
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

AUTOMATIC TESTS GENERATION
FOR RESTFUL APIS

Fábio Alexandre Canada Ferreira

MESTRADO EM ENGENHARIA INFORMÁTICA
Engenharia de Software

Dissertação orientada por:
Prof. Doutor Francisco Cipriano da Cunha Martins

e co-orientado pelo Prof. Doutor Vasco Manuel Thudichum de Serpa
Vasconcelos

2017

Agradecimentos

Agradeço aos meus orientadores, o Prof. Francisco Martins e Prof. Vasco T. Vascon-
celos, pelo apoio e por me terem dado a oprotunidade de desenvolver um projeto numa
área de enorme relevância nos dias de hoje. Foi um privilégio e um grande prazer poder
realizar este projeto juntamente com os professores. Foi um ano repleto de aprendizagens
extremamente úteis que adquiri junto de ambos. Muito obrigado a ambos.

Um especial agradecimento também à Prof. Antónia Lopes e Telmo Santos, pelo
suporte dado durante o desenvolvimento do projeto.

Não posso deixar de agradecer à minha famı́lia por todo o apoio que deram. Em
especial, à minha mãe, agradeço por me ter proporcionado a oportunidade de chegar até
aqui e por todo apoio e incentivo que sempre me deu.

Agradeço ainda aos amigos e colegas, que ao longo do meu percurso na FCUL me
ajudaram a alcançar os meus objetivos.

Um obrigado a todos.

i

À minha mãe.

Resumo

A programação de serviços web que fornecem interfaces aplicacionais que seguem os
princı́pios do estilo arquitetural REST (Representational State Transfer) [38], designadas
em inglês por RESTful APIs, e de aplicações cliente deste tipo de serviços é atualmente
muito popular [63]. Por exemplo, aplicações como Twitter, Instagram, Youtube, Uber
e Gitlab, fornecem acesso programático às suas aplicações cliente através deste tipo de
APIs (Application Programming Interfaces). Isto acontece porque o uso deste tipo de
APIs, quando comparado com as tradicionais interfaces de serviços web baseados em
SOAP (Simple Object Access Protocol), simplificam grandemente o desenvolvimento das
aplicações cliente. Mais recentemente, com o advento da arquitetura baseada em micro-
serviços, o desenho de aplicações como conjuntos de serviços tornou-se muito comum,
alavancando ainda mais a utilização das APIs REST [35].

O desenvolvimento eficaz de aplicações cliente deste tipo de serviços exige que as
suas interfaces estejam bem documentadas. Apesar de iniciativas importantes como a
Open API Specification [11], focadas na criação e promoção de um formato aberto para
a descrição de APIs REST, o suporte à descrição deste tipo de APIs é atualmente extre-
mamente limitado e incide, sobretudo, na estrutura e representações dos dados trocados
entre clientes e fornecedores.

De forma a ultrapassar as limitações existentes e suportar também a descrição de
aspetos semânticos subjacentes às APIs REST, desenhámos e implementámos a lingua-
gem HEADREST que permite especificar cada um dos seus serviços individualmente,
num estilo reminescente dos triplos de Hoare [50], os quais designamos simplesmente
por asserções e utilizando tipos de refinamento [45]. HEADREST é uma linguagem que
inclui elementos para superar as limitações das abordagens existentes. O objetivo de HE-
ADREST não é estender a Open API Specification, mas antes identificar primitivas que
permitam aumentar o seu poder expressivo e demonstrar que é possı́vel explorar estas
descrições para avançar o estado da arte no que diz respeito à programação e testes de
APIs REST.

Normalmente, as regras de negócio de APIs REST esperam que os seus clientes en-
viem valores que respeitem alguma expressão lógica, por exemplo, um número de contri-
buinte. De forma a suportar esse requisito, HEADREST suporta tipos de refinamento que
refinem um tipo base (booleano, inteiro, string ou array) perante uma fórmula.

v

Em APIs REST, o estado da API consiste no conjunto de recursos que existem em
algum instante temporal. Assim sendo, as asserções subdividem-se em um método (a
ação a realizar), um URI (Uniform Resource Identifier) Template [46], uma pré-condição
e uma pós-condição. Enquanto que a pré-condição especifica o estado no qual a asserção
é válida, além de refinar os dados a enviar no pedido para a API, a pós-condição especifica
o estado resultante da execução do pedido enviado e os dados de resposta produzidos pela
API. Uma asserção descreve então que se um pedido para a execução de uma certa ação
(por exemplo, POST [39]) sobre uma expansão do URI Template da asserção inclui dados
que satisfazem a pré-condição, sendo que a ação é desenrolada num estado que satisfaz a
pré-condição, então a resposta e o estado resultante satisfazem a pós-condição.

De forma a descrever um estado esperado da API são usadas variáveis de recurso que
representam recursos de um certo tipo. Usando estas variáveis de recurso e quantificado-
res existenciais ou universais é possı́vel escrever as pré-condições ou pós-condições que
descrevem o estado esperado.

No geral, HEADREST suporta expressões lógicas, aritméticas e relacionais, predi-
cados sobre arrays, além de acesso a propriedades de objetos bem como de entradas de
arrays e, um predicado para verificar se uma dada string está no universo de uma ex-
pressão regular.

Através do uso continuado de HEADREST, usando um estudo de caso desenvolvido
para suportar o presente trabalho, foram adicionados construtores derivados da sintaxe
base que reduzem a quantidade de código a escrever, bem como os potenciais erros sub-
jacentes.

De forma a facilitar a especificação de APIs REST em HEADREST desenvolvemos
um plug-in para o Eclipse de modo a permitir a validação sintáctica e semântica.

A implementação da linguagem foi feita utilizando a framework Xtext que permite
o desenvolvimento de novas linguagens e plug-ins para o Eclipse. Podemos dividir a
implementação em três partes: escrita da gramática, implementação de um mecanismo
para verificar se todas variáveis de uma especificação estão devidamente declaradas e
implementação do sistema de tipos. O nosso sistema de tipos é bidirecional, existindo
duas relações de tipificação: uma de verificação de tipos; e outra de sı́ntese de tipos.
A verificação se um dado tipo é subtipo de outro tipo é feita de forma semântica [43]
recorrendo a um SMT (Satisfiability Modulo Theories), nomeadamente Z3 [32]. Para tal
baseamo-nos no trabalho de Bierman et al. [26], sendo que modificámos a axiomatização
para o Z3 apresentada nesse trabalho de forma a contemplar os construtores da nossa
linguagem.

No futuro, espera-se conseguir gerar stubs servidor e SDKs (Software Development
Kits) cliente a partir de especificações descritas usando HEADREST e verificar estatica-
mente código cliente e servidor de encontro a especificações HEADREST. Além disso,
pretende-se integrar na linguagem questões de segurança em contexto REST, nomeada-

vi

mente em termos de autenticação e de confidencialidade.

Um dos usos possı́veis desta linguagem é a geração e execução automática de testes.
Para tal explorámos duas metodologias de testes diferentes. Ambas as metodologias apre-
sentam como ponto comum a avaliação de uma asserção que é feita através do uso do Z3
para gerar pedidos que satisfaçam a pré-condição e inclui a verificação da pós-condição a
partir da resposta obtida.

A primeira metodologia envolve construir uma árvore de classificação [47] para cada
asserção da especificação e usando um critério de cobertura, atualmente Minimum Cove-
rage, gerar variações da pré-condição da asserção em questão. Estas variações exploram
mudanças de certos elementos da linguagem (por exemplo, disjunções) tentando manter
a satisfiabilidade da expressão. Por exemplo, uma disjunção e1 ∨ e2 pode ser substituı́da
por uma de três formas alternativas: e1 ∧ e2, ¬e1 ∧ e2 ou e1 ∧ ¬e2. Esta metodologia
exige que o testador especifique para cada caso de teste gerado o contexto no qual a nova
asserção é satisfazı́vel. Esse contexto é composto por uma sequência de outras asserções
da especificação que são avaliadas antes de avaliar a própria asserção.

A segunda metodologia tenta avaliar uma sequência aleatória de asserções de tamanho
N . Para tal, a cada momento uma asserção é escolhida do conjunto de asserções da
especificação. De forma a melhorar esta seleção pontuamos cada asserção e é escolhida a
asserção que possua uma maior pontuação cuja pré-condição seja satisfazı́vel. Repetimos
este procedimento N vezes, podendo ainda repetir o algoritmo completo M vezes. A
pontuação dada às asserções considera se uma dada asserção já foi avaliada alguma vez
(Assertion Coverage), se um dado par de asserções, que finaliza na asserção em questão,
já foi avaliado de forma consecutiva (Assertion Pair Coverage), o impacto que o método
da asserção tem sobre a API (por exemplo, um POST bem sucedido tem maior impacto do
que um POST mal sucedido). Em caso de empate, as asserções em questão são ordenadas
de forma aleatória, sendo que é possı́vel especificar a semente do gerador de números
aleatórios de forma a que o teste de sequência seja determinista, podendo ser repetido
mais tarde.

Além disso, incluı́mos ainda um algoritmo adaptado do trabalho de Chakrabarti et
al. [30] que verifica se uma dada API respeita a restrição do REST Hypermedia As The
Engine of Application State. Este algoritmo pode ser executado após a avaliação de qual-
quer asserção, sendo que quando usado em conjunção com o teste de sequência permite
identificar operações que fazem com que a API deixe de respeitar esse princı́pio.

Da avaliação à primeira metodologia concluiu-se que esta tem o potencial de produzir
um número elevado de casos de testes, apesar de que o testador tem de indicar para cada
um desses casos de teste uma lista de asserções que devem ser avaliadas antes de avaliar
o caso de teste propriamente dito.

Da metodologia de teste da sequência aleatória de asserções concluiu-se que o uso de
uma função que pontua asserções a cada instante da sequência conduz sempre a melhores

vii

resultados, podendo revelar até 101% mais cobertura ao nı́vel de asserções ou pares de
asserções, do que se for apenas usada uma ordenação aleatória das asserções. Além disso,
através da função de pontuação obtivemos para o estudo de caso 99.27% de cobertura de
pares de asserções enquanto que para as mesmas condições, a versão sem a função de
pontuação apenas obteve 56.16%.

Palavras-chave: REST, APIs REST, SMT, tipos de refinamento, teste de sequência

viii

Abstract

The programming of web services that provide APIs (Application Programming In-
terfaces) that adhere to the REST (Representational State Transfer) architectural style is
nowadays extremely popular. For instance, applications like Gitlab and Youtube, provide
programmatic access to their client applications through this type of APIs. The main
reason for this is that traditional alternatives like SOAP (Simple Object Access Protocol)
revealed an increased complexity when compared to REST.

The effective development of client applications that use RESTful API require that
their interfaces must be well documented. There are several languages that tackle this
question but rarely solve it at a semantic level. Even those are unable to express complex
business rules.

This work presents a new language based on Hoare triples (an assertion) and refine-
ment types to precisely express complex business rules through logical expressions as
well as to express the relations between requests and responses.

Using this language we implemented a testing tool that makes available two testing
methodologies. The first builds a Classification Tree based on the precondition of an as-
sertion and generates tests cases from that. The tester adds context information necessary
to initialize the server state under which the precondition is satisfiable. The second tests
an API using random sequences of tests that adaptively choose an assertion among several
candidates in such a way that the coverage of individual assertions and pairs of assertions
is higher than pure random sequence testing.

The evaluation concluded that the first has the potential of generating a high number
of test cases, however the work effort of the tester is also high. In terms of the second,
in our study case, we found that adaptively choosing assertions may lead up to 101%
more coverage than randomly choosing assertions. Also, the adaptive version achieved
99.27% of coverage of pairs of assertions against 56.16% of coverage obtained with the
pure random version.

Keywords: REST, RESTful APIs, SMT, refinement types, sequence testing

x

xii

Contents

List of Figures xviii

1 Introduction 1
1.1 Motivation and goals . 1
1.2 Contributions . 2
1.3 Deviations from the original plan thesis 3
1.4 Structure of the document . 3

2 Background concepts 5
2.1 Representational State Transfer (REST) 5

2.1.1 What is REST? . 5
2.1.2 REST constraints . 6

2.2 Coverage criteria . 8
2.2.1 Fundamental concepts . 8
2.2.2 Classification Tree Method . 9

2.3 Graph Theory . 10
2.4 Refinement Types . 11
2.5 Hoare triples . 11

3 Related work 13
3.1 Description languages for RESTful APIs 13

3.1.1 WADL . 13
3.1.2 API Blueprint . 14
3.1.3 RAML . 14
3.1.4 OpenAPI (originally Swagger) 14
3.1.5 HTML for RESTful Services (hRESTS) 15
3.1.6 Resource based description with RDF 15

3.2 Automatic documentation of RESTful APIs 15
3.3 Compliance of RESTful APIs . 16
3.4 RESTful APIs testing . 16

3.4.1 Manual testing . 16

xiii

3.4.2 Automatic testing . 17

4 The HEADREST specification language 21
4.1 Introducing the language via an example 21
4.2 Core Syntax . 26
4.3 Concrete syntax . 28

4.3.1 Derived specifications . 28
4.3.2 Derived expressions . 28
4.3.3 Derived types . 28

4.4 Algorithmic type checking . 28

5 Validating specifications 37
5.1 Xtext and plugin implementation . 37
5.2 The validation phase . 38

5.2.1 The symbol table . 38
5.2.2 Value hierarchy . 39
5.2.3 Semantic subtype checking . 41
5.2.4 The validation process . 42

5.3 Metrics . 45

6 The RTester tool and its implementation 47
6.1 Resource repository . 47
6.2 Assertion evaluation . 48

6.2.1 Precondition transformations . 49
6.2.2 Request generation . 52
6.2.3 Sending generated request and refresh resource repository 53
6.2.4 Postcondition evaluation . 53

6.3 Unit assertion testing . 54
6.3.1 Generation of test cases . 54
6.3.2 Modification of test cases by the tester and execution of test cases 55

6.4 Adaptive random sequence testing . 59
6.4.1 Algorithm . 60

6.5 Connectedness checking algorithm . 62
6.5.1 Resource reference graph . 63
6.5.2 Algorithm . 66

6.6 Report building . 69
6.7 Metrics . 72

7 Evaluation 73
7.1 Unit assertion testing . 73

xiv

7.2 Adaptive random sequence testing . 73
7.2.1 Duration of one run of varying length 74
7.2.2 Assertion Coverage . 76
7.2.3 Assertion Pair Coverage . 78

8 Conclusion 81

A Specification of the Mazes API 83

B DNF types and normalization 103

C Axiomatization in Z3 105

D Visual Studio Code extension 115

Glossary 117

Bibliography 119

xv

List of Figures

2.1 Example of a classification tree . 9
2.2 Example of a directed graph . 11

4.1 List of operations of Mazes API . 22
4.2 Example of specification for the operation to create successfully the first

room of a maze . 24
4.3 Type of variable request and response, respectively 24
4.4 Syntax of types . 26
4.5 Syntax of expressions and values . 27
4.6 Syntax of assertions . 27
4.7 Syntax of specifications . 27
4.8 Derived expressions . 28
4.9 Derived types . 29
4.10 Judgments of the algorithmic type system of HeadREST 29
4.11 URI template type synthesis . 30
4.12 Algorithmic type synthesis of variables 30
4.13 Algorithmic type synthesis of values . 30
4.14 Algorithmic type synthesis of quantifiers 31
4.15 Algorithmic type synthesis of expressions 31
4.16 Operator signatures (⊕ : T1, ..., Tn → T) 32
4.17 Algorithmic type checking . 32
4.18 Type well-formedness rules . 33
4.19 Context well-formedness . 33
4.20 Specification well-formedness . 34
4.21 F′[[T]](e) . 34
4.22 F′[[∆; Γ]] . 35
4.23 V[[e]] . 35
4.24 Operator semantics (O⊕) . 36
4.25 Algorithmic semantic subtyping . 36

5.1 Front end of the compiler . 38
5.2 Example of error due to an undeclared variable 38

xvii

5.3 Value hierarchy . 40
5.4 Implementation of (S-ArrayEntry) rule 43
5.5 Implementation of (C-Swap) rule . 44

6.1 expandRBGV(FV, P) . 50
6.2 expandQOTV(P,RV) . 50
6.3 expandRE(P) . 51
6.4 expandQRTV(P) . 52
6.5 ctct(T, b) . 56
6.6 ctc(e) . 57
6.7 Example of a classification tree from an expression 57
6.8 Assertion for creation of a subsequent room in a maze given a list of

dependencies . 58
6.9 Score function (score(A0, A)) of a candidate assertion given a previous

assertion . 61
6.10 Algorithm to create a resource reference graph 63
6.11 Resource reference graph resulted from creation algorithm providing one

URI . 67
6.12 Strongly connected components of the Figure 6.11 68
6.13 Algorithm to contract a graph using the detected strongly connected com-

ponents . 68
6.14 Contracted graph provided the graph of Figure 6.12 69
6.15 Class diagram of TestCaseReport . 70
6.16 Example of a test case report in Allure 71

7.1 Total duration per length of sequence . 74
7.2 Total duration of each step per length of sequence 75
7.3 Assertion Coverage with 1 run . 76
7.4 Assertion Coverage with 5 runs . 76
7.5 Assertion Coverage with 10 runs . 77
7.6 Assertion Coverage with 20 runs . 77
7.7 Assertion Pair Coverage with 1 run . 78
7.8 Assertion Pair Coverage with 5 runs . 78
7.9 Assertion Pair Coverage with 10 runs 79
7.10 Assertion Pair Coverage with 20 runs 79

B.1 Disjunctive normal form types (DNF) and normalization 103
B.2 Extraction of field type: D.l U . 104
B.3 Extraction of item type: D.Items U 104

xviii

xx

Chapter 1

Introduction

1.1 Motivation and goals

The programming of web services that provide application interfaces that adhere to the
REST architectural style [38], commonly designated as RESTful APIs, is nowadays ex-
tremely popular [63]. For instance, applications like Twitter, Instagram, Youtube, Uber,
and Gitlab, provide programmatic access to their client applications through this type of
APIs. This happens because the use of this type of APIs, when compared with the tra-
ditional interfaces of web services based on SOAP, simplify extremely the development
of client applications. More recently, with the advent of the architecture based on micro-
services, the design of applications as sets of services became common, rising even more
the use of RESTful APIs [35].

The effective development of client applications of this type of services requires that
their interfaces are well documented. Despite of important initiatives such as the Open
API Specification [11], focused on the creation and promotion of an open format for
the description of RESTful APIs, the support to the description of this type of APIs is
currently extremely limited and focuses, mainly, on the structure and representation of
the data exchanged between clients and providers.

In order to overcome the existing limitations and support also the description of se-
mantic aspects underlying to RESTful APIs, we designed and implemented the language
HEADREST that allows to specify individually each one of their services, in a style remi-
niscent of the Hoare triples [50] (that we denote as assertions) and using refinement types
[45]. HEADREST is a language that includes elements to overcome the limitations of
existing approaches. The goal of HEADREST is not extend the Open API Specification
but to identify primitives that allow to enlarge its expressive power and to show that it
is possible to explore these descriptions to advance the state of the art in respect to the
programming and testing of RESTful APIs.

HEADREST features a bidirectional type system [62] with a semantic subtyping re-
lation achieved through a SMT (Satisfiability Modulo Theories, a full list of acronyms is

1

Chapter 1. Introduction 2

available at the end of the document) [43], namely Z3 [32]. It also includes some derived
constructs that allows us to reduce the code written and the potentially associated errors.
In order to increase the productivity of the programmer, we created an Eclipse plugin to
our language that includes syntactic and semantic checking of specification files.

In relation to automatic tests generation for RESTful APIs we propose a testing tool
that generates and executes test cases based on specifications written in HEADREST.
The goal of the testing tool is to minimize the quantity of work done by the tester by
automating the generation and execution of tests for RESTful APIs. We achieve this by
using, mainly, the specification that is, possibly, written for an even more general purpose.

We consider two testing methodologies: one that generates test cases based on the
Classification Tree method [47] resulting from the domain partitioning of each Hoare
triple specification. For this the tester needs to augment each generated test case with
context information that is necessary to set the API provider in the expected state for
the test case; and, an adaptive random sequence testing that exercises sequences of a
given length of Hoare triples by adaptively choosing the Hoare triples in such a way that
Assertion Coverage and Assertion Pair Coverage is higher than what would be achieved
by random sequence testing.

Also, the testing tool includes an algorithm adapted from the work of Chakrabarti et
al. [30] that checks if an API respects the Hypermedia As The Engine of Application
State constraint of REST. This algorithm, if enabled, runs after exercising each assertion
(an operation) of any test case.

The work comprised by this thesis took place at the Large-Scale Informatics Systems
Laboratory (LaSIGE-FCUL), a research unit of the Department of Informatics (DI) of
the University of Lisbon, Faculty of Sciences. It was developed within the scope of the
CONFIDENT (Communication Contracts for Distributed Systems Development) project.

1.2 Contributions

The main contributions of this work can be summarized as follows:

• a new specification language HEADREST for RESTful APIs based on Hoare triples
and refinement types.

• the implementation of a bidirectional type system that uses semantic subtyping
checked using a SMT;

• a Visual Studio Code extension and an Eclipse plugin that allows to specify REST-
ful APIs in HEADREST with the usual advantages of an IDE (Integrated Devel-
opment Environment), such as code completion, syntax highlighting, and syntactic
and semantic validation.

Chapter 1. Introduction 3

• a new testing tool that uses specifications in HEADREST to automatically generate
and execute tests on RESTful APIs.

• the generation, and respective execution, of test cases based on the Classification
Tree resulted from a Hoare triple.

• an adaptive random sequence testing algorithm for testing APIs specified in HEAD-
REST.

• an algorithm to check connectedness of a RESTful API, including a compact view
of the resource identifiers of the API.

• the generation of a report with the result of the evaluation of the generated test
cases.

This work is partially published in [36].

1.3 Deviations from the original plan thesis

Initially we planned to implement only the testing tool for RESTful APIs. However, given
the analysis of related work we concluded it was essential to design and implement a spec-
ification language for RESTful APIs that could be used for different purposes, including
automatic tests generation and execution. Besides that, derived constructs arisen naturally
from the experience of specifying in HEADREST.

1.4 Structure of the document

The current chapter introduces our work, motivations, and contributions. The rest of the
chapters are structured as follows:

• Chapter 2 briefly reviews the REST [38] architectural style, including a quick in-
troduction to an example of a RESTful API that was developed to support the de-
velopment of this thesis;

• Chapter 3 reviews the state of the art in terms of specification languages and exist-
ing testing tools for RESTful APIs.

• Chapter 4 presents the HEADREST language. It begins by introducing the lan-
guage through a running example of a Mazes Management System RESTful API.
After that, it describes the core syntax of the language and the derived constructs.
Finally, it presents the algorithmic type checking of the language.

Chapter 1. Introduction 4

• Chapter 5 describes how we have implemented our language and its Eclipse plu-
gin and Visual Studio Code extension, including how the validation phase is imple-
mented.

• Chapter 6 presents the testing tool, including the implementation of its main com-
ponents and the different test strategies available. It concludes with information
about running the testing tool.

• Chapter 7 describes the evaluation results for each test methodology of the testing
tool.

• Chapter 8 presents our conclusions and our plans for future work with brief details
on how we intend to achieve them.

Chapter 2

Background concepts

2.1 Representational State Transfer (REST)

In this section we present the REST architectural style, by Fielding [38], including its con-
straints and how can REST be applied to HTTP (Hypertext Transfer Protocol) [39]. This
explanation is exemplified through a RESTful API developed to illustrate the concepts
presented in this thesis, a mazes management system.

The Mazes API comprises of three kinds of resources: mazes, composed by rooms
that connect to other rooms through doors.

2.1.1 What is REST?

REST is an architectural style for the development of distributed hypermedia systems
such as the World Wide Web. This means that a REST API is composed by resources,
which may be linked to other resources by hyperlinks.

According to Fielding and Taylor [40], a resource R is a function MR(t) that, for a
given instant t, maps to a set containing resource representations or resource identifiers.

A resource identifier identifies a specific resource, normally represented by URIs
(Uniform Resource Identifiers) [57] when using HTTP.

A resource representation captures the current or intended state of a resource. This
representation may be accompanied by representation metadata, which contains addi-
tional information about the representation itself, such as that a given representation is
given in JSON (JavaScript Object Notation) format [27]. A resource may have one or
more representations, for instance, we may have one representation in JSON format and
other in XML (Extensible Markup Language) format [28]. Normally, in order to identify
the format of the representation, the representation metadata defines the media type [42]
of it.

Example 1. In the Mazes API, a given resource Maze is represented by its name and
several relationships with its rooms and a distinct relation with its starting room. Listing
2.1 illustrates a representation in JSON format of the resource identified by /mazes/1.

5

Chapter 2. Background concepts 6

Note that the starting room of the maze is addressable through two URL identifiers:
http://localhost:8080/rest/v1/mazes/1/start and
http://localhost:8080/rest/v1/mazes/1/rooms/1.

1 {
2 "id": 1,
3 "name": "Maze #1",
4 "_links": {
5 "self": {
6 "href": "http://localhost:8080/rest/v1/mazes/1"
7 },
8 "mazes": {
9 "href": "http://localhost:8080/rest/v1/mazes"

10 },
11 "start": [
12 {
13 "href": "http://localhost:8080/rest/v1/mazes/1/

start"
14 },
15 {
16 "href": "http://localhost:8080/rest/v1/mazes/1/

rooms/1"
17 }
18]
19 },
20 "_embedded": {
21 "orphanedRooms": []
22 }
23 }

Listing 2.1: A JSON format representation of a maze with ID (Identifier) 1.

2.1.2 REST constraints

In order for an API to be considered a RESTful API it must fulfill the following con-
straints: Client-Server, Stateless, Cache, Uniform Interface, Layered System, and Code-
On-Demand.
In what follows we describe each constraint illustrated with the Mazes API respects each
constraint.

Client-Server The Client-Server constraint enforces that communications must occur
between a client and a server, initiating on the client. The server, hosting the API, receives
requests from the client and respond accordingly. This means, that the client and server
logic may evolve independently. Note that this constraint does not mean there is only one
client of the API.

Chapter 2. Background concepts 7

Example 2. In the Mazes API, a client may send requests, using HTTP as the communi-
cation protocol, to the server that, in turn, responds accordingly.

Stateless The Stateless constraint requires that every request from the client must con-
tain all necessary information for the API to process the request.

Example 3. The client must provide the maze ID (Identifier) every time a room is to be
created.

Cache The Cache constraint requires that the responses produced by the API must be
implicitly or explicitly labeled as cacheable or non-cacheable. This constraint is funda-
mental to improve the efficiency and scalability of the API, since if the client has already
obtained a resource’s representation, marked as cacheable, then it may just use that repre-
sentation as long as its cacheability’s information mentions it.

Example 4. When using the HTTP protocol, the API may use the ETag header field to
control cacheability rules.

Uniform Interface The Uniform Interface constraint requires that there is a uniform
interface between the components of an API. This constraint leads to a simplified system
architecture, allowing each component of the API to evolve independently. REST defines
four interface constraints:

• identification of resources: a resource must be at least identified by one unique re-
source identifier, which must be used whenever targeting the resource. For instance,
the Mazes API identifies each resource with a unique resource identifier.

• manipulation of resources through representations: resources must only be manip-
ulated as a consequence of a request to modify a resource. A client must send the
intended representation of the resource in a request to the server. The server ulti-
mately has freedom to accept the intended representation of the client or to report
any error it may have. For instance, in the Mazes API, if a client wants to create a
new resource on the server then it must send the intended representation of the new
resource, on the entity body, through an HTTP POST request.

• self-descriptive messages: all messages exchanged by the client and the server must
contain all information needed for the recipient to understand and process the mes-
sage. For instance, in the Mazes API, messages contain the HTTP method and the
intended resource’s representation. Every response contains a representation, if ap-
plicable, and metadata headers to characterize the response (e.g., the format of the
representation).

Chapter 2. Background concepts 8

• HATEOAS (Hypermedia as the Engine of Application State): responses must con-
tain information of interest that allows, for example, to obtain resource neighbors
of the requested resource. For instance, a request to obtain a Maze’s representation
includes links to the starting room. Also, a request to obtain a Room’s representa-
tion includes a link to the Maze the requested Room belongs, as well as links to the
room doors.

Layered System Requires that each component of the architecture only knows about the
hierarchical layers to which the component is interacting with. This constraint allows the
architecture to evolve by seamlessly integrating new components, such as load balancers
or firewalls.

Example 5. In the Mazes API, besides the client and server there is one additional com-
ponent responsible for the data storage (database) that is only reachable from the server.

Code-on-demand Specifies that a client may request code from the server that is used
to process the resources it has access to. This is the only optional constraint, so an API
following the other constraints but not this one is still considered a RESTful API. In effect,
this is the only constraint that the Mazes API does not respect.

2.2 Coverage criteria

2.2.1 Fundamental concepts

Definition 1. A test case is a tuple containing the test data (for example, the input values
to be provided as parameters of a function), the expected results, which have the goal of
evaluating the correctness of the artifact under testing, and possibly preconditions and
postconditions of the test.

Definition 2. A test suite is a set of test cases.

Definition 3. A test requirement specifies a property the test set must satisfy.

Definition 4. A coverage criterion is a rule or collection of rules that specify test require-
ments that must be satisfied by a test set.

That is, a coverage criterion provides a methodology to create a set of test requirements
that are meaningful to the test engineer. However, some criteria may be satisfied with less
test cases than other, which rises the definition of criteria subsumption.

Definition 5. A coverage criterion C1 is said to subsume a coverage criterion C2 if, and
only if, the coverage by a test set of C1 leads to the coverage of C2 as well.

Chapter 2. Background concepts 9

Vehicle Management System

Vehicle

Car Boat

Type

Gasoline Diesel Electric Other

Number of seats

Less than 4 4 or more

Size

Small Medium Large

Figure 2.1: Example of a classification tree

2.2.2 Classification Tree Method

The Classification Tree Method (CTM) [47], inspired by the category partition
method [58], describes a systematic approach to test input design. It is divided into
two steps: the creation of the classification tree; and the definition of test inputs.
The first step identifies every relevant aspect (properties) from the input domain of a test
object. For instance, in the case of a Computer Vision System, some relevant aspects
would be the shape, the color, and the size of a figure being scanned.
Aspects are called classifications and each of their disjoint values are named classes.
These classifications together form a classification tree. Also, classes may be refined
even further by descending classifications. We denote as internal classes such classes and
every class with no further classifications as leaf classes.
Figure 2.1 shows an example of a classification tree for a hypothetical vehicle manage-
ment system. The blue boxe with bold borders (the root) denotes the object under test (the
system), which splits into a classification (could split into more classifications). The blue
boxes denote a classification of the tree: each one splits into several classes that possess
no graphic box.
In this example the system has only one relevant aspect, vehicle. A vehicle (a classifica-
tion) is a car or boat (two classes). In the case of being a car (an internal class) then it is
refined by two further classifications denoting the type of car and its number of seats, both
are relevant aspects of a car and must be considered jointly because they are refinements
of an internal class. For the type of car (a classification) there are four leaf classes, each
one representing a choice of the classification.
In the second step, test inputs are defined through the combination of classes of different

Chapter 2. Background concepts 10

classifications. For each classification only one class is chosen.
For instance, in the example of the vehicle management system, a valid combination
would be {Car, Gasoline, 4 or more} meaning a gasoline based car with four or more
seats. One other example of valid combination would be {Boat, Small} meaning a boat
of small size. Note that a combination {Car, Gasoline, Boat, Small} is infeasible because
on the vehicle classification only one sub-tree may be chosen (since it is a classification).
In that example, both classes of the classification are chosen while only one could be
chosen. Besides that, a combination {Car, Diesel} is also infeasible, despite the chosen
class belonging to only one sub-tree of “Vehicle” (“Car”), the internal class “Car” contains
two refinements over the type and number of seats of the car, which means a class for the
classification “Number of seats” must be also chosen.
The final set of combinations depends on the coverage level wanted. For example, if a
Minimum Coverage (MC) is selected then the test suite contains at least one test case
covering each leaf class.

2.3 Graph Theory

Definition 6. A directed graph is a tuple (N,E) such that:
• V is the set of nodes;
• E is the set of edges and E ⊆ N ×N .

One example of a directed graph is given in Figure 2.2.
Given a directed graph G, V (G) returns the set of nodes of G and E(G) returns the set of
edges of G.

Definition 7. A directed edge (u, v) of G indicates that the node u is directly connected
to v. v is called the successor of u.

For example (1, 2) is an edge of the directed graph of Figure 2.2 but (2, 1) is not.

Definition 8. For any directed graph G, for any node N of G, deg−(N) denotes the
number of edges whose successor is N .

Definition 9. A path is a sequence of nodes [n1, n2, ..., nk], where each contiguous pair
of nodes (ni, ni+1), 1 ≤ i < k is in E(G).

A node B is said to be reachable from a node A if there is a path from A to B in G.

Definition 10. A directed graph G is strongly connected if, and only if, every node of G
is reachable from any node of G.

Definition 11. A subgraph G′ of G is a graph where V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

Definition 12. A strongly connected component (SCC) of a directed graphG is a maximal
subgraph G′ of G such that G′ is strongly connected.

Chapter 2. Background concepts 11

0

1

2 3

4 5

6 7

Figure 2.2: Example of a directed graph

2.4 Refinement Types

Given a type T and a formula F , a refinement type (x : T where F) is a subset of T
consisting of values x of type T that satisfy F .
For instance, consider the set of positive integers, this set is a subset of the set of integers.
Hence, we may represent the type consisting of positive integers as (x : integer where x >

0). Another example is the set of positive even integers less than 50 that we may represent
as a refinement type (x : integer where x > 0 && x < 50 && x % 2 == 0).

2.5 Hoare triples

Given two first-order formulas, φ and ψ, and an execution statement S, a Hoare triple
[50], also designated as assertion, has the form

{φ} S {ψ}

meaning that if the execution of S starts from a state satisfying φ and if it terminates, then
it does so in a state that satisfies ψ.
For instance, consider the Hoare triple

{a > 0} b := a+ a {b ≤ 2}

where a and b are integers. This assertion does not hold because, for some states satisfying
φ, the execution of S terminates and leads to a state that does not satisfy ψ.

Chapter 2. Background concepts 12

Chapter 3

Related work

This chapter describes fundamental concepts related to RESTful APIs and presents a
state-of-the-art analysis of the most relevant specification languages and testing frame-
works for RESTful APIs.

3.1 Description languages for RESTful APIs

In this section we present some of the most relevant description languages for RESTful
APIs.

3.1.1 WADL

The WADL (Web Application Description Language) [48] describes HTTP-based Web
applications, including RESTful APIs, and is designed to be easy to process by machines,
by using XML as its underlying format.
WADL focuses on defining resources and groups of resources, where each resource or
group of resources is rooted at a specific base URI. For each resource it is possible to
specify the schema of the request’s parameters or response’s body. For that, WADL uses
RelaxNG [31] or XML schema [15] for specifying the data types the operation expects or
should return. RelaxNG or XML schema allows a limited form of data types refinement,
for example, setting the minimum length of an array. However this is not sufficient when
considering more complex business rules, such as a VAT (Value Added Tax) number.
Besides that, WADL is unable to relate the requests sent with the responses obtained.
WADL allows for components to refer to other components. This may be done through
the use of intra-document references, or inter-document references (referring components
specified in external files).
By using the XML format, it is possible to extend the specification with additional ele-
ments/attributes through the use of custom namespaces.
Descriptions of RESTful APIs in WADL tend to be large, namely due to XML, which
results in the adoption of other specification languages.

13

Chapter 3. Related work 14

3.1.2 API Blueprint

The API Blueprint [3] is used to document a web API (including RESTful APIs) using
markdown as the underlying syntax. This means that it is designed to be easier to read by
humans than by machines.
For each resource, it is possible to provide the schema of the request’s body or response’s
body. For that, API Blueprint uses JSON schema [60]. An alternative is to declare data
structures externally to the resource using the format MSON (Markdown Syntax for Ob-
ject Notation) [4] and then refer to those data structures by name. One important obser-
vation is that the use of JSON schema or data structures to specify the request/response
data type is not enough, since neither provide mechanisms to refine complex types. For
example, JSON schema or MSON do not allow to specify a given integer is a valid VAT
number. Besides that, it does not support to relate the data in requests with the data in
responses. Similarly to WADL, it is unable to relate requests with responses.

3.1.3 RAML

The RESTful API Modeling Language (RAML) [19] is a specification language for
RESTful APIs that uses YAML (YAML Ain’t Markup Language) [16] as its language.
RAML supports the definition of a base URI for several endpoints of the API. This base
URI may be an URI template up to level 2 [46].
For APIs that are protected by some security scheme, such as OAuth2 [49], RAML sup-
ports the definition of the available security schemes for all operations of the API.
RAML, as the previous specification languages, has the ability to define data types. The
syntax RAML uses to declare these data types is based on the JSON schema [60]. How-
ever, as observed in API Blueprint, this does not reveal sufficient for more complex APIs.

3.1.4 OpenAPI (originally Swagger)

OpenAPI [11] is one of the most widely adopted specification languages for RESTful
APIs and provides a specification language as well as framework tools to describe, con-
sume, and visualize a RESTful API. It may be written in JSON or YAML.
Like RAML, OpenAPI provides a mechanism to set a base URI for all operations of the
API. However, it does not support path templating through an URI template.
Another characteristic of OpenAPI is the ability to define security schemes that the API
supports, such as OAuth2. It also supports associating data types with a resource’s rep-
resentation through JSON schema. However, like the other specification languages dis-
cussed before it does not provide mechanisms to refine complex data types, due to the
limitations of Json schema.
Similarly to the previous specification languages, it lacks support to relate the request data
with the response data.

Chapter 3. Related work 15

The framework itself provides several tools, the most relevants are: Swagger UI1, which
allows customers to read easily the documentation of the API; and Swagger CodeGen2

that provides mechanisms to generate client code based on the documentation. Alongside
those tools there are several other tools available.3

3.1.5 HTML for RESTful Services (hRESTS)

hRESTS [54] uses microformats [52] to create machine-processable descriptions of
RESTful APIs. For that, an existing HTML (HyperText Markup Language) documen-
tation of a RESTful API may be augmented with additional HTML tags to label service
properties, such as operations, inputs and outputs. However, those tags are only used to
denote the human readable service properties, not annotating the associated semantics in a
way that a machine can process it. Hence, it is more limited than the previously discussed
languages.

3.1.6 Resource based description with RDF

RDF (Resource Description Framework) [13] is a standard for data exchange. It supports
the description of resources, including the relations between them through a tagged graph.
However, neither it is possible to use it to describe the behavior of the services nor the
action of these over the resources.

3.2 Automatic documentation of RESTful APIs

While languages such as OpenAPI rely on writing the interface of a RESTful API, which
is used to automatically render a corresponding documentation, SpyREST [65] generates
documentation using existing functional tests of the REST API. For that, SpyREST makes
use of an HTTP proxy server that is used during the tests. The proxy intercepts every
request and response from the tests and generates documentation using those artifacts
as executable examples of the API. For each request and response, SpyREST infers the
data types of the elements that compose the corresponding bodies. However, since this
inference is done automatically it may infer weak data types. For example, if there was
a request with a parameter that is a VAT number, SpyREST would see an integer and
include in the documentation that the type of that parameter is an integer despite the fact
that not all integers are valid VAT numbers. Hence, in order to avoid inducing API’s
customers in error, it requires manual refining of the inferred data types in more complex
APIs. One limitation of this approach, similarly to OpenAPI and others, is that it does not
allow relating elements of a request with elements of the response (the semantics of the

1http://swagger.io/swagger-ui/
2http://swagger.io/swagger-codegen/
3http://swagger.io/open-source-integrations/

Chapter 3. Related work 16

operation). Also, being example-driven, in order to produce a meaningful documentation
with relevant examples in different scenarios, it might require a high number of existing
functional tests. Besides that, the generated documentation may require a manual review
to avoid leaking sensible data. This means that it may be needed to configure SpyREST
to ignore some functional tests that are not relevant to potential customers.

3.3 Compliance of RESTful APIs

In 2016, Rodriguez et al. [64], jointly with Italy’s biggest Mobile Internet provider, Tele-
com Italia, analyzed 18.2 million API requests, done through HTTP, grouped by host
name, to measure the compliance to the REST constraints of several APIs. For this, the
different APIs were tagged into a level of the Richardson Maturity Model [41]. While
APIs of level 2 respect the Uniform Interface constraint of REST, except HATEOAS con-
straint, APIs of level 3 respect it. Thus, an API is said to respect completely the REST
constraints if it achieves level 3.
Slightly less than 60% of the APIs achieved a maturity level 2 and only, approximately,
5% achieved a maturity level 3. This result means that many said RESTful APIs while re-
specting the majority of REST constraints, they do not respect the HATEOAS constraint.
Hence a testing tool for RESTful APIs must also provide the means to evaluate whether
an API respects the HATEOAS constraint.

3.4 RESTful APIs testing

In this section we present several testing tools for RESTful APIs built on top of HTTP. On
the one side, we review tools that require a human to provide the input data and to validate
the operation results manually. On the other side, we present tools that do automatic
testing. These tools normally require human intervention to provide the input data and the
expected results, but the validation of the obtained results is automatic. Hence, automatic
testing tools are useful in the long term, since they automate repetitive actions.

3.4.1 Manual testing

cURL cURL [6] is a library and command-line tool that eases data retrieval through
several protocols, including HTTP.
Considering HTTP, cURL expects the user provide the target URL (Uniform Resource
Locator) and the restrictions for the request, in terms of headers, entity body and others,
done through the specification of flags the tool provides.
Since the goal of the tool is only to send requests and obtain data, the user has to validate
manually if the response is as expected.

Chapter 3. Related work 17

Postman Postman [12] is an alternative to cURL. It features command-line tool as well
as a GUI (Graphical User Interface) environment. Postman organizes different requests in
collections. By featuring a request history, the user may easily recreate a request that has
been previously made. It may also function as a proxy by capturing HTTP requests that
other tools of the operating system are executing. One other important feature of Postman
is the possibility of generating corresponding code for a specific language/framework
given an HTTP request. So, in the methodology of manual testing, Postman is similar to
cURL.

3.4.2 Automatic testing

REST-assured REST-assured [14] is a library for Java for writing RESTful APIs tests.
Typically tests using REST-assured are written in three sections: a given section, a when
section, and a then section. The given section is used to specify the input data for the
HTTP request. The when section builds the request’s URI and executes the request; and
finally, the then section validates the obtained response against the expected values.

Postman Postman[12], besides easing manual testing of RESTful APIs, it offers fea-
tures to ease automated testing by writing scripts that prepare the request or validate the
obtained response. These scripts are implemented in JavaScript [34] and may use addi-
tional variables that Postman provides to control/obtain the request/response. This flow
is similar to the one used by REST-assured, where the given-when sections are similar to
the pre-request script phase of Postman and the then section is similar to the test script
phase of Postman.

JMeter JMeter [2] is a tool designed for functional testing and for performance testing.
For that, it is possible to create a thread group of HTTP requests where the data to be sent
must be provided manually, similarly to Postman, and it allows to add assertions based on
patterns to test if the response matches the expected values.
The thread group specifies the number of times the request must be sent concurrently,
simulating several users concurrently interacting with the RESTful API. JMeter includes
several options, to control the number of users at a given moment and the total duration
of the performance testing.

Dredd Dredd [7] is a command-line tool that is able to test a backend implementation of
an API. For that, Dredd reads the RESTful API’s documentation written in API Blueprint
or Swagger and then exercises each resource to validate whether the responses obtained
respect the specification. This includes the validation of the types of the response.
For operations that require parameters, Dredd uses default values for those parameters or
example values that are provided in the specification language, or, if none is defined, some

Chapter 3. Related work 18

dummy generated values that respect the schema (in case of Swagger, the JSON schema).
However, for more complex operations these dummy values may be wrong, for example,
because they do not satisfy the business rules, which may relate a given parameter with
some other parameter. So, this approach is only feasible for extremely simple APIs with
non dependent types. An example of this is the Mazes API, it is not possible to create a
maze with a certain name if there is already some maze with that name.
The tool has the ability to simulate the testing of a sequence of operations. This is done
through hooks, which are script files written in some programming language. With a hook
we may, for example, specify the use of some value in an operation that was returned
previously by some other operation. However, to simulate two different sequences of
operations, we need to create two specifications of the API with the operations ordered
as intended for the sequence. This happens because Dredd executes the operations in the
order they appear in the specification.
Another important limitation is that, for a given resource and HTTP status code, we may
have different scenarios, but Dredd only exercises one of those. For example, a RESTful
API for a given resource may return HTTP status code 400, meaning a bad request, but
the API may return a different response’s body according to the type of bad request. This
is a feature lacking in Dredd.

Test-the-rest: An approach to testing restful web-services Chakrabarti et al. [29]
proposed a tool for automatic test case generation. The tool makes use of XML files
where the test cases are configured, which includes the URL of the resource, the HTTP
method, request data, and expected response data. Also, it allows to create composed test
cases where different test cases compose sequences. However, the language being based
in XML requires the tester to write a large amount of code. Besides that, the language
is specifically designed for testing, excluding the possibility of being used in tools with
different purposes. This differs with our approach of using a general purpose language to
automatically generate test cases. Overall, Test-the-rest is similar to JMeter but without a
GUI for tests specification and execution.

Model-driven Testing of RESTful APIs Fertig et al. [37] proposed a tool that follows
the Model Driven Testing approach to automatically generate test cases. For that, they
propose a DSL (Domain Specific Language) where resources may be described in terms
of its attributes. Each attribute has an associated data type and in the case of strings it
supports refining them to a predefined format, such as an email address. Besides that,
each attribute may be refined by range, for example, specify that an integer attribute is
inside a given range. However, the tool neither supports more complex refinements nor
allows to relate the values of different attributes.

Chapter 3. Related work 19

Automated Testing of Hypermedia REST Applications John [51] uses a behavior
driven development paradigm to automatically test a RESTful API. For that, the tester
writes user stories using the Gherkin language of the testing tool Cucumber [5]. Each
possible interaction with the REST API is described by a scenario that contains con-
straints written in the form of English phrases that must be satisfied for the interaction
involved (the precondition) and conditions that must be satisfied once the interaction is
concluded (the postcondition). Also, it is possible to create sequence tests by creating
scenarios where the precondition refers other existing scenarios. However, describing the
interactions in the form of English phrases becomes extremely verbose when considering
more complex APIs. Besides that, possible test data needed for any scenario must be pro-
vided manually by the tester since it is not generated automatically. This means that the
quality of the tests depends on the quality of the test data provided by the tester. Finally,
despite being possible to specify sequences of interactions to test, these must be described
manually by the tester.

Connectedness testing of RESTful APIs Chakrabarti et al. [30] proposed an algorithm
to check whether an API has its resources connected starting from a base URI. For that,
the algorithm makes use of a simple specification language, augmented from WADL, that
uses random values to create resources. In effect, the algorithm allows to determine if
an API respects the HATEOAS constraint. In Section 6.5 we detail that algorithm and
introduce our algorithm based on it, adapted for our case.

Chapter 3. Related work 20

Chapter 4

The HEADREST specification language

This chapter presents the HEADREST specification language and its type system.
The HEADREST language is built on top of two key ideas:

• the use of types to express properties of the data exchanged in the different interac-
tions with a REST API;

• the use of precondition/postcondition pairs to express (a) the relationships between
the data sent in requests and the data obtained from responses of interacting with
the API, and (b) the resulting state changes.

In order to fulfill those ideas, HEADREST makes use of two fundamental concepts (cf.
[26]):

• refinement types, x : T where e that consists of values x of type T that satisfy
the property e;

• a test type predicate, e in T, that is true whenever e is of type T or not.

4.1 Introducing the language via an example

We use a running example to informally introduce the HEADREST language. The ex-
ample is that of a mazes management system that allows the management of mazes and
everything related to them. We denote the API of this system the Mazes API.
A client of the API can create, modify or delete mazes. Each maze is composed by rooms
connected by doors. When a maze is initially created there is no room in it, but once
a room is inserted in the context of a maze then that room becomes the start room of
the maze. From this description we can conclude that the state of the system is made of
mazes, rooms and doors. Hence, we have three resource types, specified as follows in
HEADREST:

1 resource Maze, Room, Door

21

Chapter 4. The HEADREST specification language 22

Figure 4.1: List of operations of Mazes API

Having this in mind, the operations available make use of these resource types. Figure
4.1 lists the set of operations available for each resource type.
One important observation from Figure 4.1 is that it is not possible to do a GET operation
on URIs expanded from the URI template [46] /mazes/{mazeId}/rooms. A URI template
provides a mechanism for abstracting a space of resource identifiers such that the variable
parts can be easily identified and described. Thus, an URI template is a compact sequence
of characters for describing a range of Uniform Resource Identifiers through variable ex-
pansion. For the URI template indicated above if we have that mazeId ::= 1 then the URI
template is expanded into the URI /mazes/1/rooms. Returning to the GET operation, this
is to avoid a user of the API from obtaining the entire maze’s representation. If the list of
rooms of a maze is not hidden, then a user could easily navigate through the maze without
needing to obtain each room’s representation along the path. By using information hiding
on the rooms of a maze we require a user to do a blind search on the maze to reach the
several rooms of the maze. One exception to this is that the representation of a maze
contains a list of orphaned rooms. An orphaned room is not (in)directly reachable from
the start room of the maze. This aspect is fundamental to achieve an API that respects
the principle of connectedness, otherwise those orphaned rooms would not be reachable

Chapter 4. The HEADREST specification language 23

when starting navigating through the API from the list of mazes.
Each operation of Figure 4.1 may have different results according to the request sent. For
instance, if a valid name for a maze is sent when creating a new maze then a new resource
will be created. However, if the name is invalid the server does not create a new resource
and returns an error message. This means that to specify a given operation we have to
consider several scenarios, each specified through an assertion with the form of a Hoare
triple [50] as follows

{e1} m F {e2}

where m is a method (an HTTP method [39], GET, POST, PUT or DELETE), F is an URI
template and e1, e2 are boolean formulas. The formula e1, called precondition, specifies
the state in which the assertion is valid and refines the data to be sent in the request; while
e2, called postcondition, specifies the resulting state of the execution of the request sent
and the response produced by the API. An assertion describes that if the request for the
execution of the method m (action) over an expansion of F includes data that satisfies e1
and the action is done over a state that satisfies e1, then the response satisfies e2, as well
as the resulting state of the execution of the action.
To exemplify this consider the creation of the first room of a maze. A request to create
this room of a maze may produce different types of response as explained before. So,
as an example consider the case where the first room is successfully created. Figure 4.2
shows the respective assertion.
Assertion’s line 8 specifies, in order, the method and the URI template. Besides that, there
is metadata associated to the assertion expressed between square brackets, specifying
additional information such as the assertion’s name for future reference (an alias) or that
a resource of a given type is created as a consequence of executing the operation (in this
example, it specifies a resource of resource type Room is created).
Classically, a Hoare triple may be extended by a quantifier that encapsulates the precon-
dition and postcondition, that is

∀x:T ({e1} m F {e2})

It reads as: given the set of all values of type T , the assertion is true for each of those val-
ues. In HEADREST we support this annotation through the creation of a global variable.
In this example, line 1 introduces a global variable called maze of resource type Maze.
Before analyzing the precondition it is important to explain two predefined variables:
request and response. Interactions with a RESTful API involve a client sending a
request with some encapsulated data and the RESTful API returning a response to the
client. Following this pattern, in HEADREST any request, denoted by variable request,
is of type Request and the obtained response, denoted by variable response is of type
Response. Figure 4.3 shows these types.

Chapter 4. The HEADREST specification language 24

1 var maze : Maze
2 {
3 request.template.mazeId in integer &&
4 request in {body: RoomData} &&&
5 (forall mgd: MazeGetData . mgd representationof maze =>
6 mgd.id == request.template.mazeId && mgd._links.start ==

null)
7 }
8 POST /mazes/{mazeId}/rooms [alias CreateMazeFirstRoom,

creates Room]
9 {

10 response.code == CREATED &&
11 response in {body: RoomGetData, header: {Location: URI}} &&&
12 (forall mgd : MazeGetData . mgd representationof maze =>
13 mgd.id == request.template.mazeId &&
14 mgd._links.start in Link[] &&&
15 (exists room : Room .
16 forall rgd: RoomGetData . rgd representationof room

=>
17 response.header.Location resourceidof room &&

rgd.name == request.body.name &&
18 rgd._links.maze == mgd._links.self &&
19 contains(mgd._links.start, rgd._links.self)))
20 }

Figure 4.2: Example of specification for the operation to create successfully the first room
of a maze

type Request = { type Response = {
location: URI, code: integer
template: {}, header: {}
header: {} }

}

Figure 4.3: Type of variable request and response, respectively

The type Request describes a multi-field object type composed by three properties de-
fined as a pair (name, type). For instance, the first property of type Request is the pair
(location, URI) meaning that the value of property location is of type URI. There
are several supported types, which are introduced in Section 4.2.
The data exchanged in a request may be subject to additional constraints when the re-
quest occurs over an operation identified by an URI, obtained from expansion of a well
determined URI template. These constraints are captured by a subtype of type Request.
In the above example, the declared URI template is /mazes/{mazeId}/rooms, thus
the request includes always the property mazeId, without any constraint over the values

Chapter 4. The HEADREST specification language 25

associated to it. This is captured by the following subtype of Request:

{
location: URI,
template: {mazeId: any},
header: {}

}

With this in mind we can look at the precondition (lines 2-7) from Figure 4.2. The pre-
condition starts by refining the value of request.template.mazeId to be an integer
(line 3). Having a value that is an object, such as request, we can access its properties.
For instance, in the example we can refer to request.template.mazeId since the
request type defines the property template, an object type, with a property mazeId

of any type. Hence, line 3 refines the type of property mazeId to be an integer instead of
any type.
Line 4 restricts the body of the request to be of type RoomData. The type RoomData is
defined as follows:

type RoomData = {
name: (x: string where matches(/ˆ[\w\s]{3,50}$/, x))

}

Values of type RoomData are objects with at least one property called name whose value
is a string respecting the displayed regular expression.
The first room of a maze is created only when that maze has no rooms, or, alternatively,
the start room is not defined. Lines 5-6 illustrate how to describe the second alternative.
Next we restrict global variable maze to mazes with no start room. For that, remem-
ber that a resource contains zero or more representations and zero or more identifiers.
HEADREST includes the binary primitive predicate representationof that given a
value and a resource is true when the specified value is a representation of the provided
resource. Accordingly, the binary primitive predicate resourceidof is true if a given
URI is an identifier of the provided resource. With this in mind, line 5 starts by univer-
sally quantifying over values of type MazeGetData, then restricts those values to only
those that are representations of the resource maze. From the valid values, it is expected
that the value of property mazeId of request.template is equal to that of property
id. Besides that, the representations also do not contain a reference to a start room since
there are no rooms for the maze.
Hence, the assertion declares that if a request is sent satisfying those constraints then we
must obtain a response satisfying the postcondition. The postcondition starts by defining
that the expected response’s status code must be equal to the value of CREATED. HEAD-
REST supports the definition of named expressions and further to refer to them by name.
In this case, the value declaration is as follows:

def CREATED = 201

Chapter 4. The HEADREST specification language 26

Basic types G ::= integer | boolean | string | URITemplate

Types T ::= any | G | T [] | {} | {l : T} | (x : T where e)

Figure 4.4: Syntax of types

Thus, line 10 expects that the property code of the variable response is equal to 201.
The remaining of the postcondition (lines 11-20) specifies that the start room of the maze
used for the request is now created and points to the created resource of resource type
Room.
We denote as the specification of a RESTful API the set of assertions (such as the one
introduced), global variables, define declarations, and type declarations. Appendix A
contains the complete specification of the Mazes API.

4.2 Core Syntax

In this section we present the core syntax of the language. The language relies on a few
base sets to represent variables denoted by x, y, z, resources, denoted by α, β, resource
variables, denoted by r, s, and labels, denoted by l. Integer literals are denoted by n,
string literals by s, URI template fragment literals (defined in Subsection 2.1 of [46]) by
u.

Types Figure 4.4 introduces the syntax of types. HEADREST includes scalar types
(integer, boolean, string, URITemplate), object types ({} and {l:T}), array
types (T[]), refinement types ((x : T where e)) and the top type any.
Values of type URITemplate are URI Templates as defined in [46]. Object types may
be empty {} or include one property {l:T}. In the last case, values of type {l:T}

are objects whose property labeled by l is of type T . Multi-property object types will
be introduced later. The array type T[] represents a bounded array (with start index 0)
whose entries are of type T. Refinement type(x : T where e) represents values x of
type T that satisfy the expression e. The top type any is the super-type of every type.

Expressions and values Figure 4.5 shows the syntax of expressions and values. Values
include integer literals (n), string literals (s), URI templates (F), regular expressions (R),
boolean literals (true and false), the null literal (null), variables (x), resource vari-
ables (r), object literals ({l1 : e1, . . . ln : en}), and array literals ([e1, . . . , en]). The syntax
for regular expressions is based on ECMA-262 [34], however flags are not supported. An
expression may be a value (v), a predicate (⊕(e1, . . . , en)), a conditional (e1?e2 : e3), a
type membership test (e in T), an object property access (e.l), an array entry access (e[e]),

Chapter 4. The HEADREST specification language 27

Expressions e ::= v | ⊕(e1, . . . , en) | e1?e2 : e3 | e in T

| e.l | e[e]
| forall x : T.e | exists x : T.e | forall r : α.e | exists r : α.e

Operators ⊕ ::= <=> | => | || | && | ! | == | ! =

| < | <= | > | >=

| + | − | ∗ | ++

| matches | length | contains

| representationof | resourceidof

Values v ::= x | r | c | {l1 : e1, . . . ln : en} | [e1, . . . , en]

Scalar constants c ::= n | s | F | R | true | false | null

URI templates F ::= / | /u | /uF | /{l}F | /u{?l1, . . . , ln}

Figure 4.5: Syntax of expressions and values

Assertions A ::= {e} m F {e}
Methods m ::= GET | PUT | POST | DELETE

Figure 4.6: Syntax of assertions

Specifications S ::= ε | var x : T ;S | var r : α;S | resourceα;S | A;S

Figure 4.7: Syntax of specifications

and quantifiers over resource or variables.
Predicates range from typical predicates of logic, arithmetic, and strings (string con-
catenation). Predicate matches checks whether a regular expression can match a given
string; function length returns the length of an array; predicate contains determines
whether a given expression is an element of the array; the predicate representationof
checks whether a candidate value is a representation of a resource; and, finally, predicate
resourceidof determines whether a candidate value is an identifier of a resource.

Assertions Figure 4.6 presents the syntax of assertions.
An assertion is composed by a precondition expression, a method (m), a URI template
(F), and a postcondition expression.

Specifications Figure 4.7 introduces the syntax of specifications. A specification is a
set of variable declarations (var x : T), resource variable declarations (var r : α), resource

Chapter 4. The HEADREST specification language 28

isdefined(e.l1.l2 . . . ln) , e in {l1 : {l2 : {. . . {ln : any} . . . }}
e &&& f , (e?f : false)

e ||| f , (e?f : true)

Figure 4.8: Derived expressions

type declarations (resourceα), and assertions (A).

4.3 Concrete syntax

The concrete syntax counts with a few extensions, all obtained by translation into the core
syntax. We distinguish derived specifications, derived expressions, and derived types.
Below, notation fv(e) denotes the set of free variables of expression e.

4.3.1 Derived specifications

Expression aliases: def x = e;S. Occurrences of variable x in S are replaced by ex-
pression e. This way we do not need to know the type of e before expansion; different
occurrences of e in S may have different types.
Type aliases: typeX = T ;S. Occurrences of identifierX in S are replaced by T . Aliasing
does not create a new type; instead, it creates a new name to refer to the type.
The various entries in a specification (var, resource, type, def, and assertions) may appear
in any order.

4.3.2 Derived expressions

Figure 4.8 shows the derived expressions. Predicate isdefined queries whether a given
field is present in an object.

4.3.3 Derived types

Figure 4.9 shows the derived types.
In the definition of multi-field object types, ? denotes the symbol ? or no symbol.
Type URI abbreviates strings generated by a regular expression euri defined according to
[46].

4.4 Algorithmic type checking

The language is checked against typing contexts. A typing context Γ is a finite map from
variables to types. A context may be empty, ε; of the form Γ, x : T that represents a map

Chapter 4. The HEADREST specification language 29

[e : T] , (x : T where x == e), x /∈ fv(e)

[e] , [e : any]

T | U , (x : any where (x in T || x in U))

T & U , (x : any where (x in T && x in U))

!T , (x : any where !(x in T))

{?l : T} , (x : {} where isdefined(x.l) => x in {l : T})
{?l1 : T1, . . . , ?ln : Tn} , {?l1 : T1}& . . .&{?ln : Tn}

URI , (x : string where matches(x, euri))

natural , (x : integer where x ≥ 0)

Figure 4.9: Derived types

` F → T reads as: URI template F synthesizes type T
∆; Γ ` e→ T reads as: in ∆; Γ, expression e synthesizes type T
∆; Γ ` e← T reads as: in ∆; Γ, expression e checks against type T

∆; Γ ` T reads as: in ∆; Γ, type T is well formed
∆ ` Γ reads as: in ∆, context Γ is well formed

∆; Γ ` S reads as: in ∆; Γ, specification S is well formed
∆; Γ ` T <: U reads as: in ∆; Γ, type T is a subtype of type U

Figure 4.10: Judgments of the algorithmic type system of HeadREST

containing an entry x : T ; or of the form Γ, r : α that represents a map containing an entry
where a resource variable r is of resource type α. The notation dom(Γ) denotes the set of
variables in Γ. Besides that, there is a list ∆ of resource types.
The type checker of HEADREST is implemented as a bidirectional type system [62], so
there are two typing relations, one for type checking and an other for type synthesis.
Figure 4.10 lists the several judgments of the algorithmic type system of HEADREST.

URI template type synthesis, ` F → T As explained in Section 4.1 the type of the
variable request in the context of an assertion may be augmented depending on the URI
template of the assertion.
Figure 4.11 shows the rules that synthesize a type from a URI template.

Type synthesis, ∆; Γ ` e→ T Type synthesis is defined by the rules presented in [26],
with some additional rules for the new constructs of HEADREST. The rules initially

Chapter 4. The HEADREST specification language 30

` /→ {} ` /u→ {}
` F → T

` /uF → T

` F → T

` /{l}F → T&{l : any}

` /u{?l1, l2} → {}

Figure 4.11: URI template type synthesis

(x : T) ∈ Γ

∆; Γ ` x→ [x : T]
(S-Var)

(r : α) ∈ Γ

∆; Γ ` r → [r : α]
(S-ResVar)

Figure 4.12: Algorithmic type synthesis of variables

∆; Γ ` n→ [n : integer]
(S-Integer)

∆; Γ ` s→ [s : string]
(S-String)

` F → T

∆; Γ ` F → [F : T]
(S-UriTemplate)

∆; Γ ` R→ [R : regex]
(S-RegExp)

∆; Γ ` e1 → T1 . . . ∆; Γ ` en → Tn
∆; Γ ` {l1 : e1, . . . , ln : en} → {l1 : T1}& . . .&{ln : Tn}

(S-Object)

∆; Γ ` e0 → T0 . . . ∆; Γ ` en−1 → Tn−1

∆; Γ ` [e0, . . . , en−1]→ (a : (T0 | . . . | Tn−1)[] where
length(a) == n && a[0] == e0 . . . && a[n−1] == en−1)

(S-Array)

Figure 4.13: Algorithmic type synthesis of values

presented in [26] were modified to include the list of resource types, ∆.
Figure 4.12 shows the rules for type synthesis of variables and resource variables. In
comparison to the rules presented in [26], the rule (S-ResVar) was added.
Figure 4.13 shows the rules for type synthesis of literals. In comparison to the rules
presented in [26], the rules (S-UriTemplate), (S-RegExp) and (S-Array) were added.
Figure 4.14 shows the rules for type synthesis of quantifiers. None of these rules was
originally presented in [26].
Finally, Figure 4.15 shows the rules for type synthesis of the remaining supported expres-
sions. In comparison to the rules presented in [26], the rule (S-ArrayEntry) was added.
Notation 〈T, e〉 is equivalent to (: T where e).

Chapter 4. The HEADREST specification language 31

∆; Γ ` T ∆; Γ, x : T ` e← boolean

∆; Γ ` forall x : T.e→ [forall x : T.e : boolean]
(S-∀Var)

∆; Γ ` T ∆; Γ, x : T ` e← boolean

∆; Γ ` exists x : T.e→ [exists x : T.e : boolean]
(S-∃Var)

∆; Γ ` α ∆; Γ, r : α ` e← boolean

∆; Γ ` forall r : α.e→ [forall r : α.e : boolean]
(S-∀Res)

∆; Γ ` α ∆; Γ, r : α ` e← boolean

∆; Γ ` exists r : α.e→ [exists r : α.e : boolean]
(S-∃Res)

Figure 4.14: Algorithmic type synthesis of quantifiers

∆; Γ ` ei ← Ti ∀i ∈ 1..n ⊕ : T1, . . . , Tn → T

∆; Γ ` ⊕(e1, . . . , en)→ [⊕(e1, . . . , en) : T]
(S-Operator)

∆; Γ ` e1 ← boolean ∆; Γ, : 〈any, e1〉 ` e2 → T2
∆; Γ, : 〈any, !e1〉 ` e3 → T3

∆; Γ ` e1?e2 : e3 → 〈T, e1〉 | 〈U, !e1〉
(S-Conditional)

∆; Γ ` e← any ∆; Γ ` T
∆; Γ ` e in T → [e in T : boolean]

(S-TypeTest)

∆; Γ ` e→ T norm(T) = D D.l U

∆; Γ ` e.l→ [e.l : U]
(S-ObjectField)

∆; Γ ` e1 → T norm(T) = D D.Items U

∆; Γ ` e1[e2]→ [e1[e2] : U]
(S-ArrayEntry)

Figure 4.15: Algorithmic type synthesis of expressions

For any operator ⊕, the operator signatures are listed in Figure 4.16.
Besides that, norm(T) is a function that normalizes the type T into a DNF (Disjunctive
Normal Form) type. The rules for that function are based on [26] and are shown in Figure
B.1 of Appendix B. There, normr is responsible for creating a normal disjunction type
given a normal refined conjunction type. D.l U corresponds to field type extraction,
where the field type of an object (U) is extracted from the DNF type D. The rules of
D.l U are shown in Figure B.2 of Appendix B. Finally, D.Items U corresponds to

Chapter 4. The HEADREST specification language 32

<=> : boolean, boolean→ boolean => : boolean, boolean→ boolean

|| : boolean, boolean→ boolean &&: boolean, boolean→ boolean

! : boolean→ boolean ==: any, any→ boolean

==: α, α→ boolean ! =: any, any→ boolean

! =: α, α→ boolean < : integer, integer→ boolean

<=: integer, integer→ boolean > : integer, integer→ boolean

>=: integer, integer→ boolean +: integer, integer→ integer

− : integer, integer→ integer ∗ : integer, integer→ integer

++: string, string→ string matches : regex, string→ boolean

length : any[]→ integer length : string→ integer

contains : T [], T → boolean representationof : T, α→ boolean

resourceidof : URI, α→ boolean

Figure 4.16: Operator signatures (⊕ : T1, ..., Tn → T)

∆; Γ ` e→ T ∆; Γ ` [e : T] <: U

∆; Γ ` e← U
(C-Swap)

∆; Γ ` e← {l : T}
∆; Γ ` e.l← T

(C-ObjectField)

∆; Γ ` e1 ← boolean
∆; Γ, : 〈any, e1〉 ` e2 → T ∆; Γ, : 〈any, !e1〉 ` e3 → T

∆; Γ ` e1?e2 : e3 → T
(C-Conditional)

∆; Γ ` e2 ← (y : integer where 0 ≤ y < length(e1))

∆; Γ ` e1 ← (a : any[] where a[e2] in T)

∆; Γ ` e1[e2]← T
(C-ArrayEntry)

Figure 4.17: Algorithmic type checking

item type extraction, where the child type of an array (U) is extracted given the DNF type
D. The rules of D.Items U are shown in Figure B.3 of Appendix B.

Type checking, ∆; Γ ` e ← T Our type checking system is also based on the rules
presented in [26] with an additional rule for array access. Figure 4.17 lists the rules for
type checking.
The rule (C-Swap) only applies for expressions that are neither object field retrieval, nor
conditionals, nor array entry retrieval.
As mentioned in [26], in several languages, including Sage [53], the checking relation is
done simply through the (C-Swap) rule. However, having more rules for type checking

Chapter 4. The HEADREST specification language 33

∆ ` Γ

∆; Γ ` any

∆ ` Γ

∆; Γ ` G
∆ ` Γ α ∈ ∆

∆; Γ ` α

∆; Γ ` T
∆; Γ ` T []

∆ ` Γ

∆; Γ ` {}
∆; Γ ` T

∆; Γ ` {l : T}
∆; Γ, x : T ` e← boolean

∆; Γ ` (x : T where e)

Figure 4.18: Type well-formedness rules

∆ ` ε
∆ ` Γ ∆; Γ ` T

∆ ` Γ, x : T

∆ ` Γ α ∈ ∆

∆ ` Γ, r : α

Figure 4.19: Context well-formedness

provides better precision than only (C-Swap) alone.
Also, rule (C-Swap) is the only rule that calls the rule for subtype checking.
As example of a rule, (C-ArrayEntry) has two premises that must be true: the index of
access e2 is inside the bounds of the array e1; and, the expression e1 is indeed of an array
type whose entry indexed in e2 is of type T .

Type well-formedness, ∆; Γ ` T Figure 4.18 shows the rules for type well-formedness
of HEADREST.

Context well-formedness, ∆ ` Γ Figure 4.19 presents the rules for well-formedness
contexts.
These rules come into play whenever a variable is inserted into the typing context Γ.

Specification well-formedness, ∆; Γ ` S Figure 4.20 shows the rules for checking if a
specification is well-formed.

Semantic subtyping, ∆; Γ ` T <: U Normally, subtype checking is defined syntac-
tically or semantically. When defined syntactically (syntactic subtyping [61]) there is
a formal system with rules that deduce whether a type is a subtype of some other type
based on the syntax associated to both types. Under simple languages, specially without
refinement types, this may be helpful. However, when considering refinement types, an
adequate formal system based on syntax would be large and complex. Hence, the alterna-
tive is to use semantic subtyping [43]. Instead of relying on the syntax to check if a type
T is subtype of other type U , semantic subtyping builds first-order formulas F′[[T]](e) and
F′[[U]](e), which hold when e belongs to T and U , respectively, and uses a logic solver,

Chapter 4. The HEADREST specification language 34

∆ ` Γ

∆; Γ ` ε
∆; Γ, x : T ` S

∆; Γ ` var x : T ;S

∆, α; Γ ` S
∆; Γ ` resourceα;S

` F → T Γ, request : {template : T} & Treq ` e1 ← boolean
Γ, request : {template : T} & Treq, response : Tresp, : extract pk(e1) ` e2 ← boolean

∆; Γ ` S
∆; Γ ` {e1} m F {e2};S

where (evaluated in order)

extract pk(e1?e2 : false) = e1

extract pk(e) = true

Figure 4.20: Specification well-formedness

F′[[α]](e) = Good R(e) ∧ r type(e) = α

F′[[any]](e) = ¬Good R(e)

F′[[integer]](e) = In Integer(e)

F′[[boolean]](e) = In Boolean(e)

F′[[string]](e) = In String(e)

F′[[URITemplate]](e) = In String(e) ∧ str.in.re(e, euri)

F′[[T []]](e) = Good A(e)∧
(∀i : integer.(0 ≤ i ∧ i < v length(e))⇒ F′[[T]](v nth(e, i)))

F′[[{}]](e) = Good O(e)

F′[[{l : T}]](e) = Good O(e) ∧ v has field(e, l) ∧ F′[[T]](v dot(e, l))

F′[[(x : T where e1)]](e) = F′[[T]](e) ∧ V[[[e/x]e1]] = V[[true]]

Figure 4.21: F′[[T]](e)

such as a SMT solver, to check whether the formula F′[[T]](e) ⇒ F′[[U]](e) is valid, in-
cluding possible constraints from the typing environment.
The procedure we use for semantic subtyping is based on the work of Bierman et al [26].
All predicates/constants used below that do not belong to the core syntax are uninter-
preted functions/constants defined in Appendix C. That appendix includes the complete
axiomatization that is provided to Z3 (the SMT we support) when asking for satisfiability
of semantic subtyping. This axiomatization was augmented and improved from the orig-
inal axiomatization proposed in [26]. Namely, the additions express the constructs of our
language, not presented in [26], including resources, arrays and regular expressions. The
use of strings was modified to use the native sort String of Z3 that uses the string solver

Chapter 4. The HEADREST specification language 35

F′[[ε]] , true

F′[[∆; Γ, x : T]] , F′[[T]](x) ∧ F′[[∆; Γ]]

F′[[∆; Γ, r : α]] , F′[[α]](r) ∧ F′[[∆; Γ]]

Figure 4.22: F′[[∆; Γ]]

Z3str2 [67]. Currently it is not possible to use the newer solver Z3str3 [25] since it is
still being implemented. Some few other constructs had the respective axioms modified
in order to increase their effectiveness.
Before introducing the rules, there is one important concept, substitution of a variable x
by an expression e1 in an expression e, denoted by [e1/x]e.
We start by defining the formula F′[[T]](e) for the types T of the core syntax.
Figure 4.21 lists the rules of F′[[T]](e), which are evaluated in order.
Figure 4.22 lists the translations for the formula F′[[∆; Γ]] that builds a first-order formula
based on each entry of the typing context Γ.
Finally, for any expression e, we have V[[e]] : Value (Figure 4.23), where Value is a
datatype of scalar constants, objects, arrays, or resources.

V[[forall x : T.e]] = v boolean(∀x.(F′[[T]](x)⇒ V[[e]] = V[[true]]))

V[[exists x : T.e]] = v boolean(∃x.(F′[[T]](x) ∧ V[[e]] = V[[true]]))

V[[forall r : α.e]] = v boolean(∀r.(F′[[α]](r)⇒ V[[e]] = V[[true]]))

V[[exists r : α.e]] = v boolean(∃r.(F′[[α]](r) ∧ V[[e]] = V[[true]]))

V[[e1?e2 : e3]] = (if V[[e1]] = V[[true]] then V[[e2]] else V[[e3]])

V[[⊕(e1, . . . , en)]] = O⊕(V[[e1]], ...,V[[en]])

V[[e in T]] = v boolean(F′[[T]](V[[e]]))

V[[e1[e2]]] = v nth(e1, e2)

V[[e.l]] = v dot(e, l)

V[[[e1, . . . , en]]] = [e1, . . . , en]

V[[true]] = v tt

V[[false]] = v ff

V[[n]] = v integer(n)

V[[{l1 : e1, . . . ln : en}]] = {l1 : e1, . . . ln : en}
V[[s]] = v string(s)

V[[null]] = v null

V[[x]] = x

Figure 4.23: V[[e]]

Chapter 4. The HEADREST specification language 36

⊕<=> = O Equiv ⊕=> = O Implies

⊕|| = O Or ⊕&& = O And

⊕! = O Not ⊕== = O EQ

⊕!= = O NE ⊕< = O LT

⊕<= = O LE ⊕> = O GT

⊕>= = O GE ⊕+ = O Sum

⊕− = O Sub ⊕∗ = O Mult

⊕++ = O + + ⊕matches = v matches

⊕length = v length ⊕contains = v contains

⊕representationof = r representationof ⊕resourceidof = r resourceidof

Figure 4.24: Operator semantics (O⊕)

x /∈ dom(Γ) � (F′[[∆; Γ]] ∧ F′[[T]](x))⇒ F′[[U]](x)

∆; Γ ` T <: U

Figure 4.25: Algorithmic semantic subtyping

The complete definition of Value in Z3 is also in Appendix C. Figure 4.24 lists the seman-
tics for the operators (O⊕). Considering these definitions, the rule for semantic subtyping
is shown in Figure 4.25.

Chapter 5

Validating specifications

The HEADREST language is built on top of Xtext [20], an open-source framework for the
development of new languages with IDE support, namely Eclipse [8], as well extensions
for source code editors, such as Visual Studio Code [18].
This chapter begins by describing the most relevant features of Xtext, in Section 5.1.
Section 5.2 describes the implementation of the validation phase. Finally, Section 5.3
briefly describes the metrics associated to the implementation of the language.
Appendix D briefly describes the implementation of the extension for Visual Studio Code.
To install the Eclipse plug-in and the Visual Studio Code extension visit our website
http://rss.di.fc.ul.pt/tools/confident/.

5.1 Xtext and plugin implementation

When implementing a programming language we may split it into at least three phases:
parsing, scoping/linking, and validation. Xtext generates, by default, lexer and parser and
classes that represent the nodes of the AST (Abstract Syntax Tree) of the language. For
parsing, Xtext uses ANTLR (ANother Tool for Language Recognition) [1] as the back end
parser generator, which implements a LL(*) parser [59]. Besides that, it also provides a
visitor for the generated AST and classes to customize scoping and linking. From a
written grammar, Xtext generates various artifacts, including all the above mentioned
classes.
Figure 5.1 summarizes the process involved starting with the specification file until the
validation phase. The first step involves the lexer obtaining a sequence of characters
representing the specification file, which converts into a sequence of tokens. The tokens
are then fed to the parser, which generates a corresponding AST. Also, if there are no
syntactic errors in the specification file, the parser creates instances of class EObject
that build the AST. This AST is then used for scoping and linking, and validation steps.
To ease the implementation of the several steps, Xtext generates a visitor class
RestSpecificationLanguageSwitch to traverse the AST. It features one method

37

http://rss.di.fc.ul.pt/tools/confident/

Chapter 5. Validating specifications 38

.rspec
file Lexercharacters Parsertokens Linking and

Scoping
AST ValidationAST

Figure 5.1: Front end of the compiler

Figure 5.2: Example of error due to an undeclared variable

for each type of node and one additional method doSwitch that may be called when the
type of a node is only known at runtime.
Given a syntactically valid specification, one validation step is to verify if all referenced
variables are declared. For that, all cross-references are identified and its corresponding
scope.
During linking, we create virtual variable declarations for variables request and
response and attach them to a temporally new resource, attached to the existing re-
source set, that contains the specification being checked.
If the specification contains a reference to an undeclared variable or type then Xtext issues
an error message.
Figure 5.2 shows an example, in Eclipse, of an error due to an undeclared variable: in line
215 we typed Request instead of request.
Once the linking and scope has finished, Xtext starts the validation phase. For this,
we modify the class RestSpecificationLanguageJavaValidator, originally
generated by Xtext. This class contains methods to verify the specification depending on
the type of node of the AST. Xtext calls the methods that expect a given type of node
whenever it is handling a node of the AST of that type.
Section 5.2 details the validation process.

5.2 The validation phase

5.2.1 The symbol table

We begin by describing the implementation of the symbol table based on [21]. A symbol
table is used, for example, to manage the types of variables of a specification together

Chapter 5. Validating specifications 39

with its scope.
Along with the symbol table there is a class Symbol that includes two methods:
symbol(String name) that returns an unique instance representing the provided
name, creating if necessary; and fresh() that returns a symbol that is not used any-
where in the specification.
The most relevant methods of the symbol table (SymbolTable<T>) are:

• T get(Symbol symbol) - obtains the value corresponding to the symbol
symbol in the current scope, or null, if there is no such entry in the symbol
table;

• void put(Symbol symbol, T value) - bounds the value value to the
symbol symbol.

• void beginScope() - begins a new scope, creating a mark that can be used to
revert to the original state.

• void endScope() - closes the current scope, restoring the symbol table to the
original state before the use of corresponding beginScope().

• <R> R runInScope(Supplier<R> supplier) - handles automatically
the creation and destruction of a scope, running supplier (a function that pro-
duces a result of type R) between the respective calls and returning immediately the
result of supplier after the destruction of the temporally scope.

• Set<Symbol> domain() - returns the set of variables (symbols) that are in-
cluded in the symbol table.

Besides this class, there is another class Environment that extends
SymbolTable<Type> and implements one additional method:

• PutResultType put(Symbol symbol, Type type,

ExpressionCheckingTypingRules

expressionCheckingTypingRules) - checks if the provided type is well-
formed and that the symbol does not exist in the symbol table and, if so,
bounds the type to the provided symbol. It returns a value of the enumerated
PutResultType representing the result of the method (success, type not well
formed, or duplicated symbol).

5.2.2 Value hierarchy

Figure 5.3 shows the value hierarchy. This is important for model interpretation (vide
Section 5.2.3 and in Chapter 6).
To traverse a Value instance we make use of the Visitor design pattern [44].

Chapter 5. Validating specifications 40

Figure
5.3:V

alue
hierarchy

Chapter 5. Validating specifications 41

5.2.3 Semantic subtype checking

The semantic subtype checking makes use of an SMT solver. Currently there are several
existing SMT solvers, such as Z3 [32], CVC4 [22] or Yices [33]. We chose Z3 because
it includes support for several theories, which is essential for this project, and has been
achieving good results in recent editions of SMT-COMP [24]. The implementation is
flexible being able to be extended to other SMT solvers besides Z3. For this, logical
solvers must extend the class LogicEvaluator which includes an abstract method
signature:

• SemanticSubtypeResult isSemanticallySubtypeOf(

Environment environment, Type type1, Type type2),
where SemanticSubtypeResult is an enumerated representing the result of
the checking (positive, negative or not sure).

There are theories that are undecidable, thus it is not possible for an SMT solver to answer
always if a type is subtype of other. Besides that, our language supports quantifiers that
are also undecidable in general. Due to that, a subtyping check may return an additional
result to indicate that while the SMT solver failed to prove the unsatisfiability of the
expression the candidate model that the SMT solver generated is actually invalid. In this
case we emit a warning instead of an error.
Given a collection of possible logic evaluators, we may obtain one instance of one specific
evaluator, or a default one, by using a factory of logic evaluators. Hence, we use the
Factory design pattern [44] to create instances of logic evaluators and use the Strategy
design pattern to provide a common interface among all logic evaluators.
In the context of a logic evaluator, we check if a type is a subtype of another type
by checking the satisfiability of the negation of the generated first-order expression
((F′[[∆; Γ]]∧F′[[T]](x))⇒ F′[[U]](x)). If the result is negative then the original expression
is valid, so T is indeed a subtype of U . Otherwise, in the case of a SMT solver, a candi-
date model is generated and is interpreted. We only explain the model interpretation for
Z3. Using the Java library of Z3, an instance of class Model can be obtained if Z3 did
not conclude that the expression is unsatisfiable. In effect, the models generated by Z3
are written in SMT-LIB [23]. However, the Java library of Z3 has methods that can be
used to traverse the generated model. So, given a variable that we want to interpret from
a model, the first step is to ask the library for an interpretation for that variable. Thus
we obtain an instance of Expr, which we traverse by using the functions that we defined
in the axiomatization, namely we use the recognizer functions implicitly defined in the
datatype declarations to conduct the traversal. During this traversal, we build gradually
an instance of class Value for that variable. Thus, the complete model interpretation is
a map from variable names to Value instances.
Given this candidate model, to evaluate whether it is valid we check if the model respects

Chapter 5. Validating specifications 42

the following conditions:

1. (yσ in Sσ)→∗ true, for all (y : S) ∈ ∆; Γ;

2. (xσ in (T & !U)σ)→∗ true.

Condition (1) requires that the values in the candidate model for all variables in ∆; Γ have
the corresponding types.
Condition (2) checks whether the value assigned to x is of type T but not of type U . This
is because we are checking the satisfiability of the contradiction, that is

!((F′[[∆; Γ]] ∧ F′[[T]](x))⇒ F′[[U]](x)) ≡ !(!(F′[[∆; Γ]] ∧ F′[[T]](x)) ∨ F′[[U]](x))

≡ F′[[∆; Γ]] ∧ F′[[T]](x) ∧ !F′[[U]](x)

If a candidate model (of unsatisfiability) is valid then T is not subtype of U , otherwise
cannot conclude.

5.2.4 The validation process

The validation phase starts by verifying, in class SpecificationTypingRules, that
there are no mutually recursive entries (var, resource, type, and def) in the specifi-
cation. For this, we build gradually a directed graph where each node is one such entry of
the specification and there is one edge (u, v) between entries u and v if entry u references
the entry v. For each entry of the specification, we start traversing it seeking other entries,
as any entry is found we check whether that entry has been already visited during the
current traversal, if so a recursive definition was found and is reported. Otherwise, if that
entry was not yet processed then a node in the graph is created for it and is traversed.
After that, a topological sort is done on that graph and the symbol table (of type
Environment) is initialized.
Once that initialization is done, each assertion is checked by class
AssertionTypingRules that implements the respective rule of Figure 4.20.
In AssertionTypingRules, before the checking of the precondition/postcondition,
the respective variables, as mentioned in the rule, are added to a new scope of the symbol
table.
The type synthesis rules of Section 4.4 are implemented in class
ExpressionSynthesisTypingRules, a subclass of generated class
RestSpecificationLanguageSwitch.
Figure 5.4 shows the implementation of the type synthesis rule (S-ArrayEntry), inside
class ExpressionSynthesisTypingRules.
Remember that the rule (S-ArrayEntry) is,

∆; Γ ` e1 → T norm(T) = D D.Items U

∆; Γ ` e1[e2]→ [e1[e2] : U]
(S-ArrayEntry)

Chapter 5. Validating specifications 43

1 @Override
2 public Optional<Type> caseArrayElementAccess(ArrayElementAccess

arrayElementAccess) {
3 Optional<Type> arrayTypeOptional = synthesize(

arrayElementAccess.getArray());
4 if (!arrayTypeOptional.isPresent())
5 return Optional.empty();
6 Type arrayType = arrayTypeOptional.get();
7
8 NormalType normalType = typeDisjunctiveNormalizer.normalize(

arrayType);
9

10 Type childType = ArrayChildTypeExtracter.extractFieldType(
normalType);

11
12 return Optional.of(typeHelper.createSingletonType(

arrayElementAccess, childType));
13 }

Figure 5.4: Implementation of (S-ArrayEntry) rule

In Figure 5.4, the implementation of (S-ArrayEntry) is done by the method
caseArrayElementAccess. Every kind of node of the AST (including ArrayEle-
mentAccess) has a stub method (returning null) called caseX, where X is some kind
of node of the AST, implemented in class RestSpecificationLanguageSwitch,
which is invoked whenever a node being traversed is an instance of class X. Line 3 ob-
tains the type synthesized from the array, which corresponds to the first premise of rule
(S-ArrayEntry). However, the implementation of each type synthesis rule may not return
a synthesized type once an error has been detected, so every type synthesis rule returns
an instance of Optional<Type>, which may embed a synthesized type or be empty if
an error was already detected in the expression from which a type was being synthesized.
Hence, lines 4-6 inspect the instance of Optional<Type> obtained in line 3. If it is
found to be empty, because the array has some inner error, then the type synthesis of the
current expression stops immediately (line 5). Otherwise, it is extracted the synthesized
type from it (line 6). Line 8 then proceeds to obtain the DNF type obtained by normaliz-
ing the type obtained in line 6. Note that this step corresponds to the second premise of
rule (S-ArrayEntry). After that, in line 10, the child type of the array is extracted from the
DNF type, as the third premise of rule (S-ArrayEntry) enunciates. Finally, given the type
synthesis was successful, an instance of Optional<Type> is returned embedding the
singleton type [e1[e2] : U].
The type checking rules of Section 4.4 are implemented in class
ExpressionCheckingTypingRules, a subclass of generated class
RestSpecificationLanguageSwitch.

Chapter 5. Validating specifications 44

1 @Override
2 public Boolean defaultCase(EObject expression) {
3 Type expectedTypeU = nextExpectedTypes.pop();
4
5 Optional<Type> typeTOptional = synthesisTypingRules
6 .synthesize((Expression) expression);
7 if (!typeTOptional.isPresent())
8 return false;
9 Type typeT = typeTOptional.get();

10
11 Type singletonTypeT = typeHelper
12 .createSingletonType((Expression) expression, typeT);
13
14 SemanticSubtypeResult result = semanticSubtypingRule
15 .isSubtypeOf(programVariablesEnvironment,
16 singletonTypeT, expectedTypeU);
17 switch (result) {
18 case NOT_SUBTYPE:
19 error("Expression synthesizes type " + typeT +
20 " when it was expected to be a subtype of " +
21 expectedTypeU, expression);
22 return false;
23
24 case NOT_SURE:
25 warning("Expression synthesizes type " + typeT +
26 " and there is no guarantee that it is a subtype

of " +
27 expectedTypeU, expression);
28 return true;
29 }
30
31 return true;
32 }

Figure 5.5: Implementation of (C-Swap) rule

Figure 5.5 shows the implementation of the type checking rule (C-Swap), inside class
ExpressionCheckingTypingRules.
Remember that the rule (C-Swap) is,

∆; Γ ` e→ T ∆; Γ ` [e : T] <: U

∆; Γ ` e← U
(C-Swap)

As explained above, class RestSpecificationLanguageSwitch contains a
stub method caseX for each kind of node of the AST. However, the rule (C-
Swap) must only be evaluated when the node of the AST is neither an object prop-
erty retrieval nor a conditional nor an array entry retrieval. For that, the class
ExpressionCheckingTypingRules overrides the method defaultCase (also

Chapter 5. Validating specifications 45

from class RestSpecificationLanguageSwitch) that is called whenever the
method caseX compatible with the node returns null. Hence, only the methods com-
patible with object property retrievals, conditionals or array entry retrievals return a non
null value. This way, every node, not of those kinds, is evaluated by defaultCase.
Besides that, being defaultCase prepared to handle any kind of node of the AST, it
receives the node as being an EObject, the superclass of every node. However, given
this class only handles expressions, that instance of EObject may be safely casted to
Expression, the least common ancestor of every expression node. So, the implemen-
tation starts by retrieving the expected type U (line 3) that the expression provided must
belong to. After that, lines 5-6 obtain the type synthesized from the expression, as the
first premise of (C-Swap) enunciates. Lines 7-9 check whether the type synthesis was
successful and if so, proceed to obtain the synthesized type T . With that type, the cor-
responding singleton type [e : T] is created (lines 11-12). Lines 14-16 then invoke the
semantic subtyping relation, which corresponds to the second premise of (C-Swap). The
implementation of that relation will return an instance of SemanticSubtypeResult
that is an enumerated with possible values: SUBTYPE, NOT_SUBTYPE and NOT_SURE.
When the relation concludes that the singleton type [e : T] is a subtype of U then the re-
lation returns SUBTYPE and the method simply returns true to indicate that indeed
the expression provided is of the expected type (line 31). Otherwise, if the relation
concluded NOT_SUBTYPE then an error is signaled in the expression provided and the
method returns false to indicate an error was found (lines 18-22). The remaining case,
NOT_SURE, means that the SMT was unable to produce a conclusive result, so the method
emits a warning involving the expression and returns true so to continue the outer vali-
dation (lines 24-28).

5.3 Metrics

When creating a Xtext project, the framework generates several Java projects, including a
large number of classes for the components of the language, such as parser, lexer, linker,
scoping/linking, validation and IDE support (Eclipse).
Without considering those generated classes, except when they have been modified, with-
out counting blank and comment lines, the implementation of the language consists ap-
proximately of 11000 lines of Java code. The axiomatization for Z3 consists of 357 lines.
Finally, the implementation of the extension for Visual Studio Code consists of 24 lines
of Typescript code (without counting blank or comment lines).

Chapter 5. Validating specifications 46

Chapter 6

The RTester tool and its implementation

This chapter presents the testing tool, its fundamental concepts, and procedure to test a
RESTful API.
Testing RESTful APIs consists of creating requests and evaluating the obtained responses.
to automate this process we may define apriori the requests as well as conditions to check
the obtained responses.
By using the multi-use specification language presented in Chapter 4 it is possible to
automatically generate requests and validate the obtained responses, with the potential of
creating a large number of test cases that would have to be, otherwise, coded manually by
the tester.
Section 6.1 explains how resources are maintained locally during any test. Section 6.2
details how an assertion is evaluated. Section 6.3 details the algorithm for generating and
executing test cases for each assertion based on the Classification Tree method. Section
6.4 presents the procedure for adaptively randomly sequence testing an API. Section 6.5
presents the algorithm for checking whether a RESTful API is connected. Section 6.6
presents the structure of test case reports. Finally, Section 6.7 briefly shows the metrics
associated to the testing tool’s implementation.
To run the testing tool visit our website http://rss.di.fc.ul.pt/tools/

confident/.

6.1 Resource repository

Both test methodologies rely on making requests to a RESTful API. As they make re-
quests, resources may be created, modified, or deleted. Given that we do not have direct
access to the set of resources of the API we need to maintain a local list of existing re-
sources and update it whenever the tool makes a request. The local resource repository
achieves exactly that.
The repository supports resources lookup by type of resource, by URI and by ID. The
first returns a list of resources of a given type; the second returns the resource with a

47

http://rss.di.fc.ul.pt/tools/confident/
http://rss.di.fc.ul.pt/tools/confident/

Chapter 6. The RTester tool and its implementation 48

given URI; while the third returns the resource with the specified ID.
A resource may have several URIs. However, in certain situations (such as when handling
with a SMT) it is helpful to refer to a resource by a unique integer, thus for testing purposes
we identify each resource in the repository by a unique integer ID. Due to this, the tool
uses an internal predicate resourceid that returns the ID of a resource variable.
Since we focus on the HTTP protocol, we handle the requests and respective responses
depending on the HTTP method. Thus, we update the resource repository in consequence
of a request in the following way:

POST When the response’s status code is 201 it means that a resource has been created.
The tool obtains the value of the Location header field of the response (see HTTP RFC
(Request for Comments) [39]) bound to a URI of the newly created resource. The tool
then adds this new resource, along with its representation, with that URI to the repository.

PUT In a PUT request there are two relevant response’s status codes: 200/204 and 201.
When a PUT request is successful the API may return 200 or 204 as the status code. A
200 status code denotes the response contains an entity body, while a 204 means that
there is no response body. Once the tool receives one of these status codes it requests the
updated representation of the resource and updates the resource locally.
A PUT request may also result in a response with a status code 201 meaning the cre-
ation of a resource. The tool proceeds as described for the POST request looking for the
resource identified by the target URI used for the PUT request, instead of the Location
header field.

DELETE In a DELETE request the most relevant response’s status code is 200/204,
meaning the request was successful. The tool attempts to do a GET request using the
request’s URI and checks whether it obtains a response with a status code 404 or 410. If
that is the case, the resource was indeed deleted from the server and, it is removed from
the repository.

6.2 Assertion evaluation

While the resource repository maintains an up-to-date view of the resources existing in
the API during any test, every test is composed by one or more assertions that must be
evaluated. This section explains the process of evaluating an individual assertion. As
such, like the resource repository, assertion evaluation is also an integral component of
the test methodologies that we present later.
In order to explain the evaluation of an assertion we introduce some input parameters
for the algorithm of assertion evaluation: A denotes the assertion being evaluated; AE

Chapter 6. The RTester tool and its implementation 49

an expression (if not defined, it is equal to true) that is meant to be appended to the
precondition of A; and, V a map from variable names to instances Value.
This algorithm also considers there is a global resource repository RR.
From these notations we derive some additional notation: P denotes the precondition of
A.
The evaluation of assertion A involves five steps: precondition transformations; request
generation; sending generated request; refresh resource repository; and, postcondition
evaluation.
We detail next each step.

6.2.1 Precondition transformations

This step is composed by several sub-steps that are evaluated in order. While the first and
last sub-steps focus on creation and simplification of the symbol table of variable types
of P , the remaining steps make transformations to P . These transformations attempt to
remove some quantifiers of P as well simplify P so to be more efficiently handled by a
SMT (during request generation).
Once the transformations over quantifiers are done, the only possibly remaining quanti-
fiers are over primitive types (except object types).
Note the transformations over the precondition are incremental, using the result of the pre-
vious transformation, starting with the original precondition. Thus, in any transformation
(except the first over P), considers as P the result of the previous transformation.
Also, each transformation takes a HEADREST expression and yields another HEAD-
REST expression.

Creation of symbol table of variable types of P In this sub-step, a SymbolTable E
of variable types referenced in P . That is, E contains the type for every global variable
or built in variable referenced in P .

Expansion of resource based global variables The first transformation of P expands
every resource based global variable referenced in P using the resources currently existing
in RR.
We start by determining the global variables referenced in P , let FVdenote the set of
global variables referenced in P , along with the type of each one obtained from E.
This transformation overwrites P with the result of expandRBGV(FV, P). Figure 6.1 shows
the transformation rules of expandRBGV(FV, P).
This expansion ensures that the resources bound to the global variables must exist cur-
rently.

Chapter 6. The RTester tool and its implementation 50

expandRBGV({}, e) , e

expandRBGV({x : T}
⋃

L, e) , expandRBGV(L, e)

expandRBGV({x : α}
⋃

L, e) , expandRBGV(L,

(ID1 == resourceid(x) || ...
|| IDn == resourceid(x)) &&

(ID1 == resourceid(x) => e) && ...

&& (IDn == resourceid(x) => e)),

where Ri ∈ RR is one resource of type α,
IDi is the ID of Ri, 1 ≤ i ≤ n

Figure 6.1: expandRBGV(FV, P)

expandQOTV(forall x : T.e,RV) , V1 in T => expandQOTV([V1/x]e) && ...

&& Vn in T => expandQOTV([Vn/x]e),

if T is an object based type

expandQOTV(exists x : T.e,RV) , V1 in T => expandQOTV([V1/x]e) || ...
|| Vn in T => expandQOTV([Vn/x]e),

if T is an object based type

expandQOTV(e,RV) , e with every subexpression es expanded
by evaluating expandQOTV(es,RV)

Figure 6.2: expandQOTV(P,RV)

Append AE This trivial transformation appends AE (an HeadREST expression) to P ,
that is P = P && AE.

Expansion of quantifiers over object type based variables Every quantifier over ob-
ject type based variables are expanded by using all representations contained in RR.
Let RV = {V1, ..., Vn} denote the set of all representation values collected from RR.
This transformation does P = expandQOTV(P,RV).
Figure 6.2 shows the transformation rules of expandQOTV(P,RV).
This expansion is indispensable because SMTs tend to have a large difficulty handling
quantifiers over non basic types.

Transform resource equalities If we maintained every resource equality, such as
fromRoom != toRoom then when writing equivalent SMT code we would have to com-

Chapter 6. The RTester tool and its implementation 51

expandRE(e1 == e2) , resourceid(e1) == resourceid(e2),

if e1 and e2 are resource based variables

expandRE(e1 != e2) , resourceid(e1) != resourceid(e2),

if e1 and e2 are resource based variables

expandRE(e) , e with every subexpression es expanded by
evaluating expandRE(es)

Figure 6.3: expandRE(P)

pare every representation and every identifier of the resources, this would be extremely
costly. Hence, these equalities are transformed to use the internal predicate resourceid,
which eases the task to the SMT since this way we reduce these complex expressions into
just a simple integer comparison.
The result of this transformation is P = expandRE(P).
Figure 6.3 shows the transformation rules of expandRE(P).

Expansion of quantifiers over resource type based variables This transformation re-
duces every quantifier over resource type based variables into conjunctions or disjunc-
tions, according to the universality of the quantifier.
Hence, this transformation does P = expandQRTV(P).
Figure 6.4 shows the transformation rules of expandQRTV(P).
Let RS(α) = {R1, ..., Rn} denote the set of resources of RR that are of resource type α.

Simplification This transformation attempts to simplify the precondition. For example,
if in an implication the left operand is known to reduce, due to simplifications, to false

then the implication can be replaced by a literal representing the true value.
Besides those trivial simplifications based on logic, there is one additional simplification
that makes use of the previous transformations.
During the simplification of an expression, if an implication is found and on its left
operand it is checking whether x has a certain ID (through the use of internal predicate
resourceid) then we can deduce that when evaluating the right operand of the implication
we actually know what resource is x pointing to (by looking up for the ID in RR). Hence,
if the right operand of the implication involves, for example, a check whether a literal
value is a representation of x it may be reduced into a truth value by checking directly on
the representations of the resource mapped.
Besides that, during this transformation every variable that is contained in V is also ex-
panded into the value extracted from V .
Hence, this final transformation can simplify vastly the original precondition.

Chapter 6. The RTester tool and its implementation 52

expandQRTV(forall x : α.e) , expandQRTV(expandRBVE(e, x,R1) &&

... && expandRBVE(e, x,Rn)),

where Ri ∈ RS(α), i ≥ 1

expandQRTV(exists x : α.e) , expandQRTV(expandRBVE(e, x,R1) || ...
|| expandRBVE(e, x,Rn)),

where Ri ∈ RS(α), i ≥ 1

expandQRTV(e) , e with every subexpression es expanded
by evaluating expandQRTV(es)

expandRBVE(e representationof x, x,Ri) , (e == RP1 || ... || e == RPm),

for each representation value RPj of Ri,

with 1 ≤ j ≤ m

expandRBVE(e resourceidof x, x,Ri) , (e == I1 || ... || e == Ik),

for each identifier Ij of Ri, with 1 ≤ j ≤ k

expandRBVE(x, x,Ri) , IDi,where IDi is the ID of Ri

expandRBVE(e, x,Ri) , e with every subexpression es expanded
by evaluating expandRBVE(es)

Figure 6.4: expandQRTV(P)

Simplification of E During the previous transformations it is possible that P stops ref-
erencing some variable x (possibly several variables) while originally it referenced X .
This sub-step removes from E all such variables.

6.2.2 Request generation

This step uses the precondition resulted from the transformations in the previous step and
the symbol table E to generate a request satisfying P .
The generated request will be sent later to the API.
We build the following logical expression that is provided to the SMT to generate a re-
quest:

F’[[E]] ∧ V[[P]] = V[[true]]

In comparison to the validation phase 5.2, F’[[E]] and V[[e]] is reused here. Also, the
axiomatization for the SMT used during the validation phase is also reused here.
Remember that the SMT may return a result indicating it could not prove neither the satis-
fiability nor the unsatisfiability of the expression, thus generating a candidate model. For
that case, a candidate model σ is considered valid if it satisfies the following conditions:

Chapter 6. The RTester tool and its implementation 53

1. (yσ inUσ)→∗ true, for all (y : U) ∈ E;

2. σ ` e→∗ true.

Condition (1) ensures that the values for all variables in E have the expected type. Con-
dition (2) checks if the expression is satisfiable given the values of σ.
If the candidate model is shown to be invalid, an instance of the class
PreConditionModelGenerationFailed is thrown, containing an indication that
the candidate model was invalid. Otherwise, the candidate model can be used.

6.2.3 Sending generated request and refresh resource repository

First, a HTTP request is sent to the server using the request generated. This includes using
the generated request data to expand the URI Template of the assertion.
After that, having received a response to the request sent to the server, the resource repos-
itory is updated, accordingly, as explained in Section 6.1.
Besides that, every existing resource is refreshed, that is, it is made GET requests to the
known resources in order to obtain their up-to-date representations.

6.2.4 Postcondition evaluation

This final step evaluates the postcondition by using the generated request data as well the
obtained response.
If the evaluation of the postcondition reduces to false then the eval-
uation of the assertion failed and is thrown an instance of class
PostConditionNotSatisfiableFailure.
The evaluation of an expression is implemented in the class ExpressionEvaluator.
It proceeds by recursively evaluating the subexpressions.
Quantifiers over resource type based variables are evaluated using a finite set of resources.
For each resource of the resource repository, the expression of the quantifier is evaluated
by replacing the variable defined in the quantifier by the resource producing a sub-value
of the quantifier. Depending on whether the quantifier is universal or existential, the result
of evaluation of one such quantifier is the evaluation of the conjunction or disjunction of
all produced sub-values.
Quantifiers over object type based variables are evaluated similarly to quantifiers over
resource type based variables. However, instead of considering the set of resources from
the resource repository it considers the set of all representation values from the resource
repository.
For any quantifier different than these, the SMT is used to evaluate the quantifier.
Also, the class InstanceOfEvaluator evaluates whether a Value instance is of a
given type and is used when visiting in nodes.

Chapter 6. The RTester tool and its implementation 54

6.3 Unit assertion testing

Recall that an assertion contains a precondition that is a logical expression. This expres-
sion, as seen in Section 6.2 is used to generate requests that are later sent to the API.
For instance, when the expression is a disjunction, e1 ∨ e2, we need to generate requests
satisfying that expression. However, it is also relevant to test an assertion whose precon-
dition is that expression in different ways while attempting to maintain its satisfiability.
When we consider a disjunction like the one above we may test three different, possibly,
satisfiable expressions: e1 ∧ e2; ¬e1 ∧ e2; and, e1 ∧ ¬e2. So we may want to exercise
the assertion three times, each time using one of those possible combinations. Note that
there is no guarantee that the three expressions are satisfiable. For instance, if we have
false ∨ true then the derived expression false ∧ ¬true would be false. However, it is im-
portant to note that such derived expressions are satisfiable under the original expressions,
in contrast to ¬e1 ∧ ¬e2 that would be unsatisfiable whenever the original expression is
satisfiable. Since we are only interested in derived expressions that, possibly, maintain
the satisfiability, such expression is discarded.
Besides that, if we have a precondition containing x in integer then we may be inter-
ested in considering x as a negative, zero, or positive integer.
This means a possible approach to throughly test an API against a given assertion is by
domain partitioning. However, since we have constructs that form hierarchies, such as a
refinement type inside a type membership test predicate, direct domain partitioning would
include explicitly a high number of unsatisfiable combination of blocks from the different
characteristics. Hence, we use CTM (Section 2.2.2) that allows to partition a domain
hierarchically. Thus, for each specification assertion we create a classification tree from
its precondition. Then, generate test cases using that classification tree and the coverage
criterion (Minimum Coverage). These test cases are stored in a file (per assertion), which
the tester may modify, if needed. Finally, the tester runs again the tool to execute the test
cases.

6.3.1 Generation of test cases

The first step involves creating a classification tree from the precondition of an assertion
under test.
In the rules below CA(c1, ..., cn) denotes a classification, where ci, i ∈ [1, n], has one
of two forms: ei (an expression or type), which means ci is a leaf class (a class with
no refinements) whose label is ei; and ei => {C1, ..., Cm}, where Cj , j ∈ [1,m], is a
refinement over the internal class (a class that has refinements underneath) labeled by ei.
The union of classifications is defined as CA(c1, ..., cn)

⋃
CA(c′1, ..., c

′
n) =

CA(c1, ..., cn, c
′
1, ..., c

′
n).

We consider two functions, ctc(e) and ctct(T, b). The first function, ctc(e) creates a clas-

Chapter 6. The RTester tool and its implementation 55

sification CA(c1, ...) with at least one class representing expression e. This means that
expression e is replaced by the expansion of one of the classes contained in the classifica-
tion during generation of test cases.
The second function, ctct(T, b) creates a classification CA(c1, ...) with at least one class
representing a type T ; boolean b indicates whether we are handling the type T positively
or negatively (!T), meaning that the type T is replaced by the expansion of one of the
classes contained in the classification.
Figure 6.5 and 6.6 show the definition of functions ctct(T, b) and ctc(e), respectively.
Figure 6.7 shows the classification tree resulted from hypothetical expression x in

integer ? x == y : false.
In that figure is shown a conditional expression e0 (a classification) whose unique class
is the conditional expression e′ (equals to e0), meaning that e′ is considered instead of e0
(since e′ would be the choice from that classification). If that class was a leaf class then
we would simply have e′. However, that class is an internal class with three refinements.
Each refinement replaces a portion of e′. In that example, the second and third refinement
would leave e′ unchanged, but the first refinement is again an internal class e′′ that has one
refinement. Considering this last refinement, one leaf class must be chosen, the expression
of that class would replace the portion indicated in the refinement of e′′. For example,
note that e′′ is x in integer and the refinement has label integer, then supposing
that the first leaf class is chosen ((#18 : integer where (___18 < 0))) then e′′

would become x in (#18 : integer where (___18 < 0)) because the portion
integer of it is replaced by the expression of the chosen leaf class of the refinement.
The process continues until we have finished traversing the classification tree, yielding
the final expression x in (#18 : integer where (___18 < 0))? x == y :

false.
Given the precondition expression P of an assertion under test, its classification tree is
generated by ctc(P).
The second step of the Classification Tree method is then executed in order to obtain a list
of combinations by using the Minimum Coverage criterion.
For each combination we traverse the classification tree considering the combination, thus
generating an expression. For each generated expression, the assertion under test is copied
and the precondition of that copy is replaced by the generated expression, the resulting
assertion is a generated test case (with implicit expected result that it must be satisfiable).
Then all generated assertions from the assertion under test are stored in a file.

6.3.2 Modification of test cases by the tester and execution of test
cases

In order to run a test case it may not be enough to just generate a request satisfying
the precondition, sending it to the server and evaluating the postcondition based on the

Chapter 6. The RTester tool and its implementation 56

ctct(any, true) = CA(boolean, integer, string, any[], {}, [null])

ctct(any, false) = CA(!any)

ctct(boolean, true) = CA(

(x : boolean where x),

(x : boolean where !x)

)

ctct(boolean, false) = CA(integer, string, any[], {}, [null])

ctct(integer, true) = CA(

(x : integer where x < 0),

(x : integer where x == 0),

(x : integer where x > 0)

)

ctct(integer, false) = CA(boolean, string, any[], {}, [null])

ctct(string, true) = CA(

(x : string where length(x) == 0),

(x : string where length(x) > 0)

)

ctct(string, false) = CA(boolean, integer, any[], {}, [null])

ctct(T [], true) = CA(

(x : T [] where length(x) == 0) => {ctct(T, true)}),
(x : T [] where length(x) > 0) => {ctct(T, true)})

)

ctct(T [], false) = CA(boolean, integer, string, (!T)[], {}, [null])

ctct({}, true) = CA({})
ctct({}, false) = CA(boolean, integer, string, any[], [null])

ctct({l : T}, true) = CA({l : T} => {ctct(T, true)}))
ctct({l : T}, false) = CA(boolean, integer, string, any[], [null],

{l : T} => {ctct(T, false)}),
(x : {} where !isdefined(x.l))

)

ctct(x : T where e, true) = CA((x : T where e) => {
ctct(T, true),

ctc(e)

})

ctct(x : T where e, false) = ctct(T, false)
⋃

CA(x : T where !e)

Figure 6.5: ctct(T, b)

Chapter 6. The RTester tool and its implementation 57

ctc(e1 || e2) = CA(

(e1 && e2) => {ctc(e1), ctc(e2)}),
(!e1 && e2) => {ctc(!e1), ctc(e2)}),
(e1 && !e2) => {ctc(e1), ctc(!e2)})

)

ctc(!(e1 || e2)) = ctc(!e1 && !e2)

ctc(e1 && e2) = CA((e1 && e2) => {ctc(e1), ctc(e2)}))
ctc(!(e1 && e2)) = ctc(!e1 || !e2)

ctc(e1?e2 : e3) = CA((e1?e2 : e3) => {ctc(e1), ctc(e2), ctc(e3)}))
ctc(forall x : T.e) = CA((forall x : T.e) => {ctc(e)}))
ctc(exists x : T.e) = CA((exists x : T.e) => {ctc(e)}))

ctc(e in T) = CA((e in T) => {ctct(T, true)}))
ctc(!(e in T)) = CA((e in T) => {ctct(T, false)}))

ctc(!!e) = ctc(e)

ctc(e) = CA(e)

Figure 6.6: ctc(e)

Expression

x in integer ? x == y : false

x in integer ? x == y : false

x in integer x == y false

x in integer

integer

(#18 : integer where (___18 < 0)) (#18 : integer where (___18 == 0)) (#18 : integer where (___18 > 0))

x == y false

Figure 6.7: Example of a classification tree from an expression

obtained response. This means, in order to unit test an assertion it is expected that the
server is in a certain state. In the context of a RESTful API the server state is essentially
the set of resources, including their representations and identifiers, that exist in a given

Chapter 6. The RTester tool and its implementation 58

1 #
2 CreateMaze;
3 true -> CreateMazeFirstRoom where maze is mazeUsed
4 #
5 {
6 maze == mazeUsed &&
7 // Ommited for brevity, consider full Mazes API specification

for reference
8 ...
9 }

10 POST /mazes/{mazeId}/rooms [alias CreateMazeSubsequentRoom,
creates Room]

11 {
12 // Ommited for brevity, consider full Mazes API specification

for reference
13 ...
14 }

Figure 6.8: Assertion for creation of a subsequent room in a maze given a list of depen-
dencies

moment in time. Hence, to run a test case we must set the server state first. However,
these resources may need to satisfy some constraints.
For that the specification of an assertion may be strengthened with additional restrictions
in order to initialize the server state to run the test in.
For example, for the Mazes API, the assertion for the creation of a second room of a maze
requires that a first room has been created in the context of the same maze, which means
that a maze must have been created previously. Figure 6.8 shows the assertion for the case
of success for creating subsequent rooms with additional elements to illustrate how this
requirement can be described.
The test environment for an assertion is written before the actual assertion (lines 1-4) and
contains a list of assertions’ alias, that must be evaluated, in order, before running the unit
test for the assertion under test. We call this list of assertions the dependencies of the
assertion under test. Also, each of those assertion’s alias may be accompanied by a list of
variable mappings.
A variable mapping allows to refer to the value used in some global variable in a cer-
tain dependency. Since different dependencies may use different values for that variable
during their evaluation, without variable mapping it would be impossible to refer, for
example, to the maze used in the second dependency.
To understand why the value of a global variable may change in different dependencies
consider an hypothetical example, in which a door may connect two rooms of different
mazes. In such example, the assertion for the creation of a door would have four depen-
dencies: one to create the first maze; one to create the second maze; one to create a room

Chapter 6. The RTester tool and its implementation 59

of the first maze; and, one to create a room of the second maze. Note that the last two
dependencies are the same assertion but the value of the global variable maze for each
one would differ. Hence, if in the assertion to create a door we need to refer to the two
mazes individually then we have to create a variable mapping for each of the last two
dependencies, storing the respective value of variable maze in a new variable.
For instance, in the example, the variable mapping in line 3 means that the value
(resource) that was in variable maze during the evaluation of assertion with alias
CreateMazeFirstRoom must be stored in variable mazeUsed. So, the precondition
of the assertion under test may use it to restrict the value of global variable maze (line 6).
Note that a dependency may have an expression attached pointing to the assertion’s alias.
In that case, that expression is appended when evaluating that assertion to which the
expression is pointing to and every assertion following that one, including the assertion
under test. For instance, in the example, the expression true would be appended (as
a conjunction) to the precondition of assertion with alias CreateMazeFirstRoom and
CreateMazeSubsequentRoom, during the respective evaluations.
This section defines, thus, the fixture of the test.

6.4 Adaptive random sequence testing

This section presents the procedure for testing a REST API by creating adaptively random
sequences of assertions.
When considering a REST API, under a production environment it is used by different
users, each user may affect the data stored in the REST API in different ways. For in-
stance, in the Mazes API, an user may be adding rooms to a certain maze while some
other user is connecting different rooms of a different maze. This means, any operation’s
evaluation may be followed by the evaluation of some other operation, possibly not re-
lated to the first. Hence, it is fundamental to test the implementation by exercising the
evaluation of different operation pairs. Thus, in this algorithm we are interested in two
criteria:

Definition 13. In Assertion Coverage each assertion must be evaluated at least once.

Definition 14. In Assertion Pair Coverage each pair of assertions must be evaluated con-
secutively at least once.

While the procedure detailed in Section 6.3 requires the specification of a context for each
generated test case that must be considered before properly evaluating the assertion, the
approach in this section does not need that information. In effect, this approach can be
used with the original specification unchanged.
The algorithm we describe in this section may be ran several times, where each time the
environment of the server is cleaned before the actual sequence testing happens. The
number of total runs is parameterizable.

Chapter 6. The RTester tool and its implementation 60

6.4.1 Algorithm

If we consider a given state of the server, there must be always some assertion whose
precondition is satisfiable, otherwise it would mean no user could use anymore the API.
Generally, at any moment, there is one or more possible assertions whose preconditions
are satisfiable, choosing one of these randomly and blindly may not be effective since
we could end testing some transition pairs many times while other pairs would never be
considered, even when those pairs were possible to consider (the containing preconditions
were satisfiable at some moment). Thus, instead of blindly choosing one of those possible
assertions we score each assertion according to several metrics and evaluate the one with
the highest score. The involved metrics were designed to drive the sequence testing so to
attempt to increase Assertion Coverage, then increase Assertion Pair coverage and finally
to consider first most used actions when using a REST API. Note that the algorithm does
not guarantee neither full Assertion Coverage nor full Assertion Pair Coverage, however
it has the potential of aiding the tester in achieving full coverage.
We repeat this procedure until we have evaluated (using the algorithm described in Section
6.2) a maximum number of assertions (parameterizable) on the current run.
Below, |S| is the number of assertions of the specification S. Figure 6.9 shows the func-
tion (score(A0, A)) that scores an assertion A given that the assertion A0 was the latest
assertion being evaluated. When starting a new run, no assertion was previously evaluated
(in the current run), in that case the metrics that involve A0 will contribute 0 to the final
score of A.
Each time we need to score the assertion the first step is to generate a random order of the
assertions. Being R the number of the current run of the sequence testing (starting with
1) and L the current length of the current run (starting with 0), we use a pseudo-random
generator using R∗RS +L, where RS is a random number or a specific number (provided
in a configuration file), as seed to generate a permutation of the list of assertions. Given
this permutation, the order is inverted, thus the first assertion of the permutation (that
was the first obtained through the use of the pseudo-random generator) will get a score
of |S| and the last assertion of the permutation receives the score of 1. The mapping of
assertions to the respective score is saved in variable ROS.
Note that due to the seed we feed to the pseudo-random generator we obtain a random
distribution of assertions across runs (the random aspect of the algorithm).
From the other side, if we consider that a number was provided in a configuration file and
that the specification maintains equal and the implementation also remains equal then,
since the seed is fixed for the number of current run and the current length of the run, we
obtain deterministically the same generated sequences of testing. For instance, if we pro-
vide a specific number and the specification remains equal and the implementation is such
that on the run 1 and current length 7 the testing fails, for example because the postcondi-
tion of the assertion being evaluated was evaluated to false, then if we run the tool again

Chapter 6. The RTester tool and its implementation 61

score(A0, A) = ROS[A]+

scorems(method(A), statuscode(A)) ∗M+

scoreinverse frequency(AF,A0, A) ∗ 10M+

scorenot covered next assertion(CAP,A0, A) ∗ 100M+

scorenot covered(CA,A) ∗ 1000M

where,

M = 10ceil(log10(|S|−1))

scorems(GET, SC) = 9, if 200 ≤ SC < 300

scorems(GET, SC) = 5, if 400 ≤ SC < 500

scorems(GET, SC) = 1, otherwise
scorems(POST, SC) = 9, if 200 ≤ SC < 300

scorems(POST, SC) = 5, if 400 ≤ SC < 500

scorems(POST, SC) = 1, otherwise
scorems(PUT, SC) = 9, if 200 ≤ SC < 300

scorems(PUT, SC) = 5, if 400 ≤ SC < 500

scorems(PUT, SC) = 1, otherwise
scorems(DELETE, SC) = 1, if 200 ≤ SC < 300

scorems(DELETE, SC) = 9, if 400 ≤ SC < 500

scorems(DELETE, SC) = 5, otherwise

Figure 6.9: Score function (score(A0, A)) of a candidate assertion given a previous asser-
tion

(without modifying neither the specification nor implementation) we will obtain the same
result (that same postcondition failing). If the implementation was changed so to fix the
error associated to the failure detected during testing, then as long as the implementation
behaves the same up to the point where the failure happened, it will now succeed on that
point of the testing.
Besides that, the testing is adaptive due to the scoring ordering of assertions.
Below we explain the metrics involved in the score calculation:

scoreinverse frequency(AF, A0, A) Given the map of frequency of transition pairs per asser-
tion (number of times a given assertion was evaluated after some other assertion) AF, it
obtains the frequencies of transition pairs whose origin isA0 and normalizes each of those
frequencies into an integer in the interval [0, 9] and then the score of A is 9 minus the nor-
malized value for the assertion A. For instance, if assertion A had the lowest frequency of
the map of frequencies for A0, then 9 minus the result of normalizing its frequency results
into 9, thus the score of A is 9.

Chapter 6. The RTester tool and its implementation 62

scorenot covered next assertion(CAP, A0, A) Given the set of already covered assertion pairs
CAP, it returns 1 if the pair (A0, A) is not contained in CAP, otherwise returns 0.

scorenot covered(CA, A) Given the set of already covered assertions CA, it returns 1 if A
is not contained in CA, otherwise returns 0.

6.5 Connectedness checking algorithm

One of the interface constraints of REST is HATEOAS (Hypermedia as the Engine of
Application State). This means resources must be linked to resources that share some
relationship with them. Thus, it is expected at least that from a given starting resource
every other resource is reachable directly or by following links between resources. We
say an API is connected if this constraint is respected.
Many APIs said to be RESTful don’t respect this constraint, hence by definition of REST
they are not actually RESTful. One example is Twitter API1. For example, a tweet2 may
refer to the user that posted the tweet. However, this reference instead of using hyperme-
dia (for example, by using the URI of the user) it includes an integer ID that represents
the user and this ID must be expanded into an URI Template [46] in order to reach the
user.
Due to this, it is imperative to test whether a supposed REST API is connected. And if it is
not connected then provide auxiliary resources to help the programmer recognize which
resources need to be connected.
Chakrabarti et al. [30] proposed an algorithm to evaluate if an API respects this con-
straint. The algorithm starts by executing several POSTs in sequence to create different
resources on the server-side. For this they use a language that contains URI Templates
and generate the values for the variables randomly (without any restriction) to expand the
URI Templates. During those creations the algorithm collects the URIs of the newly cre-
ated resources into a reference URI list. After that the algorithm makes a GET on the base
URI and collects into a visited URI list every URI found in the response, doing a GET
for each one of those URIs and repeating the process until there are no more unvisited
URIs. If every URI of the first list is contained in the second list then the API is said to
be connected.
The algorithm we propose here does not make POST requests as part of the algorithm.
Instead it only focuses on traversing the network of resources similarly to the second part
of the work of Chakrabarti et al.. This allows the algorithm to be used, for instance,
after every request to the API. This is an important aspect, because that algorithm would
accept, wrongly, an API that, for instance, stops respecting the constraint once a resource

1https://dev.twitter.com/rest/public
2https://dev.twitter.com/overview/api/tweets

https://dev.twitter.com/rest/public
https://dev.twitter.com/overview/api/tweets

Chapter 6. The RTester tool and its implementation 63

1: for each I of L do
2: add to G one node representing I
3: end for
4: add to G one node representing B
5: F = startRepresentationTransferOperation(B)
6: add F to Q
7: add B to V
8: while Q is not empty do
9: wait until the next asynchronous operation has finished (front of Q)

10: FRP = extract front of Q
11: RP = extract representation of FRP .
12: I = resource identifier that originated RP
13: NI = node from G representing I
14: UL = list of all URIs contained in RP
15: for each URI U of UL do
16: NU = obtain node of G representing U (creating it, if necessary)
17: add (NI , NU) to E(G)
18: if V does not contain U then
19: F = startRepresentationTransferOperation(U)
20: add F to Q
21: add U to V
22: end if
23: end for
24: end while
25: return G

Figure 6.10: Algorithm to create a resource reference graph

is modified or deleted. In contrast, such scenario would not pass in our case.
Besides that, their algorithm produces as final result a graph specifying the links between
resources being each resource a node of the graph. Instead, our approach results into a
contracted graph that the programmer may use as reference to discover where there are
missing links between resources. This is particularly useful when there is a big number
of resources.

6.5.1 Resource reference graph

A resource reference graph is a non-empty directed graph that represents every resource
referenced by a resource. Each node of the resource reference graph contains a resource
identifier.

Creation algorithm

Figure 6.10 shows the algorithm used to create a resource reference graph.
We begin the algorithm by having an empty resource reference graph called G.

Chapter 6. The RTester tool and its implementation 64

Let L be a provided list of resource identifiers, a base URI B, which will be used as start
point of the traversal, V be a set of visited resource identifiers, initially empty and Q be
a queue of asynchronous operations, initially empty. Once the asynchronous operation of
an entry of Q has finished it will contain a representation.
The function startRepresentationTransferOperation(I) starts an asynchronous operation
to obtain a representation of the resource identified by I , returning a handle for this asyn-
chronous operation.

Example

Imagine we start with an empty list L composed and B equal to the URI

http://localhost:8080/rest/v1/mazes?page=1&limit=10

And the representation of the resource identified by this identifier is Listing 6.1. Note that,
lines 4, 9, 23, 27, and 30 contain, each one, an URI that is considered in the algorithm.

1 {
2 "_links": {
3 "self": {
4 "href": "http://localhost:8080/rest/v1/mazes?page=1&

limit=10"
5 },
6 "prev": null,
7 "next": null,
8 "last": {
9 "href": "http://localhost:8080/rest/v1/mazes?page=1&

limit=10"
10 }
11 },
12 "meta": {
13 "totalResults": 1,
14 "resultPerPage": 10
15 },
16 "_embedded": {
17 "mazes": [
18 {
19 "id": 1,
20 "name": "Maze #1",
21 "_links": {
22 "self": {
23 "href": "http://localhost:8080/rest/v1/mazes/1"
24 },
25 "start": [
26 {
27 "href": "http://localhost:8080/rest/v1/mazes/1/

start"

Chapter 6. The RTester tool and its implementation 65

28 },
29 {
30 "href": "http://localhost:8080/rest/v1/mazes/1/

rooms/1"
31 }
32]
33 }
34 }
35]
36 }

Listing 6.1: Example of a mazes’ list representation

Also, suppose that the representation of the resource identified by

http://localhost:8080/rest/v1/mazes/1

is 6.2 (lines 6, 10, and 13 contain, each one, an URI that is considered in the algorithm),
the representation of the resource identified by

http://localhost:8080/rest/v1/mazes/1/rooms/1

and
http://localhost:8080/rest/v1/mazes/1/start

is 6.3 (lines 6, 9, and 12 contain, each one, an URI that is considered in the algorithm)
and the representation of the resource identified by

http://localhost:8080/rest/v1/mazes/1/rooms/1/doors

is 6.4 (line 4 contains an URI that is considered in the algorithm).

1 {
2 "id": 1,
3 "name": "Maze #1",
4 "_links": {
5 "self": {
6 "href": "http://localhost:8080/rest/v1/mazes/1"
7 },
8 "start": [
9 {

10 "href": "http://localhost:8080/rest/v1/mazes/1/
start"

11 },
12 {
13 "href": "http://localhost:8080/rest/v1/mazes/1/

rooms/1"
14 }

Chapter 6. The RTester tool and its implementation 66

15]
16 }
17 }

Listing 6.2: Example of a maze’s representation

1 {
2 "id": 1,
3 "name": "Room #1",
4 "_links": {
5 "self": {
6 "href": "http://localhost:8080/rest/v1/mazes/1/rooms/

1"
7 },
8 "maze": {
9 "href": "http://localhost:8080/rest/v1/mazes/1"

10 },
11 "doors": {
12 "href": "http://localhost:8080/rest/v1/mazes/1/rooms/

1/doors"
13 }
14 }
15 }

Listing 6.3: Example of a room’s representation

1 {
2 "_links": {
3 "self": {
4 "href": "http://localhost:8080/rest/v1/mazes/1/rooms/

1/doors"
5 }
6 },
7 "_embedded": {
8 "doors": []
9 }

10 }

Listing 6.4: Example of a room’s doors’ representation

By executing the creation algorithm providing the list L and base URI B we would obtain
the graph on the Figure 6.11. Note that every node is reachable from the top node, hence
the API is connected.

6.5.2 Algorithm

With the resource reference graph introduced, now the complete algorithm can be pre-
sented.

Chapter 6. The RTester tool and its implementation 67

http://localhost:8080/rest/v1/mazes?page=1&limit=10

http://localhost:8080/rest/v1/mazes/1

http://localhost:8080/rest/v1/mazes/1/start

http://localhost:8080/rest/v1/mazes/1/rooms/1

http://localhost:8080/rest/v1/mazes/1/rooms/1/doors

Figure 6.11: Resource reference graph resulted from creation algorithm providing one
URI

We begin by using the resource reference graph creation algorithm (Section 6.5.1) to
create a resource reference graph G by providing as L the list of resource identifiers
contained in the resource repository and B set to a base URI provided by the tester in a
configuration file. Suppose we obtain the resource reference graph of Figure 6.11.
Next, we execute the Tarjan’s algorithm [66] to find the strongly connected components of
G. The Figure 6.12 shows each strongly connected component of the Figure 6.11 inside
a rectangle.
With the strongly connected components calculated (stored as a list SCCL) we contract
the graph, obtaining the graph GC (initially empty), by executing the algorithm in Figure
6.13.
The function createNode(SCC) creates a node that represents all identifiers contained in
SCC, thus the created node will represent the strongly connected component SCC.
Given the Figure 6.12 it would be contracted into the graph of the Figure 6.14.
Evaluating if an API is connected in terms of a root node can now be checked since
it consists of checking if there is only one node N that has in degree of zero, that is
deg−(N) = 0.

Theorem 1. An API is connected in terms of a root node if and only if there is only one
node N of GC such that deg−(N) = 0.

Proof. Considering the definition of strongly connected components, we know that GC

contains at least one node N that respects the formula deg−(N) = 0. So, we have two
cases: only one node respecting the formula; and two or more respecting the formula.

Chapter 6. The RTester tool and its implementation 68

http://localhost:8080/rest/v1/mazes?page=1&limit=10

http://localhost:8080/rest/v1/mazes/1

http://localhost:8080/rest/v1/mazes/1/start

http://localhost:8080/rest/v1/mazes/1/rooms/1

http://localhost:8080/rest/v1/mazes/1/rooms/1/doors

Figure 6.12: Strongly connected components of the Figure 6.11

1: for each SCC of SCCL do
2: N = createNode(SCC)
3: add N to GC

4: end for
5: for each edge (u, v) of G do
6: NU = obtain the node of GC containing the identifier contained in u
7: NV = obtain the node of GC containing the identifier contained in v
8: if NU 6= NV ∧ (NU , NV) /∈ E(GC) then
9: add (NU , NV) to E(GC)

10: end if
11: end for
12: return GC

Figure 6.13: Algorithm to contract a graph using the detected strongly connected compo-
nents

Case 1: If there is only one node N with indegree of zero then every node N ′ 6= N is
reachable from N , otherwise that node would also have an in degree of zero. Thus, every
node is reachable if traversing the graph starting on N . Hence, an API is connected if
there is only one node with in degree of zero.

Case 2: Otherwise, there is at least two different nodes both with indegree of zero. This
would mean that starting from one of those two nodes we would never be able to reach
the other node, because that other node has in degree of zero. Thus, an API can not be
connected if there is at least two nodes with in degree of zero.

So, an API is connected if and only if there is only one node with in degree of zero.

Chapter 6. The RTester tool and its implementation 69

http://localhost:8080/rest/v1/mazes?page=1&limit=10

http://localhost:8080/rest/v1/mazes/1
http://localhost:8080/rest/v1/mazes/1/start

http://localhost:8080/rest/v1/mazes/1/rooms/1

http://localhost:8080/rest/v1/mazes/1/rooms/1/doors

Figure 6.14: Contracted graph provided the graph of Figure 6.12

Besides that, to ensure that the API is connected starting from B then it is also checked
whether that node with in degree of zero contains B.
Considering the contracted graph on Figure 6.14 we can see that the API is connected,
since the top node is the only node of the graph with in degree of zero and contains B.
Observe that the bottom node can not reach any other node. A programmer by analyzing
this compact graph can easily check whether there are missing links.
If we wanted to check for full connectedness, that is, every resource is reachable from
every other resource, then we would only need to check if GC had only one node.

6.6 Report building

Each executed test case (including testing the connectedness of an API) results in a test
case report. This report contains all information about the test case so the tester may, for
example, consult the requests generated and the respective responses obtained from the
API.
Figure 6.15 shows the class diagram of a test case report (class TestCaseReport).
In order to make the test case reports self contained, they may contain attachments. For
example, a step of a test case report that has the goal of sending a HTTP request to the
server, includes an attachment with a cURL command equivalent to the sent request. One
other example is that the test case report of testing the connectedness of an API also
includes an attachment of a DOT[55] file that can be used to render the contracted graph
generated by the algorithm (Section 6.5.2).
Through the use of a renderer plug-in it is possible to create a document with a friendly

Chapter 6. The RTester tool and its implementation 70

Figure 6.15: Class diagram of TestCaseReport

interface of the test case reports. There is only one renderer plug-in supported, at the
moment, Allure[9]. Allure is an open-source framework that generates HTML based
reports designed to be friendly to the tester.
A renderer plug-in may register into the tool seamlessly by using the interface annotation
ReportRendererPlugin. By being annotated with that interface it will receive, dur-
ing the execution of the tool, an event with a test case report whenever a test case report
has been generated, and during the shutdown of the tool an event informing there will be
no more test case reports, hence the renderer plug-in may finalize the renderization of the
report.
Figure 6.16 shows an example of a test case report, generated from random sequence
testing (Section 6.4), rendered with the Allure framework. The left panel of it shows the
steps involved in the test case, including attachments, such as the generated request for
each axiom evaluated, as well an equivalent cURL command and the response obtained
from the server. This includes also the result of the test case and the duration of each step.
On the right panel it shows an example of an attachment, namely a generated request to
create a maze.

Chapter 6. The RTester tool and its implementation 71

Fi
gu

re
6.

16
:E

xa
m

pl
e

of
a

te
st

ca
se

re
po

rt
in

A
llu

re

Chapter 6. The RTester tool and its implementation 72

6.7 Metrics

Without counting blank and comment lines, the implementation of the testing tool consists
approximately of 6600 lines of Java code. However, the implementation of the testing tool
makes use of the implementation of the language. Hence, in total the implementation (of
both language and testing tool) consists of 17600 lines of Java code.

Chapter 7

Evaluation

To evaluate the testing tool, we consider the two test methodologies independently on the
Mazes API. Also, the connectedness checking algorithm is evaluated in the context of
adaptive random sequence testing.
The evaluation runs in a machine with an Intel Core i7-4710HQ CPU with 2.50GHz x 4
and 12 GB of RAM memory under a Linux environment.

7.1 Unit assertion testing

For unit assertion testing our goal is to measure the quantity of generated test cases that
otherwise the tester would have to write manually.
To evaluate the unit assertion testing based on the Classification Tree method we consider
the number of generated test cases. In total there is 955 generated test cases by using
Minimum Coverage criterion for the assertions in Appendix A. From that, the assertion
to create a door successfully is responsible for the generation of 129 tests.
Each of these test cases require the tester to provide the context under which the test
case is valid, if needed. Considering the high number of generated test cases it requires
a high amount of work from the tester. However, it is important to note that the tester
does not need to worry about achieving 100% coverage for the criterion because the set
of generated test cases is guaranteed to achieve that coverage. Besides that, given we
save these generated test cases in files, the tester may choose to discard some of them
either because they are infeasible or because it finds them uninteresting for some reason.
However, this may reduce the coverage.

7.2 Adaptive random sequence testing

In terms of adaptive random sequence testing our main goal is to analyze the algorithm in
terms of Assertion Coverage and Assertion Pair Coverage. A secondary goal is to analyze
the scalability of the algorithm.

73

Chapter 7. Evaluation 74

Figure 7.1: Total duration per length of sequence

For the Assertion Coverage and Assertion Pair Coverage we consider two scenarios: in-
cluding and excluding the score function. Recall that the score function is the adaptive
aspect of the algorithm, thus the version without it considers a random selection of as-
sertions at any moment instead of considering our selection heuristics. We used the same
seed for the pseudo-random generator for both versions.
For all evaluations we considered four sequence lengths: 5, 20, 50, 150. In what concerns
the number of runs we considered: 1, 5, 10, 20.

7.2.1 Duration of one run of varying length

This first evaluation of the algorithm measures the runtime of a single run for varying
lengths. We consider for this the runtime impact of the connectedness checking algorithm.
Figure 7.1 shows the obtained results. In the figure we show the measured total duration
for each sequence length by including and excluding the connectedness checking. On the
y-axis there is the total duration in seconds and on the x-axis the sequence lengths.
It is evident that the connectedness checking algorithm has a bigger impact as the length of
the sequence increases. This is because more resources are created, making the network
of resources larger to retrieve and traverse. When testing without the algorithm, we still
notice a slight increase of the runtime as the sequence gets larger. However, it is important

Chapter 7. Evaluation 75

Figure 7.2: Total duration of each step per length of sequence

to note that even for a sequence of length 150 it takes approximately 116 seconds to run
the sequence testing consisting of 150 assertions meaning less than one second for each
assertion. Note that this time includes the communication with the API, which depends on
several factors, thus in Figure 7.2 we show the obtained durations for each step including
connectedness checking.
The Figure 7.2 confirms that connectedness checking is the slowest step. Excluding that,
request generation is the second slowest step. Remember that is during this step that Z3
is used to generate a request satisfying the precondition. It has higher than linear impact
because the complexity of the precondition increases as more and more resources are
created. However, the step of precondition transformations revealed indispensable for
these results. Without those transformations Z3 would timeout almost always even with
few resources. One other reason for the fast increase in runtime for that step is due to
the use of regular expressions. We notice that preconditions that have regular expressions
would timeout more frequently than preconditions without it. As more string solvers, such
as [25], are developed and integrated into Z3 this is expected to improve, making the use
of Z3 feasible even for a high length of sequences. In terms of postcondition evaluation
it is important to note since our use case does not contain quantifiers over primitive types
(excluding object types and resource types), Z3 is never used during that step, so this
step measured a maximum 0.079s for a sequence of length 150. However, it is relevant

Chapter 7. Evaluation 76

Figure 7.3: Assertion Coverage with 1 run

Figure 7.4: Assertion Coverage with 5 runs

to observe that before the postcondition evaluation there is a step in which we refresh
the resource repository by obtaining up-to-date representations of the existing resources.
This step also registers a slight impact in the runtime, however it is not as noticeable as
connectedness checking because this step does not involve traversing the resources.

7.2.2 Assertion Coverage

We evaluated Assertion Coverage under different number of runs of varying lengths;
100% coverage means all 35 assertions of the Mazes API were covered at least once.
Figure 7.3 shows the obtained Assertion Coverage with 1 run; Figure 7.4 shows the ob-
tained Assertion Coverage with 5 runs; Figure 7.5 shows the obtained Assertion Coverage
with 10 runs; Finally, Figure 7.6 shows the obtained Assertion Coverage with 20 runs.
In all these figures on the y-axis there is the percentage of Assertion Coverage obtained
(maximum of 100%) by a given sequence length (x-axis). These results are divided into

Chapter 7. Evaluation 77

Figure 7.5: Assertion Coverage with 10 runs

Figure 7.6: Assertion Coverage with 20 runs

the version with the score function and the version without it.
It is possible to observe that the score function always leads to a higher coverage. In
fact, while the version with score function needed to evaluate 50 assertions in just one run
(50 assertions in total) to cover 100% of Assertion Coverage, the version without score
function only achieved the same result with 5 runs of 150 assertions (750 assertions in
total).
Also, if we consider, the results for one run of length 50 and ten runs of length 5, both
evaluate in total 50 assertions. However, only one run of length 50 achieves better results
than the other result, this is because some assertions require several resources. This means
there is a trade off between the coverage achieved and the time spent evaluating assertions.

Chapter 7. Evaluation 78

Figure 7.7: Assertion Pair Coverage with 1 run

Figure 7.8: Assertion Pair Coverage with 5 runs

7.2.3 Assertion Pair Coverage

This evaluation works like the previous evaluation but considers Assertion Pair Coverage
instead of Assertion Coverage; 100% coverage means that 35 × 35 = 1225 pairs of
assertions covered at least once.
Figure 7.7 shows the obtained Assertion Pair Coverage with 1 run; Figure 7.8 shows the
obtained Assertion Pair Coverage with 5 runs; Figure 7.9 shows the obtained Assertion
Pair Coverage with 10 runs; Finally, Figure 7.10 shows the obtained Assertion Pair Cov-
erage with 20 runs.
In all these figures on the y-axis there is the percentage of Assertion Pair Coverage ob-
tained (maximum of 100%) by a given sequence length (x-axis). These results are divided
into the version with the score function and the version without it.
As with Assertion Coverage, the version with the score function achieved higher coverage
levels than the version without it. Only under one and five runs of length five both versions

Chapter 7. Evaluation 79

Figure 7.9: Assertion Pair Coverage with 10 runs

Figure 7.10: Assertion Pair Coverage with 20 runs

had the same coverage.
Given that achieving a high coverage level in Assertion Pair Coverage is more difficult
than Assertion Coverage, it is expected that the version with the score function achieved
clearly better results than the version without it. This is indeed observed, if we consider
the evaluation for ten runs, under length 150 the version with score function managed
to achieve 84.24% of coverage while the version without it achieved only 41.96%. This
represents an improvement of almost 101% due to the use of the score function. On other
hand, with 20 runs of length 150 (with a total of 3,000 assertions evaluated), the version
with the score function achieved 99.27% (only 9 assertions were not covered) of Assertion
Pair Coverage, while the version without it achieved only 56.16% (537 pairs remaining).
This proves the effectiveness of the score function over a pure random sequence testing.

Chapter 7. Evaluation 80

Chapter 8

Conclusion

Mainstream specification languages, such as the Open API Specification [11] for REST-
ful APIs are limited semantically, for instance, it is not possible to relate request data
with responses obtained from the API. These limitations difficult the automatic test gen-
eration since they can not describe accurate business rules. To solve this, we presented a
new specification language based on Hoare triples [50] and refinement types [45], called
HEADREST. Each Hoare triple includes a method and an URI Template [46] describ-
ing the action to do on a given endpoint; a precondition describing the expected state of
the API and refines the data to be sent; a postcondition that specifies the resulting state
and the obtained response from sending a request satisfying the precondition to the API.
Refinement types allow to specify complex business rules, such as a VAT number.
In terms of testing RESTful APIs current approaches use languages specifically designed
for tests, with no use other than testing, or that do not consider completely the relations
inside the data encapsulated in the request or even complex relations between requests
and responses. Since HEADREST tackles those questions, we implemented a testing tool
for RESTful APIs given a specification written in HEADREST. There are two testing
methodologies: one that uses the precondition of an assertion to build a classification tree
[47] and generates test cases by varying the expression using the classification tree while
trying to maintain its satisfiability; and one that randomly tests sequences of assertions
where at each point of the sequence an assertion, whose precondition is satisfiable, is
chosen using an adaptive algorithm.
For the first testing methodology, the evaluation revealed that a high number of test cases
can be generated even by using Minimum Coverage. However, these generated test cases
require that the tester specify for each one the context under which it is applicable. The
context is a list of assertion aliases whose assertions must be evaluated, in order, before
evaluating the actual assertion.
For the second testing methodology we measured the runtime of the different steps in-
volved in the algorithm to analyze the scalability of it in terms of the length of sequences.
This measure indicated that the connectedness checking algorithm is the slowest step.

81

Chapter 8. Conclusion 82

While that, the request generation time is the second slowest step, namely when the num-
ber of resources, and hence the complexity of expressions, increases, Z3 is slower to
generate values satisfying a given precondition. However, this impact is only observable
for sequences bigger than 150 assertions (in sequence). Besides that, during evaluation it
was also observed that the expressions that Z3 would timeout more frequently, resulting
in an increased runtime, were expressions involving regular expressions. As more sophis-
ticated and better string solvers for Z3 are developed and integrated into the code base of
Z3, such as Z3str3 [25], it is expected that the overall runtime is improved.
We evaluated the algorithm based on the percentage of Assertion Coverage and Assertion
Pair Coverage under a number of runs of varying lengths. To evaluate the role of the score
function we measured both percentages by including and excluding the score function.
The results proved that the score function always leads to higher coverage levels than
without it. We also observed that with score function we achieved up to 101% more
coverage than without it. Finally, we achieved 99.27% of coverage in Assertion Pair
Coverage using the score function against only 56.16% without the score function for our
Mazes API.
As future work we pretend to explore the specification of security concerns in HEAD-
REST, namely requirements of authentication and confidentiality. In terms of tooling
around HEADREST we intend to use the language to a) verify dynamically the adher-
ence of services against their specification, b) generate server stubs and client Software
Development Kits (SDKs) from specifications described in HEADREST and c) statically
verify client or server code against a specification.
Besides that, we intend to improve the first test methodology by creating an hybrid testing
algorithm that makes use of the adaptive random sequence testing to reduce the number
of test cases to which the tester needs to augment with context information.

Appendix A

Specification of the Mazes API

1 // Resources
2 resource Maze
3 resource Room
4 resource Door
5
6
7 // Some constants to avoid magical numbers and ease maintenance
8 def SUCCESS = 200
9 def CREATED = 201

10 def NO_CONTENT = 204
11 def BAD_REQUEST = 400
12 def NOT_FOUND = 404
13 def CONFLICT = 409
14
15
16 // hypermedia
17 type Link = {
18 href: URI
19 }
20
21 // meta
22 type CollectionMeta = {
23 totalResults: integer,
24 resultPerPage: integer
25 }
26
27 // errors
28 type GenericError = {
29 error: string,
30 explanation: string
31 }
32
33 type BadRequestResponse = {
34 exception: string | null,
35 fieldViolations: BadRequestViolationResponse[],

83

Appendix A. Specification of the Mazes API 84

36 propertyViolations: BadRequestViolationResponse[],
37 classViolations: BadRequestViolationResponse[],
38 parameterViolations: BadRequestViolationResponse[],
39 returnValueViolations: BadRequestViolationResponse[]
40 } | { error: string }
41
42 type BadRequestViolationResponse = {
43 constraintType: (x : string where x == "PROPERTY" || x == "

PARAMETER"),
44 path: string,
45 message: string,
46 value: string
47 }
48
49 type NotFoundMessage = {
50 source: (x: string where contains(["MAZE", "ROOM", "DOOR"],

x)),
51 message: (x: string where x == "Resource not found")
52 }
53
54
55 type MazeGetData = {
56 _links: {
57 self: Link,
58 start: Link[] | null
59 },
60 id: integer,
61 name: string,
62 _embedded: {
63 orphanedRooms: RoomGetData[]
64 }
65 }
66
67 type MazePostData = {
68 name: (x : string where matches(/ˆ[\w\s]{3,50}$/, x))
69 }
70
71 type MazePutData = {
72 name: (x : string where matches(/ˆ[\w\s]{3,50}$/, x))
73 }
74
75 type MazeList = {
76 _embedded: {
77 mazes: MazeGetData[]
78 },
79 _links: {
80 self: Link,
81 prev: Link | [null],
82 next: Link | [null],

Appendix A. Specification of the Mazes API 85

83 last: Link
84 },
85 meta: CollectionMeta
86 }
87
88 type RoomGetData = {
89 _links: {
90 self: Link,
91 doors: Link,
92 maze: Link
93 },
94 id: integer,
95 name: string
96 }
97
98 type RoomData = {
99 name: (x: string where matches(/ˆ[\w\s]{3,50}$/, x))

100 }
101
102 type DoorDirection = (x: string where matches(/ˆ[a-zA-Z_-]{1,15}

$/, x))
103
104 type DoorPostData = {
105 toRoomId: integer,
106 direction: DoorDirection
107 }
108
109 type DoorGetData = {
110 _links: {
111 self: Link,
112 from: Link,
113 to: Link
114 },
115 direction: DoorDirection
116 }
117
118 type DoorList = {
119 _links: {
120 self: Link
121 },
122 _embedded: {
123 doors: DoorGetData[]
124 }
125 }
126
127 type DoorData = {
128 toRoomId: integer
129 }
130

Appendix A. Specification of the Mazes API 86

131
132 // Variables
133 var maze: Maze
134 var room: Room
135 var door: Door
136
137 // Assertions
138
139 // add maze, created
140 {
141 request in {body: MazePostData} &&&
142 (forall someMaze : Maze .
143 forall mazeRep : MazeGetData .
144 mazeRep representationof someMaze => mazeRep.name !=

request.body.name)
145 }
146 POST /mazes [alias CreateMaze, creates Maze]
147 {
148 response.code == CREATED &&
149 response in {body: MazeGetData, header: {Location: URI}} &&&

(
150 response.body.name == request.body.name &&
151 response.body._links.start == null &&
152 (exists maze : Maze .
153 response.header.Location resourceidof maze &&
154 response.body representationof maze)
155)
156 }
157
158
159 // add maze, CONFLICT
160 {
161 request in {body: MazePostData} &&&
162 (forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.name == request.body.name)
163 }
164 POST /mazes [alias CreateDuplicateMazeConflict]
165 {
166 response.code == CONFLICT &&
167 response in {body: GenericError} &&&
168 response.body.error == "Duplicated maze"
169 }
170
171
172 // add maze, bad request
173 {
174 isdefined(request.body) ||| !(request.body in MazePostData)
175 }
176 POST /mazes [alias CreateMazeBadRequest]

Appendix A. Specification of the Mazes API 87

177 {
178 response.code == BAD_REQUEST &&
179 response in {body: BadRequestResponse}
180 }
181
182
183 // get mazes
184 {
185 request.template in {
186 page: (i : integer where 1 <= i && i <= 100000),
187 limit: (i : integer where 1 <= i && i <= 50)
188 } &&& true
189 }
190 GET /mazes{?page,limit} [alias GetMazes]
191 {
192 response.code == SUCCESS &&
193 response in {body: MazeList} &&&
194 response.body.meta.totalResults >= 0
195 }
196
197
198 // delete maze, success
199 {
200 request.template.mazeId in integer &&
201 !isdefined(request.body) &&
202 (forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id == request.template.mazeId)
203 }
204 DELETE /mazes/{mazeId} [alias DeleteMaze]
205 {
206 response.code == NO_CONTENT &&
207 (forall maze : Maze . !(request.location resourceidof maze)

&&
208 (forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id != request.template.mazeId))
209 }
210
211
212 // delete maze, not found
213 {
214 request.template.mazeId in integer &&
215 !isdefined(request.body) &&
216 (forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id != request.template.mazeId)
217 }
218 DELETE /mazes/{mazeId} [alias DeleteMazeNotFound]
219 {
220 response.code == NOT_FOUND &&
221 (forall maze : Maze . !(request.location resourceidof maze))

Appendix A. Specification of the Mazes API 88

222 }
223
224
225 //get maze, success
226 {
227 request.template.mazeId in integer &&
228 (forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id == request.template.mazeId)
229 }
230 GET /mazes/{mazeId} [alias GetMaze]
231 {
232 response.code == SUCCESS &&
233 response in {body: MazeGetData} &&&
234 response.body representationof maze
235 }
236
237
238 // get maze, not found
239 {
240 request.template.mazeId in integer &&
241 (forall maze : Maze .
242 forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id != request.template.mazeId)
243 }
244 GET /mazes/{mazeId} [alias GetMazeNotFound]
245 {
246 response.code == NOT_FOUND
247 }
248
249
250 // update maze, success
251 {
252 request.template.mazeId in integer &&
253 (forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id == request.template.mazeId) &&
254 request in {body: MazePutData} &&&
255 (forall maze2 : Maze . forall mazeRep : MazeGetData .

mazeRep representationof maze2 =>
256 mazeRep.name != request.body.name)
257 }
258 PUT /mazes/{mazeId} [alias UpdateMaze]
259 {
260 response.code == SUCCESS &&
261 response in {body: MazeGetData} &&
262 response.body representationof maze &&
263 request.location resourceidof maze
264 }
265
266

Appendix A. Specification of the Mazes API 89

267 // update maze, bad request
268 {
269 (isdefined(request.body) ||| !(request.body in MazePutData))

&&
270 request.template.mazeId in integer &&
271 (forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id == request.template.mazeId)
272 }
273 PUT /mazes/{mazeId} [alias UpdateMazeBadRequest]
274 {
275 response.code == BAD_REQUEST &&
276 response in {body: BadRequestResponse}
277 }
278
279
280 // update maze, not found
281 {
282 request.template.mazeId in integer &&
283 request in {body: MazePutData} &&
284 (forall maze: Maze .
285 forall mazeRep : MazeGetData . mazeRep representationof

maze => mazeRep.id != request.template.mazeId)
286 }
287 PUT /mazes/{mazeId} [alias UpdateMazeNotFound]
288 {
289 response.code == NOT_FOUND
290 }
291
292
293 // add maze room (first room for that maze), success
294 {
295 request.template.mazeId in integer &&
296 request in {body: RoomData} &&&
297 (forall mgd: MazeGetData . mgd representationof maze =>
298 mgd.id == request.template.mazeId && mgd._links.start ==

null)
299 }
300 POST /mazes/{mazeId}/rooms [alias CreateMazeFirstRoom,

creates Room]
301 {
302 response.code == CREATED &&
303 response in {body: RoomGetData, header: {Location: URI}} &&&
304 (forall mgd : MazeGetData . mgd representationof maze =>
305 mgd.id == request.template.mazeId &&
306 mgd._links.start in Link[] &&&
307 (exists room : Room .
308 forall rgd: RoomGetData . rgd representationof room

=>
309 response.header.Location resourceidof room &&

Appendix A. Specification of the Mazes API 90

rgd.name == request.body.name &&
310 rgd._links.maze == mgd._links.self &&
311 contains(mgd._links.start, rgd._links.self)))
312 }
313
314 // add maze room (other rooms), success
315 {
316 (request.template.mazeId in integer &&
317 request in {body: RoomData}) &&&
318 (forall mazeRep: MazeGetData .
319 mazeRep representationof maze => mazeRep.id == request.

template.mazeId && mazeRep._links.start != null &&
320 (forall room : Room .
321 (forall roomRep: RoomGetData .
322 roomRep representationof room => roomRep._links.maze

== mazeRep._links.self && roomRep.name !=
request.body.name

323)
324)
325)
326 }
327 POST /mazes/{mazeId}/rooms [alias CreateMazeSubsequentRoom,

creates Room]
328 {
329 response.code == CREATED &&
330 response in {body: RoomGetData, header: {Location: URI}} &&&
331 (exists room : Room .
332 response.body representationof room &&
333 response.header.Location resourceidof room &&
334 (forall roomRep: (rgd: RoomGetData where rgd

representationof room) .
335 roomRep.name == request.body.name &&
336 (forall mazeRep: (mgd: MazeGetData where mgd

representationof maze) .
337 roomRep._links.maze == mazeRep._links.self)
338)
339)
340 }
341
342 // add maze room, bad request
343 {
344 request.template.mazeId in integer &&
345 (isdefined(request.body) ||| !(request.body in RoomData)) &&
346 (forall mgd: MazeGetData . mgd representationof maze => mgd.

id == request.template.mazeId)
347 }
348 POST /mazes/{mazeId}/rooms [alias CreateMazeRoomBadRequest]
349 {
350 response.code == BAD_REQUEST &&

Appendix A. Specification of the Mazes API 91

351 response in {body: BadRequestResponse}
352 }
353
354 // add maze room, not found
355 {
356 request in {body: RoomData} &&
357 (request.template.mazeId in integer &&
358 (forall maze:Maze .
359 (forall mazeRep : MazeGetData .
360 mazeRep representationof maze => mazeRep.id !=

request.template.mazeId)
361)
362) || request.template.mazeId in (x : string where x == "")
363 }
364 POST /mazes/{mazeId}/rooms [alias CreateMazeRoomNotFound]
365 {
366 response.code == NOT_FOUND
367 }
368
369 // add maze room, CONFLICT
370 {
371 request.template.mazeId in integer &&
372 request in {body: RoomData} &&&
373 // the maze already has a room with the same name
374 (exists maze: Maze .
375 forall mazeRep: MazeGetData .
376 mazeRep representationof maze => (
377 mazeRep.id == request.template.mazeId &&
378 (exists room: Room .
379 forall roomRep: RoomGetData .
380 roomRep representationof room =>
381 roomRep.name == request.body.name &&
382 roomRep._links.maze == mazeRep.

_links.self
383)
384)
385)
386 }
387 POST /mazes/{mazeId}/rooms [alias CreateMazeRoomConflict]
388 {
389 response.code == CONFLICT &&
390 response in {body: GenericError}
391 }
392
393 // GET
394
395 // get maze room, success
396 {
397 request.template.mazeId in integer &&

Appendix A. Specification of the Mazes API 92

398 request.template.roomId in integer &&
399 (exists maze: Maze . forall mazeRep: MazeGetData . mazeRep

representationof maze => mazeRep.id == request.template.
mazeId &&

400 (forall roomRep: RoomGetData . roomRep representationof
room => roomRep.id == request.template.roomId &&

401 roomRep._links.maze == mazeRep._links.self
402)
403)
404 }
405 GET /mazes/{mazeId}/rooms/{roomId} [alias GetMazeRoom]
406 {
407 response.code == SUCCESS &&
408 response in {body: RoomGetData} &&&
409 response.body representationof room
410 }
411
412 // get maze room, maze not found
413 {
414 request.template.mazeId in integer &&
415 request.template.roomId in integer &&
416 !(exists maze: Maze .
417 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId)
418)
419 }
420 GET /mazes/{mazeId}/rooms/{roomId} [alias

GetMazeRoom_MazeNotFound]
421 {
422 response.code == NOT_FOUND
423 }
424
425 // get maze room, maze found but room not found
426 {
427 request.template.mazeId in integer &&
428 request.template.roomId in integer &&
429 (exists maze: Maze .
430 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
431 (forall room: Room .
432 (forall roomRep: RoomGetData . roomRep representationof

room =>
433 (roomRep._links.maze == mazeRep._links.self =>

roomRep.id != request.template.roomId)
434)
435)
436)
437)
438 }

Appendix A. Specification of the Mazes API 93

439 GET /mazes/{mazeId}/rooms/{roomId} [alias
GetMazeRoom_RoomNotFound]

440 {
441 response.code == NOT_FOUND
442 }
443
444
445 // PUT
446
447 // update maze room, success
448 {
449 request.template.mazeId in integer &&
450 request.template.roomId in integer &&
451 request in {body: RoomData} &&&
452 (exists maze: Maze . forall mazeRep: MazeGetData . mazeRep

representationof maze => mazeRep.id == request.template.
mazeId &&

453 (forall roomRep: RoomGetData . roomRep representationof
room => roomRep.id == request.template.roomId &&

454 roomRep._links.maze == mazeRep._links.self
455) &&
456 (forall otherRoom: Room . forall roomRep: RoomGetData .

roomRep representationof otherRoom =>
457 (roomRep._links.maze == mazeRep._links.self =>

request.body.name != roomRep.name)
458)
459)
460 }
461 PUT /mazes/{mazeId}/rooms/{roomId} [alias UpdateMazeRoom]
462 {
463 response.code == SUCCESS &&
464 response in {body: RoomGetData} &&&
465 (response.body representationof room &&
466 response.body.name == request.body.name)
467 }
468
469 // update maze room, bad request
470 {
471 request.template.mazeId in integer &&
472 request.template.roomId in integer &&
473 (isdefined(request.body) ||| !(request.body in RoomData)) &&
474 (forall mgd: MazeGetData . mgd representationof maze => mgd.

id == request.template.mazeId)
475 }
476 PUT /mazes/{mazeId}/rooms/{roomId} [alias

UpdateMazeRoomBadRequest]
477 {
478 response.code == BAD_REQUEST &&
479 response in {body: BadRequestResponse}

Appendix A. Specification of the Mazes API 94

480 }
481
482 // update maze room, maze not found
483 {
484 request.template.mazeId in integer &&
485 request.template.roomId in integer &&
486 request in {body: RoomData} &&
487 !(exists maze: Maze .
488 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId)
489)
490 }
491 PUT /mazes/{mazeId}/rooms/{roomId} [alias

UpdateMazeRoom_MazeNotFound]
492 {
493 response.code == NOT_FOUND
494 }
495
496 // update maze room, maze found but room not found
497 {
498 request.template.mazeId in integer &&
499 request.template.roomId in integer &&
500 request in {body: RoomData} &&
501 (exists maze: Maze .
502 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
503 (forall room: Room .
504 (forall roomRep: RoomGetData . roomRep representationof

room =>
505 (roomRep._links.maze == mazeRep._links.self =>

roomRep.id != request.template.roomId)
506)
507)
508)
509)
510 }
511 PUT /mazes/{mazeId}/rooms/{roomId} [alias

UpdateMazeRoom_RoomNotFound]
512 {
513 response.code == NOT_FOUND
514 }
515
516 // update maze room, CONFLICT
517 {
518 request.template.mazeId in integer &&
519 request.template.roomId in integer &&
520 request in {body: RoomData} &&&
521 (exists maze: Maze . forall mazeRep: MazeGetData . mazeRep

representationof maze => mazeRep.id == request.template.

Appendix A. Specification of the Mazes API 95

mazeId &&
522 (exists room: Room . forall roomRep: RoomGetData .

roomRep representationof room => roomRep.id ==
request.template.roomId &&

523 roomRep._links.maze == mazeRep._links.self &&
524 (exists otherRoom: Room . room != otherRoom && (

forall otherRoomRep: RoomGetData . otherRoomRep
representationof otherRoom =>

525 otherRoomRep._links.maze == mazeRep._links.self
&&

526 request.body.name == otherRoomRep.name
527))
528)
529)
530 }
531 PUT /mazes/{mazeId}/rooms/{roomId} [alias

UpdateMazeRoomConflict]
532 {
533 response.code == CONFLICT &&
534 response in {body: GenericError}
535 }
536
537
538 // DELETE
539
540 // delete maze room, success
541 {
542 request.template.mazeId in integer &&
543 request.template.roomId in integer &&
544 !isdefined(request.body) &&
545 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId && mazeRep.
_links.start != null &&

546 (exists room:Room .
547 (forall roomRep: RoomGetData . roomRep

representationof room => roomRep.id == request.
template.roomId &&

548 roomRep._links.maze == mazeRep._links.self &&
549 mazeRep._links.start in Link[] &&&
550 !contains(mazeRep._links.start, roomRep._links.

self)
551)
552)
553)
554 }
555 // for this assertion we need to create subsequent rooms
556 DELETE /mazes/{mazeId}/rooms/{roomId} [alias DeleteMazeRoom]
557 {
558 response.code == NO_CONTENT &&

Appendix A. Specification of the Mazes API 96

559 (forall mazeRep: MazeGetData . mazeRep representationof maze
=> mazeRep.id == request.template.mazeId &&

560 !(exists room:Room .
561 (forall roomRep: (rgd: RoomGetData where rgd

representationof room) .
562 roomRep.id == request.template.roomId &&
563 roomRep._links.maze == mazeRep._links.self
564)
565)
566)
567 }
568
569 // delete maze room, maze not found
570 {
571 request.template.mazeId in integer &&
572 request.template.roomId in integer &&
573 !isdefined(request.body) &&
574 !(exists maze:Maze .
575 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId)
576)
577 }
578 DELETE /mazes/{mazeId}/rooms/{roomId} [alias

DeleteMazeRoom_MazeNotFound]
579 {
580 response.code == NOT_FOUND
581 }
582
583 // delete maze room, maze found but room not found
584 {
585 request.template.mazeId in integer &&
586 request.template.roomId in integer &&
587 !isdefined(request.body) &&
588 (exists maze:Maze .
589 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
590 (forall room:Room .
591 (forall roomRep: RoomGetData . roomRep representationof

room =>
592 (roomRep._links.maze == mazeRep._links.self =>

roomRep.id != request.template.roomId)
593)
594)
595)
596)
597 }
598 DELETE /mazes/{mazeId}/rooms/{roomId} [alias

DeleteMazeRoom_RoomNotFound]
599 {

Appendix A. Specification of the Mazes API 97

600 response.code == NOT_FOUND
601 }
602
603 // delete maze room, room is maze start room
604 {
605 request.template.mazeId in integer &&
606 request.template.roomId in integer &&
607 !isdefined(request.body) &&
608 (exists maze:Maze .
609 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
610 (exists room:Room .
611 (forall roomRep: RoomGetData . roomRep representationof

room => roomRep.id == request.template.roomId &&
612 roomRep._links.maze == mazeRep._links.self &&
613 mazeRep._links.start in Link[] &&&
614 contains(mazeRep._links.start, roomRep.

_links.self)
615)
616)
617)
618)
619 }
620 DELETE /mazes/{mazeId}/rooms/{roomId} [alias

DeleteMazeStartRoomConflict]
621 {
622 response.code == CONFLICT &&
623 response in {body: GenericError} &&&
624 response.body.error == "Constraint violation"
625 }
626
627
628 /* GET /mazes/{mazeId}/rooms/{roomId}/doors */
629
630 {
631 request.template.mazeId in integer &&
632 request.template.roomId in integer &&
633 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
634 (forall roomRep: RoomGetData . roomRep representationof

room =>
635 roomRep.id == request.template.roomId && roomRep.

_links.maze == mazeRep._links.self)
636)
637 }
638 GET /mazes/{mazeId}/rooms/{roomId}/doors [alias GetDoors]
639 {
640 response.code == SUCCESS &&
641 response in {body: DoorList}

Appendix A. Specification of the Mazes API 98

642 }
643
644
645 /* POST /mazes/{mazeId}/rooms/{roomId}/doors */
646
647 {
648 request.template.mazeId in integer &&
649 request.template.roomId in integer &&
650 request in {body: DoorPostData} &&&
651 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
652 (forall roomRep: RoomGetData . roomRep representationof

room =>
653 roomRep.id == request.template.roomId && roomRep.

_links.maze == mazeRep._links.self &&
654 (forall door: Door .
655 forall doorRep: DoorGetData . doorRep

representationof door =>
656 (doorRep._links.from == roomRep._links.self

=>
657 request.body.direction != doorRep.

direction)
658)
659) &&
660 (forall toRoomRep: RoomGetData . toRoomRep

representationof toRoom =>
661 toRoomRep.id == request.body.toRoomId && toRoomRep.

_links.maze == mazeRep._links.self
662)
663)
664 }
665 POST /mazes/{mazeId}/rooms/{roomId}/doors [alias CreateDoor,

creates Door]
666 {
667 response.code == CREATED &&
668 response in {body: DoorGetData, header: {Location: URI}} &&&
669 (response.body.direction == request.body.direction &&
670 response.body._links.from.href resourceidof room &&
671 response.body._links.to.href resourceidof toRoom &&
672 (exists door: Door . response.body representationof door &&

response.header.Location resourceidof door))
673 }
674
675
676 /* GET /mazes/{mazeId}/rooms/{roomId}/doors/{direction} */
677
678 {
679 request.template.mazeId in integer &&
680 request.template.roomId in integer &&

Appendix A. Specification of the Mazes API 99

681 request.template.direction in DoorDirection &&
682 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
683 (forall roomRep: RoomGetData . roomRep representationof

room =>
684 roomRep.id == request.template.roomId && roomRep.

_links.maze.href resourceidof maze &&
685 (forall doorRep: DoorGetData . doorRep

representationof door =>
686 doorRep._links.from.href resourceidof room &&

request.template.direction == doorRep.
direction)

687)
688)
689 }
690 GET /mazes/{mazeId}/rooms/{roomId}/doors/{direction} [alias

GetDoor]
691 {
692 response.code == SUCCESS &&
693 response in {body: DoorGetData} &&&
694 (response.body.direction == request.template.direction &&
695 response.body._links.from.href resourceidof room &&
696 (exists toRoom: Room . response.body._links.to.href

resourceidof toRoom))
697 }
698
699
700 /* PUT /mazes/{mazeId}/rooms/{roomId}/doors/{direction} */
701
702 var toRoom: Room
703 {
704 request.template.mazeId in integer &&
705 request.template.roomId in integer &&
706 request.template.direction in DoorDirection &&
707 request in {body: DoorData} &&&
708 ((forall mazeRep: MazeGetData . mazeRep representationof

maze => mazeRep.id == request.template.mazeId &&
709 (forall roomRep: RoomGetData . roomRep representationof

room =>
710 roomRep.id == request.template.roomId && roomRep.

_links.maze.href resourceidof maze &&
711 (forall doorRep: DoorGetData . doorRep

representationof door =>
712 doorRep._links.from.href resourceidof room &&

request.template.direction == doorRep.
direction)

713)
714) &&
715 (forall toRoomRep : RoomGetData . toRoomRep representationof

Appendix A. Specification of the Mazes API 100

toRoom =>
716 toRoomRep.id == request.body.toRoomId && toRoomRep.

_links.maze.href resourceidof maze))
717 }
718 PUT /mazes/{mazeId}/rooms/{roomId}/doors/{direction} [alias

UpdateDoor]
719 {
720 response.code == SUCCESS &&
721 response in {body: DoorGetData} &&&
722 (response.body.direction == request.template.direction &&
723 response.body._links.from.href resourceidof room &&
724 response.body._links.to.href resourceidof toRoom &&
725 response.body representationof door)
726 }
727
728 /* DELETE /mazes/{mazeId}/rooms/{roomId}/doors/{direction} */
729
730 // success
731 {
732 request.template.mazeId in integer &&
733 request.template.roomId in integer &&
734 request.template.direction in DoorDirection &&
735 !isdefined(request.body) &&
736 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
737 (forall roomRep: RoomGetData . roomRep representationof

room =>
738 roomRep.id == request.template.roomId && roomRep.

_links.maze.href resourceidof maze &&
739 (forall doorRep: DoorGetData . doorRep

representationof door =>
740 doorRep._links.from.href resourceidof room &&

request.template.direction == doorRep.
direction)

741)
742)
743 }
744 DELETE /mazes/{mazeId}/rooms/{roomId}/doors/{direction} [

alias DeleteDoor]
745 {
746 response.code == NO_CONTENT &&
747 !(exists door: Door .
748 forall doorRep : DoorGetData . doorRep representationof

door =>
749 doorRep._links.from.href resourceidof room &&

request.template.direction == doorRep.direction)
750 }
751
752 // non existing room

Appendix A. Specification of the Mazes API 101

753 {
754 request.template.mazeId in integer &&
755 request.template.roomId in integer &&
756 request.template.direction in DoorDirection &&
757 !isdefined(request.body) &&
758 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
759 !(exists room: Room . forall roomRep: RoomGetData .

roomRep representationof room =>
760 roomRep.id == request.template.roomId && roomRep.

_links.maze.href resourceidof maze
761)
762)
763 }
764 DELETE /mazes/{mazeId}/rooms/{roomId}/doors/{direction} [

alias DeleteDoor_RoomNotFound]
765 {
766 response.code == NOT_FOUND &&
767 response in {body: NotFoundMessage} &&&
768 response.body.source == "ROOM"
769 }
770
771 // non existing door
772 {
773 request.template.mazeId in integer &&
774 request.template.roomId in integer &&
775 request.template.direction in DoorDirection &&
776 !isdefined(request.body) &&
777 (forall mazeRep: MazeGetData . mazeRep representationof maze

=> mazeRep.id == request.template.mazeId &&
778 (forall roomRep: RoomGetData . roomRep representationof

room =>
779 roomRep.id == request.template.roomId && roomRep.

_links.maze.href resourceidof maze &&
780 !(exists door: Door . forall doorRep: DoorGetData .

doorRep representationof door =>
781 doorRep._links.from.href resourceidof room &&

request.template.direction == doorRep.
direction)

782)
783)
784 }
785 DELETE /mazes/{mazeId}/rooms/{roomId}/doors/{direction} [

alias DeleteDoor_DoorNotFound]
786 {
787 response.code == NOT_FOUND &&
788 response in {body: NotFoundMessage} &&&
789 response.body.source == "DOOR"
790 }

Appendix A. Specification of the Mazes API 102

Appendix B

DNF types and normalization

D ::= R1 | ... | Rn normal disjunction (x : any where false, if n = 0)
R ::= x : C where e normal refined conjunction
C ::= A1 & ... & An normal conjunction (any if n = 0)
A ::= G | T [] | {} | {l : T} atomic type

norm(any) , x : any where true

norm(G) , x : G where true

norm(T []) , x : T [] where true

norm({}) , x : {} where true

norm({l : T}) , x : {l : T} where true

norm((x : T where e)) , |ni=1 ConjDD(xi : Ci where ei, normr(x : Ci where e))

where |ni=1 (xi : Ci where ei) = norm(T)

normr(x : C where x in T) , norm(C & T) where x /∈ fv(T)

normr(x : C where e1 || e2) , normr(x : C where e1) | normr(x : C where e2)

normr(x : C where e1 && e2) , ConjDD(normr(x : C where e1), normr(x : C where e2))

normr(x : C where e) , (x : C where e) otherwise

ConjDD((R1 | ... | Rn), D) , ConjRD(R1, D) | ... | ConjRD(Rn, D)

ConjRD(R, (R1 | ... | Rn)) , ConjRR(R,R1) | ... | ConjRR(R,Rn)

ConjRR(x1 : C1 where e1, x2 : C2 where e2) , y : C1 & C2 where [y/x1]e1 && [y/x2]e2

where y /∈ fv(C1) ∧ y /∈ fv(C2) ∧ y /∈ fv(e1) ∧ y /∈ fv(e2)

Figure B.1: Disjunctive normal form types (DNF) and normalization

103

Appendix B. DNF types and normalization 104

Ri.l Ui ∀i∈1..n
(R1 | ... | Rn).l (U1 | ... | Un)

(Field Disj)
C.l U

(x : C where e).l U
(Field Refine)

S = {Ui | Ai.l Ui} 6= ∅
(A1 & ... & An).l (& S)

(Field Conj)
{l : T}.l T

(Field Atom)

Figure B.2: Extraction of field type: D.l U

Ri.Items Ui ∀i∈1..n
(R1 | ... | Rn).Items (U1 | ... | Un)

(Items Disj)

C.Items U

(x : C where e).Items U
(Items Refine)

S = {Ui | Ai.Items Ui} 6= ∅
(A1 & ... & An).Items (& S)

(Items Conj)
(T []).Items T

(Items Atom)

Figure B.3: Extraction of item type: D.Items U

Appendix C

Axiomatization in Z3

1 (set-info :smt-lib-version 2.0)
2
3 (set-option :auto_config false)
4 (set-option :smt.mbqi false)
5
6 (set-option :model_evaluator.completion false)
7 (set-option :model.v1 true)
8 (set-option :smt.phase_selection 0)
9 (set-option :smt.restart_strategy 0)

10 (set-option :smt.restart_factor 1.5)
11 (set-option :nnf.sk_hack true)
12 (set-option :smt.qi.eager_threshold 100.0)
13 (set-option :smt.arith.random_initial_value true)
14 (set-option :smt.case_split 3)
15 (set-option :smt.delay_units true)
16 (set-option :smt.delay_units_threshold 16)
17 (set-option :type_check true)
18 (set-option :smt.bv.reflect true)
19 (set-option :smt.timeout 2000)
20
21 ; -------------------------------
22 ; General, Resource and Value
23 ; -------------------------------
24
25 (declare-datatypes () ((General
26 (G_Boolean (of_G_Boolean Bool))
27 (G_Integer (of_G_Integer Int))
28 (G_String (of_G_String String))
29 G_Null
30)))
31
32 (declare-sort IVMap)
33 (declare-sort SVMap)
34
35 (declare-datatypes () ((Value

105

Appendix C. Axiomatization in Z3 106

36 (G (out_G General))
37 (O (out_O SVMap))
38 (A (out_A IVMap))
39 (R (id Int) (type String))
40)))
41
42 (declare-datatypes () ((ValueOption
43 NoValue
44 (SomeValue (of_SomeValue Value))
45)))
46
47 ;; Array related sorts/functions
48 (define-sort IVMapArray () (Array Int ValueOption))
49 (declare-fun alphai (IVMap) IVMapArray)
50 (declare-fun betai (IVMapArray) IVMap)
51
52 ;; Entity related sorts/functions
53 (define-sort SVMapArray () (Array String ValueOption))
54 (declare-fun alphas (SVMap) SVMapArray)
55 (declare-fun betas (SVMapArray) SVMap)
56
57 (declare-fun Good_A (Value) Bool)
58 (assert (forall ((v Value))
59 (! (iff
60 (Good_A v)
61 (is-A v)
62) :pattern(Good_A v))
63))
64
65 (declare-fun Good_O (Value) Bool)
66 (assert (forall ((v Value))
67 (! (iff
68 (Good_O v)
69 (is-O v)
70) :pattern(Good_O v))
71))
72
73 (declare-fun Good_R (Value) Bool)
74 (assert (forall ((v Value))
75 (! (iff
76 (Good_R v)
77 (is-R v)
78) :pattern(Good_R v))
79))
80
81 ; ----------------------------------
82 ; Constants, Functions and predicates
83 ; ----------------------------------
84 (declare-const v_tt Value)

Appendix C. Axiomatization in Z3 107

85 (declare-const v_ff Value)
86 (declare-const v_null Value)
87
88 (assert (= v_tt (G (G_Boolean true))))
89 (assert (= v_ff (G (G_Boolean false))))
90 (assert (= v_null (G G_Null)))
91
92 (declare-fun v_nth (Value Value) Value)
93 (declare-fun v_contains (Value Value) Value)
94 (declare-fun v_length (Value) Value)
95 (declare-fun v_boolean (Bool) Value)
96 (declare-fun v_integer (Int) Value)
97 (declare-fun v_string (String) Value)
98
99 (assert (forall ((b Bool))

100 (! (=
101 (v_boolean b)
102 (G (G_Boolean b))
103) :pattern(v_boolean b))
104))
105 (assert (forall ((i Int))
106 (! (=
107 (v_integer i)
108 (G (G_Integer i))
109) :pattern(v_integer i))
110))
111 (assert (forall ((s String))
112 (! (=
113 (v_string s)
114 (G (G_String s))
115) :pattern(v_string s))
116))
117
118 (declare-fun In_Boolean (Value) Bool)
119 (assert (forall ((v Value))
120 (! (=
121 (In_Boolean v)
122 (and (is-G v) (is-G_Boolean (out_G v)))
123) :pattern(In_Boolean v))
124))
125
126 (declare-fun In_Integer (Value) Bool)
127 (assert (forall ((v Value))
128 (! (=
129 (In_Integer v)
130 (and (is-G v) (is-G_Integer (out_G v)))
131) :pattern(In_Integer v))
132))
133

Appendix C. Axiomatization in Z3 108

134 (declare-fun In_String (Value) Bool)
135 (assert (forall ((v Value))
136 (! (=
137 (In_String v)
138 (and (is-G v) (is-G_String (out_G v)))
139) :pattern(In_String v))
140))
141
142 (declare-fun O_Equiv (Value Value) Value)
143 (declare-fun O_Implies (Value Value) Value)
144 (declare-fun O_Sum (Value Value) Value)
145 (declare-fun O_Sub (Value Value) Value)
146 (declare-fun O_Mult (Value Value) Value)
147 (declare-fun O_EQ (Value Value) Value)
148 (declare-fun O_NE (Value Value) Value)
149 (declare-fun O_Not (Value) Value)
150 (declare-fun O_Minus (Value) Value)
151 (declare-fun O_And (Value Value) Value)
152 (declare-fun O_Or (Value Value) Value)
153 (declare-fun O_GE (Value Value) Value)
154 (declare-fun O_GT (Value Value) Value)
155 (declare-fun O_LT (Value Value) Value)
156 (declare-fun O_LE (Value Value) Value)
157 (declare-fun O_++ (Value Value) Value)
158
159 (assert (forall ((v1 Value) (v2 Value))
160 (! (=
161 (O_Equiv v1 v2)
162 (ite (= v1 v2) v_tt v_ff)
163) :pattern(O_Equiv v1 v2))
164))
165
166 (assert (forall ((v1 Value) (v2 Value))
167 (! (=
168 (O_Implies v1 v2)
169 (O_Or (O_Not v1) v2)
170) :pattern(O_Implies v1 v2))
171))
172
173 (assert (forall ((v1 Value) (v2 Value))
174 (! (=
175 (O_Sum v1 v2)
176 (v_integer (+ (of_G_Integer (out_G v1)) (of_G_Integer (

out_G v2))))
177) :pattern(O_Sum v1 v2))
178))
179
180 (assert (forall ((v1 Value) (v2 Value))
181 (! (=

Appendix C. Axiomatization in Z3 109

182 (O_Sub v1 v2)
183 (v_integer (- (of_G_Integer (out_G v1)) (of_G_Integer (

out_G v2))))
184) :pattern(O_Sub v1 v2))
185))
186
187 (assert (forall ((v1 Value) (v2 Value))
188 (! (=
189 (O_Mult v1 v2)
190 (v_integer (* (of_G_Integer (out_G v1)) (of_G_Integer (

out_G v2))))
191) :pattern(O_Mult v1 v2))
192))
193
194 (assert (forall ((v1 Value) (v2 Value))
195 (! (=
196 (O_EQ v1 v2)
197 (ite (= v1 v2) v_tt v_ff)
198) :pattern(O_EQ v1 v2))
199))
200
201 (assert (forall ((v1 Value) (v2 Value))
202 (! (=
203 (O_NE v1 v2)
204 (ite (= v1 v2) v_ff v_tt)
205) :pattern(O_NE v1 v2))
206))
207
208 (assert (forall ((v Value))
209 (! (=
210 (O_Not v)
211 (ite (not (= v v_tt)) v_tt v_ff)
212) :pattern(O_Not v))
213))
214
215 (assert (forall ((v Value))
216 (! (=
217 (O_Minus v)
218 (v_integer (- (of_G_Integer (out_G v))))
219) :pattern(O_Minus v))
220))
221
222 (assert (forall ((v1 Value) (v2 Value))
223 (! (=
224 (O_And v1 v2)
225 (ite
226 (and (= v1 v_tt) (= v2 v_tt))
227 v_tt
228 v_ff

Appendix C. Axiomatization in Z3 110

229)
230) :pattern(O_And v1 v2))
231))
232
233 (assert (forall ((v1 Value) (v2 Value))
234 (! (=
235 (O_Or v1 v2)
236 (ite
237 (or (= v1 v_tt) (= v2 v_tt))
238 v_tt
239 v_ff
240)
241) :pattern(O_Or v1 v2))
242))
243
244 (assert (forall ((v1 Value) (v2 Value))
245 (! (=
246 (O_GE v1 v2)
247 (ite (>= (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
248) :pattern(O_GE v1 v2))
249))
250
251 (assert (forall ((v1 Value) (v2 Value))
252 (! (=
253 (O_GT v1 v2)
254 (ite (> (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
255) :pattern(O_GT v1 v2))
256))
257
258 (assert (forall ((v1 Value) (v2 Value))
259 (! (=
260 (O_LT v1 v2)
261 (ite (< (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
262) :pattern(O_LT v1 v2))
263))
264
265 (assert (forall ((v1 Value) (v2 Value))
266 (! (=
267 (O_LE v1 v2)
268 (ite (<= (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)
269) :pattern(O_LE v1 v2))
270))
271
272 (assert (forall ((v1 Value) (v2 Value))
273 (! (=

Appendix C. Axiomatization in Z3 111

274 (O_++ v1 v2)
275 (v_string (str.++ (of_G_String (out_G v1)) (of_G_String

(out_G v2))))
276) :pattern(O_++ v1 v2))
277))
278
279 ; ----------------------------------
280 ; Strings
281 ; ----------------------------------
282
283 ;; Link v_length to str.len
284 (assert (forall ((v Value))
285 (! (implies
286 (and (is-G v) (is-G_String (out_G v)))
287 (= (str.len (of_G_String (out_G v))) (of_G_Integer (

out_G (v_length v))))
288) :pattern((v_length v)))
289))
290
291 ;; contains
292 (assert (forall ((v1 Value) (v2 Value))
293 (! (=
294 (v_contains v1 v2)
295 (ite (str.contains (of_G_String (out_G v1)) (of_G_String

(out_G v2))) v_tt v_ff)
296) :pattern((In_String v1) (In_String v2) (v_contains v1 v2))

)
297))
298
299 (declare-fun v_matches ((RegEx String) Value) Value)
300 (assert (forall ((r (RegEx String)) (v Value))
301 (! (=
302 (v_matches r v)
303 (v_boolean (str.in.re (of_G_String (out_G v)) r))
304) :pattern(v_matches r v))
305))
306
307 ; ---------------------------------
308 ; Entities (ie, finite maps)
309 ; ---------------------------------
310
311 (declare-fun v_dot (Value String) Value)
312 (declare-fun v_has_field (Value String) Bool)
313
314 ;; SVMap and the arrays in SVMapArray are isomorphic
315 (assert (forall ((am SVMapArray))
316 (= (alphas (betas am)) am)
317))
318 (assert (forall ((svm SVMap))

Appendix C. Axiomatization in Z3 112

319 (= (betas (alphas svm)) svm)
320))
321
322 (assert (forall ((svm SVMapArray))
323 (= (default svm) NoValue)
324))
325
326 (assert (forall ((l String) (svm SVMap))
327 (! (iff
328 (v_has_field (O svm) l)
329 (not (= (select (alphas svm) l) NoValue))
330) :pattern(v_has_field (O svm) l))
331))
332
333 (assert (forall ((l String) (svm SVMap))
334 (! (=
335 (v_dot (O svm) l)
336 (of_SomeValue (select (alphas svm) l))
337) :pattern(v_dot (O svm) l))
338))
339
340 ; Avoid direct recursion
341 (assert (forall ((v Value) (l String))
342 (! (not (=
343 (v_dot v l)
344 v
345)) :pattern(v_dot v l))
346))
347
348 ; ---------------------------------
349 ; Collections
350 ; ---------------------------------
351 ;; IVMap and the arrays in IVMapArray are isomorphic
352 (assert (forall ((am IVMapArray))
353 (= (alphai (betai am)) am)
354))
355 (assert (forall ((ivm IVMap))
356 (= (betai (alphai ivm)) ivm)
357))
358
359 ;; Finiteness of collections
360 (assert (forall ((ivm IVMapArray))
361 (= (default ivm) NoValue)
362))
363
364 ;; Non-negative length of collections
365 (assert (forall ((v Value))
366 (! (and
367 (In_Integer (v_length v))

Appendix C. Axiomatization in Z3 113

368 (>= (of_G_Integer (out_G (v_length v))) 0)
369))
370))
371
372 ;; Collections are defined in the range [0, length(C)[
373 (assert (forall ((v Value))
374 (! (forall ((i Int))
375 (implies
376 (and (<= 0 i) (< i (of_G_Integer (out_G (v_length v)

))))
377 (is-SomeValue (select (alphai (out_A v)) i))
378)
379) :pattern(Good_A v))
380))
381
382 (assert (forall ((v Value) (i Int))
383 (! (=
384 (v_nth v (v_integer i))
385 (of_SomeValue (select (alphai (out_A v)) i))
386) :pattern((Good_A v) (v_nth v (v_integer i))))
387))
388
389 ;; contains
390 (assert (forall ((v1 Value) (v2 Value))
391 (! (=
392 (v_contains v1 v2)
393 (ite
394 (exists ((i Int))
395 (and (<= 0 i) (< i (of_G_Integer (out_G (

v_length v1))))
396 (= (v_nth v1 (v_integer i)) v2)
397)
398)
399 v_tt v_ff
400)
401) :pattern((Good_A v1) (v_contains v1 v2)))
402))
403
404 ; Avoid direct recursion
405 (assert (forall ((v1 Value) (v2 Value))
406 (! (not (=
407 (v_nth v1 v2)
408 v1
409)) :pattern(v_nth v1 v2))
410))
411
412
413 ; -----------------------------------
414 ; Resources and representations

Appendix C. Axiomatization in Z3 114

415 ; -----------------------------------
416
417 (assert (forall ((r1 Value) (r2 Value))
418 (! (iff
419 (= r1 r2)
420 (= (id r1) (id r2))
421) :pattern((Good_R r1) (Good_R r2)))
422))
423
424 (declare-fun r_representationof (Value Value) Value)
425
426 ; All representations are not resources
427 (assert (forall ((v Value) (r Value))
428 (! (implies
429 (Good_R r)
430 (implies
431 (is-R v)
432 (= (r_representationof v r) v_ff)
433)
434) :pattern(r_representationof v r))
435))
436
437 (declare-fun r_resourceidof (Value Value) Value)
438
439 ; All identifiers are strings
440 (assert (forall ((v Value) (r Value))
441 (! (implies
442 (Good_R r)
443 (implies
444 (not (In_String v))
445 (= (r_resourceidof v r) v_ff)
446)
447) :pattern(r_resourceidof v r))
448))

Appendix D

Visual Studio Code extension

While the Eclipse plugin can be automatically generated from the code initially generated
by Xtext, an extension for Visual Studio Code can not be automatically generated in the
same way.
On version 2.11, Xtext added support for Language Server Protocol [10]. Editors support-
ing this protocol are able to communicate with a language smartness provider (a server)
in order to make available features such as semantic checking. Visual Studio Code is one
of those editors supporting this protocol.
In order to have those features working in Visual Studio Code we need to create an exten-
sion. This extension is responsible for configuring the communication between the editor
and the server. There are two possible ways of doing this: the server being external to
the extension; or embedding the server in the extension. In the first alternative, the server
must be running before the extension starts running in the context of Visual Studio Code,
which is a disadvantage. Also the communication between the extension and the server
is done through sockets. In the second alternative, the extension contains the server exe-
cutable and upon activation of the extension, the server is launched. The communication
in this case is done through process I/O. Hence, we opted to implement this second al-
ternative since the server handling is completely transparent to the user of the extension.
The implementation of that communication was done in Typescript [17].

115

Appendix D. Visual Studio Code extension 116

Glossary

ANTLR ANother Tool for Language Recognition.
API Application Programming Interface.
AST Abstract Syntax Tree.

CTM Classification Tree Method.

DNF Disjunctive Normal Form.
DSL Domain Specific Language.

GUI Graphical User Interface.

HATEOAS Hypermedia as the Engine of Application State.
hRESTS HTML for RESTful Services.
HTML HyperText Markup Language.
HTTP Hypertext Transfer Protocol.

ID Identifier.
IDE Integrated Development Environment.

JSON JavaScript Object Notation.

MC Minimum Coverage.
MSON Markdown Syntax for Object Notation.

RAML RESTful API Modeling Language.
RDF Resource Description Framework.
REST Representational State Transfer.
RFC Request for Comments.

117

Glossary 118

SCC Strongly Connected Component.
SDK Software Development Kit.
SMT Satisfiability Modulo Theories.
SOAP Simple Object Access Protocol.

URI Uniform Resource Identifier.
URL Uniform Resource Locator.

VAT Value Added Tax.

WADL Web Application Description Language.

XML Extensible Markup Language.

YAML YAML Ain’t Markup Language.

Bibliography

[1] ANTLR. http://www.antlr.org/. Accessed: May 2017.

[2] Apache JMeter. http://jmeter.apache.org/. Accessed: June 2017.

[3] API Blueprint. https://apiblueprint.org/. Accessed: May 2017.

[4] apiaryio/mson: Markdown Syntax for Object Notation. https://github.com/
apiaryio/mson. Accessed: May 2017.

[5] Cucumber. https://cucumber.io/. Accessed: June 2017.

[6] curl. https://curl.haxx.se/. Accessed: April 2017.

[7] Dredd — HTTP API Testing Framework. https://dredd.readthedocs.

io/. Accessed: May 2017.

[8] Eclipse - The Eclipse Foundation open source community website. http://www.
eclipse.org/. Accessed: May 2017.

[9] https://docs.qameta.io/allure/2.0/. https://docs.qameta.io/allure/2.

0/. Accessed: June 2017.

[10] Microsoft/language-server-protocol: Defines a common protocol
for language servers. https://github.com/Microsoft/

language-server-protocol. Accessed: June 2017.

[11] Open API Initiative. https://www.openapis.org/. Accessed: May 2017.

[12] Postman — Supercharge your API workflow. https://www.getpostman.

com/postman. Accessed: April 2017.

[13] RDF - Semantic Web Standards. https://www.w3.org/RDF/. Accessed: June
2017.

[14] REST Assured. http://rest-assured.io/. Accessed: April 2017.

[15] Schema - W3C. https://www.w3.org/standards/xml/schema. Ac-
cessed: May 2017.

119

http://www.antlr.org/
http://jmeter.apache.org/
https://apiblueprint.org/
https://github.com/apiaryio/mson
https://github.com/apiaryio/mson
https://cucumber.io/
https://curl.haxx.se/
https://dredd.readthedocs.io/
https://dredd.readthedocs.io/
http://www.eclipse.org/
http://www.eclipse.org/
https://docs.qameta.io/allure/2.0/
https://docs.qameta.io/allure/2.0/
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/language-server-protocol
https://www.openapis.org/
https://www.getpostman.com/postman
https://www.getpostman.com/postman
https://www.w3.org/RDF/
http://rest-assured.io/
https://www.w3.org/standards/xml/schema

Bibliography 120

[16] The Official YAML Web Site. http://yaml.org/. Accessed: May 2017.

[17] TypeScript - JavaScript that scales. https://www.typescriptlang.org/.
Accessed: June 2017.

[18] Visual Studio Code - Code Editing. Redefined. https://code.

visualstudio.com/. Accessed: June 2017.

[19] Welcome — RAML. https://raml.org/. Accessed: May 2017.

[20] Xtext - Language Engineering Made Easy! https://www.eclipse.org/

Xtext/. Accessed: June 2017.

[21] W Appel Andrew and P Jens. Modern compiler implementation in java, 2002.

[22] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In International
Conference on Computer Aided Verification, pages 171–177. Springer, 2011.

[23] Clark Barrett, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. 2010.

[24] Clark W Barrett, Leonardo Mendonça de Moura, and Aaron Stump. Smt-comp: Sat-
isfiability modulo theories competition. In CAV, volume 5, pages 20–23. Springer,
2005.

[25] Murphy Berzish, Yunhui Zheng, and Vijay Ganesh. Z3str3: A string solver with
theory-aware branching. CoRR, abs/1704.07935, 2017.

[26] Gavin M Bierman, Andrew D Gordon, Cătălin Hriţcu, and David Langworthy. Se-
mantic subtyping with an smt solver. Journal of Functional Programming, 22(1):31–
105, 2012.

[27] T Bray. The javascript object notation (json) data interchange format. 2014.
https://www.ietf.org/rfc/rfc7159.txt.

[28] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml). World Wide Web Journal, 2(4):27–
66, 1997.

[29] Sujit Kumar Chakrabarti and Prashant Kumar. Test-the-rest: An approach to testing
restful web-services. In Future Computing, Service Computation, Cognitive, Adap-
tive, Content, Patterns, 2009. COMPUTATIONWORLD’09. Computation World:,
pages 302–308. IEEE, 2009.

http://yaml.org/
https://www.typescriptlang.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://raml.org/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://www.ietf.org/rfc/rfc7159.txt

Bibliography 121

[30] Sujit Kumar Chakrabarti and Reswin Rodriquez. Connectedness testing of restful
web-services. In Proceedings of the 3rd India software engineering conference,
pages 143–152. ACM, 2010.

[31] James Clark and Makoto Murata. Relax ng specification. 2001. http://

relaxng.org/spec-20011203.html. Accessed: May 2017.

[32] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[33] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2(2):1–2, 2006.

[34] ECMA International. Standard ECMA-262 - ECMAScript Language Specification.
5.1 edition, June 2011.

[35] Thomas Erl, Benjamin Carlyle, Cesare Pautasso, and Raj Balasubramanian. SOA
with REST: Principles, Patterns &Constraints for Building Enterprise Solutions with
REST. Prentice Hall Press, 2012.

[36] Fábio Ferreira, Telmo Santos, Francisco Martins, Antónia Lopes, and Vasco T. Vas-
concelos. Especificação de Interfaces Aplicacionais REST. In Actas do 9o Encontro
Nacional de Informática, INFORUM 2017, Aveiro, Portugal, 2017.

[37] Tobias Fertig and Peter Braun. Model-driven testing of restful apis. In Proceedings
of the 24th International Conference on World Wide Web, pages 1497–1502. ACM,
2015.

[38] Roy Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD dissertation, University of California, 2000.

[39] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Seman-
tics and Content. 2014. https://www.ietf.org/rfc/rfc7231.txt.

[40] Roy T Fielding and Richard N Taylor. Principled design of the modern web archi-
tecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[41] Martin Fowler. Richardson Maturity Model: Steps toward the glory of REST. 2010.

[42] N. Freed, J. Klensin, and T. Hansen. Media type specifications and registration
procedures. BCP 13, RFC Editor, January 2013.

[43] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping. In
Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on,
pages 137–146. IEEE, 2002.

http://relaxng.org/spec-20011203.html
http://relaxng.org/spec-20011203.html
https://www.ietf.org/rfc/rfc7231.txt

Bibliography 122

[44] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1995.

[45] Andrew D Gordon and Cédric Fournet. Principles and applications of refinement
types. Logics and Languages for Reliability and Security, 25:73–104, 2010.

[46] J Gregorio, R Fielding, M Hadley, M Nottingham, and D Orchard. URI Template.
Internet Engineering Task Force (IETF) Request for Comments, 2012. https:

//www.ietf.org/rfc/rfc6570.txt.

[47] Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing.
Software Testing, Verification and Reliability, 3(2):63–82, 1993.

[48] Marc J Hadley. Web application description language (wadl). 2006.

[49] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October 2012.

[50] Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[51] Philip John. Hypermedia rest rakenduste automatiseeritud testimine, 2016.

[52] Rohit Khare and Tantek Çelik. Microformats: a pragmatic path to the semantic
web. In Proceedings of the 15th international conference on World Wide Web, pages
865–866. ACM, 2006.

[53] Kenneth Knowles, Aaron Tomb, Jessica Gronski, S Freund, and Cormac Flanagan.
Sage: Unified hybrid checking for first-class types, general refinement types and
dynamic. Technical report, 2007.

[54] Jacek Kopeckỳ, Karthik Gomadam, and Tomas Vitvar. hRESTS: An HTML mi-
croformat for describing restful web services. In Web Intelligence and Intelligent
Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on,
volume 1, pages 619–625. IEEE, 2008.

[55] Eleftherios Koutsofios, Stephen North, et al. Drawing graphs with dot. Technical
report, Technical Report 910904-59113-08TM, AT&T Bell Laboratories, Murray
Hill, NJ, 1991.

[56] Peter Michael Kruse. Enhanced test case generation with the classification tree
method. PhD dissertation, Freie Universität Berlin, 2014.

[57] Larry Masinter, Tim Berners-Lee, and Roy Fielding. Uniform Resource Identi-
fier (URI): Generic syntax. 2005. https://www.ietf.org/rfc/rfc3986.
txt.

https://www.ietf.org/rfc/rfc6570.txt
https://www.ietf.org/rfc/rfc6570.txt
https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt

Bibliography 123

[58] Thomas J. Ostrand and Marc J. Balcer. The category-partition method for specifying
and generating fuctional tests. Communications of the ACM, 31(6):676–686, 1988.

[59] Terence Parr and Kathleen Fisher. Ll (*): the foundation of the antlr parser generator.
ACM Sigplan Notices, 46(6):425–436, 2011.

[60] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martı́n Ugarte, and Domagoj Vrgoč.
Foundations of json schema. In Proceedings of the 25th International Conference
on World Wide Web, pages 263–273. International World Wide Web Conferences
Steering Committee, 2016.

[61] Benjamin C Pierce. Type systems and programming languages, 2002.

[62] Benjamin C Pierce and David N Turner. Local type inference. ACM Transactions
on Programming Languages and Systems (TOPLAS), 22(1):1–44, 2000.

[63] Leonard Richardson and Sam Ruby. RESTful web services. ” O’Reilly Media, Inc.”,
2008.

[64] Carlos Rodrı́guez, Marcos Baez, Florian Daniel, Fabio Casati, Juan Carlos Tra-
bucco, Luigi Canali, and Gianraffaele Percannella. Rest apis: a large-scale analysis
of compliance with principles and best practices. In International Conference on
Web Engineering, pages 21–39. Springer, 2016.

[65] SM Sohan, Craig Anslow, and Frank Maurer. Spyrest: Automated restful api docu-
mentation using an http proxy server (n). In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on, pages 271–276. IEEE, 2015.

[66] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

[67] Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy Berzish,
Julian Dolby, and Xiangyu Zhang. Z3str2: an efficient solver for strings, regular ex-
pressions, and length constraints. Formal Methods in System Design, 50(2-3):249–
288, 2017.

	List of Figures
	Introduction
	Motivation and goals
	Contributions
	Deviations from the original plan thesis
	Structure of the document

	Background concepts
	Representational State Transfer (REST)
	What is REST?
	REST constraints

	Coverage criteria
	Fundamental concepts
	Classification Tree Method

	Graph Theory
	Refinement Types
	Hoare triples

	Related work
	Description languages for RESTful APIs
	WADL
	API Blueprint
	RAML
	OpenAPI (originally Swagger)
	HTML for RESTful Services (hRESTS)
	Resource based description with RDF

	Automatic documentation of RESTful APIs
	Compliance of RESTful APIs
	RESTful APIs testing
	Manual testing
	Automatic testing

	The HeadREST specification language
	Introducing the language via an example
	Core Syntax
	Concrete syntax
	Derived specifications
	Derived expressions
	Derived types

	Algorithmic type checking

	Validating specifications
	Xtext and plugin implementation
	The validation phase
	The symbol table
	Value hierarchy
	Semantic subtype checking
	The validation process

	Metrics

	The RTester tool and its implementation
	Resource repository
	Assertion evaluation
	Precondition transformations
	Request generation
	Sending generated request and refresh resource repository
	Postcondition evaluation

	Unit assertion testing
	Generation of test cases
	Modification of test cases by the tester and execution of test cases

	Adaptive random sequence testing
	Algorithm

	Connectedness checking algorithm
	Resource reference graph
	Algorithm

	Report building
	Metrics

	Evaluation
	Unit assertion testing
	Adaptive random sequence testing
	Duration of one run of varying length
	Assertion Coverage
	Assertion Pair Coverage

	Conclusion
	Specification of the Mazes API
	DNF types and normalization
	Axiomatization in Z3
	Visual Studio Code extension
	Glossary
	Bibliography

