
UNIVERSIDADE DE LISBOA

Faculdade de Ciências
Departamento de Informática

CYBERTHREAT DISCOVERY IN OPEN

SOURCE INTELLIGENCE USING DEEP

LEARNING TECHNIQUES

Eunice Picareta Branco

Mestrado em Informática

Dissertação orientada por:

Professor Doutor Pedro Miguel Frazão Fernandes Ferreira
Professor Doutor Alysson Neves Bessani

2017

Acknowledgments

I would first like to thank my advisor Professor Pedro Ferreira. The door to Professor

Ferreira’s office was always open whenever I ran into a difficult spot or had a question

about my research or writing. He consistently allowed this paper to be my own work,

but steered me in the right direction whenever he thought that was needed.

I would like to thank my co-advisor, Professor Alysson Bessani, for his support

throughout my dissertation.

I would also like to thank and acknowledge the Diversity Enhancements for Secu-

rity Information and Event Management (DiSIEM) [1] project and Horizon 2020 pro-

gramme [2] for giving me the opportunity to carry my research work in the midst of

such an interesting European project and for granting me a nine month fellowship to

carry out the work reported here.

A kind word is in order for the research unit and for its research team at the Depart-

ment of Informatics in which I was involved: Large-Scale Informatics Systems Labora-

tory (LaSIGE) [3] and Navigators [4], which allowed me to grow as a researcher.

As important as it was to have technical support, I will never forget the support

from my family and friends. A special thank you for all those who believed in me and

helped me get where I am.

Finally, I must express my very deepest gratitude to my partner for providing me

with unfailing support throughout my years of study and through the process of re-

searching and writing this dissertation. This accomplishment would not have been

possible without him. This dissertation stands as a testament to your unconditional

love and encouragement. Thank you.

i

To all who helped me get here.

Resumo

Face à necessidade crescente de se processar grandes quantidades de dados relati-

vos a ameaças de segurança, fomos cativados pelo desafio da descoberta de ameaças

cibernéticas em fontes abertas através do uso de técnicas de aprendizagem automá-

tica. Em termos de dados, isto significa que trabalhámos com informação recolhida de

fontes abertas como o Twitter.

O que distingue o nosso trabalho encontra-se no modo como escolhemos abordar

este desafio. A nossa hipótese é a de que processar tais quantidades de dados através

de métodos de aprendizagem automática representa uma vantagem significativa em

termos de eficiência e adequação, pelo que recorremos a redes neuronais.

Escolhemos esta abordagem uma vez que as abordagens de aprendizagem auto-

mática têm vindo a ganhar destaque merecido uma vez que asseguram uma maneira

robusta de resolver um número de tarefas extremamente complexas no contexto de

problemas de big data.

Esta dissertação introduz conceitos e noções gerais em que o nosso trabalho se

baseia, apresenta o trabalho relacionado consultado por forma a ser eventualmente

útil em trabalhos futuros, apresenta também o trabalho que realizámos, os resultados

obtidos, e elenca sugestões sobre linhas de progresso promissoras e trabalho futuro.

Antes de discutir resultados, é necessário começar por introduzir conceitos cen-

trais, o primeiro dos quais sendo o de aprendizagem automática.

Aprendizagem automática (machine learning) pode ser definida como a área ou

abordagem da inteligência artificial de forma a que o sistema tenha a aptidão de apren-

der e melhorar com a experiência. Isto significa que não é necessária programação

explícita para resolver o problema de partida pois o sistema de aprendizagem procura

por regularidades nos dados e adquire a capacidade de tomar melhores decisões com

base nos dados de exemplo que recebe.

Aprofundando esta abordagem, uma rede neuronal é um paradigma de processa-

mento inspirado no modo como processos biológicos nervosos, como os que ocorrem

no cérebro humano, processam informação.

A chave deste paradigma é a conexão entre os elementos básicos do sistema. Este é

composto por um grande número de elementos de processamento, os neurónios, or-

ganizados em rede que entregam as suas saídas uns aos outros para resolverem proble-

v

mas específicos, cabendo notar que uma rede neuronal é tipicamente condicionada no

seu desenho pelo problema que se pretende que resolva, ou seja, é configurada para

uma única aplicação (e.g. reconhecimento de padrões, classificação de dados, etce-

tera).

De entre as técnicas de aprendizagem automática, a aprendizagem profunda (deep

learning) tem adquirido grande relevância e vários projectos têm procurado explorar

as suas vantagens. Trata-se de uma subárea da aprendizagem automática, e em par-

ticular das redes neuronais, sendo que o que distingue esta abordagem consiste no

facto de os dados de entrada passarem por várias camadas funcionais de neurónios,

usualmente não lineares, até serem totalmente processados.

No nosso projecto, a rede neuronal foi aplicada na resolução do problema que con-

siste na classificação de tweets em itens que se referem a uma ameaça de segurança,

ou itens não relevantes a esse respeito. Com essa finalidade, foi implementada uma

rede neuronal convolucional, que comparativamente necessita de pouca intervenção

humana para ser posta a funcionar.

A vantagem de se aliviar a necessidade de tal intervenção também se prende com

o tipo da rede, que pode ser supervisionada ou não supervisionada. Em aprendizagem

supervisionada, um conjunto de dados de treino injectado na rede é composto por

pares de entrada/saída, sendo que a entrada é tipicamente composta por um vector e

a saída é o resultado pretendido para a entrada respetiva. A rede é treinada sobre todo

o conjunto de dados para depois ser aplicada a novas situações ou dados de entrada

desconhecidos. É assim necessário que o algoritmo de processamento generalize a

partir dos dados de treino.

No caso da aprendizagem não supervisada, os dados injectados na rede são apenas

de entrada, o que obriga a rede a inferir funções que descrevem a possível estrutura

subjacente aos dados, pois a sua classificação explícita não é fornecida à rede. Como

os dados não estão associados à sua classificação, não é trivial avaliar a adequação do

resultado obtido pela rede neste caso.

Outro conceito importante é o de redes profundas (deep) vs. rasas (shallow). As

redes neuronais são organizadas por camadas. Estas camadas são compostas por nós

inter-conectados que contêm funções de activação, compreendendo a camada de en-

trada, as camadas escondidas, que pode englobar várias camadas para processamento

de dados, e a camada de saída.

O termo redes rasas é usado para descrever as redes que contêm apenas uma ou

duas camadas escondidas, que são funcionalmente idênticas. No caso de redes pro-

fundas, estas tendem a ter mais camadas escondidas, com grupos de camadas com

funcionalidades distintas. A terminologia mais comummente aceite é a de que para

uma rede ser considerada profunda tem de conter pelo menos três camadas que são

escondidas e funcionalmente distintas.

vi

As redes convolucionais são redes profundas compostas por várias camadas com

funções não lineares aplicadas em cada nó. Em redes normais, cada neurónio de en-

trada está conectado a um neurónio de saída na camada seguinte. As redes neuronais

convolucionais, por sua vez, optam antes por aplicar convoluções sobre a camada de

entrada para computar a saída, em que cada região de entrada está conectada a um

neurónio de saída, consistindo numa rede de conexões locais.

Outro aspecto relevante das redes convolucionais é o de que durante a fase de

treino, a rede aprende os valores dos seus filtros automaticamente baseando-se na

tarefa a ser aprendida e executada. A última camada destas redes é então um clas-

sificador que usa as características (features) de alto nível inferidas pela rede.

Como acabámos de assinalar, uma rede profunda tem várias camadas escondidas

e esse é o modelo da rede que adoptámos no nosso trabalho.

A primeira camada da nossa rede transforma palavras, e como consequência twe-

ets, em vectores. Depois desta camada, passa-se às camadas de convolução, que iteram

sobre os vectores de palavras embutidos (word embeddings) realizando convoluções

sobre múltiplos filtros com janelas de dimensões diferentes. No nosso caso, optámos

por ter três filtros, sendo que cada um itera sobre uma quantidade de palavras dife-

rente para cada convolução.

De seguida, para evitar que a rede se torne demasiado específica aos dados de

treino (overfitting), temos uma camada de abandono (dropout) que obriga 50% dos

neurónios a desligarem-se por forma a que os neurónios não se co-adaptem em de-

masia e por conseguinte sejam capazes de aprender características utéis individuais e

independentes. Por último, uma camada de softmax é usada para classificar os dados

de saída como positivos (tweet que menciona ameaças de segurança), ou negativos

(caso contrário).

Mesmo com uma rede convolucional, é preciso acertar vários parâmetros para que

a rede seja eficiente e produza bons resultados. Após ter uma base de parâmetros com

que a rede produz bons resultados, tratámos de avaliar com recurso a validação cru-

zada (cross validation) os parâmetros óptimos para a rede, variando apenas aqueles

que verificámos que produziam a maior diferença nos resultados.

Um dos parâmetros que foi feito variar foi o tamanho de um batch. Na análise dos

nossos resultados, verificamos que tamanhos menores de batch levam a resultados

piores. Atribuímos estes resultados piores ao facto de a rede treinar demasiado sobre o

mesmo conjunto de dados, pois um batch menor implica um número maior de passos

(steps) sobre um mesmo conjunto de dados.

Outra procura de melhorar o desempenho da rede consistiu em tomar tweets que

são positivos para uma dada infraestrutura e adicioná-los ao conjunto de dados para

outra infraestrutura como tweets negativos (e.g. um tweet positivo para a Oracle é adi-

cionado como um tweet negativo para o Chrome).

vii

Em geral, o conjunto de dados de base obteve melhores resultados do que quando

era assim modificado, sendo que atribuímos esta diferença ao facto de os dados de

treino ficarem demasiado desequilibrados entre tweets positivos e negativos. De notar

no entanto, que o conjunto de dados assim modificado teve, em geral, menos variância

de resultados entre batches, devido provavelmente ao conjunto de dados de treino ser

mais extenso.

Não obstante a diferença de parâmetros, em geral a nossa rede apresentou bons

resultados. Face aos resultados francamente positivos obtidos achamos que a instala-

ção da nossa solução num centro de segurança operacional é viável e ajudará a detec-

tar informação relevante acerca de várias ameaças possíveis que é veiculada de forma

massiva através de tweets.

Palavras-chave: inteligência artificial, processamento de linguagem natural, redes

neuronais, aprendizagem profunda, detecção de ameaças de segurança

viii

Abstract

Responding to an increasing need to process large amounts of data regarding secu-

rity threats, in the present dissertation we are addressing the topic of cyberthreat dis-

covery in Open Source Intelligence (OSINT) using deep learning techniques. In terms

of data sources, this means that we will be working with information gathered in web

media outlets such as Twitter.

What differentiates our work is the way we approach the subject. Our standpoint is

that to process such large amounts of data through deep learning architectures and al-

gorithms represents a significant advantage in terms of efficiency and accuracy, which

is why we will make use of neural networks. We adopt this approach given that deep

learning mechanisms have recently gained much attention as they present an effective

way to solve an increasing number of extremely complex tasks on very demanding big

data problems.

To train our neural networks, we need a dataset that is representative and as large

as possible. Once that is gathered we proceed by formulating adequate deep learning

architectures and algorithmic solutions. Our ultimate goal is to automatically classify

tweets as referring, or not, to cyberthreats in order to assess whether our hypothesis

gets confirmed.

This dissertation is also meant to introduce general concepts and notions on the

basis of which our work is deployed and to provide an overview of related work in such

a way that this may be useful for future work. It also aims at providing an account of

the work undertaken and of the obtained results, and last but not least to suggest what

we see as promising paths for future work and improvements.

Keywords: artificial intelligence, natural language processing, neural networks, deep

learning, cyberthreat detection

ix

Contents

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Planning . 3

1.5 Document Structure . 4

2 Basic Notions and Related Work 5

2.1 Artificial Intelligence . 5

2.2 Machine Learning . 6

2.3 Supervised, Unsupervised and Semi-supervised Learning 7

2.4 Neural Networks and Deep Learning . 7

2.5 Machine Learning for Cyberthreat Detection 8

2.6 Natural Language Processing for Tweet Classification 9

2.7 Convolutional Neural Networks . 10

2.7.1 Convolution . 11

2.7.2 Pooling . 13

2.7.3 Overfitting and Dropout . 13

2.8 Convolutional Neural Networks and Tweet Classification 13

3 Specifications and Design 17

3.1 Problem Statement . 17

3.2 Requirements . 18

3.3 Data Collection . 18

3.4 Data Pre-Processing . 19

3.5 Frameworks . 20

3.5.1 Caffe . 20

xi

3.5.2 Theano . 21

3.5.3 Torch . 21

3.5.4 Tensorflow . 22

3.5.5 Comparison of Frameworks . 23

4 Implementation 25

4.1 Model . 25

4.2 Data Loading Parameters . 26

4.2.1 Validation Sample . 26

4.3 Model Hyperparameters . 26

4.3.1 Embedding Dimensionality . 27

4.3.2 Filters . 27

4.3.3 Dropout Probability . 27

4.3.4 Regularization . 28

4.4 Training Parameters . 28

4.5 Pseudo-Code . 29

5 Experimental Setup 33

5.1 Infrastructure definition . 33

5.2 Datasets . 33

5.2.1 Twitter Accounts . 34

5.2.2 Time Frame . 35

5.2.3 Data balancing . 36

5.3 Metrics . 36

5.3.1 Sensitivity . 36

5.3.2 Specificity . 38

5.4 Cross Validation . 38

6 Results and Discussion 39

6.1 Results . 39

6.2 Discussion . 51

7 Conclusions and Future Work 53

7.1 Future Work . 53

7.1.1 Model and Training Parameters . 54

7.1.2 Relation Extraction and Relation Classification 54

7.1.3 Word Embeddings . 54

7.1.4 Character- and Subword-level CNNs 54

References 57

xii

List of Figures

2.1 Example of a typical CNN. 10

2.2 Example of a convolution in a sliding window function applied to a ma-

trix of pixels. 12

2.3 CNN architecture for sentence classification. 15

3.1 Diagram of the problem statement. 17

4.1 CNN architecture for sentence classification. 25

6.1 Pareto line for D1. 46

6.2 Pareto line for D2. 46

6.3 Pareto line for D3. 46

6.4 Pareto line for all datasets (D1, D2, and D3). 46

6.5 Average euclidean distances to the optimal result obtained using default

datasets. 47

6.6 Average euclidean distances to the optimal result obtained using com-

plementary datasets. 47

6.7 TPR and TNR for the default dataset by batch size. 49

6.8 TPR and TNR for the complementary dataset by batch size. 50

xiii

List of Tables

1.1 Gantt diagram of our work stages. 3

3.1 Summary of principal features of neural networks frameworks. 23

4.1 Data loading parameters. 26

4.2 Model hyperparameters. 27

4.3 Training parameters. 28

5.1 Infrastructure grouping. 33

5.2 Default datasets D1, D2, and D3. 34

5.3 Set of accounts S1 from which tweets were collected. 35

5.4 Set of accounts S2 from which tweets were collected. 35

5.5 Time period of tweet collection. 36

5.6 Complementary datasets D1, D2, and D3. 37

6.1 Results obtained in the testing subsets of the cross-validation procedure,

for the default version of the dataset D1. 40

6.2 Results obtained in the testing subsets of the cross-validation procedure,

for the complementary version of the dataset D1. 41

6.3 Results obtained by applying each fold’s model trained with default D1 to

the default version of the D2 dataset. 42

6.4 Results obtained by applying each fold’s model trained with complemen-

tary D1 to the complementary version of the D2 dataset. 43

6.5 Results obtained by applying each fold’s model trained with default D1 to

the default version of the D3 dataset. 44

6.6 Results obtained by applying each fold’s model trained with complemen-

tary D1 to the complementary version of the D3 dataset. 45

xv

List of Abbreviations

CNN Convolutional Neural Network

CPU Central Processing Unit

DiSIEM Diversity Enhancements for Security Information and Event Management

GPU Graphics Processing Unit

ICT Information Communication and Technology

LaSIGE Large-Scale Informatics Systems Laboratory

NLP Natural Language Processing

OSINT Open Source Intelligence

SIEM Security Information and Event Management

SOC Security Operating Center

SVM Support Vector Machine

TNR True Negative Rate

TPR True Positive Rate

xvii

Chapter 1

Introduction

Artificial intelligence is a notion that can somewhat be traced back to ancient Greece.

Mythological tales involving figures like Talos, a giant automaton made out of bronze to

protect Crete from pirates and invaders, reflects that already then there was an existing

desire to create a machine with an intelligence of its own.

From myth to present date, we witnessed the creation of computers that would

come to perform tasks far too intellectually taxing and complex for humans. And, al-

though much has been accomplished, it is quite ironic that the true challenge pre-

sented to artificial intelligence should lie in solving tasks that are effortless to humans.

Tasks such as face recognition or the ability to distinguish between two similar spo-

ken words are akin to breathing for a person. The abstract and informal nature of these

tasks makes it so that people perform them naturally for humans rely on intuition to do

so. The same cannot be said for computers for until recently it was with great difficulty

that they would approach such mundane tasks. This adversity stems from the fact that

computers seem much more capable when trying to solve problems of a more formal

nature. This perceived dissonance regarding computer learning ability is the reason

why, in recent years, there has been a growing interest concerning the surmounting of

this shortcoming.

1.1 Motivation

Against this background, we should focus on why we intend to conduct our research.

Security Information and Event Management (SIEM) systems [5] are a fundamen-

tal component of the ubiquitous Information Communication and Technology (ICT)

infrastructures that form the backbone of our digital society. These systems are mostly

used to monitor infrastructures using many types of sensors and tools and articulate

the events and observations thus obtained to discover possible threats to the organi-

zation.

Currently, a major limitation of SIEMs is the lack of capacity to present relevant

OSINT with high degree of efficiency.

1

Chapter 1. Introduction 2

The project Diversity Enhancements for Security Information and Event Manage-

ment (DiSIEM) [1] includes in its aims to address these kind of limitations concerning

SIEMs already deployed in production. This is a Horizon 2020 project [2] in the scope of

which the present research work was carried out and to which work plan it contributes.

Our contribution to the DiSIEM project was focused on addressing the increasing

need to process large amounts of openly available data regarding security threats as

efficiently as possible, in particular those that circulate in social media.

Our intention to answer this need compels us to research and look more closely at

convolutional neural networks and their application to the discovery of security threats

mentioned in tweets. We consider this approach because deep learning mechanisms

have recently gained much attention as they present an efficient way to solve an in-

creasing number of extremely complex tasks on very demanding big data problems.

1.2 Objectives

The main objective of our dissertation is to perform cyberthreat discovery over open

source intelligence media available on the web.

We are interested in determining whether or not a tweet contains valuable infor-

mation regarding a cyberthreat to a certain ICT infrastructure. This translates into a

classification task where we either have an output corresponding to a threat or another

one which indicates to us that there is no threat being mentioned.

In terms of data, this means that we work with information gathered in open source

intelligence media outlets such as Twitter, giving emphasis to the accounts of users

who focus on security and cyberthreat detection.

What differentiates our work from the current state of the art rests on the way we

choose to approach the subject. Our standpoint is that there is a significant advantage

in terms of efficiency and adequacy when processing large amounts of data related to

ICT infrastructures through the means of cutting edge end-to-end natural language

processing (NLP) based on deep learning techniques, instead of falling back on other

already more common pipelined NLP techniques.

1.3 Contributions

Overall, we contribute to the detection of mentions to security threats in tweets by

means of end-to-end, deep learning based natural language processing techniques

that resort to neural networks.

Our system runs on small text portions (tweets) to check their relevance, instead

of being applied to long sequences of text, which has been the common procedure in

research conducted thus far.

Chapter 1. Introduction 3

We simplify the process of cyberthreat detection in the sense that, instead of being

forced to identify prominent features beforehand and instructing our network about

them, we rely on our neural network to autonomously extract relevant information

and learn key features relevant to solve our problem.

Within deep learning based NLP, we make use in particular of convolutional neural

networks applied to natural language processing, which follows previous experimen-

tation but it is still a recent technique given that this type of neural networks are usually

preferred as a method for image classification.

1.4 Planning

Our dissertation comprehended six crucial stages represented in Table 1.1.

Month 1 2 3 4 5 6 7 8 9

Stage 1: State of the art review

Stage 2: Data gathering and pre-processing

Stage 3: Architecture and algorithm implementation

Stage 4: Methodology employment

Stage 5: Result analysis

Stage 6: Dissertation writing

Table 1.1: Gantt diagram of our work stages.

Reviewing literature and other sources with reference to deep learning method-

ologies and programming libraries was our first priority before further pursuing our

objectives. We allocated the first couple of months to conducting this activity in order

to consolidate our approach to our problem.

While performing the previous task, we proceeded to gather and pre-process secu-

rity related data sets. This was a three month endeavour concurrent to the preceding

and subsequent stages.

Our next stage focused on the implementation of an adequate deep learning archi-

tecture and algorithmic approach. We devoted three months for this phase and worked

on it in parallel to both stages 2 and 4.

At this time, having a clear idea of our model, we employed methodologies us-

ing available deep learning programming libraries. This stage had a duration of three

months and as before it was simultaneous to its former and ensuing stages.

Having done so, we then proceeded to the extraction and comparative analysis of

results. We reserved two months for this task.

Chapter 1. Introduction 4

Our last stage was assigned to writing the dissertation.

Unfortunately, some unforeseen events, such as faulty data, forced us to redo part

of our work which then delayed the result analysis, causing a slight skid in our sched-

ule.

1.5 Document Structure

In this chapter, Chapter 1 - Introduction, we contextualize our work and present its

motivation, objectives and contributions to the current state of the art. We also indi-

cate our planning and, lastly, give an overview of the structure of our dissertation.

Chapter 2 - Basic Notions and Related Work gives a brief overview of the general

concepts and notions on which our dissertation is based. We provide definitions that

help understand how the topics of artificial intelligence, machine learning, deep learn-

ing, and neural networks relate to one another.

This chapter also reports on relevant literature that was consulted. It covers related

work on deep learning methodologies and programming libraries, as well as other top-

ics such as natural language processing and the discovery of cyberthreats to an infras-

tructure in open source intelligence. Our purpose here is to expand on some of the

interesting ideas we have encountered and explore how they help us in the pursuit of

our main objectives.

Chapter 4 - Specifications and Design is dedicated to the specifications and design

of our model, in which a clear picture of our neural network is provided, and specify

what our neural network is required to do.

Chapter 5 - Implementation comprehends our implementation and describes the

realization of the concepts and ideas earlier developed.

Chapter 6 - Experimental Setup documents our experimental setup alongside with

selected performance metrics, and provides a detailed analysis. Here we discuss the

potential relevance of our achieved results and ponder on its impact.

Our final chapter, Chapter 7 - Conclusions and Future Work, includes our conclu-

sions and musings regarding future work. We finish our dissertation with a summary

of the major achievements of our project and a compilation of its main results. We

also direct future undertakers of our work towards solutions and optimizations that we

think will lead to further progress.

Chapter 2

Basic Notions and Related Work

One of the purposes of this chapter is to convey basic notions concerning the topics

being addressed in this dissertation. We find it important to distinguish between some

concepts and to provide a little bit of background. As such, we highlight the notions of

artificial intelligence, machine learning, neural networks and deep learning.

Another purpose is to briefly review literature on deep learning methodologies and

programming libraries, as well as other topics relevant for our work, such as natural

language processing. We expand on some of the interesting ideas we have encountered

and conjecture how they may help in the pursuit of our main objectives.

2.1 Artificial Intelligence

Even if the notion of artificial intelligence may date back to millennia ago, it was in

1956 [6] at a conference in Dartmouth that the term was coined. There, a series of

research projects were kicked off aiming to create an autonomous artificially intelligent

machine.

This envisioned device would therefore need to perform mental tasks as well as or

better than a human being. With this purpose in mind, researchers formulated topics

of knowledge that a computer should learn.

They proposed that for an artificially agent to be considered intelligent, it should

be able to perform reasoning tasks. These would be tasks where a person could reason

its way to an answer when presented with a problem, such as playing chess.

Another important aspect would be the ability to represent reality in such a way as

humans perceive it. A computer would have to understand the real world in order to

understand and interact with people. This means grasping what objects, words and

other such things are. This would come to be termed as knowledge representation.

The third thing needed to produce such a machine would be to make it understand

and navigate the world that we live in. Planning and navigation activities such as going

from one place to another one in a safe way comprises a series of tasks, like recognizing

where doors are and what paths are, which had to be quintessential to this projected

5

Chapter 2. Basic Notions and Related Work 6

artificially intelligent machine.

Computers would also have to learn to understand language, to be able to create

and attribute meaning to sentences, and to translate between different languages. This

set of natural language processing activities would be essential to the replication of

human alike intelligence.

Lastly, computers would have to learn how to perceive the world as people do. That

is to say, computers would have to learn how people see, hear, feel and smell.

The expectation was that all the above-mentioned discrete parts of human intelli-

gence would lead to an emerging generalized intelligence that was not explicitly pro-

grammed. All these pieces would come together to give the machine a capability for

emotional intelligence, creativity, moral reasoning, and intuition very much indistin-

guishable from a human being.

In short and as we know it nowadays, we can say that artificial intelligence [7] is a

set of algorithms and techniques to mimic human behavior.

2.2 Machine Learning

Machine learning is a kind of approach in artificial intelligence by means of which the

system has the ability to automatically learn and improve with experience [8]. This

means that we can do without explicitly programming and developing the entire sys-

tem, as the program itself looks for patterns in data and learns to make better decisions

based on provided examples. The goal of machine learning is to analyse the structure

of data, to fundamentally create theoretical distributions around the data that are well

understood to the system.

Even though machine learning is not a new technology, its resurgence is due to

factors like the ever growing volume of data nowadays, as well as cheaper and more

powerful methods for accessing and processing the data. This means that it is now

possible to quickly and (semi) automatically produce a model that can analyse com-

plex data with high accuracy [8] [9] [10]. As an example of having a precise and speedy

model, it is viable to process large amounts of incoming data in near real time to have

a chance of identifying an opportunity, or avoiding a risk.

While we cannot say that all artificial intelligence is machine learning, it is safe to

state that machine learning is one of its key techniques. Over the years, this approach

came to include decision tree learning, inductive logic programming. clustering, rein-

forcement learning, and Bayesian networks amongst several others.

All of the above listed techniques are usually applied to problems that artificial in-

telligence set out to solve. So, for example, we have search and optimization applied to

natural language processing and syntax parsing which allows the computer to better

reproduce the intelligent behaviour of a human being. Constraint satisfaction is an-

other good example of how machine learning approaches the challenges introduced

Chapter 2. Basic Notions and Related Work 7

by artificial intelligence, for it decomposes the problem and allows the computer to

work in micro worlds. A practical and more concrete application of these techniques

can be observed in how early models of e-mail separated spam from the rest of the

mail, just to mention another example among many others.

2.3 Supervised, Unsupervised and Semi-supervised Learning

In supervised learning [11], a training data set, composed of input/output pairings, is

fed to the learner which may acquire the relationship between the input and the out-

put. This approach is used for regression and classification problems. In a regression

problem, the goal is to predict results within a continuous range. In other words, input

variables are tentatively mapped through some continuous function that is learned. In

turn, in a classification problem, the prediction of results translates itself into a discrete

output, in an attempt to map input variables into discrete categories.

In unsupervised learning [12], the approach is undertaken with little to no idea of

what the results should look like. Structure can be derived from training data where

there is not an explicitly coded relation between input and expected output. This can

be achieved by clustering the data on the basis of relationships amongst the elements

in the raw input. However, there are other methods of setting up unsupervised algo-

rithms for associative memory that also falls into what is considered to be unsuper-

vised learning.

The key difference between both approaches is that with unsupervised learning

there is no ground truth encoded in the training dataset that may support the predic-

tion of results.

As for semi-supervised learning [13], also sometimes referred to as reinforcement

learning, it is an in-between approach where some data is labeled (by means of which

input and output items are paired) even if most might not be. The challenge that

presents itself here is how to treat data that has been mixed in this way.

Some aspects of supervised learning are not present in unsupervised learning. This

is not necessarily a bad thing since, as explained before, one has to adapt the learning

approach to the problem itself.

2.4 Neural Networks and Deep Learning

Of all machine learning techniques, deep learning has recently acquired great promi-

nence and several papers such as [14] and [15] have expand on their advantages. No-

torious achievements of deep learning include image processing and winning a game

of Go [16], among many others.

As a machine learning approach, deep learning techniques feed copious amounts

of data into neural networks. A neural network is an information processing paradigm

Chapter 2. Basic Notions and Related Work 8

that is inspired by the way biological nervous systems, such as the brain, process in-

formation, according to the work of Stergiou and Siganos [9]. The seminal work in this

areas dates at least as far back as 1943 [17].

A neural network is composed of a large number of highly interconnected process-

ing elements (neurons) feeding each other to solve specific problems. It is constrained

by the purpose it will fulfill, which is to say that it is configured for a specific applica-

tion, such as pattern recognition or data classification.

Neural networks are organized in layers composed by a number of interconnected

neurons containing activation functions. The term shallow neural network is used to

describe a neural network usually comprised of only one or two hidden layers. As for

deep neural networks they tend to have several hidden layers with distinct functional

roles, and in general a deep network tends to have no less than three hidden layers.

While a shallow neural network can perform any function, that network is heavier

and more intricate. The intricacy of such a function has an adverse consequence caus-

ing the number of parameters to increase significantly. As we have encountered in our

readings [18], there are conclusive results that deep neural networks better accommo-

date functions with less parameters.

One paper in particular [19] defends that the correct measurement of network com-

plexity is not necessarily the number of parameters. Its authors prove that even when

dealing with a much smaller number of parameters that one would make use of in

shallow neural networks, deep neural networks can accomplish much better results

with compositional functions. This inability of shallow neural networks ties in with the

curse of dimensionality, meaning that certain learning algorithms perform poorly or

not at all in high-dimensional data.

It is thus worth mentioning that deep learning concerns itself with constructing

machine learning models that learn a hierarchical representation of data. In other

words, deep learning is a branch of machine learning that uses a set of algorithms in

order to model high level abstractions in data.

2.5 Machine Learning for Cyberthreat Detection

The usage of machine learning to discover references to cyberthreats in OSINT is an

area still somewhat unexplored. Ritter et al. [20] resort to a weekly supervised approach

to classify tweets and thus detecting cyberthreats mentioned by them.

Also based on information from Twitter, Sabottke et al. [21] uses a Support Vector

Machine (SVM) classifier that correlates a threat reported by a reliable security feed

with posts on that threat in Twitter. The work from Rodrigues [22] is also based on

data from Twitter. In this work, data stream from Twitter is directed to the HP ArcSight

platform to take advantage of an additional source of information. Like in [21], this ap-

proach classifies tweets on the basis of frequency of occurrence of manually weighted

Chapter 2. Basic Notions and Related Work 9

keywords.

Veeramachaneni et al. [23], in turn, implemented a system that analyses logs by re-

sorting to the outcome of machine learning algorithms that is blended with a manually

designed set of instructions.

As previous work undertaken in our research group, it should be mentioned the

Masters dissertation of Correia [24], also with the major goal of detecting tweets that

refer to cyberthreats, like our goal here. To pursue that objective, a machine learning

approach resorting to SVM is used. Accordingly, extensive manual and explicit tests

were undertaken in order to find out suitable features on which to base the learning

procedure.

Another work in our research group is undergoing as a Doctoral research. An un-

published paper from Alves et al. [25] reports on that work where tweets are classified

as possibly referring to cyberthreats by resorting to SVMs and also to Multi-Layer Per-

ceptrons.

In regard to our own research, we hypothesize that deep neural networks are a

promising alternative approach to our problem that is worth exploring. Deep neu-

ral networks allow for a much lower number of training parameters than in shallow

networks. This approach also exempts us from having to perform extensive feature

engineering to approximate suitable features with which to feed learning procedures,

as required when working, for instance, with SVMs.

In our working problem, the data consists of tweets, whose content is basically con-

veyed as text, thus calling for Natural Language Processing (NLP) techniques to be re-

sorted to. Additionally, in recent cutting edge progress on NLP based on deep learn-

ing, Convolutional Neural Networks have shown to permit highly competitive results.

Hence in the next sections, we proceed by focusing on these topics and visit their basic

notions and related work.

To the best of our knowledge this approach of ours, consisting of combining deep

learning techniques with classification of tweets for cyberthreat detection, has not been

explored before.

2.6 Natural Language Processing for Tweet Classification

Natural Language Processing (NLP) is a field in the confluence of artificial intelligence

and linguistics that involves intelligent analysis of language.

Our gathered data consists of tweets, which are natural language texts, even if they

are short ones. After comprehensive literature perusing, we decided to explore an ap-

proach similar to the one proposed in [26], where these authors work with raw words

rather than features that have to be previously engineered.

This paper reports on a series of experiments with neural networks trained on top

of pre-trained word vectors for sentence-level classification tasks. This approach takes

Chapter 2. Basic Notions and Related Work 10

the semantic context of the words into account instead of just making use of a bag of

words model.

Another relevant and interesting aspect to this paper is the use of Convolutional

Neural Networks which are usually employed in image classification but have recently

proven to work very well in sentence classification. To address this aspect, in the sec-

tion that follows, we delve into this topic and extricate key notions and aspects inherent

to this type of neural network.

2.7 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [27] are composed by several layers of convo-

lutions with nonlinear activation functions applied to the end results.

input layer convolu on

layer

pooling

layer

convolu on

layers

fully connected

layers

feature maps

Figure 2.1: Example of a typical CNN.

In fully-connected feed forward neural networks, each input neuron is connected

Chapter 2. Basic Notions and Related Work 11

to each output neuron in the succeeding layer. CNNs do not follow this model of fully

connected layers, opting instead to apply convolutions over the input layer to compute

the output, where each region of the input is connected to a neuron in the output,

resulting in a network with local connections.

Another relevant aspect of CNNs is that during the training phase, the neural net-

work automatically learns the values of its filters based on the task it was assigned.

The last layer of a CNN is then a classifier that uses these high-level features. In our

case, this will determine whether or not a tweet contains information about a threat to

certain ICT infrastructure component.

To better understand what a CNN is, we will now clarify a few concepts and explain

some of the parts involved. We also include an image of what a typical CNN looks like

in Figure 2.1.

A good reason to use CNNs is that they are very fast and provide an operation of

convolution that helps to detect how the data are related to each other at the input of

the network. Convolutions are essential in computer graphics and are typically imple-

mented on a hardware level on graphics processing units [28].

2.7.1 Convolution

Given CNNs are commonly used in image classification, we resort to the classical ex-

ample used to explain the convolution operation with the help of Figure 2.2.

This figure depicts a matrix of pixels (5x5, grey colored) in nine consecutive mo-

ments (from left to right and from top to bottom). It depicts also a sliding window (3x3,

represented with different non grey colors) over that matrix at each one of those nine

moments. With these nine views of the matrix of pixels, we can follow the operation

of the convolution by observing the result of that sliding window, whose outcome is

being collected in the convolved feature matrix (3x3), represented on the right column

of Figure 2.2.

There are three views of this convolved feature (top to bottom), where each view

corresponds to three of the nine moments that the larger matrix of pixels is going

through. The correspondence between each one of these nine moments and its out-

come recorded in that smaller matrix are represent by a specific non gray color. For

instance, the sliding window at the fourth moment is depicted in yellow and its out-

come is gathered in the yellow square of the convolved feature matrix.

In its different moments, the gray matrix in Figure 2.2 represents a convolutional

layer.

A convolutional layer consists of a rectangular grid of neurons and each convolu-

tional layer in a CNN requires that the preceding layer also be a rectangular grid of

neurons. Each neuron then takes input from a rectangular section, covered by a slid-

ing window, of the previous layer. For the neurons in a rectangular section, the weights

Chapter 2. Basic Notions and Related Work 12

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

x1 x0 x1

x0 x1 x0

x1 x0 x1

4 3 4

4 3 4

2 4 3

4 3 4

2 4 3

2 3 4

x1 x0 x1

x0 x1 x0

x1 x0 x1

x1 x0 x1

x0 x1 x0

x1 x0 x1

x1 x0 x1

x0 x1 x0

x1 x0 x1

x1 x0 x1

x0 x1 x0

x1 x0 x1

x1 x0 x1

x0 x1 x0

x1 x0 x1

x1 x0 x1

x0 x1 x0

x1 x0 x1

x1 x0 x1

x0 x1 x0

x1 x0 x1

x1 x0 x1

x0 x1 x0

x1 x0 x1

Figure 2.2: Example of a convolution in a sliding window function applied to a matrix
of pixels.

are the same.

Hence, a convolutional layer gathers a compressed representation of its preceding

layer. In that preceding layer, the weights of the neurons determine the so called con-

volution filter, which determines how the compression takes place.

Furthermore, in each convolutional layer, a CNN may have several sliding windows,

or grids, such that each grid takes an input from all the grids in the previous layer,

potentially using different filters.

In order to apply a CNN to natural language processing in an analogous way as it

is applied to image processing, in the example of Figure 2.2, a sentence needs to get

represented also as a matrix. In an initial stage, that matrix is made out of vectors, also

known as word embeddings, such that each vector typically represents a word of the

sentence.

The determination of a given vector for a given word is ultimately based on the fre-

quency of co-occurrences of that word with other words within a certain window of

context in a data set consisting of a collection of texts or sentences. To those frequen-

cies, possibly sophisticated matrix composition and transformation techniques may

then be applied.

These vectors may be learned on the fly as the neural network is being trained to

Chapter 2. Basic Notions and Related Work 13

handle a specific problem. Alternatively, the matrix that is formed by these vectors and

is pretrained is suitable to be entered as the input for initial layers of CNNs.

2.7.2 Pooling

In CNNs, pooling layers subsample their input, most commonly applying a max or

average operation to the result of each filter [29].

Pooling also provides a fixed output matrix size, which is generally required for clas-

sification. That is to say, pooling allows for variable sized sentences, and variable sized

filters, ensuring the same output dimensions are fed to the final classifier layer.

Concerning output dimensionality, pooling helps reducing its size while preserving

pertinent information. It is as if each filter detects a specific feature.

For example, pooling may play a role in detecting if a sentence contains a negation

such as "not great". Provided that an expression like this may occur somewhere in the

sentence, the result of applying the filter to that region will yield a large value, whereas

it would return a small value in other regions.

When performing the max operation, information about whether or not the feature

appeared in the sentence is being kept, while losing information about its location.

This is of no concern to us because local information captured by filters is kept, thus

ensuring that “not great” is very different from "great not".

2.7.3 Overfitting and Dropout

In the words of Hawkins [30], "overfitting is the use of models or procedures that vio-

late parsimony, that is, that include more terms than are necessary or use more com-

plicated approaches than are necessary".

In practical terms, overfitting occurs when the model or the algorithm fits the data

too well. In other words, overfitting usually occurs when the model is too complex,

meaning that there are too many parameters in relation to the number of trained or

evaluated data.

Dropout is a common technique employed to prevent complex co-adaptations on

training data which, consequently, helps to avoid overfitting the network [31]. A dropout

layer works stochastically by rendering inactive a fraction of its neurons. This prevents

neurons from co-adapting and forces them to learn useful features individually.

2.8 Convolutional Neural Networks and Tweet Classification

Having covered both CNNs and NLP topics, it is now time to explain how the first ap-

plies to the latter. The main reason for choosing CNNs is that they seem to be very apt

for classifications tasks, such as the problem being addressed in this dissertation.

Chapter 2. Basic Notions and Related Work 14

As we have previously stated, we are interested in determining whether or not a

tweet contains valuable information regarding a cyberthreat to a certain ICT infras-

tructure component. This translates into a classification task for the network where

we either have an output corresponding to a mention of a threat or another one where

there is no mention of a threat.

In what concerns the architecture, we have encountered some papers [26][32][33]

where the input layer receives a sentence comprised of concatenated word2vec [34]

word embeddings, followed by a convolutional layer with multiple filters, a max-pooling

layer, and finally a softmax classifier [35].

One particular downside to previous approaches to NLP based in deep learning is

the resorting to pre-trained word vectors like word2vec [34] or GloVe [36]. However,

one paper [37] presents a way of training a CNN from scratch, applying convolutions

directly to one-hot vectors. A one-hot vector is used to distinguish each word from

every other word in the vocabulary and consists of zeros in all cells with the exception

of a single one in a cell used uniquely to identify the word.

It should also be noted that, in the aforementioned paper, and contrary to some of

the existing literature [38], dropout was proved to have little beneficial effect on CNNs

performance.

Figure 2.3 depicts the overall architecture for sentence classification whose model

[37] we have decided to implement and adapt while experimenting with some of its

hyperparameters. In particular, in the network we eventually used there are no fully

connected layers before the softmax classifier.

In [39] the same author extends the previous model with an additional unsuper-

vised “region embedding”. This approach appears to produce excellent results for long

texts, such as movie reviews, but their performance on short texts, like tweets, was not

tested and thus was yet unclear. One of the contributions of our work is thus to extend

that approach to short texts and show that it is also efficient in this case, and for our

purpose.

Since one would think that pre-trained word embeddings applied to short texts

would yield larger gains, we follow this approach in an attempt to achieve optimal re-

sults with our tweet classification.

The same authors have also found that max-pooling always beats average pooling,

determining that filter sizes played a crucial part. However, since filter sizes are task-

dependent, it means that a tailored adjustment is required for different problems.

Finally, regularization seemed to have little to no impact in the performed NLP

tasks. Regularization is used to heavily penalize peaky weight vectors and preferring

diffuse weight vectors. This has the effect of encouraging the network to use all of its

inputs a little rather that some of its inputs a lot.

Another argument for the usage of CNNs in NLP is that, compared to something

Chapter 2. Basic Notions and Related Work 15

������

���	
���

���

�

����

���

�

���

��������������

���

�����
��������� � !"

���������
���������
�

����

�
���
�#�������

��������

��$��
�

����

����
�����

#���%������

%���
��

�
����������

�
�������
�
���

�������������

%���
�

��������

�
�%
����
�

�
����� ������
�

������������
�

��������&��

'(���

$

����

����%���
�������
�

Figure 2.3: CNN architecture for sentence classification.

like n-grams (contiguous sequences of n items from a given sequence of text or speech),

CNNs are also efficient in terms of representation. When working with a broad vocab-

ulary, computing more than 3-grams can quickly become expensive. Google itself does

not provide anything beyond 5-grams.

Convolutional filters learn representations automatically, without the need to rep-

resent the entirety of the vocabulary. It is therefore reasonable to have filters of size

larger than 5 when using CNNs.

Chapter 3

Specifications and Design

In the present chapter we specify what our neural network is required to do while pro-

viding a detailed description of the problem to be addressed and the necessary require-

ments for our envisioned approach.

3.1 Problem Statement

Our purpose is to develop a program and methodology that, after training with a dataset

composed by textual input, can then accept other textual datasets of the same type as

input and generate predictions concerning cyberthreats being referred to.

Figure 3.1: Diagram of the problem statement.

The generated output then serves as a means to determine whether each individ-

ual entry of the latter datasets contains information about security threats in relation

17

Chapter 3. Specifications and Design 18

to ICT infrastructure components specified by us or if these entries have instead no

reference to threats to the surveyed systems and platforms.

In terms of real usage, our purpose is to devise a solution that ensures that secu-

rity operation center analysts are delivered with relevant information about possible

threats against the infrastructures for which they are responsible, thus seeking to se-

lect as much as possible tweets that actually refer to threats and not to select tweets that

do not refer to these threats. This means we set out to aid in the task of sorting perti-

nent from irrelevant information regarding cyberthreat being mentioned in tweets, as

depicted in Figure 3.1.

3.2 Requirements

To perform detection of references to cyberthreats, we chose to work with CNNs as

they seem to be a promising method when applied to problems of this nature. The ad-

vantage of these particular neural networks will become apparent as we further discuss

them and our employed methodology below and in forthcoming chapters.

A key advantage of our solution lies on the very little need for human guidance and

supervision. In other words, our network has few requirements that have to be met by

its user:

• In order for our network to function properly one must assure that its input is

text. Two different datasets are required, a positive one, with tweets referring to

cyberthreats, and a negative one, with tweets not referring to cyberthreats.

• Concomitantly, datasets must comprehend ICT infrastructure-related informa-

tion. This is an imperative requirement for the positive dataset, while the nega-

tive dataset should include at least some information relative to systems or plat-

forms we want to investigate.

• Lastly, every line of each dataset must correspond to a single entry, making it so

that they are separated by a line break. These lines must always be preceded by

the mention of the ICT infrastructure component which that tweet (in the line)

reports to.

3.3 Data Collection

The data we feed our network with is of the utmost relevance as the accuracy of our

results depend on them. Since the focus of our thesis is the implementation of a CNN,

we rely on previously gathered data by other DiSIEM project colleagues, Correia [24]

and Alves et al. [25]. Nonetheless, we provide a brief explanation on how the data was

collected.

Chapter 3. Specifications and Design 19

As explained by Alves et al. [25], in the collection stage a set of accounts is specified

from which tweets will be gathered. These accounts are affiliated with security ana-

lysts and companies, hackers or researchers. The criteria to determine which accounts

should be considered is based on the likelihood that these users tweet about the se-

curity of elements belonging to the information technology (IT) infrastructure being

protected.

The collected dataset likely also includes tweets that are not relevant for the in-

frastructure the analyst wants to protect. As such, a filtering mechanism was devised

which assumes that a tweet that acknowledges a threat to a certain IT infrastructure

asset has to mention the asset properties.

3.4 Data Pre-Processing

Normalizing tweet representations is an initial and crucial step involved in data han-

dling.

When pre-processing the collected data we first convert all characters to lower case

and proceed to remove stop-words and hyperlinks alike. Characters, other than punc-

tuation, not comprehended between [a-z] are also removed.

Numbers are also object of conversion and are written out in full (e.g., “5" becomes

“five"), while punctuation such as dots and hyphens are converted to their textual rep-

resentation (“dot" and “hyphen"), as they may be relevant for software versions (e.g.,

Google Chrome 4.5.1-2).

Having done so, it is now required that data be aggregated into two different datasets.

Thanks to Correia [24], this step has been prepared for us and we have an easy way to

access already labeled sets of positive and negative data.

To train and evaluate our neural network, our sample consists of several subdatasets.

For every such subdataset, there is a set of positive tweets (with reference to security

threats), and negative tweets (with no such reference) each containing tweets concern-

ing only a specific infrastructure.

We then pre-process our entry data by prefixing every tweet with the respective in-

frastructure it concerns. Our positive data entries are therefore preceded by the name

of the infrastructure component they mention, while our negative datasets entries al-

lude to the same infrastructure regardless of not containing relevant information about

it.

Having completed the previous stages, we proceed to pad each sentence to the

maximum sentence length. For instance, if our longest tweet is 20 words long [40],

all other tweets are going to have special <PAD> tokens appended to them until each

tweets plus <PAD> tokens is of length 20. This allows us to efficiently batch our data

since each example in a batch must be of the same length. We also pad our sentences at

the beginning to match the maximum length of the name of the infrastructure relevant

Chapter 3. Specifications and Design 20

to us.

3.5 Frameworks

When considering frameworks for deep learning techniques there are some core as-

pects to be taken into account.

It is most desirable that the framework has a visible and participative community

thus assuring good support if and when it becomes necessary. It is also crucial that the

framework one works with has a stable library as well as helpful, updated and easily

accessible documentation.

A framework should also have a good run-time performance. Since we are con-

ducting research work, the framework we work with needs to have some flexibility that

will allow us to experiment new things and develop new custom layers.

Before deciding ourselves for Tensorflow we investigated the benefits and down-

sides of a few promising and available frameworks which we now expand on.

3.5.1 Caffe

Caffe [41] has a very solid yet simple foundation. When using this framework one does

not need to code, as one only needs to define the network with description files and

train it. It also allows for Python integration and model training with it. This frame-

work has one of the largest communities, which means there is good support and that

doubts about emerging issues generally do not go unanswered.

In terms of documentation, Caffe is a bit out of date. This framework has a very

complete library, but as we have found out, it can be a challenge to integrate new

things. In other words, with Caffe one trades speed for stability.

Caffe’s run-time performance is not the best but it is acceptable. It uses well-founded

libraries operations such as convolution.

In terms of flexibility it has a good interface with Python and is compatible with new

layers written in this language. However, it is not as transparent as other frameworks

and one has to consult the source code to understand the underlying processes.

Caffe is a good library which hides the Graphics Processing Unit (GPU) and Cen-

tral Processing Unit (CPU) integration from the developer. This framework has a very

broad developer support and many branches that target different applications, causing

it to be stable but somewhat difficult to deviate from the main branch.

Caffe has a vast set of pre-trained models for a variety of domains which could allow

us to try different approaches without investing too much time in a definite solution.

It should also be noted that this framework was mainly developed to work with

images which means that its library is somewhat lacking in solutions for text based

problems like our own.

Chapter 3. Specifications and Design 21

3.5.2 Theano

Theano [42] is a Python library that takes one’s written code and translates it to C++.

It has big supporting communities, including Google user groups and Github issue

pages, although it is currently facing a transitioning period, as Google has adopted

Tensorflow as its own framework.

Theano’s documentation is both simple and informative and allows for fluid model

development.

Due to Theano’s simplicity to develop a new solution, it follows what is new which

translates into a frail form of stability. This said, as far as one does not rely on the latest

features, Theano is perfectly stable.

In terms of run-time performance, Theano presents a few issues regarding the com-

pile time in which one has to wait before model execution.

In terms of flexibility, we know that with Theano it is really easy to develop some-

thing new. One only needs to take an already implemented layer or a function and

modify to our purpose. It must however be noted that it is the user that has to write his

own training code, even if the model is easily implementable.

The available implementations in Theano make it so that, regarding development,

it is somewhat difficult to find the desired one, making the early stages a tad unstable.

From what we have gathered, there are scripts to convert Caffe pre-trained mod-

els. However, we have not encountered any insightful information on the reliability of

these models or scripts.

3.5.3 Torch

Torch [43] is a Lua based library [44] and has the smallest community from all the four

listed ones. Yet, from what we have gathered, the community albeit small is very re-

sponsive to any problem a user encounters.

Torch provides good documentation. However, for those too unfamiliar with Lua

this documentation will not suffice and further digging on the behalf of the user is

deemed necessary.

In terms of stability, Torch is solid even if with every minor change on some module

it will require you to update others.

Run-time performance is the most powerful metric of Torch. It uses all the capabil-

ity of any hardware one can use. One can switch between GPU and CPU through sim-

ple function calls and it is also very easy to use multiple-GPUs in data-parallel fashion.

However, there is not any support for distributed training as of yet.

Torch is a very flexible framework which allows for any kind of deep learning archi-

tecture development with ease. Even very complicated convolutional neural networks

or tangled natural language processing architectures are easily managed.

Chapter 3. Specifications and Design 22

This appears to be a successful framework, in terms of development, which traces

down what is new in the deep learning literature. New layers and functions recently

proposed are always in the scope of Torch or at least any third part module.

Torch has a pretty good collection of pre-trained models. There is also an option to

convert Caffe models to Torch with the aid of third party modules.

It should be noted that Torch is used extensively by Facebook and Twitter research

teams for deep learning products and research.

3.5.4 Tensorflow

Tensorflow [45] is a library, written in Python and C++, that offers numerical computa-

tion with a flexible architecture which allows us to deploy computation to one or more

CPUs using data flow graphs, something that is quite important for the high amount of

computational power required by a CNN. Since TensorFlow was originally developed

by the Google Brain Team with the purpose of supporting machine learning and deep

neural networks research, it was a good fit to use in our application of a CNN.

This framework has one of the fastest growing communities, which is very respon-

sive and helpful with issues that range from small code errors to architecture building

doubts. However, because of its novelty, Tensorflow is still short of documentation,

which can lead to a somewhat inconsistent library.

In terms of flexibility it has a good interface with Python, which was the chosen lan-

guage for our work, and allows for extensive unit testing and self-verification. There-

fore, to achieve a higher level of abstraction one has to use other libraries in conjunc-

tion with Tensorflow’s (e.g.: NumPy [46]). Debugging can also prove to be an issue as

error messages tend to be very cryptic.

A central aspect to TensorFlow is the notion of tensor. A tensor consists of a collec-

tion of primitive values structured into an array of any number of dimensions. It is a

symbolic handle to an output of a TensorFlow operation. It does not hold the values

of the operation’s output, but it does provide a means of computing those values in a

TensorFlow session.

A tensor can be passed as input to another operation, which builds a dataflow con-

nection between operations. This connection enables TensorFlow to execute an entire

graph that represents a large multi-step computation.

There is one final aspect that sets Tensorflow apart which is its model checkpoint

feature. This feature allows the user to train a model for a while, stop and evaluate it,

and then resume from that checkpoint to keep training the model.

Chapter 3. Specifications and Design 23

3.5.5 Comparison of Frameworks

A summary of the principal features of the frameworks for neural processing just de-

scribed is provided in Table 3.1.

Commmunity support Documentation Efficiency Core

Caffe large out of date under performing C++

Theano large good compiling issues Python

Torch small good average Lua

Tensorflow supported by Google poor average Python, C++

Table 3.1: Summary of principal features of neural networks frameworks.

Chapter 4

Implementation

In this chapter, we describe the implementation of the concepts and ideas presented

in previous chapters. We start by describing the model of our network, then proceed to

the description of its parameters and conclude the chapter by presenting the pseudo

code of the implemented solution.

4.1 Model

An overall sketch of the architecture of our model, based on [37] [47], is depicted in

Figure 4.1.

n x k representa on of

sentence with a

sta c channel

Convolu onal layer with

mul ple lter widths and

feature maps

Max-over- me

pooling

Fully connected layer

with dropout and

so max output

systems

become

when

users

do

n’t

vulnerable

update

them

lowercased and

tokenized

input sentence

Figure 4.1: CNN architecture for sentence classification.

The first layer encodes words as vectors, also known as word embeddings.

25

Chapter 4. Implementation 26

After this first layer, there is a layer that uses multiple filter sizes to perform convo-

lutions on the embedded word vectors.

The output of this convolutional layer is then normalized by max-pooling them into

a long feature vector.

Finally, a dropout regularization is added to avoid overfitting the network. This

network is then fully connected to a softmax layer which is used to classify its output as

positive or negative. A positive instance case signals that the input sentence mentions

a cyberthreat, while a negative one signals the absence of such a cyberthreat mention.

4.2 Data Loading Parameters

After having extensively covered in the previous chapter how data is collected and pre-

processed, we now list the loading parameters of our network in Table 4.1.

Arguments Description

test_sample_percentage Percentage of the training data to use for validation.

positive_data_file Data source for the positive data.

negative_data_file Data source for the negative data.

Table 4.1: Data loading parameters.

4.2.1 Validation Sample

When feeding our network with the training data, we reserve a portion of our data to be

left out and to be used to evaluate the precision with which the model was trained. Our

default during tests was to always use 10% of the training dataset for this validation.

4.3 Model Hyperparameters

When implementing our network, it is important to setup a few hyperparameters given

that they cannot be learned directly from the data in the standard training process and

that they affect the topology of the model.

Table 4.2 lists all the model hyperparameters that are open to being setup and need

to be specified. In the subsections below these parameters are described.

In the table, we also show the default values of the parameters. These values were

taken from the previous works [26] [37], whose architecture we implemented and adapted,

and were determined also in a task of sentence classification.

Chapter 4. Implementation 27

Arguments Description

embedding_dim Dimensionality of word embedding (default: 128).

filter_sizes Comma-separated filter sizes (default: ’3, 4, 5’).

num_filters Number of filters per filter size (default: 128).

dropout_keep_prob Dropout keep probability (default: 0.5).

l2_reg_lambda L2 regularization lambda (default: 0.0).

Table 4.2: Model hyperparameters.

4.3.1 Embedding Dimensionality

The embedding layer is the first layer of our network. Its function is to map word in-

dexes into respective vector representations. As our network learns from the data, this

becomes a lookup table for the vectorial representations of the words in our input.

By articulating these word indexes with the embedding matrix, the result is a dense

matrix that will be fed to the convolution layer.

4.3.2 Filters

Given that each convolution produces tensors of different dimensions, we need to iter-

ate through them, create a layer for each of them, and then merge the results into one

big feature vector.

The number of filters per filter size we used in our approach is 128. Since we have

three different filter sizes (3, 4, 5), this results in 384 filters. Each of these filters slides

over the whole embedding, covering an amount of words according to its sliding win-

dow.

Performing max-pooling over the output of a specific filter size leaves us with a fea-

ture vector with size 128 for each filter. Once we have all the pooled output tensors from

each filter size we combine them into one long feature vector of shape[batch_size,

384], as it corresponds to the total number of filters.

4.3.3 Dropout Probability

The fraction of neurons we keep enabled is defined by the dropoutKeepProb input

to our network. We set this to 0.5 during training, and to 1 (disable dropout) during

evaluation.

Since the number of neurons is given by num_filters × filter_sizes, this

means that only about 192 neurons remain active after dropout.

Chapter 4. Implementation 28

4.3.4 Regularization

We also considered the application of L2 norm constraints on the weight vectors. How-

ever, as it was explained in [37], the authors’ end results were not heavily impacted by

these constraints and that is the reason why we chose not to enforce them. We also

tested them with inconclusive results.

As dropout is an implicit form of regularization, maybe the fact of using it induces

that explicit regularization produces little to no impact.

4.4 Training Parameters

The algorithm used for training was the Adam Tensorflow’s optimizer [48], which em-

ploys a Stochastic Gradient Descent procedure.

Table 4.3 details the training parameters of our CNN.

Arguments Description

batch_size Batch Size (default: 64).

num_epochs Number of training epochs (default: 200).

evaluate_every Evaluate model on validation set after these steps (default: 100).

checkpoint_every Save model after this many steps (default: 100).

num_checkpoints Number of checkpoints to store (default: 5).

Table 4.3: Training parameters.

Batch Size

Our batch size corresponds to the number of training examples in one forward/backward

pass in our CNN. It should be noted that the higher the batch size, the more memory

space we need to train the network.

Epochs

We consider each epoch to be equivalent to each forward pass and one backward pass

of all the training examples.

Evaluation

This parameter sets after how many steps our CNN should evaluate the model with the

sample data set aside (test_sample_percentage) at the beginning.

Chapter 4. Implementation 29

Checkpoints

Checkpoints allow us to inspect or confirm if our CNN is progressing in the right direc-

tion without having to train the network until the very end.

4.5 Pseudo-Code

In order to provide an overall indication of how we implemented our model that meets

the previously established requirements, we resort to the pseudo-code in Algorithm 1.

Algorithm 1 CNN Step

1: procedure TRAIN STEP (vocabSize, embedSize, filterSizes, numFilters)

2: Let input_x be the input array with the tweets

3: Let input_y be the array with the classification for each tweet

4: Let W be the embedding matrix based on vocabSize,embedSize

5: embedded_input = LOOKUP_EMBEDDING (input_x, W)

6: pooled_outputs = []

7: for all filterSize do in filter_sizes

8: filter_shape = [filterSize, embedSize, 1, numFilters]

9: conv = CONVOLUTE (embedded_input, filter_shape)

10: pool = MAX_POOL (conv, bias)

11: pooled_outputs += pool

12: end for

13: h_pool = CONCATENATE (pooled_outputs)

14: h_dropped = DROP_NEURONS (h_pool, drop_percentage)

15: losses = SOFTMAX_CROSS_ENTROPY (h_dropped, input_y)

16: predictions = MAX_SCORE (h_dropped)

17: correct_predictions = REDUCE_MEAN (predictions)

18: end procedure

This pseudo-code resorts to functions of the Tensorflow framework which we used

to implement our CNN, whose libraries [45] should be consulted for more details on

the fully fledged specification of these functions.

The goal here is to convey a sense of how all the parts in our CNN come together to

process our input data that are latter on classified by our softmax layer.

To achieve the training of the neural network, the training step represented in this

pseudo-code is iterated until the number of steps given by the formula (not in the

Chapter 4. Implementation 30

pseudo-code) is reached:

number of steps = input size

batch size
× number of epochs (4.1)

where the input size is the length of the training data set, with the collection of (posi-

tively and negatively classified) tweets; the batch size (defined beforehand and instan-

tiating batch_size) is the number of training examples in each forward/backward

pass; and the number of epochs (defined beforehand and instantiating num_epochs)

is the number of forward/backward passes of all training examples.

This training of the network is embedded in Tensorflow by means of which the net-

work’s loss function is optimized. Tensorflow has several built-in optimizers. We use

the Adam optimizer [48].

Let us now focus on an individual training step, represented in the pseudo-code.

Each such training step is based on an iterative loop, which is preceded by a num-

ber of operations instantiating the necessary data structures.

The two arrays input_x and input_y have the same length, one containing the tweets

of the training data and the other the respective classifications (either as positive or

negative examples).

In turn, W is the matrix with the pre-trained word embeddings with the number

of lines given by the size of the vocabulary (recorded in vocabSize) and the number of

columns given by the length of the embedding vectors (recorded in embedSize).

The array with the training data, input_x, and the matrix with the pre-trained word

embeddings, W, are used to lookup the embeddings for our input. They are passed as

arguments of the Tensorflow’s function LOOKUP_EMBBEDDING, whose results is stored

in embedded_input. The result of this embedding operation is a 3-dimensional tensor

containing the vectorial representation of the input.

Finally, before entering the core loop, the data structure pooled_outputs that is go-

ing to accumulate the partial outputs of the iteration is also initialized with an empty

instantiation.

The iterative loop is responsible for ensuring the convolution. There will be three

iterations of its body, each running 128 filters, such that the size of these filters are

three, four and five, respectively, in the first, second and third iteration, as explained in

detail above in section 4.3.2.

The Tensorflow’s CONVOLUTE function is in charge of running the 128 filters (whose

number is defined beforehand and recorded in its argument numFilters), for each of

their three different sizes of the filters.

The output of this CONVOLUTE function, together with the default value (0.1, the

weight for the convolution) for the bias argument, which aims to mitigate a biasing

Chapter 4. Implementation 31

effect during the pooling, feed Tensorflow’s MAX_POOL function. By max-pooling the

output of the convolution operation, the dimensionality of the tensor of features is

reduced to the most relevant ones. This helps to avoid over-fitting and reduces the

computational cost by reducing the number of features the network has to learn.

At each iteration, the array resulting from max-pooling gets concatenated to the

previous value of pooled_outputs, which eventually retains the concatenation of every

such array.

Right after the exiting of the loop, the array resulting from that concatenation is

transformed into a Tensorflow’s tensor by means of the CONCATENATE function.

After having thus concatenated the pooled outputs of the convolution, a fraction

of the network neurons is stochastically disabled, preventing them from co-adapting.

The dropout ratio, encoded in drop_percentage, is set up as 50%.

Using this final feature vector, we calculate the loss, or the measurement of the

error the network makes, by using the SOFTMAX_CROSS_ENTROPY function.

With that final vector, we also generate the predictions as the outcome of the com-

position of the function MAX_SCORE with the function REDUCE_MEAN. From the fea-

tures identified, MAX_SCORE returns the weight of the one with the heaviest weight.

REDUCE_MEAN returns the difference from the prediction to the ground truth.

This concludes the presentation of the pseudo-code, which represents a training

step. As mentioned above, this training step is iterated to accomplish the training of

the model.

As for the evaluation phase, each of its steps works pretty much in the same way as

the training step just explained. The two key differences from an evaluation step to a

training step are twofold. In the evaluation step, the Adam optimizer and the dropout

do not exist.

Chapter 5

Experimental Setup

In this chapter we report on our experimental setup alongside with performance met-

rics that were adopted. A detailed analysis of results is also presented.

5.1 Infrastructure definition

During the course of our dissertation we have many times referred to ICT infrastruc-

tures. Table 5.1 groups all the infrastructures considered in our research work into four

different clusters as defined in [24].

Group A is a simple representation of Cisco and Oracle products. Group B encom-

passes browsers. Group C relates to content management systems. And group D con-

siders the operating systems. The last group (ABCD) refers to the case where one single

classifier will be fed by tweets related to any of the four infrastructure groups.

Infrastructure Description

A oracle, cisco

B google chrome, microsoft edge, mozilla firefox, internet explorer

C wordpress, joomla

D microsoft windows, linux

ABCD A + B + C + D

Table 5.1: Infrastructure grouping.

5.2 Datasets

For the purpose of our experiments, we initially considered three datasets that have

already been collected and properly labeled [24]. Their quantitative characterization is

presented in Table 5.2.

33

Chapter 5. Experimental Setup 34

Dataset Infrastructure Positive Negative Total

D1

A 556 514 1070

B 217 497 714

C 486 606 1092

D 441 691 1132

ABCD 1700 2308 4008

D2

A 177 249 426

B 86 446 532

C 138 900 1038

D 138 2697 2835

ABCD 539 4292 4831

D3

A 502 256 758

B 420 362 782

C 425 303 728

D 336 1232 1568

ABCD 1683 2153 3836

Table 5.2: Default datasets D1, D2, and D3.

The table also includes information about the collected tweets, making a distinc-

tion between positive, referring to tweets that mention a threat to a given part of the

ICT infrastructure, and negative instances.

We highlight group ABCD because, despited having experimented with its individ-

ual components, we are mostly interested in results that work with all groups together.

The distinction between D1, D2 and D3 is explained on Section 5.2.2.

5.2.1 Twitter Accounts

Tables 5.3 and 5.4 list the Twitter accounts from which the tweets were extracted [24].

As indicated before, these accounts are affiliated with security analysts, companies,

hackers, and researchers.

Chapter 5. Experimental Setup 35

Account set S1

inj3ct0r slashdot ThreatFeed USCERT_gov

TrustedSec dstrom pikisec gcluley

Anomali Info_Sec_Buzz SANSInstitute hal_pomeran

briankrebs vuln_lab johullrich SecurityWeek

Secunia threatintel drericcole SecurityNewsbot

exploitdb dangoodin001 F1r3h4nd sans_isc

alienvault ivspiridonov MaldicoreAlerts e_kaspersky

Table 5.3: Set of accounts S1 from which tweets were collected.

Account set S2

TenableSecurity JoomlaTips Microsoft fstenv

securitywatch sjzaib linuxfoundation HPE_Security

securityaffairs SecurityMagnate ChidoDike googlechrome

zer0element Cisco Sec_Cyber wordpressdotcom

notsosecure Dell ptracesecurity packet_storm

CyberExaminer linuxtoday msftsecurity RokaSecurity

SCMagazine securityninja LinuxSec Oracle

DMBisson cyberopsy hack3rsca firefox

lennyzeltser OWASP_Java CiscoSecurity wpbeginner

IT_securitynews _WPScan_ NytroRST YoKoAcc

teamcymru d_plusk joomla SecurityCrap

WordPress threatpost Windows jasonlam_sec

MicrosoftEdge Rootsector crackerhacker00 threatmeter

Table 5.4: Set of accounts S2 from which tweets were collected.

5.2.2 Time Frame

Our three datasets D1, D2 and D3 were collected during three different periods of time

as shown in Table 5.5, where the collection time frame and the corresponding account

sets may be consulted.

Chapter 5. Experimental Setup 36

Dataset Time period Account set

D1 01-11-2015 to 01-04-2016 S1

D2 01-04-2016 to 15-05-2016 S1, S2

D3 15-05-2016 to 10-07-2016 S1, S2

Table 5.5: Time period of tweet collection.

5.2.3 Data balancing

Having trained and evaluated our CNN with these datasets, a number of observations

emerged. First and foremost, we found the datasets to be somewhat small to properly

assess our problem. We also felt that the proportion of positive and negative data is

unbalanced enough to bias our network towards negative classification.

The first issue was straightforward to address as more negative data can be ob-

tained from the already existing pool of data. We did so by considering that a positive

entry regarding, for example, Cisco must be negative for Oracle and vice versa. Table

5.6 shows the resulting datasets from this expansion of the already existing negative

entries. However, this correction of the first problem comes at the expense of the ag-

gravation of the second one.

5.3 Metrics

In order to determine whether our neural network is producing good results, we adopt

metrics to measure its performance. To do so, it is important to clarify the concepts of

sensitivity and specificity.

5.3.1 Sensitivity

Sensitivity, also referred to as True Positive Rate (TPR), is a statistical measure that as-

sesses the proportion of positives correctly identified as such:

TPR = true positives

true positives + false negatives
(5.1)

In order to determine sensitivity we first create a tensor namedones_tensor that

is the same size as the input tensor of the batch being analysed. This tensor consists

only of ones which represents the positive result/tweet.

input_y is the tensor that contains the correct results for that particular batch.

This tensor also has the same size as the batch but, unlike the previous two, it is com-

posed of both ones and zeros that match positive and negative tweets, respectively.

Chapter 5. Experimental Setup 37

Dataset Infrastructure Positive Negative
Generated
negatives Total

D1

A 556 514 556 1626

B 217 497 651 1365

C 486 606 486 1578

D 441 691 441 1573

ABCD 1700 2308 2134 6142

D2

A 177 249 177 603

B 86 446 258 790

C 138 900 138 1176

D 138 2697 138 2973

ABCD 539 4292 711 5542

D3

A 502 256 502 1260

B 420 362 1260 2042

C 425 303 425 1153

D 336 1232 336 1904

ABCD 1683 2153 2523 6359

Table 5.6: Complementary datasets D1, D2, and D3.

Additionally, we have a predictions tensor which is the output result of Ten-

sorflow’s analysis for each batch. This tensor will contain the result of the analysis,

meaning that it will be composed of both ones and zeros corresponding to the positive

and negative nature of the result/tweet.

The predictions tensor will be compared to the input tensor in order for the

Tensorflow network to learn and for us to analyse the performance of the network.

Having gathered these tensors, we then perform a logical AND operation which will

return a tensor containing all true positives:

true positives =
input length∑

n=0
input_yn ∧ predictionsn (5.2)

Finally, TPR is calculated as the ratio of true positives over the ones counted on the

input_y tensor:

Chapter 5. Experimental Setup 38

TPR = true positives

count_ones(input_y)
(5.3)

5.3.2 Specificity

Specificity, also called the True Negative Rate (TNR) measures the proportion of nega-

tives that are correctly identified as such:

TNR = true negatives

true negatives + false positives
(5.4)

We apply the dual procedure employed for determining sensitivity (TPR) as we are

instead interested on the negative input and predictions (TNR), for which we turn zeros

into ones, and vice versa, with ¬:

true negatives =
input length∑

n=0
¬ input_yn ∧ ¬predictionsn (5.5)

TNR = true negatives

count_zeros(input_y)
(5.6)

5.4 Cross Validation

In order to assess how our results are capable of generalizing to an independent data

set, we trained and evaluated our network rotating the percentage of a testing data

subset, following a ten-fold cross validation.

After shuffling the data, we parcel it into ten different subsets. The performed eval-

uation then iterates over all testing subsets in order for us to be able to determine the

average and standard deviation of the evaluation scores. For each fold, 90% of the re-

maining dataset is used to train the model and the remaining 10%, that is the fold at

stake, for testing its performance. The scores presented in the fold lines of D1 corre-

spond to those obtained on that 10% testing fold.

Chapter 6

Results and Discussion

After having established which infrastructures were tested, provided an overview of

our datasets, and explained the employed metrics and evaluation methodology, we are

now ready to present the obtained results.

6.1 Results

The scores are first presented, to which their discussion follows, by the end of the

present chapter.

Cross Validation

Tables 6.1 to 6.6 show the TPR and TNR scores obtained as a result of the cross-validation

procedure, concerning datasets D1 (Tables 6.1 and 6.2), D2 (Tables 6.3 and 6.4) and D3

(Tables 6.5 and 6.6).

For each dataset D1 to D3, the tables show the result for both the default version

(Tables 6.1, 6.3, and 6.5) and the complementary version (Tables 6.2, 6.4, and 6.6),

which includes artificially generated negative data.

In the tables, the lines numbered by fold indicate the scores obtained for each one

of the ten folds, and the final two lines indicate their average and standard deviation.

The scores in the numbered lines for D2 and D3 (Tables 6.3 to 6.6) were obtained

by running the respective model trained with D1 for the same line number and batch

size, and for the same dataset version, either default or complementary.

39

Chapter 6. Results and Discussion 40

D1 - default

Fold
Batch size 16 Batch size 32 Batch size 64 Batch size 128 Batch size 256

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

1 0.97 0.98 0.97 0.97 0.97 0.97 0.99 0.97 0.98 0.97

2 0.96 0.95 0.97 0.94 0.96 0.96 0.98 0.95 0.98 0.96

3 0.94 0.98 0.93 0.99 0.95 0.99 0.95 0.98 0.94 0.98

4 0.97 0.96 0.96 0.97 0.95 0.97 0.98 0.95 0.97 0.96

5 0.92 0.96 0.94 0.96 0.99 0.94 0.96 0.97 0.98 0.97

6 0.90 0.96 0.95 0.96 0.94 0.95 0.95 0.95 0.93 0.95

7 0.94 0.95 0.94 0.95 0.95 0.96 0.95 0.96 0.93 0.95

8 0.88 0.96 0.90 0.97 0.94 0.96 0.90 0.97 0.92 0.97

9 0.93 0.96 0.92 0.98 0.94 0.97 0.92 0.97 0.94 0.97

10 0.94 0.97 0.94 0.97 0.97 0.97 0.98 0.96 0.98 0.98

Average 0.93 0.96 0.94 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Standard
deviation 0.03 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.02 0.01

Table 6.1: Results obtained in the testing subsets of the cross-validation procedure, for
the default version of the dataset D1.

Chapter 6. Results and Discussion 41

D1 - complementary

Fold
Batch size 16 Batch size 32 Batch size 64 Batch size 128 Batch size 256

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

1 0.94 0.94 0.95 0.95 0.95 0.96 0.94 0.95 0.93 0.96

2 0.96 0.95 0.94 0.97 0.94 0.97 0.96 0.98 0.95 0.97

3 0.97 0.95 0.93 0.98 0.95 0.96 0.96 0.96 0.95 0.96

4 0.97 0.96 0.94 0.97 0.97 0.96 0.96 0.97 0.95 0.97

5 0.92 0.97 0.95 0.97 0.92 0.97 0.94 0.98 0.95 0.97

6 0.91 0.95 0.94 0.97 0.94 0.96 0.93 0.97 0.93 0.95

7 0.96 0.95 0.96 0.95 0.93 0.96 0.97 0.95 0.97 0.95

8 0.92 0.95 0.92 0.94 0.90 0.96 0.93 0.95 0.93 0.96

9 0.93 0.95 0.94 0.96 0.90 0.96 0.90 0.95 0.90 0.96

10 0.95 0.95 0.96 0.95 0.96 0.95 0.94 0.97 0.97 0.96

Average 0.94 0.96 0.94 0.96 0.94 0.96 0.94 0.96 0.94 0.96

Standard
deviation 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01

Table 6.2: Results obtained in the testing subsets of the cross-validation procedure, for
the complementary version of the dataset D1.

Chapter 6. Results and Discussion 42

D2 - default

Fold
Batch size 16 Batch size 32 Batch size 64 Batch size 128 Batch size 256

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

1 0.70 0.98 0.71 0.98 0.75 0.98 0.90 0.98 0.81 0.98

2 0.60 0.98 0.78 0.98 0.78 0.98 0.81 0.98 0.79 0.99

3 0.70 0.98 0.64 0.98 0.79 0.98 0.85 0.98 0.87 0.99

4 0.71 0.98 0.75 0.98 0.70 0.98 0.86 0.98 0.82 0.98

5 0.66 0.98 0.66 0.98 0.83 0.98 0.81 0.98 0.86 0.98

6 0.62 0.99 0.68 0.98 0.73 0.98 0.80 0.98 0.82 0.98

7 0.77 0.98 0.69 0.98 0.72 0.98 0.82 0.98 0.80 0.98

8 0.58 0.98 0.72 0.99 0.79 0.97 0.78 0.99 0.83 0.98

9 0.73 0.98 0.67 0.98 0.59 0.98 0.72 0.99 0.75 0.99

10 0.56 0.98 0.68 0.98 0.79 0.98 0.83 0.98 0.82 0.98

Average 0.66 0.98 0.70 0.98 0.75 0.98 0.82 0.98 0.82 0.98

Standard
deviation 0.07 0.00 0.04 0.00 0.07 0.00 0.05 0.00 0.03 0.00

Table 6.3: Results obtained by applying each fold’s model trained with default D1 to the
default version of the D2 dataset.

Chapter 6. Results and Discussion 43

D2 - complementary

Fold
Batch size 16 Batch size 32 Batch size 64 Batch size 128 Batch size 256

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

1 0.79 0.98 0.82 0.98 0.78 0.98 0.75 0.98 0.75 0.98

2 0.61 0.98 0.73 0.98 0.76 0.98 0.77 0.98 0.77 0.98

3 0.68 0.97 0.68 0.98 0.71 0.97 0.78 0.98 0.82 0.98

4 0.78 0.97 0.66 0.98 0.84 0.97 0.82 0.97 0.63 0.98

5 0.71 0.98 0.76 0.97 0.73 0.98 0.73 0.98 0.80 0.98

6 0.78 0.97 0.68 0.98 0.83 0.97 0.71 0.98 0.82 0.98

7 0.73 0.98 0.79 0.98 0.73 0.98 0.72 0.98 0.71 0.98

8 0.76 0.98 0.82 0.96 0.71 0.97 0.80 0.98 0.74 0.98

9 0.87 0.97 0.83 0.97 0.80 0.98 0.74 0.98 0.78 0.98

10 0.71 0.97 0.78 0.98 0.82 0.97 0.81 0.98 0.79 0.98

Average 0.74 0.98 0.75 0.98 0.77 0.98 0.76 0.98 0.76 0.98

Standard
deviation 0.07 0.00 0.06 0.01 0.05 0.00 0.04 0.00 0.06 0.00

Table 6.4: Results obtained by applying each fold’s model trained with complementary
D1 to the complementary version of the D2 dataset.

Chapter 6. Results and Discussion 44

D3 - default

Fold
Batch size 16 Batch size 32 Batch size 64 Batch size 128 Batch size 256

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

1 0.88 0.83 0.89 0.85 0.90 0.88 0.96 0.84 0.93 0.90

2 0.84 0.89 0.91 0.83 0.91 0.87 0.94 0.86 0.91 0.90

3 0.88 0.89 0.87 0.91 0.91 0.90 0.93 0.90 0.94 0.92

4 0.88 0.83 0.90 0.87 0.89 0.86 0.94 0.82 0.94 0.89

5 0.86 0.89 0.87 0.91 0.93 0.87 0.94 0.90 0.94 0.87

6 0.85 0.90 0.86 0.84 0.89 0.81 0.92 0.89 0.93 0.90

7 0.89 0.89 0.89 0.90 0.89 0.89 0.92 0.89 0.93 0.85

8 0.83 0.89 0.89 0.89 0.92 0.83 0.91 0.91 0.93 0.89

9 0.90 0.88 0.87 0.89 0.84 0.89 0.90 0.94 0.90 0.93

10 0.83 0.89 0.88 0.90 0.92 0.86 0.93 0.84 0.93 0.89

Average 0.86 0.88 0.88 0.88 0.90 0.86 0.93 0.88 0.93 0.89

Standard
deviation 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.01 0.02

Table 6.5: Results obtained by applying each fold’s model trained with default D1 to the
default version of the D3 dataset.

Chapter 6. Results and Discussion 45

D3 - complementary

Fold
Batch size 16 Batch size 32 Batch size 64 Batch size 128 Batch size 256

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

1 0.91 0.92 0.93 0.92 0.90 0.93 0.84 0.93 0.87 0.92

2 0.86 0.93 0.91 0.93 0.91 0.93 0.91 0.92 0.92 0.94

3 0.90 0.90 0.85 0.94 0.89 0.92 0.90 0.92 0.92 0.92

4 0.91 0.92 0.80 0.93 0.93 0.92 0.93 0.92 0.81 0.93

5 0.91 0.93 0.92 0.91 0.90 0.93 0.90 0.93 0.92 0.92

6 0.94 0.90 0.89 0.94 0.92 0.92 0.86 0.93 0.90 0.93

7 0.87 0.94 0.90 0.93 0.87 0.94 0.89 0.92 0.89 0.92

8 0.93 0.92 0.95 0.89 0.89 0.93 0.88 0.92 0.89 0.93

9 0.95 0.91 0.92 0.91 0.94 0.93 0.90 0.93 0.93 0.92

10 0.90 0.91 0.93 0.92 0.92 0.91 0.91 0.93 0.90 0.93

Average 0.91 0.92 0.90 0.92 0.91 0.93 0.89 0.93 0.90 0.93

Standard
deviation 0.03 0.01 0.04 0.02 0.02 0.01 0.03 0.01 0.04 0.01

Table 6.6: Results obtained by applying each fold’s model trained with complementary
D1 to the complementary version of the D3 dataset.

Chapter 6. Results and Discussion 46

Having been presented in Tables 6.1-6.6, the results are summarized graphically in

Figures 6.1-6.8 for better interpretation and analysis.

Pareto Lines

Figures 6.1 to 6.4 illustrate the distribution in a Pareto line of how well each batch size

performed for both our default and complementary datasets.

When analysing these graphs, it is important to take into account the scale adopted

to make it easier to differentiate between different points.

90 95 100

TPR %

90

95

100

T
N

R
 %

Eval Dataset D1

16

32

64

128

256

Batch size:

default

complementary

Figure 6.1: Pareto line for D1.

65 70 75 80 85

TPR %

85

90

95

100

T
N

R
 %

Eval Dataset D2

16

32

64

128

256

Batch size:

default

complementary

Figure 6.2: Pareto line for D2.

From Figures 6.1 and 6.2, it is possible to observe that batch size 256 and the default

version dominate the results in D1 and D2, with a larger margin for TPR.

85 90 95

TPR %

85

90

95

T
N

R
 %

Eval Dataset D3

16

32

64

128

256

Batch size:

default

complementary

Figure 6.3: Pareto line for D3.
.

65 70 75 80 85 90 95 100

TPR %

65

70

75

80

85

90

95

100

T
N

R
 %

Eval All Datasets

D1

D2

D3

default

complementary

Figure 6.4: Pareto line for all
datasets (D1, D2, and D3).

From Figure 6.3, one observes that the domination observed in the previous two

Figures is not so conclusive: the larger batch sizes (128 and 256) with the default ver-

sion have better TPR scores. However, concerning TNR, the respective scores are dom-

Chapter 6. Results and Discussion 47

inated also by larger batch sizes but with the complementary version. There are two

scores that are clearly better.

From Figure 6.4, it is possible to observe the relation between the results of the D1,

D2 and D3 datasets, which are organized in well defined clusters. D1 and D2 have high

scores for TNR but D1 clearly outperforms D2 in terms of TPR score. D2 displays a

higher TNR most likely due to the skewed ratio between negative and positive data.

With D3, in turn, some degradation of performance is observed, but with both TNR

and TPR scores keeping a good balance among them.

The results for D2 are notorious given the unbalance between TPR and TNR, mostly

because of the worst results in TPR, irrespective of the dataset version, default or com-

plementary. This is probably due to the combination between the circumstances that

the datasets are small and that in D2 there is a larger unbalance between positive and

negative examples.

Euclidean Distance

An alternative way of visualizing the performance of the data is comparing the distance

between each set’s TPR and TNR and the optimal point (100% TPR and TNR). The fol-

lowing graphs show how far the average rates were from a perfect run for each batch

size.

Tables 6.5 and 6.6 display the average euclidean distance obtained per batch size in

each dataset, considering the default and complementary version, respectively.

D1 D2 D3

5

10

15

20

25

30

35

D
is

ta
n
c
e
 f
ro

m
 1

0
0
%

Average Rates for Batch Size

16

32

64

128

256

Batch size:

Figure 6.5: Average euclidean
distances to the optimal result

obtained using default datasets.
.

D1 D2 D3

5

10

15

20

25

30

35

D
is

ta
n
c
e
 f
ro

m
 1

0
0
%

Average Complementary Rates for Batch Size

16

32

64

128

256

Batch size:

Figure 6.6: Average euclidean
distances to the optimal result

obtained using complementary
datasets.

One can observe in Figures 6.5 and 6.6 that there exists higher variability in dataset

D2, mostly with the default version.

Chapter 6. Results and Discussion 48

With respect to the complementary version, the results show less variability, with

batch size 64 being the one with better results both for D2 and D3.

Concerning the default version, in turn, the largest the batch the better the scores,

with the largest batch size 256 supporting the best result in all datasets. It is possible

that this batch size is coming close to the best euclidean distance for these experimen-

tal circumstances once its scores show little improvement to the immediately better

ones, obtained with batch size 128.

Bar Charts

Finally, to enable comparison with the results obtained in [25] , we also present our

data grouped in rectangular bars with lengths proportional to the TPR and TNR scores.

We first present the graphs for the default datasets in Figure 6.7 followed by the com-

plementary datasets in Figure 6.8.

Chapter 6. Results and Discussion 49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Batch Size 16

TPR TNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Batch Size 32

TPR TNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Batch Size 64

TPR TNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Batch Size 128

TPR TNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Batch Size 256

TPR TNR

Figure 6.7: TPR and TNR for the default dataset by batch size.

Chapter 6. Results and Discussion 50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Complementary Batch Size 16

TPR TNR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Complementary Batch Size 32

TPR TNR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Complementary Batch Size 64

TPR TNR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Complementary Batch Size 128

TPR TNR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D1 D2 D3

T
P

R
 a

n
d
 T

N
R

 %

Complementary Batch Size 256

TPR TNR

Figure 6.8: TPR and TNR for the complementary dataset by batch size.

Chapter 6. Results and Discussion 51

6.2 Discussion

As expected, overall results are slightly worse in D2 and D3 when compared to D1. This

effect stems from the fact that the data in D2 and D3 are subsequent to D1 and come

from a wider range of Twitter accounts, thus including more diverse text styles. As

time passes and new accounts are added, we expect this effect to manifest with greater

impact.

Focusing on the results obtained in datasets D2 and D3 we see that the classifiers

maintain high TPR and TNR scores. However we also observe that D2 exhibits a signif-

icant drop in TPR. This might be explained by the fact that this dataset has the smallest

number of positive tweets and the largest imbalance between positives and negatives

(see Table 5.6).

In most cases, the TNR is higher than the TPR. A few exceptions can be noted in D1

default (batch size 64, 128, and 256), where TPR ties with TNR. In D3 default there are

also a few occasions where TPR is higher than TNR, more specifically in batch size 64,

128, and 256.

In general a higher TNR might be explained by the imbalance between positively

and negatively labeled data in the training data sets, which favors the TNR.

Overall, the default and complementary datasets differ only by small margins in

the TNR and TPR scores. There is however a smaller variance in results for D2 in the

complementary dataset comparing to the default dataset. As noted before, this de-

rives from the unbalanced data ratio between positive and negative tweets, which then

prompts an artificial TNR boost. Despite producing better results in D2, the comple-

mentary dataset does not yield better overall results.

From the graphs it is also apparent that smaller batch sizes produce overall worse

results which we attribute to overtraining. When evaluated with smaller batch sizes,

the models are updated more frequently with partial changes related only to portions

of the data. These frequent, partial updates might induce a certain level of overtraining,

thus fitting the model inadequately.

Comparing these results to those achieved previously by means of Support Vector

Machines and Muli-Layer Perceptrons [25], we observe that for D1, both results are

comparable, irrespective of the datasets version (default or complimentary). For D2,

we achieve a substantially higher TNR with both versions, while the respective TPR

scores are lower in both versions. Finally for D3, our results are better independently

of the datasets version, with the complimentary achieving the best result by a small

margin.

Chapter 7

Conclusions and Future Work

In this chapter we provide a summary of the major achievements of our work and a

compilation of its main results.

Our purpose was to develop a program and methodology that, after training with a

dataset composed by tweets, can then accept and evaluate other datasets of the same

type generating an output which determines if the previously unseen tweet mentions

a threat to predefined Information Communication and Technology (ICT) infrastruc-

tures.

To perform this cyberthreat detection, we employed a convolutional neural net-

work (CNN) that requires little human guidance.

Our findings indicate that smaller batch sizes produce worse results which we at-

tribute to overtraining. Most likely this occurs because smaller batch sizes impose a

high number of total steps despite not covering a large enough extent of the dataset in

each step.

We also learned that, as the batch size gets larger, a model trained over the default

datasets generally outperforms the respective complementary one even if the former

tends to have a higher variance in the result. We attribute this to the data imbalance of

our datasets regarding the positive to negative ratio.

In terms of real usage, we think that the solution developed is highly competitive. It

seems like a viable solution for Security Operating Center (SOC) analysts to detect only

the most relevant information in tweets about possible threats against the infrastruc-

tures for which they are responsible.

7.1 Future Work

During the course of the work, new ideas and goals spread beyond what we could hope

to do within the available time. We now dedicate some sections to provide a starting

point for someone else to expand on the work we started.

53

Chapter 7. Conclusions and Future Work 54

7.1.1 Model and Training Parameters

Unfortunately, due to the limited time available, it was not viable to test every hyper-

parameter of the CNN and every training parameter.

We are confident that we tinkered with the one that influences the output the most,

namely batch size.

We think that it would be useful to experiment with increasing further the batch

size. Additionally, we think that it would be useful to experiment with other parameters

such as filter sizes, number of convolution filters and word embeddings dimension

(regarding the CNN design), and the number of epochs and regularization parameter

(regarding the learning process).

7.1.2 Relation Extraction and Relation Classification

Nguyen and Grishman [49] explore CNNs for Relation Extraction and Relation Classifi-

cation tasks. In addition to word vectors, the authors use the relative positions of words

to the entities of interest as an input to the convolutional layer. This models assumes

that the positions of the entities are given, and that each example input contains one

relation. Both Sun et al. [50] and Zeng et al. [51] have explored similar models and we

believe that this could represent an improvement to the model we used.

Another interesting use case of CNNs in Natural Language Processing (NLP) can be

found in [52] and [53]. These papers describe how to learn semantically meaningful

representations of sentences that can be used for information retrieval.

7.1.3 Word Embeddings

Most CNN architectures learn embeddings for words and sentences but not all papers

focus on this aspect of training or investigate how meaningful the learned embeddings

are.

Weston et al. [54] present a CNN architecture that predicts hashtags for Facebook

posts, while at the same time generating meaningful embeddings for words and sen-

tences. These learned embeddings are then successfully applied to another task, namely

the recommendation of potentially interesting documents to users.

We think it would be interesting to experiment with this type of architecture and

reach a model that is a hybrid between the one we implemented and the one proposed

in these papers, along the lines of the seminal work by Collobert and Weston [55].

7.1.4 Character- and Subword-level CNNs

So far, all models presented were based on words. But there has also been research

on applying CNNs directly to characters. The model proposed by Santos and Zadrozny

Chapter 7. Conclusions and Future Work 55

[56] learns character-level embeddings, joins them with pre-trained word embeddings,

and uses a CNN for Part of Speech tagging.

In the same line of research, some more recent works of Bojanowski et al. [57] and

Joulin et al. [58] also present interesting results regarding this idea. Its library can be

consulted in [59].

Zhang et al. [60] explore the use of CNNs to learn directly from characters, without

the need for any pre-trained word embeddings. The authors use a relatively deep net-

work with a total of 9 layers, and apply it to Sentiment Analysis and Text Categorization

tasks. Results show that learning directly from character-level input works very well on

large datasets, but underperforms with simpler models on smaller datasets.

Kim et al. [61] also investigate the application of character-level convolutions to

Language Modeling, using the output of the character-level CNN as the input to an

Long Short-Term Memory neural network at each time step. The same model is ap-

plied to various languages.

This approach could be extended to our model when working with larger datasets

allowing us to have a truly scalable solution for cyberthreat detection in OSINT.

References

[1] Diversity Enhancements for Security Information and Event Management

(DiSIEM) Project. http://disiem-project.eu/. DiSIEM | Scalable infor-

mation extraction and machine learning algorithms. Accessed: 2016-11-23.

[2] Horizon 2020. https://ec.europa.eu/programmes/horizon2020/.

Horizon 2020 | The EU Framework Programme for Research and Innovation. Ac-

cessed: 2016-11-23.

[3] LaSIGE. http://www.lasige.di.fc.ul.pt/. LaSIGE | Large-Scale Infor-

matics Systems Laboratory. Accessed: 2017-02-27.

[4] Navigators. http://www.navigators.di.fc.ul.pt/wiki/Main_

Page. Navigators | Distributed systems research team. Accessed: 2016-11-02.

[5] Igor Kotenko and Andrey Chechulin. Attack modeling and security evaluation in

siem systems. International Transactions on Systems Science and Applications, 8:

129–147, 2012.

[6] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon. A

proposal for the dartmouth summer research project on artificial intelligence. AI

magazine, 27(4):12, August 2010.

[7] Nils J Nilsson. Principles of artificial intelligence. Morgan Kaufmann, 2014.

[8] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-

chine learning. MIT press, 2012.

[9] Christos Stergiou and Dimitrios Siganos. Neural networks., 2010.

[10] Rémi Domingues, Francesco Buonora, Romain Senesi, and Olivier Thonnard. An

application of unsupervised fraud detection to passenger name records. In De-

pendable Systems and Networks Workshop, 2016 46th Annual IEEE/IFIP Interna-

tional Conference on, pages 54–59. IEEE, 2016.

[11] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Overview of supervised

learning. In The elements of statistical learning, pages 9–41. Springer, 2009.

57

http://disiem-project.eu/
https://ec.europa.eu/programmes/horizon2020/
http://www.lasige.di.fc.ul.pt/
http://www.navigators.di.fc.ul.pt/wiki/Main_Page
http://www.navigators.di.fc.ul.pt/wiki/Main_Page

References 58

[12] Zoubin Ghahramani. Unsupervised learning. In Advanced lectures on machine

learning, pages 72–112. Springer, 2004.

[13] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised

learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural

Networks, 20(3):542–542, 2009.

[14] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-

scale sentiment classification: A deep learning approach. In Proceedings of the

28th international conference on machine learning (ICML-11), pages 513–520,

2011.

[15] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree

search. Nature, 529(7587):484–489, 2016.

[17] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[18] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. Learning functions: when

is deep better than shallow. arXiv preprint arXiv:1603.00988, 2016.

[19] Hrushikesh N Mhaskar and Tomaso Poggio. Deep vs. shallow networks: An ap-

proximation theory perspective. Analysis and Applications, 14(06):829–848, 2016.

[20] Alan Ritter, Evan Wright, William Casey, and Tom Mitchell. Weakly supervised

extraction of computer security events from twitter. In Proceedings of the 24th

International Conference on World Wide Web, pages 896–905. International World

Wide Web Conferences Steering Committee, 2015.

[21] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vulnerability disclosure in

the age of social media: Exploiting twitter for predicting real-world exploits. In

USENIX Security Symposium, pages 1041–1056, 2015.

[22] Bernardo de Simas Gaspar Rodrigues. Open-source intelligence em sistemas SIEM.

PhD thesis, 2015.

[23] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos Bassias,

and Ke Li. Aiˆ 2: training a big data machine to defend. In Big Data Security on

Cloud (BigDataSecurity), IEEE International Conference on High Performance and

References 59

Smart Computing (HPSC), and IEEE International Conference on Intelligent Data

and Security (IDS), 2016 IEEE 2nd International Conference on, pages 49–54. IEEE,

2016.

[24] André Marques Correia. Aprendizagem automática em larga escala nas redes so-

ciais para a descoberta de ameaças de segurança. Master’s thesis, 2016.

[25] Fernando Alves, André Correia, Pedro M. Ferreira, and Alysson Bessani. Process-

ing tweets for cybersecurity threat awareness. 2017. Unpublished paper.

[26] Yoon Kim. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882, 2014.

[27] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.

arXiv preprint arXiv:1511.08458, 2015.

[28] Denny Britz. Understanding Convolutional Neural Networks for NLP. http:

//www.wildml.com/2015/11/understanding-convolutional-

neural-networks-for-nlp/, Feb 2016. Accessed: 2017-07-13.

[29] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling func-

tions in convolutional neural networks: Mixed, gated, and tree. In Artificial Intel-

ligence and Statistics, pages 464–472, 2016.

[30] Douglas M Hawkins. The problem of overfitting. Journal of chemical information

and computer sciences, 44(1):1–12, 2004.

[31] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[32] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neu-

ral network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[33] Peng Wang, Jiaming Xu, Bo Xu, Cheng-Lin Liu, Heng Zhang, Fangyuan Wang, and

Hongwei Hao. Semantic clustering and convolutional neural network for short

text categorization. In ACL (2), pages 352–357, 2015.

[34] Tomas Mikolov and team. word2vec: Vector Representations of Words (Ten-

sorflow). https://www.tensorflow.org/tutorials/word2vec. Ac-

cessed: 2017-07-13.

[35] Fengyu Cong, Andrew Leung, and Qinglai Wei. Advances in Neural Networks-

ISNN. Springer, 2017.

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
https://www.tensorflow.org/tutorials/word2vec

References 60

[36] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In In EMNLP, 2014.

[37] Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide

to) convolutional neural networks for sentence classification. arXiv preprint

arXiv:1510.03820, 2015.

[38] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[39] Rie Johnson and Tong Zhang. Semi-supervised convolutional neural networks

for text categorization via region embedding. In Advances in neural information

processing systems, pages 919–927, 2015.

[40] Peter Norvig. English letter frequency counts: Mayzner revisited or etaoin

srhldcu. Norvig. com, 2013.

[41] Caffe. http://caffe.berkeleyvision.org/. Caffe | Deep Learning

Framework. Accessed: 2016-10-05.

[42] Theano. http://deeplearning.net/software/theano/. Theano | A

Python framework for fast computation of mathematical expressions. Accessed:

2016-10-03.

[43] Torch. http://torch.ch/. Torch | A scientific computing framework for Lua-

JIT. Accessed: 2016-10-17.

[44] Lua. http://lua.space/webdev/the-best-lua-web-frameworks.

Lua |The Lua Community Blog. Accessed: 2016-10-17.

[45] Tensorflow. https://www.tensorflow.org/. Tensorflow | An open-source

software library for Machine Intelligence. Accessed: 2017-07-11.

[46] Numpy. http://www.numpy.org/. Numpy | Fundamental package for sci-

entific computing with Python. Accessed: 2016-10-17.

[47] Denny Britz. Artificial Intelligence, Deep Learning, and NLP: Imple-

menting a Convolutional Neural Network for Text Classification in Ten-

sorflow. http://www.wildml.com/2015/12/implementing-a-cnn-

for-text-classification-in-tensorflow/, Feb 2016. Accessed:

2017-07-13.

[48] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
http://torch.ch/
http://lua.space/webdev/the-best-lua-web-frameworks
https://www.tensorflow.org/
http://www.numpy.org/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

References 61

[49] Thien Huu Nguyen and Ralph Grishman. Relation extraction: Perspective from

convolutional neural networks. In VS@ HLT-NAACL, pages 39–48, 2015.

[50] Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou Ji, and Xiaolong Wang.

Modeling mention, context and entity with neural networks for entity disam-

biguation. In IJCAI, pages 1333–1339, 2015.

[51] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao, et al. Relation clas-

sification via convolutional deep neural network. In COLING, pages 2335–2344,

2014.

[52] Jianfeng Gao, Li Deng, Michael Gamon, Xiaodong He, and Patrick Pantel. Mod-

eling interestingness with deep neural networks, June 13 2014. US Patent App.

14/304,863.

[53] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A latent

semantic model with convolutional-pooling structure for information retrieval.

In Proceedings of the 23rd ACM International Conference on Conference on Infor-

mation and Knowledge Management, pages 101–110. ACM, 2014.

[54] Jason Weston, Sumit Chopra, and Keith Adams. # tagspace: Semantic embeddings

from hashtags. 2014.

[55] Ronan Collobert and Jason Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of the

25th international conference on Machine learning, pages 160–167. ACM, 2008.

[56] Cicero D Santos and Bianca Zadrozny. Learning character-level representations

for part-of-speech tagging. In Proceedings of the 31st International Conference on

Machine Learning (ICML-14), pages 1818–1826, 2014.

[57] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching

word vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

[58] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of

tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[59] Facebookresearch. facebookresearch/fastText. https://github.com/

facebookresearch/fastText, Jul 2017.

[60] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-

works for text classification. In Advances in neural information processing systems,

pages 649–657, 2015.

[61] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware

neural language models. In AAAI, pages 2741–2749, 2016.

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Objectives
	Contributions
	Planning
	Document Structure

	Basic Notions and Related Work
	Artificial Intelligence
	Machine Learning
	Supervised, Unsupervised and Semi-supervised Learning
	Neural Networks and Deep Learning
	Machine Learning for Cyberthreat Detection
	Natural Language Processing for Tweet Classification
	Convolutional Neural Networks
	Convolution
	Pooling
	Overfitting and Dropout

	Convolutional Neural Networks and Tweet Classification

	Specifications and Design
	Problem Statement
	Requirements
	Data Collection
	Data Pre-Processing
	Frameworks
	Caffe
	Theano
	Torch
	Tensorflow
	Comparison of Frameworks

	Implementation
	Model
	Data Loading Parameters
	Validation Sample

	Model Hyperparameters
	Embedding Dimensionality
	Filters
	Dropout Probability
	Regularization

	Training Parameters
	Pseudo-Code

	Experimental Setup
	Infrastructure definition
	Datasets
	Twitter Accounts
	Time Frame
	Data balancing

	Metrics
	Sensitivity
	Specificity

	Cross Validation

	Results and Discussion
	Results
	Discussion

	Conclusions and Future Work
	Future Work
	Model and Training Parameters
	Relation Extraction and Relation Classification
	Word Embeddings
	Character- and Subword-level cnns

	References

