traffic
(without monitoring it) performed much better than the monitoring solutions, as expected.
With respect to errors in the estimations, we observed they decrease as the memory used
increases, again as expected. Importantly, we observed there was no difference between
the extent of errors in estimations returned by the original Count-Min and by its secure
version.







Chapter 6

Conclusion

In this thesis our overarching goal was to improve the security of network monitoring.
We focused on sketch-based solutions, and performed a survey about some of the best
known algorithms. After describing their data structures, operations and accuracy, we
explored their main security vulnerabilities, considering adversaries with different capa-
bilities. We have chosen the well-known Count-Min algorithm as target of our work, due
to its flexibility to be adapted to the context of network monitoring.

We proposed a secure version of this sketch-based monitoring algorithm. Our so-
lution involves using cryptographic hash functions and adapting it to the context of pro-
grammable switches. We also include techniques for the solution to be used continuously,
since in its original version it is only possible to monitor something during a limited period
of time, after which the data structure becomes overloaded. For this purpose, we devel-
oped an auxiliary algorithm that is able to copy the data structure to a different memory,
and reset it in runtime, i.e., without having to pause the monitoring algorithm.

Our secure Count-Min prototype was implemented in P4, which allowed us to take
advantage of the programmability provided by emerging reconfigurable switches. Despite
being presented with some challenges due to P4 peculiarities and the software switch
used, we were able to overcome all of them.

To evaluate the performance of the algorithm proposed, we compared it with the orig-
inal version of the Count-Min and a forward-only solution. We were able to demon-
strate, within the P4 software switch limitations, that using a secure version of the Count-
Min algorithm does not introduce relevant performance penalties in terms of latency and
throughput, in comparison to the original version of the Count-Min algorithm.
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